- 5. В чём заключается метод определения коэффициента теплопроводности в данной работе?
- 6. Вывести расчётную формулу (11) для определения коэффициента теплопроводности.

ЛАБОРАТОРНАЯ РАБОТА №10

Определение коэффициента внутреннего трения жидкости

Цель работы – определить коэффициент внутреннего трения жидкости.

Приборы и принадлежности: стеклянный цилиндр с жидкостью, микроскоп, электронный секундомер, металлическая дробь, масштабная линейка.

Теоретические сведения

При течении слоёв жидкости с различными скоростями (рис. 1) между ними возникает сила внутреннего трения, которую можно вычислить по закону Ньютона:

$$F = \eta \cdot \frac{\Delta \upsilon}{\Delta y} \cdot \Delta S,\tag{1}$$

где $\frac{\Delta \upsilon}{\Delta y}$ — градиент скорости; ΔS — площадь соприкасающихся слоёв;

η – коэффициент внутреннего трения или коэффициент динамической вязкости.

Из формулы (1)
$$\eta = \frac{F}{\frac{\Delta \upsilon}{\Delta v} \cdot \Delta S}.$$

Коэффициент динамической вязкости численно равен силе внутреннего трения, возникающей на каждой единице поверхности соприкосновения двух слоёв, движущихся один относительно другого с градиентом скорости, равным единице.

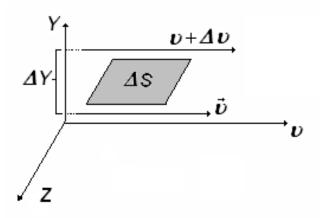


Рис. 1. Движение слоёв жидкости с различными скоростями

В системе СИ коэффициент динамической вязкости измеряется в Па·с. Коэффициент динамической вязкости зависит от природы жидкости и температуры. С увеличением температуры коэффициент динамической вязкости уменьшается.

В гидравлике и аэродинамике пользуются понятием кинематической вязкости:

$$v = \frac{\eta}{\rho}$$

где ρ – плотность жидкости.

В системе СИ единица кинематической вязкости имеет размерность: $[v] = m^2 \cdot c^{-1}$. Определение коэффициента динамической вязкости может быть выполнено различными методами.

Описание установки. Вывод расчётной формулы

Рассмотрим метод Стокса. При движении шарика в вязкой среде слой жидкости, непосредственно прилегающий к шарику, прилипает к его поверхности и увлекается им полностью. Остальные слои двигаются со всё уменьшающейся скоростью



Рис. 2. Силы, действующие на шарик. Изменение скорости слоёв жидкости при движении шарика

(рис. 2). Если шарик падает равномерно в жидкости, не оставляя за собой завихрений (малая скорость, малые размеры шарика), TO сила сопротивления, обусловленвнутренним трением ная жидкости и действующая на определяется шарик, ПО закону Стокса:

$$F_c = 6\pi \eta \upsilon r = 3\pi \eta \upsilon D$$
,

где υ — скорость падения шарика; r — его радиус; D — диаметр шарика; η — коэффициент динамической вязкости.

Кроме силы сопротивления на шарик действует сила тяжести

$$P = m_1 g$$
,

где $m_1 = \rho_1 \cdot V$; ρ_1 — плотность шарика; V — объём шарика и архимедова сила F_a , численно равная весу вытесненной жидкости в объёме погруженного в неё тела:

$$F_a = m_2 g$$
,

где $m_2 = \rho_2 V$; $\rho_2 -$ плотность жидкости.

$$F_a = \frac{1}{6}\pi \cdot D^3 \rho_2 g.$$

Все три силы направлены по вертикали: сила тяжести P – вниз, архимедова сила F_a и сила сопротивления F_c – вверх.

В начале падения шарика $P > F_a + F_c$ и его движение ускоренное. С увеличением скорости растёт сила сопротивления, и спустя некоторое время сила тяжести уравновешивается архимедовой силой и силой сопротивления:

$$P = F_a + F_c. (2)$$

В результате движение становится равномерным с постоянной скоростью о. Такое движение шарика называется установившимся.

Выражение (2) можно записать в виде

$$\frac{1}{6}\pi D^3 \rho_1 g = \frac{1}{6}\pi D^3 \rho_2 g + 3\pi \eta \upsilon D,$$

откуда коэффициент трения равен

$$\mu = \frac{1}{18} \frac{(\rho_1 - \rho_2)D^2 g}{v}.$$
 (3)

В лабораторной работе падение металлических шариков наблюдают в стеклянном цилиндре, наполненном исследуемой жидкостью (касторовым маслом). На цилиндре нанесены две горизонтальные метки l и 2 (см. рис. 2), расположенные друг от друга на расстоянии l.

Справочные данные

Плотность шарика (дробинки) $\rho_1 = 7200 \text{ кг/м}^3$ Плотность касторового масла $\rho_2 = 960 \text{ кг/м}^3$ Цена деления окулярного микрометра k = 100 мкм/дел

Таблица 1 **Коэффициенты внутреннего трения касторового масла** при различных температурах

Жидкость	<i>t</i> , ⁰ C	η, Па∙с
	10	2,44
Маака маакарараа	20	0,987
Масло касторовое	30	0,455
	50	0,129

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. С помощью микроскопа измерить диаметр шарика.
- 2. Опустить шарик в жидкость. В момент прохождения шариком верхней метки I включить электронный секундомер и выключить его при прохождении шариком метки 2. Определить время τ прохождения шариком расстояния между метками.
 - 3. С помощью линейки определить расстояния между метками 1.
 - 4. По термометру определить комнатную температуру t.
 - 5. Полученные данные занести в табл. 2.
- 6. Повторить опыт (п. 1 и 2) ещё для двух шариков разных диаметров. Данные занести в табл. 2.

Таблица 2

10	О, - ³ м	τ, c	<i>l</i> , м	ρ ₁ , κΓ/м ³	ρ ₂ , κΓ/м ³	υ, м/c	η, Πa·c	Δη, Πa·c	ϵ_{η} , %	t, ⁰ C

- 7. Вычислить скорость падения шарика по формуле $\upsilon = \frac{l}{\tau}$.
- 8. Рассчитать коэффициент внутреннего трения по формуле (3) для каждого шарика.

9. Вычислить абсолютную $\Delta \eta$ и относительную ϵ_{η} погрешности коэффициента внутреннего трения по правилам расчёта погрешностей при невоспроизводимых контролируемых условиях согласно **примеру 4** (с. 17) и записать конечный результат в стандартной форме

$$\eta = (< \eta > \pm \Delta \eta) \text{ } \Pi \text{ a.c.}$$

$$\varepsilon_{\eta} = \dots \text{ } \%$$

$$\alpha = \dots$$

Примечание. Для нахождения относительной приборной погрешности можно воспользоваться приближённой формулой $2\Delta D_{nn}$

$$\varepsilon_{\eta np} \approx \frac{2\Delta D_{np}}{\langle D \rangle}.$$

- 10. Результаты расчётов занести в табл. 2.
- 11. Сравнить полученное при данной температуре среднее значение коэффициента внутреннего трения $<\eta>$ касторового масла (с учётом абсолютной погрешности $\Delta\eta$) со справочными данными (см. табл. 1) и сделать соответствующий вывод.

Контрольные вопросы и задания

- 1. В чём суть явления внутреннего трения? Уравнение для этого явления. Физический смысл коэффициента динамической вязкости.
- 2. Как определяется коэффициент динамической вязкости по методу Стокса?
- 3. Вывести расчётную формулу (3) для определения коэффициента внутреннего трения.

Библиографический список

- 1. *Яворский*, *Б. М.* Справочник по физике / Б. М. Яворский, А. А. Детлаф. М.: Наука, 1990. 624 с.
- 2. Общая физика: руководство по лабораторному практикуму : учеб. пособие / под ред. И. Б. Крынецкого и Б. А. Струкова. М. : ИНФРА-М, 2008. 599 с.
- 3. *Трофимова*, *Т. И.* Курс физики : учеб. пособие / Т. И. Трофимова. М. : Академия, 2014.-560 с.
- 4. Детлаф, А. А. Курс физики : учеб. пособие для студентов втузов / А. А. Детлаф, Б. М. Яворский. М. : Академия, 2014. 720 с.