1 ОБЩИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОННЫХ СИСТЕМАХ УПРАВЛЕНИЯ АВТОМОБИЛЬНЫХ ДВИГАТЕЛЕЙ

Проблема повышения эффективности и безопасности эксплуатации транспортных средств является весьма актуальной для Российской Федерации. Двигатель автомобиля является одним из наиболее сложных агрегатов, который при его техническом обслуживании и ремонте требует специалистов высокой квалификации и применение специального технологического оборудования и специального инструмента. Процесс совершенствования ДВС достаточно прогрессивный, так как совершенствуются и появляются новые конструкции. Активными темпами идет совершенствование управляющей системы, которая обеспечивает конкурентоспособность традиционным конструкциям ДВС. Прогресс в системах управления ДВС идет В основном совершенствования управляющей подсистемы. Если основные механические агрегаты, узлы и детали классического ДВС не претерпели значительных изменений по функциональному применению и конструкции в течение длительного времени, то в управляющей подсистеме механические элементы полностью заменены электронными с использованием микропрограммного принципа управления. Без электронных систем управления в двигателе практически ничего не регулируется и не контролируется. Доля электроники в создании стоимости автомобилей на сегодняшний день составляет до 40%. Этот показатель имеет тенденцию к повышению. Современные системы управления двигателями (ЭСУД) способны выполнять несколько миллионов вычислительных операций в секунду.

Современные ЭСУД являются комплексными. Эти системы управляют топливоподачей, продувкой адсорбера системы улавливания паров бензина, работой вентиляторов системы охлаждения, кроме того, ЭСУД регулирует момент зажигания и время накопления энергии в катушках зажигания. Система обеспечивает соответствие содержания токсичных выбросов жестким требованиям европейских норм при сохранении высоких динамических

показателей двигателя и низкого расхода топлива. ЭСУД способна эффективно взаимодействовать с автомобильной противоугонной системой.

Подсистема топливоподачи современной ЭСУД бензинового двигателя является многоточечной фазированной. Количество подаваемого топлива определяется количеством воздуха, всасываемого двигателем. В системе может использоваться прямой или косвенный метод определения количества всасываемого воздуха, с использованием информации об абсолютном давлении во впускном коллекторе и частоте вращения коленчатого вала.

В подсистеме зажигания современного ЭСУД бензинового двигателя используется статическое распределение высокого напряжения по цилиндрам за счет применения четырехвыводной катушки зажигания, в которой интегрированы две двухвыводные катушки зажигания или за счет применения индивидуальных катушек зажигания.

Современные ЭСУД оснащены электроуправляемой дроссельной заслонкой (система «E-gas»). Между педалью акселератора и дроссельным узлом отсутствует механическая связь. Педаль акселератора обеспечивает электронный блок управления (ЭБУ) двигателя информацией о требуемой частоте вращения двигателя.

ЭСУД состоит из микропроцессорного ЭБУ, комплекта датчиков, исполнительных элементов и соединительных проводов. ЭБУ является центральным устройством ЭСУД. ЭБУ получает информацию от датчиков, обрабатывает полученную информацию в соответствии с определенными алгоритмами и управляет исполнительными элементами, обеспечивая оптимальную работу двигателя при заданном уровне показателей. ЭБУ включает в себя встроенную подсистему самодиагностики.

Общий вид автомобильного двигателя, оснащенного ЭСУД показан на рисунке 1.

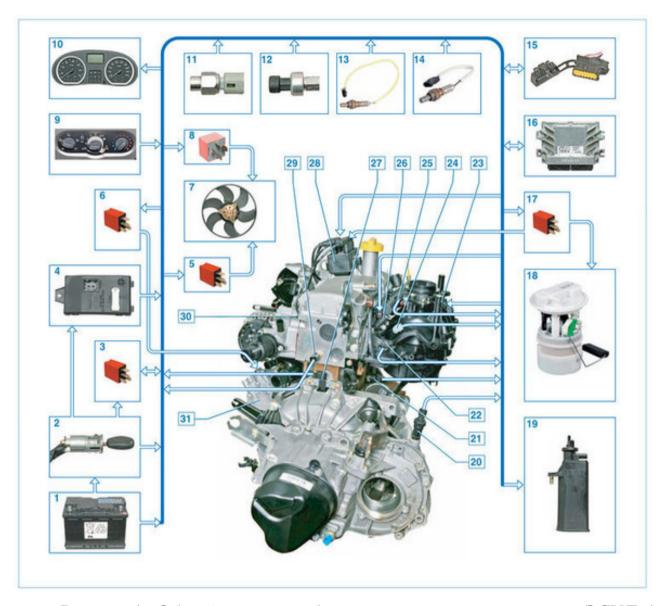


Рисунок 1 - Общий вид автомобильного двигателя, оснащенного ЭСУД: 1 — аккумуляторная батарея; 2 — выключатель зажигания; 3 — главное реле; 4 — коммутационный блок; 5 — реле малой скорости вентилятора системы охлаждения; 6 — реле включения кондиционера; 7 — вентилятор; 8 — реле большой скорости вентилятора системы охлаждения; 9 — блок управления вентиляцией, отоплением и кондиционированием; 10 — комбинация приборов; 11 — датчик давления хладагента; 12 — датчик давления усилителя рулевого управления; 13 — управляющий датчик концентрации кислорода; 14 — диагностический датчик концентрации кислорода; 15 — диагностический разъем (колодка диагностики); 16 — электронный блок управления двигателем; 17 — реле питания топливного насоса и катушки зажигания; 18 — топливный модуль; 19 — адсорбер системы улавливания паров бензина; 20 — датчик скорости

автомобиля; 21 — датчик детонации; 22 — датчик абсолютного давления воздуха; 23 — регулятор холостого хода; 24 — датчик температуры воздуха на впуске; 25 — датчик положения дроссельной заслонки; 26 — форсунка; 27 — датчик положения коленчатого вала; 28 — катушка зажигания; 29 — датчик температуры охлаждающей жидкости; 30 — свеча зажигания; 31 — компрессор кондиционера.

Структурная схема современной ЭСУД на примере системы управления BOSCH ME 7.4.4. показана на рисунке 2, электрическая – на рисунке 3.

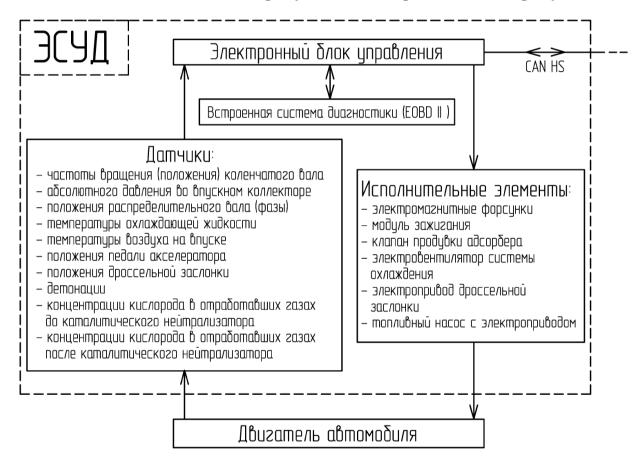


Рисунок 2 - Структурная схема ЭСУД BOSCH ME 7.4.4.

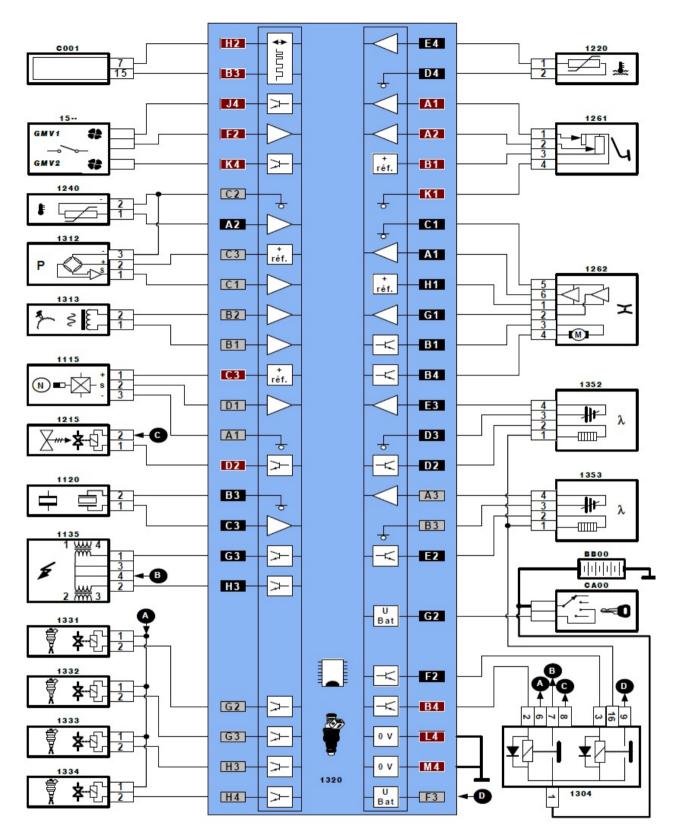


Рисунок 3 - Электрическая схема ЭСУД BOSCH ME 7.4.4.

Таблица 1 - Обозначение элементов на схеме (рисунок 3) системы управления двигателем

Обозначение элемента	Наименование элемента
BB00	Аккумуляторная батарея
C001	Диагностический разъём стандарта EOBD II
CA00	Замок зажигания
1115	Датчик фазы
1120	Датчик детонации
1135	Блок катушек зажигания
1215	Электроклапан продувки адсорбера
1261	Датчик положения педали акселератора
1262	Моторизированная дроссельная заслонка
1304	Мультифункциональное двойное реле контроля двигателя
1312	Датчик абсолютного давления воздуха во впускном
	трубопроводе
1313	Датчик частоты вращения коленчатого вала
1320	Электронный блок управления
1331	Форсунка цилиндра № 1
1332	Форсунка цилиндра № 2
1333	Форсунка цилиндра № 3
1334	Форсунка цилиндра № 4
1350	Датчик кислорода №1
1351	Датчик кислорода №2
15	Группа электровентиляторов
4005	Датчик температуры охлаждающей жидкости

Общий вид двигателя, оснащенного ЭСУД, в моторном отсеке автомобиля показан на рисунке 4.

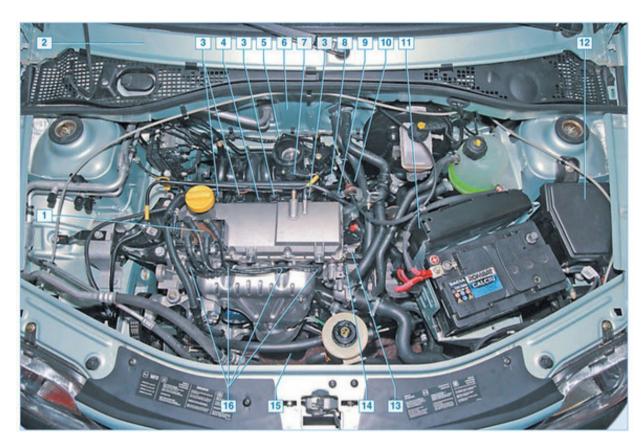


Рисунок 4 - Общий вид двигателя, оснащенного ЭСУД, в моторном отсеке автомобиля: 1 – катушка зажигания; 2* – диагностический разъем; 3 – форсунки; 4* – датчик детонации; 5 – регулятор холостого хода; 6* – диагностический датчик концентрации кислорода; 7 – датчик положения дроссельной заслонки; 8 – датчик температуры воздуха на впуске; 9 – датчик абсолютного давления воздуха; 10* – датчик скорости автомобиля; 11 – электронный блок управления двигателем; 12 – блок предохранителей и реле в моторном отсеке; 13 – датчик температуры охлаждающей жидкости; 14* – датчик положения коленчатого вала; 15 – управляющий датчик концентрации кислорода; 16* – свечи зажигания

^{*} Элемент на фото не виден.