3

3. ГИДРОАППАРАТУРА

 

3.4. Гидравлические дроссели и регуляторы потока

 

Гиродроссель – регулирующий аппарат, устанавливающий определенную связь между перепадом давления на самом дросселе и расходом жидкости через него. Дроссели, представляющие собой гидравлические сопротивления, разделяют на регулируемые и нерегулируемые.

Регулируемые дроссели применяются, например, в гидроприводах для регулирования скорости движения выходных звеньев гидродвигателей.

По принципу действия различают следующие типы дросселей: дроссель вязкостного сопротивления, потери давления в котором определяется сопротивлением потоку жидкости в канале большой длины; дроссель вихревого сопротивления, потери давления в котором определяется в основном деформацией потока жидкости и вихреобразованием в канале малой длины.

Дроссели первого типа получили название линейных, так как потери давления в них обусловлены трением при ламинарном режиме течения жидкости, т.е. потери давления является практически линейной функцией скорости течения жидкости.

Поскольку потери давления в таком дросселе изменяется прямо пропорционально вязкости жидкости, гидравлическая характеристика его D зависит от температуры. Линейные дроссели применимы только при малых скоростях течения жидкости, т.е.  при малых значениях потерь давления (обычно меньше 0,3 МПа) и в условиях достаточно стабильной температуры.

В дросселях второго типа изменения давления происходит практически пропорционально квадрату скорости потока жидкости, ввиду чего такой дроссель называют квадратичным. Характеристика такого дросселя практически не зависит от вязкости жидкости.

На рис. 3.19. показана конструктивная схема линейного дросселя, в котором гидравлическое сопротивление регулируется изменением длины дроссельного канала однозаходного винта путем ввинчивания или вывинчивания винта 2 в корпусе 1.

 

Рис. 3. 19. Схема линейного дросселя:

1 – корпус; 2 – винт

 

Дроссельный канал можно рассматривать как трубку прямоугольного или треугольного, в зависимости от профиля резьбы, сечения и расчет потерь давления в первом приближении можно вести по общим формулам гидравлики для расчета путевых потерь в трубопроводах.

На рис. 3.20. показаны конструктивные схемы квадратичных (турбулентных) дросселей. Широко применяются в гидроавтоматике простые дроссели в виде тонкой шайбы с круглым отверстием и острыми кромками (рис. 3.20, а). Дросселирующие свойства отверстий в таких шайбах обусловлены в основном потерями энергии при внезапном сужении и расширении потока жидкости.

При разработке гидросистем часто требуется дроссель, обладающий высоким гидравлическим сопротивлением (большим перепадом давления) и стабильной расходной характеристикой. Обеспечить подобные требования одной дроссельной шайбой не представляется возможным, поскольку размер ее отверстия при этом может быть столь малым, что возможно засорение его загрязнениями жидкости.

Поэтому применяются многоступенчатые дроссели из нескольких последовательно расположенных дроссельных шайб (рис. 3.20, б), принцип действия которых также основан на многократном сужении и расширении потока жидкости.

 

Рис. 3.20. Схемы квадратичных (турбулентных) дросселей:

а) дроссельная шайба; б) пакет шайб; в) золотниковый дроссель;

г) крановый дроссель

 

Сопротивление такого дросселя регулируется при данном размере отверстия подбором количества шайб. Практика показывает, что на расходные характеристики такого дросселя влияют расстояние  между шайбами, которое должно быть не меньше (3…5)d, где d – диаметр отверстия, а также толщина d дросселирующей шайбы, которая обычно выбирается не более (0,4…0,5)d. Диаметр d отверстий в шайбах должен быть не менее 0,3 мм, чтобы исключить возможность их засорения.

На рис. 3.20, в показана конструктивная схема регулируемого золотникового дросселя, в котором рабочее проходное сечение создается кромками расточки корпуса 1 и золотника 2. Для изменения площади рабочего проходного сечения дросселя необходимо перемещать золотник в осевом направлении.

В крановом дросселе (рис. 3.20, г) рабочее проходное сечение создается между расточкой корпуса 1 и узкой щелью, выполненной в полом кране 2. Для изменения площади рабочего проходного сечения дросселя необходимо повернуть кран в ту или иную сторону.

Широкое применение в регулирующей гидроаппаратуре в системах гидроавтоматики и следящем гидроприводе находят регулируемые гидравлические дроссели типа сопло-заслонка. Регулируемые дроссели сопло-заслонка представляют собой устройства, состоящие из сопла и плоской заслонки, которая перемещается вдоль оси сопла и изменяет площадь кольцевой щели между торцом сопла и заслонкой, что приводит к изменению гидравлического сопротивления дросселя.

Расход жидкости через квадратичный дроссель определяется по формуле

,               (3.10)

где  – расход жидкости, м3/с;

       m – коэффициент расхода,  m = 0,6…0,7;

        – площадь рабочего проходного сечения дросселя м2;

        – перепад давления, Па, , здесь  – давление на входе в дроссель,  – давление на выходе из дросселя;

       r – плотность жидкости, кг/м3.

 

Регулятором потока называется регулирующий аппарат, предназначенный для поддержания заданного значения расхода вне зависимости от перепада давлений в подводимом и отводимом потоках рабочей жидкости.

Конструктивно регулятор потока представляет собой модуль, состоящий из регулируемого дросселя и редукционного клапана. На рис. 3.21. в условных изображениях показана схема регулятора потока. Независимость расхода от давления в подводимом и отводимом потоках рабочей жидкости обеспечивается за счет стабилизации перепада давления  на регулируемом дросселе с помощью редукционного клапана, т.е. за счет  = const.

Рис. 3.21. Условное обозначение

регулятора потока

Последнее изменение: вторник, 21 августа 2012, 10:42