Функции нескольких переменных

При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.

Определение: Если каждой паре независимых друг от друга чисел (x, y) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

$$z = f(x, y)$$

<u>Определение:</u> Если паре чисел (x, y) соответствует одно значение z, то функция называется **однозначной**, а если более одного, то – **многозначной**.

<u>Определение</u>: Областью определения функции z называется совокупность пар (x, y), при которых функция z существует.

<u>Определение:</u> Окрестностью точки $M_0(x_0, y_0)$ радиуса r называется совокупность всех точек (x, y), которые удовлетворяют условию $\sqrt{(x-x_0)^2+(y-y_0)^2} < r$.

Определение: Число A называется **пределом** функции f(x, y) при стремлении точки M(x, y) к точке $M_0(x_0, y_0)$, если для каждого числа $\varepsilon > 0$ найдется такое число r > 0, что для любой точки M(x, y), для которых верно условие

$$MM_0 < r$$

также верно и условие $|f(x, y) - A| < \varepsilon$.

Записывают:
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A$$

<u>Определение:</u> Пусть точка $M_0(x_0, y_0)$ принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется **непрерывной** в точке $M_0(x_0, y_0)$, если

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0) \tag{1}$$

причем точка M(x, y) стремится к точке $M_0(x_0, y_0)$ произвольным образом.

Если в какой — либо точке условие (1) не выполняется, то эта точка называется **точкой разрыва** функции f(x, y). Это может быть в следующих случаях:

- 1) Функция z = f(x, y) не определена в точке $M_0(x_0, y_0)$.
- 2) Не существует предел $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$.
- Этот предел существует, но он не равен $f(x_0, y_0)$.

Свойство. Если функция f(x, y, ...) определена и непрерывна в замкнутой и ограниченной области D, то в этой области найдется по крайней мере одна точка $N(x_0, y_0, ...)$, такая, что для остальных точек верно неравенство

$$f(x_0, y_0, ...) \ge f(x, y, ...)$$

а также точка $N_1(x_{01}, y_{01}, ...)$, такая, что для всех остальных точек верно неравенство

$$f(x_{01}, y_{01}, ...) \le f(x, y, ...)$$

тогда $f(x_0, y_0, ...) = M$ — наибольшее значение функции, а $f(x_{01}, y_{01}, ...) = m$ — наименьшее значение функции f(x, y, ...) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

<u>Свойство.</u> Если функция f(x, y, ...) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки $\mu \in [m, M]$ существует точка

$$N_0(x_0, y_0, ...)$$
 такая, что $f(x_0, y_0, ...) = \mu$.

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

Свойство. Функция f(x, y, ...), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число K, что для всех точек области верно неравенство |f(x, y, ...)| < K.

Свойство. Если функция f(x, y, ...) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа ε существует такое число $\Delta > 0$, что для любых двух точек (x_1, y_1) и (x_2, y_2) области, находящихся на расстоянии, меньшем Δ , выполнено неравенство

$$|f(x_1,y_1)-f(x_2,y_2)|<\varepsilon$$

Приведенные выше свойства аналогичны свойствам функций одной переменной, непрерывных на отрезке.

<u>Производные и дифференциалы функций</u> нескольких переменных.

<u>Определение.</u> Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку M(x, y) и зададим приращение Δx к переменной x. Тогда величина

 $\Delta_x z = f(x + \Delta x, y) - f(x, y)$ называется частным приращением функции по х.

Можно записать

$$\frac{\Delta_x z}{\Delta x} = \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$

Тогда $\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}$ называется частной производной функции z = f(x, y) по x.

Обозначение:
$$\frac{\partial z}{\partial x}$$
; z_x' ; $\frac{\partial f(x,y)}{\partial x}$; $f_x'(x,y)$.

Аналогично определяется частная производная функции по у.

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Геометрическим смыслом частной производной (допустим $\frac{\partial z}{\partial x}$) является тангенс угла наклона касательной, проведенной в точке $N_0(x_0, y_0, z_0)$ к сечению поверхности плоскостью $y = y_0$.

Полное приращение и полный дифференциал.

<u>Определение.</u> Для функции f(x, y) выражение $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$ называется полным приращением.

Если функция f(x, y) имеет непрерывные частные производные, то $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) + f(x, y + \Delta y) - f(x, y + \Delta y) = \left[f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) \right] + \left[f(x, y + \Delta y) - f(x, y) \right]$

Применим теорему Лагранжа к выражениям, стоящим в квадратных скобках.

$$f(x,y+\Delta y)-f(x,y)=\Delta y\frac{\partial f(x,\overline{y})}{\partial y}$$

$$f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)=\Delta x\frac{\partial f(\overline{x},y+\Delta y)}{\partial x}$$
 здесь $\overline{y}\in (y,y+\Delta y);$ $\overline{x}\in (x,x+\Delta x)$

Тогда получаем

$$\Delta z = \Delta x \frac{\partial f(\bar{x}, y + \Delta y)}{\partial x} + \Delta y \frac{\partial f(x, \bar{y})}{\partial y}$$

Т.к. частные производные непрерывны, то можно записать равенства:

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\partial f(\bar{x}, y + \Delta y)}{\partial x} = \frac{\partial f(x, y)}{\partial x}$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\partial f(x, \bar{y})}{\partial y} = \frac{\partial f(x, y)}{\partial y}$$

<u>Определение.</u> Выражение $\Delta z = \frac{\partial f(x,y)}{\partial x} \Delta x + \frac{\partial f(x,y)}{\partial y} \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y$ называется

полным приращением функции f(x, y) в некоторой точке (x, y), где α_1 и α_2 – бесконечно малые функции при $\Delta x \to 0$ и $\Delta y \to 0$ соответственно.

<u>Определение:</u> Полным дифференциалом функции z = f(x, y) называется главная линейная относительно Δx и Δy приращения функции Δz в точке (x, y).

$$dz = f'_{x}(x, y)dx + f'_{y}(x, y)dy$$

Пример. Найти полный дифференциал функции $u = x^{y^2 z}$.

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$$

$$\frac{\partial u}{\partial x} = y^2 z x^{y^2 z - 1}; \quad \frac{\partial u}{\partial y} = x^{y^2 z} \ln x \cdot 2yz; \quad \frac{\partial u}{\partial z} = x^{y^2 z} \ln x \cdot y^2;$$

$$du = y^2 z x^{y^2 z - 1} dx + 2x^{y^2 z} yz \ln x dy + y^2 x^{y^2 z} \ln x dz$$

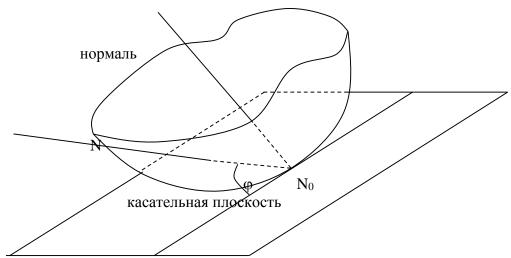
Пример. Найти полный дифференциал функции $z = \frac{y}{x^2 - y^2}$.

$$\frac{\partial z}{\partial x} = \frac{-2yx}{(x^2 - y^2)^2}$$

$$\frac{\partial z}{\partial y} = \frac{y'(x^2 - y^2) - y(-2y)}{(x^2 - y^2)^2} = \frac{x^2 - y^2 + 2y^2}{(x^2 - y^2)^2} = \frac{x^2 + y^2}{(x^2 - y^2)^2}$$

$$dz = -\frac{2xy}{(x^2 - y^2)} dx + \frac{x^2 + y^2}{(x^2 - y^2)^2} dy$$

<u>Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к</u> поверхности.



Пусть N и N_0 — точки данной поверхности. Проведем прямую NN_0 . Плоскость, которая проходит через точку N_0 , называется **касательной плоскостью** к поверхности, если угол между секущей NN_0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN_0 .

<u>Определение.</u> **Нормалью** к поверхности в точке N_0 называется прямая, проходящая через точку N_0 перпендикулярно касательной плоскости к этой поверхности.

B какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

Если поверхность задана уравнением z = f(x, y), где $f(x, y) - \phi$ ункция, дифференцируемая в точке $M_0(x_0, y_0)$, касательная плоскость в точке $N_0(x_0, y_0, (x_0, y_0))$ существует и имеет уравнение:

$$z - f(x_0, y_0) = f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0).$$

Уравнение нормали к поверхности в этой точке:

$$\frac{x - x_0}{f_x'(x_0, y_0)} = \frac{y - y_0}{f_y'(x_0, y_0)} = \frac{z - z_0}{-1}$$

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (x_0, y_0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (x_0, y_0) к точке $(x_0+\Delta x, y_0+\Delta y)$.

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Пример. Найти уравнения касательной плоскости и нормали к поверхности

$$z = x^2 - 2xy + y^2 - x + 2y$$

в точке М(1, 1, 1).

$$\frac{\partial z}{\partial x} = 2x - 2y - 1; \quad \frac{\partial z}{\partial y} = -2x + 2y + 2$$

$$\frac{\partial z}{\partial x}\Big|_{M} = -1; \quad \frac{\partial z}{\partial y}\Big|_{M} = 2;$$

Уравнение касательной плоскости:

$$z-1 = -(x-1) + 2(y-1);$$
 $x-2y+z = 0;$

Уравнение нормали:

$$\frac{x-1}{-1} = \frac{y-1}{2} = \frac{z-1}{-1};$$

Приближенные вычисления с помощью полного дифференциала.

Пусть функция f(x, y) дифференцируема в точке (x, y). Найдем полное приращение этой функции:

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$
$$f(x + \Delta x, y + \Delta y) = f(x, y) + \Delta z$$

Если подставить в эту формулу выражение

$$\Delta z \approx dz = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$

то получим приближенную формулу:

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + \frac{\partial f(x, y)}{\partial x} \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y$$

Пример. Вычислить приближенно значение $\sqrt{1,04^{1,99} + \ln 1,02}$, исходя из значения функции $u = \sqrt{x^y + \ln z}$ при x = 1, y = 2, z = 1.

Из заданного выражения определим $\Delta x = 1,04-1=0,04,$ $\Delta y = 1,99-2=-0,01,$ $\Delta z = 1,02-1=0,02.$

Найдем значение функции $u(x, y, z) = \sqrt{1^2 + \ln 1} = 1$ Находим частные производные:

$$\frac{\partial u}{\partial x} = \frac{y \cdot x^{y-1}}{2\sqrt{x^y + \ln z}} = \frac{2 \cdot 1}{2\sqrt{1}} = 1$$

$$\frac{\partial u}{\partial y} = \frac{x^y \ln x}{2\sqrt{x^y + \ln z}} = 0$$

$$\frac{\partial u}{\partial z} = \frac{\frac{1}{z}}{2\sqrt{x^y + \ln z}} = \frac{1}{2}$$

Полный дифференциал функции и равен:

$$du = 0.04 \cdot \frac{\partial u}{\partial x} - 0.01 \cdot \frac{\partial u}{\partial y} + 0.02 \cdot \frac{\partial u}{\partial z} = 1 \cdot 0.04 - 0 \cdot 0.01 + \frac{1}{2} \cdot 0.02 = 0.04 + 0.01 = 0.05$$

$$\sqrt{1.04^{1.99} + \ln 1.02} \approx u(1.2.1) + du = 1 + 0.05 = 1.05$$

Точное значение этого выражения: 1,049275225687319176.

Частные производные высших порядков.

Если функция f(x, y) определена в некоторой области D, то ее частные производные $f'_v(x, y)$ и $f'_v(x, y)$ тоже будут определены в той же области или ее части.

Будем называть эти производные **частными производными первого порядка.** Производные этих функций будут **частными производными второго порядка.**

$$\frac{\partial^2 z}{\partial x^2} = f''_{xx}(x, y); \qquad \frac{\partial^2 z}{\partial y^2} = f''_{yy}(x, y);$$
$$\frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x, y); \qquad \frac{\partial^2 z}{\partial y \partial x} = f''_{yx}(x, y);$$

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

<u>Определение.</u> Частные производные вида $\frac{\partial^2 z}{\partial x \partial y}; \frac{\partial^2 z}{\partial y \partial x}; \frac{\partial^3 z}{\partial x \partial y \partial x}; \frac{\partial^3 z}{\partial x \partial y \partial y}$ и т.д. называются смешанными производными.

Теорема. Если функция f(x, y) и ее частные производные $f'_x, f'_y, f''_{xy}, f''_{yx}$ определены и непрерывны в точке M(x, y) и ее окрестности, то верно соотношение:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

Т.е. частные производные высших порядков не зависят от порядка дифференцирования.

Аналогично определяются дифференциалы высших порядков.

$$dz = f'_{x}(x, y)dx + f'_{y}(x, y)$$

$$d^{2}z = d\left[f'_{x}(x, y)dx + f'_{y}(x, y)dy\right] = f''_{x^{2}}(x, y)(dx)^{2} + 2f''_{xy}(x, y)dxdy + f''_{y^{2}}(x, y)(dy)^{2}$$

$$d^{3}z = f'''_{x^{3}}(x, y)(dx)^{3} + 3f'''_{x^{2}y}(x, y)(dx)^{2}dy + 3f'''_{xy^{2}}(x, y)dx(dy)^{2} + f'''_{y^{3}}(x, y)(dy)^{3}$$

$$d^{n}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{n} f(x, y)$$

Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.

Экстремум функции нескольких переменных.

<u>Определение.</u> Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки $M_0(x_0, y_0)$ верно неравенство

$$f(x_0, y_0) > f(x, y)$$

то точка М₀ называется точкой максимума.

<u>Определение.</u> Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки $M_0(x_0, y_0)$ верно неравенство

$$f(x_0, y_0) < f(x, y)$$

то точка М₀ называется точкой минимума.

Теорема. (Необходимые условия экстремума).

Если функция f(x,y) в точке (x_0, y_0) имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю $f_x'(x_0, y_0) = 0$, $f_y'(x_0, y_0) = 0$, либо хотя бы одна из них не существует.

Эту точку (х₀, у₀) будем называть критической точкой.

Теорема. (Достаточные условия экстремума).

Пусть в окрестности критической точки (x_0, y_0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:

$$D(x,y) = f''_{x^2}(x,y) \cdot f''_{y^2}(x,y) - [f''_{xy}(x,y)]^2$$

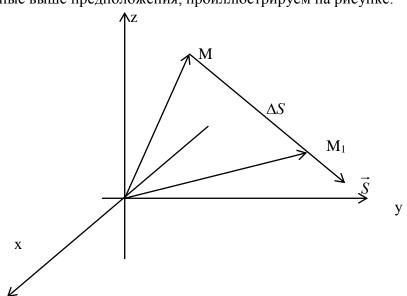
- 1) Если $D(x_0, y_0) > 0$, то в точке (x_0, y_0) функция f(x, y) имеет экстремум, если $f''_{x^2}(x_0, y_0) < 0$ максимум, если $f''_{x^2}(x_0, y_0) > 0$ минимум.
- 2) Если $D(x_0, y_0) < 0$, то в точке (x_0, y_0) функция f(x, y) не имеет экстремума В случае, если D = 0, вывод о наличии экстремума сделать нельзя.

Производная по направлению.

Рассмотрим функцию u(x, y, z) в точке M(x, y, z) и точке $M_1(x + \Delta x, y + \Delta y, z + \Delta z)$.

Проведем через точки М и M_1 вектор \vec{S} . Углы наклона этого вектора к направлению координатных осей x, y, z обозначим соответственно α , β , γ . Косинусы этих углов называются направляющими косинусами вектора \vec{S} .

Расстояние между точками M и M_1 на векторе \vec{S} обозначим $\Delta S. \Delta S = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ Высказанные выше предположения, проиллюстрируем на рисунке:



Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным x, y и z. Тогда правомерно записать следующее выражение:

$$\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \frac{\partial u}{\partial z} \Delta z + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y + \varepsilon_3 \Delta z ,$$

где величины ε_1 , ε_2 , ε_3 – бесконечно малые при $\Delta S \to 0$.

Из геометрических соображений очевидно:

$$\frac{\Delta x}{\Delta S} = \cos \alpha;$$
 $\frac{\Delta y}{\Delta S} = \cos \beta;$ $\frac{\Delta z}{\Delta S} = \cos \gamma;$

Таким образом, приведенные выше равенства могут быть представлены следующим образом:

$$\frac{\Delta u}{\Delta S} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma + \varepsilon_1 \cos \alpha + \varepsilon_2 \cos \beta + \varepsilon_2 \cos \gamma;$$

$$\frac{\partial u}{\partial s} = \lim_{\Delta S \to 0} \frac{\Delta u}{\Delta S} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$$

Заметим, что величина s является скалярной. Она лишь определяет направление вектора \vec{S} .

Из этого уравнения следует следующее определение:

<u>Определение:</u> Предел $\lim_{\Delta S \to 0} \frac{\Delta u}{\Delta S}$ называется производной функции $\mathbf{u}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ по направлению вектора \vec{S} в точке с координатами ($\mathbf{x}, \mathbf{y}, \mathbf{z}$).

Поясним значение изложенных выше равенств на примере.

 \overrightarrow{B} . В (3, 0). Вычислить производную функции $z = x^2 + y^2x$ в точке A(1, 2) по направлению вектора \overrightarrow{AB} . В (3, 0).

<u>Решение.</u> Прежде всего необходимо определить координаты вектора \overrightarrow{AB} .

$$\overrightarrow{AB}$$
 =(3-1; 0-2) = (2; -2) = $2\vec{i}$ - $2\vec{j}$.

Далее определяем модуль этого вектора:

$$\left| \overrightarrow{AB} \right| = \sqrt{8} = 2\sqrt{2}$$

Находим частные производные функции z в общем виде:

$$\frac{\partial z}{\partial x} = 2x + y^2; \quad \frac{\partial z}{\partial y} = 2yx;$$

Значения этих величин в точке A : $\frac{\partial z}{\partial x} = 6$; $\frac{\partial z}{\partial y} = 4$;

Для нахождения направляющих косинусов вектора \overrightarrow{AB} производим следующие преобразования:

$$\vec{S} = \frac{\overrightarrow{AB}}{\left| \overrightarrow{AB} \right|} = \vec{i} \cos \alpha + \vec{j} \cos \beta = \frac{2}{2\sqrt{2}} \vec{i} - \frac{2}{2\sqrt{2}} \vec{j}$$

За величину \overline{S} принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.

Отсюда получаем значения направляющих косинусов вектора \overrightarrow{AB} :

$$\cos \alpha = \frac{\sqrt{2}}{2};$$
 $\cos \beta = -\frac{\sqrt{2}}{2}$

Окончательно получаем: $\frac{\partial z}{\partial s} = 6 \cdot \frac{\sqrt{2}}{2} - 4 \cdot \frac{\sqrt{2}}{2} = \sqrt{2}$ - значение производной заданной функции по направлению вектора \overrightarrow{AB} .

Градиент.

<u>Определение:</u> Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции и в соответствующей точке

$$\frac{\partial u}{\partial x}$$
; $\frac{\partial u}{\partial y}$; $\frac{\partial u}{\partial z}$,

то этот вектор называется градиентом функции и.

$$gradu = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k}$$

При этом говорят, что в области D задано поле градиентов.

Связь градиента с производной по направлению.

<u>Теорема:</u> Пусть задана функция u = u(x, y, z) и поле градиентов

$$gradu = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k}.$$

Тогда производная $\frac{\partial u}{\partial s}$ по направлению некоторого вектора \vec{S} равняется проекции вектора gradu на вектор \vec{S} .

<u>Доказательство:</u> Рассмотрим единичный вектор $\vec{S} = \vec{i} \cos \alpha + \vec{j} \cos \beta + \vec{k} \cos \gamma$ и некоторую функцию u = u(x, y, z) и найдем скалярное произведение векторов \vec{S} и gradu.

$$gradu \cdot \vec{S} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$$

Выражение, стоящее в правой части этого равенства является производной функции и по направлению s.

Т.е. $gradu \cdot \vec{S} = \frac{\partial u}{\partial s}$. Если угол между векторами gradu и \vec{S} обозначить через ϕ , то скалярное произведение можно записать в виде произведения модулей этих векторов на косинус угла между ними. С учетом того, что вектор \vec{S} единичный, т.е. его модуль равен единице, можно записать:

$$|gradu| \cdot \cos \varphi = \frac{\partial u}{\partial s}$$

Выражение, стоящее в правой части этого равенства и является проекцией вектора \overrightarrow{S} .

Теорема доказана.

Для иллюстрации геометрического и физического смысла градиента скажем, что градиент — вектор, показывающий направление наискорейшего изменения некоторого скалярного поля и в какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции.

С точки зрения геометрического представления градиент перпендикулярен поверхности уровня функции.