СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ГИДРАВЛИЧЕСКОГО РАСЧЕТА ОБЪЕМНОГО ГИДРОПРИВОДА

Таблица 1 Расчетные формулы для определения коэффициента путевых потерь (коэффициента Ларси)

путевых потерь (коэффициента Дарси)					
Характеристика потока и	Расчетная зависимость				
трубопровода					
Ламинарный изотермический	Формула Пуазейля				
поток в круглых трубах	$\lambda = 64/Re$ $\lambda = 75/Re$				
Ламинарный поток в реальных	$\lambda = 75/Re$				
трубопроводах круглого сечения	·				
Ламинарный поток в гибких	7585				
рукавах и резиновых шлангах с	$\lambda = \frac{7585}{\text{Re}}$				
наконечниками	T(C				
Турбулентный поток в	Формула Блазиуса				
гидравлически гладких	0,3164				
трубопроводах при 2320 <re<10<sup>5</re<10<sup>	$\lambda = \frac{0.3164}{\text{Re}^{0.25}}$				
Турбулентный поток в	Формула				
гидравлически гладких	1				
трубопроводах при $10^5 < \text{Re} < 3.10^6$	Конакова $\lambda = \frac{1}{(1,81 \lg \text{Re} - 1,5)^2}$				
Турбулентный поток в	Формуна Инмуранза				
шероховатых трубопроводах	Формула Никурадзе				
при $Re > 10^5$ (коэффициент λ не	$\lambda = \frac{1}{1}$				
зависит от числа Рейнольдса)	$(1.54 31 d)^2$				
	$\lambda = \frac{1}{\left(1,74 + 2\lg\frac{d}{\Delta}\right)^2}$				
	или формула Шифринсона				
	$\lambda = 0.11\sqrt[4]{\Delta/d},$				
	где d – внутренний диаметр;				
	Δ – абсолютная шероховатость				
Турбулентный поток в гибких	0,380,52				
рукавах и резиновых шлангах	$\lambda = \frac{0.380.52}{\text{Re}^{0.265}}$				
при $5 \cdot 10^3 < \text{Re} < 1, 2 \cdot 10^5$	Для новых рукавов принимается 0,38				
Турбулентный поток в трубах	λ определяется по формулам для				
некруглого сечения с гладкими	круглых труб				
	1				

Ориентировочные значения коэффициентов местных сопротивлений некоторых элементов гидропривода

Тип местного сопротивления	Коэффициент		
Золотниковый распределитель	24		
Обратный клапан	23		
Дроссель	22,2		
Разъемная самозапирающаяся соединительная муфта	11,5		
Фильтр	23		
Присоединительный штуцер, переходник	0,10,15		
Плавное колено трубопровода под углом 90^{0}	0,120,15		
Угольник с поворотом под углом 90^0	1,52		
Сверленый угольник	2		
Выход жидкости из трубопровода в бак:			
а) для турбулентного режима	1		
б) для ламинарного режима	2		
Вход в гидроцилиндры, фильтры и т.д.	0,80,9		
Выход из бака в трубопровод с острыми кромками:			
а) при трубе, выполненной заподлицо со стенками	0,05		
резервуара			
б) при трубе, выдвинутой в бак	1		
Тройники с одинаковыми диаметрами всех каналов:			
а) поток складывается			
$Q \longrightarrow Q$	0,50,7		
1 Q	1,52		
б) поток расходится			
Q Q/2 Q/2 Q/2	0,91,2		
Q/2 Q	11,5		

Ориентировочные значения максимальных скоростей течения рабочей жидкости

Назначение гидролинии	Скорость v, м/с не более		
Всасывающая	1,2		
Сливная	2,0		
Напорная (нагнетательная) при давлениях,			
МПа:			
до 2,5	2,5		
до 10	4,0		
до 16	5,0		
Свыше 25	6,2		

Таблица 4

Средняя высота неровностей (абсолютная шероховатость) внутренних поверхностей трубопроводов, выполненных из различных материалов

Тип трубопровода	Абсолютная шероховатость Δ ,		
	MM		
Стальные цельнотянутые	0,040,08		
Чугунные и стальные с коррозией	0,20,3		
Медные, латунные, алюминиевые	0,010,05		
цельнотянутые			
Резиновые рукава и шланги	0,03		

Таблица 5 Наружный, внутренний диаметры и толщина стенки труб стальных по ГОСТу 8734-75

	Внутренний диаметр, мм, при толщине стенки, мм				
Наружный диаметр, мм	2,0	2,5	3,0	3,5	4,0
1	2	3	4	5	6
10	6	5	4	3	_
11	7	6	5	4	-
12	8	7	6	5	-
13	9	8	7	6	5
14	10	9	8	7	6
15	11	10	9	8	7
16	12	11	10	9	8
		,	1	T	,
17	13	12	11	10	9
18	14	13	12	11	10
19	15	14	13	12	11
	T	1	1	T	1
20	16	15	14	13	12
21	17	16	15	14	13
22	18	17	16	15	14
	Ι	1	1	1	1
23	19	18	17	16	15
24	20	19	18	17	16
25	21	20	19	18	17
		1 21		1.0	1.0
26	22	21	20	19	18
27	23	22	21	20	19
28	24	23	22	21	20
20	26	2.5	2.4	22	1 22
30	26	25	24	23	22
32	28	27	26	25	24
34	30	29	28	27	26
25	2.1	20	20	20	27
35	31	30	29	28 29	27
36	32	31	30		28
38	34	33	32	31	30

1	2	3	4	5	6
42	38	37	36	35	34
45	41	40	39	38	37
48	44	43	42	41	40
	1		I		1
50	46	45	44	43	42
51	47	46	45	44	43
53	49	48	47	46	45
54	50	49	48	47	46
56	52	51	50	49	48
57	53	52	51	50	49
	•				
60	56	55	54	53	52
63	59	58	57	56	55
65	61	60	59	58	57
	1		1		•
68	64	63	62	61	60
70	66	65	64	63	62
73	69	68	67	66	65
	•				
75	71	70	69	68	67
76	72	71	70	69	68
80	76	75	74	73	72
	•				
83	79	78	77	76	75
85	81	80	79	78	77
89	85	84	83	82	81
	•				
90	86	85	84	83	82
95	91	90	89	88	87
100	96	95	94	93	92
102	98	97	96	95	94
108	104	103	102	101	100
110	106	105	104	103	102