ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ

ТЕОРЕМА (Ферма). Пусть функция y = f(x) имеет в точке $x = x_0$ экстремум. Если существует $f'(x_0)$, то $f'(x_0) = 0$.

ДОКАЗАТЕЛЬСТВО. Пусть $x = x_0$, например, – точка минимума. По определению точки минимума существует окрестность этой точки $(x_0 - \delta, x_0 + \delta)$, в пределах которой $f(x)-f(x_0) \ge 0$, то есть $\Delta y \ge 0$, Δy — приращение y=f(x) в $x = x_0$. По определению $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$. Вычислим односторонние точке производные в точке $x = x_0$:

$$f'(x_0-) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x} \le 0$$
 по теореме о предельном переходе в неравенстве, так как $\Delta y \ge 0$, $\Delta x < 0$;

 $f'(x_0+)=\lim_{\Delta x\to 0+}\frac{\Delta y}{\Delta x}\geq 0$, так как $\Delta y\geq 0$, $\Delta x>0$. Но по условию $f'(x_0)$ существует, поэтому левая производная равна правой, а это возможно если $f'(x_0 -) = f'(x_0 +) = f'(x_0) = 0.$

> Если график функции имеет в точке экстремума касательную, то она параллельна оси ОХ (рис. 26).

Предположение о том, что $x = x_0$ – точка максимума, приводит к тому же. Геометрический смысл теоремы:

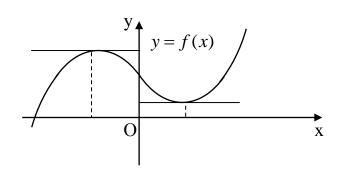


Рис. 26

ТЕОРЕМА (Ролля). Пусть функция y = f(x) непрерывна $\forall x \in [a,b]$, дифференцируема $\forall x \in (a,b)$ и f(a) = f(b), тогда существует $c \in (a,b)$ такая, что f'(c) = 0.

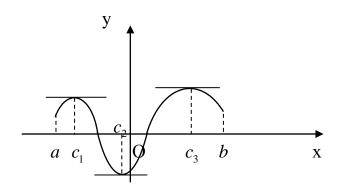


Рис. 1

Геометрический смысл теоремы: если f(a) = f(b), то на графике дифференцируемой функции есть точки, в которых касательная параллельна оси ОХ (рис. 1).

ДОКАЗАТЕЛЬСТВО. Так как y = f(x) непрерывна $\forall x \in [a,b]$, то по второй теореме Вейерштрасса она достигает на [a,b] своих наибольшего M и наименьшего m значений либо в точках экстремума, либо на концах отрезка.

- 1. Пусть M = m, тогда $f(x) = const \Rightarrow f'(x) = 0 \ \forall x \in (a,b)$.
- 2. Пусть M > m. Так как f(a) = f(b), то либо M, либо m достигается в точке экстремума x = c, но по теореме Ферма f'(c) = 0. Что и требовалось доказать.

ТЕОРЕМА (Лагранжа). Пусть функция y = f(x) непрерывна $\forall x \in [a,b]$ и дифференцируема $\forall x \in (a,b)$, тогда существует $c \in (a,b)$ такая, что $\frac{f(b) - f(a)}{b - a} = f'(c)$.

Геометрический смысл теоремы:

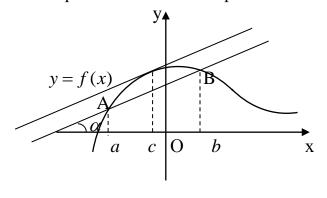


Рис. 3

АВ – секущая (рис. 3) и

$$tg \alpha = \frac{f(b) - f(a)}{b - a}$$
 —угловой ее коэффициент.

 $f'(c) = tg \varphi$ – угловой коэффициент касательной.

Так как $tg \alpha = tg \varphi$, то секущая параллельна касательной. Таким образом, теорема утверждает, что существует касательная, параллельная секущей, проходящей через точки A и B.

ДОКАЗАТЕЛЬСТВО. Через точки A(a, f(a)) и B(b, f(b)) проведем секущую AB. Ее уравнение $\overline{y} = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$. Рассмотрим функцию

$$F(x) = f(x) - \overline{y}(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a),$$

|F(x)| – расстояние между соответствующими точками на графике и на секущей AB.

- 1. F(x) непрерывна $\forall x \in [a,b]$ как разность непрерывных функций.
- 2. F(x) дифференцируема $\forall x \in (a,b)$ как разность дифференцируемых функций.
- 3. F(a) = F(b) = 0.

Значит, F(x) удовлетворяет условиям теоремы Ролля, поэтому существует $C \in (a,b)$ такая, что

$$F'(c) = 0; \ F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Теорема доказана.

ЗАМЕЧАНИЕ. Формула f(b)-f(a)=f'(c)(b-a) называется формулой Лагранжа.

ТЕОРЕМА (Коши). Пусть функции y = f(x), y = g(x) непрерывны $\forall x \in [a,b],$ дифференцируемы $\forall x \in (a,b)$ и $g'(x) \neq 0$, тогда существует точка $c \in (a,b)$ такая, что $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$

ДОКАЗАТЕЛЬСТВО. Покажем, что $g(b) \neq g(a)$. Если бы g(b) = g(a), то функция y = g(x) удовлетворяла бы условию теоремы Ролля, поэтому существовала бы точка $c_1 \in (a,b)$ такая, что $g'(c_1) = 0$ — противоречие условию. Значит, $g'(x) \neq 0$, и обе части формулы определены. Рассмотрим вспомогательную функцию $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a))$.

F(x) непрерывна $\forall x \in (a,b)$, дифференцируема $\forall x \in (a,b)$ и F(b) = F(a) = 0, то есть F(x) удовлетворяет условиям теоремы Ролля. Тогда существует точка $c \in (a,b)$, в которой F'(c) = 0, но

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x) \Rightarrow f'(c) = \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) \Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)},$$

что и требовалось доказать.

Доказанная формула называется формулой Коши.

ПРАВИЛО Лопиталя (теорема Лопиталя-Бернулли). Пусть функции y = f(x), y = g(x) непрерывны $\forall x \in (a,b]$, дифференцируемы $\forall x \in (a,b), g'(x) \neq 0$ и $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. Кроме того, существует конечный или бесконечный $\lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Тогда существует $\lim_{x\to a} \frac{f(x)}{g(x)} = \left(\frac{0}{0}\right) = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

ДОКАЗАТЕЛЬСТВО. Так как по условию $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, то доопределим y = f(x), y = g(x) в точке x = a, полагая f(a) = g(a) = 0. Тогда y = f(x), y = g(x) станут непрерывными $\forall x \in [a,b]$. Покажем, что $\forall x \in (a,b)$ $g(x) \neq 0$. Предположим, что g(x) = 0, тогда существует $c_1 \in (a,x)$ такая, что $g'(c_1) = 0$, так как функция y = g(x) на [a,x] удовлетворяет условиям теоремы Ролля. Но по условию $g'(x) \neq 0$ — противоречие. Поэтому $g(x) \neq 0$ $\forall x \in (a,b)$. Функции y = f(x), y = g(x) удовлетворяют условиям теоремы Коши на любом отрезке [a,x], который содержится в [a,b]. Напишем формулу Коши:

$$\frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f(x)}{g(x)} = \frac{f'(c)}{g(c)}, \qquad c \in (a,x).$$

Отсюда имеем: $\lim_{x\to a} \frac{f(x)}{g(x)} = \left(\frac{0}{0}\right) = \lim_{x\to a} \frac{f'(c)}{g'(c)} = \lim_{c\to a} \frac{f'(c)}{g'(c)}$, так как если $x\to a$, то $c\to a$.

Переобозначая переменную в последнем пределе, получим требуемое:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left(\frac{0}{0}\right) = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

ЗАМЕЧАНИЕ 1. Правило Лопиталя остается справедливым и в том случае, когда $x \to b$ и $x \to \infty$. Оно позволяет раскрывать не только неопределенность вида $\left(\frac{0}{0}\right)$, но и вида $\left(\frac{\infty}{\infty}\right)$:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

ЗАМЕЧАНИЕ 2. Если после применения правила Лопиталя неопределенность не раскрылась, то его следует применить еще раз.

ПРИМЕР.
$$\lim_{x \to 1^+} \frac{\ln(x-1)}{ctg \, \pi x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to 1^+} \frac{-\sin^2 \pi x}{(x-1)\pi} = \left(\frac{0}{0}\right) = -\frac{1}{\pi} \lim_{x \to 1^+} \frac{2\pi \sin \pi x \cos \pi x}{1} = 0.$$

ЗАМЕЧАНИЕ 3. Правило Лопиталя — универсальный способ раскрытия неопределенностей, но существуют пределы, раскрыть которые можно, применив лишь один из изученных ранее частных приемов.

ПРИМЕР.
$$\lim_{x\to +\infty} \frac{\sqrt{x^2+1}}{x} = \left(\frac{\infty}{\infty}\right) = \lim_{x\to +\infty} \frac{2x}{2\sqrt{x^2+1}} = \left(\frac{\infty}{\infty}\right) = \lim_{x\to +\infty} \frac{\sqrt{x^2+1}}{x}$$
 и так далее.

Но, очевидно, $\lim_{x\to +\infty} \frac{\sqrt{x^2+1}}{x} = 1$, так как степень числителя равна степени знаменателя, и предел равен отношению коэффициентов при старших степенях x.