Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирская государственная автомобильно-дорожная академия (СибАДИ)»

Кафедра «Строительная механика»

СТРОИТЕЛЬНАЯ МЕХАНИКА И МЕТАЛЛОКОНСТРУКЦИИ

 Методические указания для практических занятий

Составители: А.И. Громовик, Ш.К. Мукушев

Омск • 2016

УДК 625.76 ББК 39.311-06-5 С86 Согласно 436-ФЗ от 29.12.2010 «О защите детей от информации, причиняющей вред их здоровью и развитию» данная продукция маркировке не подлежит.

Рецензент канд. техн. наук, доц. А.А. Руппель (СибАДИ)

Работа утверждена редакционно-издательским советом СибАДИ в качестве методических указаний.

С86 Строительная механика и металлоконструкции [Электронный ресурс] : методические указания для практических занятий / сост. : А.И. Громовик, Ш.К. Мукушев. – Электрон. дан. – Омск : СибАДИ, 2016. – Режим доступа: http://bek.sibadi.org/fulltext/esd129.pdf , свободный после авторизации. – Загл. с экрана.

ISBN 978-5-93204-857-3.

Содержатся основные методы расчета металлоконструкций на неподвижную и подвижную нагрузки. Приводится последовательность расчета предложенных задач. Даны расчетные схемы и численные примеры. Приведен список использованной литературы.

Имеют интерактивное оглавление в виде закладок.

Рекомендованы для обучающихся всех форм обучения направления «Наземные транспортно-технологические комплексы» и специальности «Наземные транспортно-технологические средства» при выполнении практических занятий по дисциплине «Строительная механика и металлоконструкции».

Текстовое (символьное) издание (800,0 КБ) Системные требования : Intel, 3,4 GHz ; 150 МБ ; Windows XP/Vista/7 ; DVD-ROM ; 1 ГБ свободного места на жестком диске ; программа для чтения pdf-файлов Adobe Acrobat Reader ; Google Chrome

> Редактор И.Г. Кузнецова Техническая подготовка – Т.И. Кукина Издание первое. Дата подписания к использованию 11.04.2016

Издательско-полиграфический центр СибАДИ. 644080, г. Омск, пр. Мира, 5 РИО ИПЦ СибАДИ. 644080, г. Омск, ул. 2-я Поселковая, 1

© ФГБОУ ВО «СибАДИ», 2016

Введение

Курс «Строительная механика и металлоконструкции строительных и дорожных машин» содержит методы и способы расчета основных узлов и конструкций СДМ.

Предлагаемые методические указания служат закреплению лекционного материала путем самостоятельного решения задач под руководством преподавателя. Представлены расчетные схемы, исходные данные по вариантам.

В процессе выполнения задач требуется обращать внимание на точность основных схем и дополнительных, необходимых при частных случаях решения задач. По результатам расчета осуществляется проверка в соответствии с уравнениями статики, изложенными в курсе «Теоретическая механика».

При решении задач рекомендуется использовать материалы лекций и литературу, представленную в библиографическом списке.

Задача №1

ОПРЕДЕЛЕНИЕ РАВНОДЕЙСТВУЮЩЕЙ ПАРАЛЛЕЛЬНЫХ СИЛ (графический метод)

Согласно приведенной схеме и исходным данным определить максимальный и минимальный вес противовеса (рис. 1.1).

Рис. 1.1. Стреловой кран

На рис. 1.1 приведена расчетная схема стрелового крана. В расчетной схеме приняты следующие обозначения: расстояния от оси вращения до центра тяжести противовеса – z_{np} , платформы – z_{nn} , стрелы – z_{cmp} , крюка с грузом – $z_{\kappa p}$; соответственно сила тяжести противовеса – G_{np} , платформы – G_{nn} , стрелы – G_{cmp} , крюка с грузом – $G_{\kappa p}$; диаметр поворотного круга – D.

Размеры стрелового крана и действующие нагрузки приведены в табл. 1.1, а в приложении приведены данные $G_{\kappa p}$ соответствующего варианта.

Таблица 1	.1
-----------	----

Показа-		Группа					
тель	1	2	3	4	5	6	
1	2	3	4	5	6	7	
<i>z_{np}</i> , M	4	4	4	5	5	5	
<i>Z_{nл}</i> , М	0,5	0,5	0,5	1,0	1,0	1,0	

— 4 —

Окончание табл. 1.1

1	2	3	4	5	6	7
<i>Z_{cm}</i> , M	5,0	5,5	6,0	6,5	7,0	7,5
$z_{\kappa p}$, M	7,5	8,0	8,5	9,0	9,5	10,0
<i>D</i> , м	1,0	1,0	1,0	1,5	1,5	1,5
<i>G_{пл}</i> , кН	40,0	45,0	50,0	55,0	60,0	65,0
G_{cm} , кН	10,0	12,0	14,0	16,0	18,0	20,0

В масштабе 1: 20 начертить стреловой кран (расчетную схему).

1. Построение силового многоугольника

1.1. Из произвольной точки O_1 отложим (в масштабе 10 кН в 1 см) последовательно: $G_{\kappa p}$ – сила тяжести груз на крюке; G_{cmp} – сила тяжести стрелы; G_{nn} – сила тяжести платформы (рис. 1.2).

1.2. Из произвольной точки *О* проведем соответственно лучи o - o; 1 - o; 2 - o; 3 - o.

1.3. Продлим силовую линию далее вниз и перейдем к построению веревочного многоугольника (рис. 1.3).

Рис. 1.2. Силовой многоугольник

- 5 -

В соответствии с условиями графической статики в данном примере силовой и веревочный многоугольники должны быть замкнуты.

Рис. 1.3. Веревочный многоугольник

2. Построение веревочного многоугольника

2.1. Отложим от оси поворотной платформы координаты всех весов согласно схеме рис. 1.3.

2.2. Из точки O на силовой линии противовеса проведем луч 3-0 (см. рис. 1.2) конца вектора силы G_{np} до пересечения с силовой линией поворотной платформы.

2.3. Далее продлим луч 2-0 до силовой линии стрелы G_{cmp} .

2.4. Закончим построение лучом 1 - 0 до силовой линии $G_{\kappa p}$.

2.5. Считая веревочный многоугольник замкнутым, проведем замыкающий луч 0-0 с пересечением линий поворотного круга крана (B-A).

2.6. Из точки *О* проводим лучи *О* – *В* и *О* – *А* до пересечения с линиями поворотного круга.

Определение силы тяжести противовеса

На силовом многоугольнике (см. рис. 1.2) из точки O проводим лучи O-B и O-A до пересечения с общей силовой линией. На силовой линии замеряем в масштабе $G_{np_{max}}$ и $G_{np \min}$.

Проверка силы тяжести противовеса аналитическим способом

По рис. 1.1 составим уравнения равновесия в виде суммы моментов относительно точек *B* и *A*.

 $\Sigma M_A = 0;$ $G_{np_{\min}}(z_{np} + D/2) + G_{n\pi}(z_{n\pi} + D/2) - G_{cmp}(z_{cmm} - D/2) - G_{\kappa p}(z_{\kappa p} - D/2) = 0;$ $\Sigma M_B = 0;$ $G_{np_{\max}}(z_{np} - D/2) - G_{n\pi}(D/2 - z_{n\pi}) - G_{cmp}(z_{cmm} + D/2) - G_{\kappa p}(z_{\kappa p} + D/2) = 0.$ **Численный пример**. При исходных данных $G_{\kappa p} = 10$ кH; $G_{cmp} = 10$ кH; $G_{n\pi} = 17$ кH. Координаты приложения сил $Z_{\kappa p} = 11$ м; $Z_{cmp} = 7,5$ м; $Z_{n\pi} = 0,4$ м; $Z_{np} = 2,9$ м.

Результаты расчета: $G_{np_{\text{max}}} = 94,8$ кH; $G_{np_{\text{min}}} = 39,13$ кH. Результаты графического построения: $G_{np_{\text{max}}} = 104$ кH; $G_{np_{\text{min}}} = 43$ кH.

Проверка погрешности вычислений

 $\Delta G_{np_{\text{max}}} = \frac{104 - 94,8}{104} \cdot 100\% = 8,8\%;$ $\Delta G_{np_{\text{min}}} = \frac{43 - 39,13}{43} \cdot 100\% = 9\%.$

Задача № 2

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ФЕРМ ОТ ДЕЙСТВИЯ НЕПОДВИЖНЫХ НАГРУЗОК МЕТОДОМ СЕЧЕНИЙ

Определить усилия в стержнях $O_4, O_{11}, U_5, U_{10}, S_2, S_{22}$ и реакции опор R_A и R_B .

На рис. 2.1 дана общая схема фермы.

Размеры ферм и действующие нагрузки приведены в табл. 2.1, а в приложении приведены данные G_{zp} соответствующего варианта.

— 7 —

Показа-	Группа					
тель	1	2	3	4	5	6
<i>Н</i> , м	1,0	1,5	2,0	1,0	2,0	2,0
а, м	2,0	1,5	1,0	1,0	2,0	1,0
$G_{\rm crp}$, кН	15,0	20,0	25,0	30,0	35,0	40,0

Численный пример. Определить усилия в стержнях O_2 , S_2 , U_2 . Исходные данные: $G_{zp} = 20$ кH – сила тяжести груза; $G_{cmp} = 20$ кH – сила тяжести стрелы; a = 1,5 м – длина панели; H = 1,5 м – высота фермы.

Определим реакции в опорах фермы.

$$\sum m_A = R_B \cdot 8a - 2/3G_{cmp} \cdot 4a - G_{cp} \cdot 6a - 1/3G_{cmp} \cdot 10a = 0;$$

$$R_B = \frac{2/3 \cdot 20 \cdot 4 \cdot 1,5 + 20 \cdot 6 \cdot 1,5 + 1/3 \cdot 20 \cdot 10 \cdot 1,5}{8 \cdot 1.5} = 30 \text{ kH}.$$

Сумма проекций сил на ось У

$$\sum F_{Y} = R_{A} - 2 / 3G_{cmp} - G_{cp} - 1/3G_{cmp} + R_{B} = 0;$$

$$R_{A} = 2/3 \cdot 20 + 20 + 1/3 \cdot 20 - 3 = 10 \text{ kH}.$$

Рис. 2.1. Схема фермы

- 8 -

Для определения усилия в раскосе S_2 проводим сечение I - I.

Рис. 2.2. Отсеченная часть фермы (определение O_2 , S_2, U_2)

Для определения усилия в верхнем поясе O_2 составим уравнение моментов вокруг моментной точки K:

$$\Sigma m_K = R_A \cdot a + O_2 \cdot H = 0;$$

$$O_2 = \frac{-R_A \cdot a}{H} = \frac{-10 \cdot 1,5}{1,5} = -10$$
 кН. Стержень сжат.

Для определения усилия в раскосе необходимо вычислить угол наклона раскоса, например, к нижнему поясу $\frac{\alpha}{2} = \arctan \frac{a}{2 \cdot H} = \frac{1.5}{2 \cdot 1.5} = 26,56^{\circ}$. $\Sigma F_Y = R_A + S_2 \cdot \cos \frac{\alpha}{2} = 0$; $S_2 = -\frac{R_A}{\cos \frac{\alpha}{2}} = -\frac{10}{0,8945} = -11,18$ кH.

Стержень сжат.

Определение усилия в нижнем поясе U_2 .

Составим сумму проекций сил на X :

$$\Sigma F_X = O_2 + U_2 + S_2 \cdot \sin \frac{\alpha}{2} = 0;$$
$$U_2 = -O_2 - S_2 \cdot \sin \frac{\alpha}{2} = 10 + 11,18 \cdot \sin 26,56^0 = 15 \text{ kH}.$$

Стержень растянут.

Аналогично определяем усилия в остальных стержнях. Составим таблицу расчетных данных (табл. 2.2).

Номера стержней	02	S ₂	U 2
Усилие, кН	10	-11,18	15

Задача № 3

ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНОЙ ГРУЗОПОДЪЕМНОСТИ НЕПОВОРОТНОЙ КРАН-БАЛКИ

На рис. 3.1 представлена расчетная схема неповоротной кран-балки двутаврового сечения, двух подвесов, шарнирно соединенных с балкой. Показано наиболее нагруженное положение тельфером.

Расчетная схема представляет стержневую систему один раз статически неопределимую.

При раскрытии статической неопределимости необходимо дополнительно, кроме уравнения статики, записать уравнение совместности деформаций.

Исходные данные: длина балки l = 5 м; длина второго подвеса $l_2 = 0,8$ м; диаметры сечений подвесов: $d_1 = 0,05$ м; $d_2 = 0,06$ м; точки крепления подвесов a = 1,8 м и b = 2 м; угол наклона первого подвеса $\alpha = 60^0$.

Допускаемое абсолютное удлинение $[\Delta l] = 1$ мм. Материал подвесов – сталь 08 кп ГОСТ 1050 – 88. Модуль упругости E = 200 ГПа; предел те-кучести $\sigma_{vl} = 180$ МПа.

Определение предельной нагрузки кран-балки Q_{nped} .

Рис. 3.1. Общая расчетная схема кран-балки

В данной работе необходимо решить следующие задачи:

1. Выразить усилия в подвесах N_1 и N_2 через Q.

2. Определить N_2 , принимая за предельное значение напряжения предел текучести $\sigma_{yl} = 180$ МПа.

3. Вычислить абсолютную продольную деформацию второго подвеса Δl_2 и сравнить с допускаемой $[\Delta l]$.

4. Определить абсолютную продольную деформацию первого подвеса Δl_1 с учетом условий закрепления.

5. Выровнить нормальные напряжения в обоих подвесах за счет изменения сечений.

6. Определить предельную нагрузку *Q*_{пред.}

Алгоритм выполнения работы:

1. Для определения усилий в раскосах составим уравнение статики – сумму моментов вокруг шарнира O, $\Sigma m_0 = 0$ (рис. 3.2).

$$N_1 \sin \alpha \cdot a + N_2(a+b) = Q \cdot l. \tag{3.1}$$

Рис. 3.2. Схема определения абсолютных перемещений

2. Вычислим усилие во втором подвесе, исходя из предельного напряжения стержня – предела текучести (расчет по допускаемым напряжениям).

По исходным данным определим площади сечений подвесов:

$$\begin{split} A_1 &= \frac{\pi \cdot d_1^2}{4} = \frac{3,\!14 \cdot 0,\!05^2}{4} = \!19,\!625 \cdot \!10^{-4} \,\,\mathrm{m}^2\,; \\ \mathrm{M} \qquad \qquad A_2 &= \frac{\pi \cdot d_2^2}{4} = \frac{3,\!14 \cdot 0,\!06^2}{4} = \!28,\!26 \cdot \!10^{-4} \,\,\mathrm{m}^2\,. \\ N_2 &= \sigma_{m_4} \cdot A_2 = \!180 \cdot \!10^6 \cdot \!28,\!26 \cdot \!10^{-4} = \!508,\!68 \cdot \!10^3 \,\,\mathrm{H}$$
или 508,68 кH.

3. Определим абсолютное удлинение второго подвеса:

$$\Delta l_2 = \frac{N_2 \cdot l_2}{E \cdot A_2} = \frac{508,68 \cdot 10^3 \cdot 0.8}{200 \cdot 10^9 \cdot 28,26 \cdot 10^{-4}} = 7,2 \cdot 10^{-4} \text{ M}.$$

4. По рис. 3.2 определим Δl_1^* – вертикальное перемещение кран-балки под шарниром первого подвеса:

$$\Delta l_1^* = \Delta l_2 \cdot \frac{a}{a+b} = \Delta l_2 / \left(1 + \frac{b}{a}\right) = 7,2 \cdot 10^{-4} / \left(1 + \frac{2}{1,8}\right) = 3,4 \cdot 10^{-4} \text{ M}.$$

В соответствии с рис. 3.3 вычислим истинную абсолютную деформацию:

$$\Delta l_1 = \Delta l_1^* \cdot \sin \alpha = 3.4 \cdot 10^{-4} \cdot \sin 60^0 = 2.94 \cdot 10^{-4} \text{ M}.$$

Вывод: условие деформации $\Delta l_{\max} \leq [\Delta l]$ выполняется.

5. Определим усилие в первом подвесе по известной абсолютной деформации:

$$\Delta l_1 = \frac{N_1 \cdot l_1}{E \cdot A_1} = 2,94 \cdot 10^{-4} \text{ M}$$

Предварительно вычислим длину первого подвеса:

$$l_1 = l_2 / \sin \alpha = 0.8 / \sin 60^0 = 0.923$$
 м.

Рис. 3.3. Определение истинной деформации

Отсюда $N_1 = \frac{2,94 \cdot 10^{-4} \cdot 200 \cdot 10^9 \cdot 19,625 \cdot 10^{-4}}{0,923} = 125,02 \cdot 10^3$ Н или 125,02 кН.

При этом напряжение в подвесе $\sigma_1 = \frac{N_1}{A_1} = \frac{125,02 \cdot 10^3}{19,625 \cdot 10^{-4}} = 6,37 \cdot 10^7 \text{ H/m}^2$ или $\sigma_1 = 63,7$ МПа.

Полученное напряжение значительно меньше предела текучести σ_{ym} и приблизительно равно пределу пропорциональности σ_{np} , что доказывается значением относительной деформации:

$$\varepsilon_1 = \frac{\Delta l_1}{l_1} \cdot 100\% = \frac{2,94 \cdot 10^{-4}}{0,923} \cdot 100\% = 0,031\%$$
.

Для пластического материала, к которому относится сталь 08 кп ГОСТ 1050–88, предел пропорциональности σ_{np} определяют при остаточной относительной деформации 0,03 %.

6. Определим относительную деформацию наиболее нагруженного второго $\varepsilon_2 = \frac{\Delta l_2}{l_2} = \frac{7.2 \cdot 10^{-4}}{0.8} \cdot 100\% = 0,09\%$, что в три раза выше предела упругости. Так как соотношение относительных деформаций в стержнях составляет $\frac{\varepsilon_2}{\varepsilon_1} = \frac{0,09}{0,031} = 2,9$, необходимо уменьшить напряжение во втором подвесе:

$$\sigma_2 = \frac{\sigma_{ym}}{2,9} = \frac{180}{2,9} = 62$$
 MIIa.

Площадь сечения второго подвеса при $\sigma_2 = 62$ МПа равна

$$A_2^* = \frac{N_2}{\sigma_2} = \frac{508,68 \cdot 10^3}{62 \cdot 10^6} = 8,2 \cdot 10^{-3} \text{ m}^2.$$

Диаметр второго подвеса:

$$d_2 = \sqrt{\frac{4 \cdot 82 \cdot 10^{-4}}{3,14}} = 10,22 \cdot 10^{-2}$$
 м

или *d* =102,2 мм.

7. Произведем коррекцию абсолютной деформации второго подвеса:

$$\Delta l_2 = \frac{N_2 \cdot l_2}{E \cdot A_2^*} = \frac{508,68 \cdot 10^3 \cdot 0.8}{200 \cdot 10^9 \cdot 8.2 \cdot 10^{-3}} = 24,813 \cdot 10^{-5} \,\mathrm{m}$$

или $\Delta l_2 = 0,248$ мм, что удовлетворяет условию деформаций. Тогда абсолютная деформация в первом подвесе

$$\Delta l_1 = \Delta l_2 \left(1 + \frac{b}{a} \right) \sin \alpha = \frac{N_1 \cdot l_1}{E \cdot A_1}.$$

Отсюда корректированное значение усилия в первом подвесе равно

$$N_{1} = \frac{\Delta l_{2} \left(1 + \frac{b}{a}\right) \sin \alpha \cdot E \cdot A_{1}}{l_{1}};$$

$$N_{1} = \frac{24,813 \cdot 10^{-5} \left(1 + \frac{2}{1,8}\right) \sin 60^{0} \cdot 200 \cdot 10^{9} \cdot 19,625 \cdot 10^{-4}}{0,923} = 1802,129 \cdot 10^{2} \text{ H}$$

8. Определение предельной нагрузки кран-балки. Воспользуемся уравнением (3.1):

$$N_1 \sin \alpha \cdot a + N_2(a+b) = Q \cdot l;$$

$$180,22 \cdot 10^3 \sin 60^0 \cdot 1,8 + 508,68 \cdot 10^3 (1,8+2) = 5Q,$$

отсюда

$$Q_{nped} = \frac{180,22 \cdot 10^3 \sin 60^0 \cdot 1,8 + 508,68 \cdot 10^3 (1,8+2)}{5} = 439,08 \cdot 10^3 \text{ H}.$$

Задача № 4

ОПРЕДЕЛЕНИЕ УСИЛИЙ В НАИБОЛЕЕ СЖАТОЙ ВЕТВИ СТРЕЛЫ С ПРЯМОЛИНЕЙНОЙ ОСЬЮ

Определить максимальное сжатие в поясе стрелы с прямолинейной осью.

В расчетной схеме (рис. 4.1) приняты следующие обозначения: S_n – усилие растяжения в подвеске стрелы; α – угол наклона стрелы; Q – на-грузка на крюке; Q_{δ} – сила тяжести от блоков и головной части стрелы; q_{cmp} – погонный вес стрелы; S_1 – усилие в канате полиспаста; L – длина стрелы; γ – угол между канатом подвески стрелы и ее осью; β – угол ме-

жду грузовым канатом и осью стрелы; f и r – расстояния между осью вращения стрелы и направлениями сил S_n и S_1 . В горизонтальной плоскости стрелы показаны следующие нагрузки (рис. 4.2): W – интенсивность ветровой нагрузки на стрелу; W_{cp} – боковое давление ветра на груз; P_Q и P_6 – инерционные горизонтальные нагрузки соответственно от массы груза и блоков; a_c и a_6 – максимальные ускорения груза в горизонтальной и вертикальной плоскостях. Размеры сечения приведены на рис. 4.3: h_1 и b_1 – высота и ширина сечения стрелы; α_{μ} – угол наклона рассматриваемого элемента пояса к оси стрелы.

Размеры стрелы и действующие нагрузки приведены в табл. 4.1, а в приложении приведены данные соответствующего варианта.

Таблица	4.1
---------	-----

Потородати	Группа							
показатель	1	2	3	4	5	6		
lpha, град	5	10	15	20	25	30		
eta, град	30	35	40	45	50	55		
<i>γ</i> , град	25	30	35	40	45	50		
Q_{δ} , кН	0,5	0,5	1,0	1,0	1,5	1,5		
q_{cmp} , к H/M	0,1	0,1	0,2	0,2	0,3	0,3		
<i>L</i> , м	6	6	10	10	12	12		
<i>W</i> , кН/м	0,1	0,1	0,1	0,2	0,2	0,2		
<i>W_{гр}</i> , кН	0,5	0,6	0,7	0,8	0,9	1,0		
$a_{z}, \mathrm{M/c}^{2}$	0,1	0,1	0,2	0,2	0,3	0,3		
$a_{g}, \mathrm{M/c}^{2}$	0,2	0,2	0,3	0,3	0,4	0,4		
<i>h</i> ₁ , м	0,5	0,5	0,6	0,6	0,7	0,7		
<u>b</u> ₁ , м	1,0	1,0	1,2	1,2	1,4	1,4		
$\alpha_{_{H}}$, град	5	5	5	10	10	10		

Численный пример. Исходные данные: Q = 7 кH – нагрузка на крюке; $Q_{\delta n} = 0,5$ кH – сила тяжести блока и головной части стрелы; $q_{cmp} = 0,1$ кH/м – погонный вес стрелы; W = 0,1 кH/м – ветровая нагрузка на стрелу; $W_{cp} = 0,6$ кH – ветровое усилие на груз; L = 6 м – длина стрелы; $h_1 = 0,5; b_1 = 1$ м – высота и ширина сечения стрелы; $\alpha = 10^0$ – угол подъема стрелы; $\alpha_i = 5^0$ – угол расхождения поясов в стреле; $\beta = 35^0$ – угол грузового каната к оси стрелы; $\gamma = 30^0$ – угол подвеса стрелы; $a_c = 0,1$ м/с² – ускорение в горизонтальной плоскости; $a_{e} = 0,2$ м/с² – ускорение в вертикальной плоскости.

Рис. 4.1. Расчетная схема стрелы

Для определения усилия в подвеске стрелы определим инерционную нагрузку от груза при подъеме:

$$Q^{\partial u_H} = Q \left(1 + \frac{a_B}{g} \right) = 7 \left(1 + \frac{0.2}{10} \right) = 7,14 \text{ kH}.$$

Усилие подъема груза с учетом полиспаста

$$S_1 = Q^{\partial u \mu} / 2 = 7,14 / 2 = 3,57$$
кH.

Сумма моментов сил вокруг (·)А:

$$\sum m_A = -S_1 \cdot r - S_{\Pi} \cdot f + \frac{q \cdot L^2}{2} \cos \alpha + Q^{\partial u_H} \cdot L \cos \alpha + Q \cdot L \cos \alpha = 0;$$

$$S_{II} = \frac{-3,57 \cdot 3 + \frac{0,1 \cdot 6^2}{2} \cdot 0,985 + 7,14 \cdot 6 \cdot 0,985 + 0,5 \cdot 6 \cdot 0,985}{1,042} = 34 \text{ kH}.$$

При этом

$$r = L \cdot \sin \gamma = 6 \cdot \sin 30^0 = 3 \text{ м};$$

f = L \cdot \sin \alpha = 6 \cdot \sin 10^0 = 1,042 \mathcal{m}; \cos \alpha = \cos 10^0 = 0,985.

Для определения усилия сжатия стрелы спроецируем все силы на ось стрелы:

$$N - Q_{cmp} - S_{\Pi} \cos \gamma - S_1^{\partial u \mu} \cos \beta - Q^{\partial u \mu} \sin \alpha - Q_{\delta n} \sin \alpha = 0;$$

 $N = 0,591 + 34 \cdot 0,866 + 3,57 \cdot 0,819 + 7,14 \cdot 0,1736 + 0,5 \cdot 0,1736 = 34,28$ кH.

При этом

$$\sin \alpha = \sin 10^{\circ} = 0,1736; \ \cos \beta = \cos 35^{\circ} = 0,819;$$

 $\cos \gamma = \cos 30^{\circ} = 0,866; \ Q_{cmp} = qL\cos \alpha = 0,1 \cdot 6 \cdot 0,985 = 0,591 \text{ kH}.$

Определение изгибающего момента стрелы в вертикальной плоскости:

$$M_{usc}^{B} = qL^{2}\cos\alpha/8 = 0.1 \cdot 6^{2} \cdot 0.985/8 = 0.443$$
 кНм.

Определение изгибающего момента стрелы от ветровой нагрузки в горизонтальной плоскости (см. рис. 4.2):

$$M_B = WL^2 / 2\cos\alpha_H = 0,1 \cdot 6^2 / 2 \cdot \cos 5^0 = 1,773$$
 кНм.

Рис. 4.2. Нагрузка на стрелу в горизонтальной плоскости

— 17 —

Полный изгибающий момент:

$$M_{use}^{\Gamma} = M_{B} + (W_{ep} + P_{Q} + P_{\delta n})L\cos\alpha_{H} = 1,773 + (0,6 + 0,07 + 0,005) \times 6\cos 10^{0} = 5,8$$
кНм.

Усилие сжатия наиболее нагруженной ветви стрелы для четырехгранной конструкции приведено на рис. 4.3.

Рис. 4.3. Сечение стрелы

$$S = \frac{1}{\cos \alpha_H} \left(\frac{N}{4} + \frac{M_{u32}^B}{2h_1} + \frac{M_{u32}^\Gamma}{2b_1} \right) = \frac{1}{0,996} \left(\frac{37}{4} + \frac{0,443}{2 \cdot 0,5} + \frac{5,762}{2 \cdot 1} \right) = 12,62 \text{ kH}.$$

Следовательно, наиболее нагруженная ветвь сжата усилием 12,62 кН.

Задача № 5

ПОСТРОЕНИЕ ЛИНИЙ ВЛИЯНИЯ ОПОРНЫХ РЕАКЦИЙ, ПОПЕРЕЧНОЙ СИЛЫ И ИЗГИБАЮЩЕГО МОМЕНТА В УКАЗАННОМ СЕЧЕНИИ

Построить линии влияния R_A, R_B, Q_C, M_C .

В расчетной схеме (рис. 5.1) приняты следующие обозначения: длина пролета – L, длина консоли – b, расстояние от опоры A до точки C - a, расстояние от опоры A до точки приложения единичной подвижной нагрузки – X. Размеры балки приведены в табл. 5.1, а в приложении приведены данные соответствующего варианта.

Величину а выбирают из условий:

при
$$X < 0$$
 $a = 1$ м;
при $0 < X < l/2$ $a = 2$ м;
при $l/2 < X < l$ $a = 3$ м;
при $l < X$ $a = 4$ м.

Таблица 5.1

Показатель	Группа						
	1	2	3	4	5	6	
<i>l,</i> м	5,0	5,5	6,0	6,5	7,0	7,5	
<i>b</i> , м	3,0	3,5	3,0	3,5	3,0	3,5	

Рис. 5.1. Двухшарнирная балка с правой консолью

1. Определить и построить линии влияния (Л.В.) реакций опор.

$$\Sigma m_A = R_B \cdot l - \overline{P} \cdot X = 0; \ R_B = \overline{P} \cdot \frac{X}{l} = \frac{X}{l}.$$

При X = 0. $R_B = 0$. При X = l. $R_B = 1$. Строим Л.В. R_B (см. рис. 5.1).

$$\Sigma m_B = R_A \cdot l - \overline{P} \cdot (l - X) = 0; \quad R_A = \overline{P} \cdot \frac{l - X}{l} = 1 - \frac{X}{l}.$$

При X = 0 $R_A = 1$. При X = l $R_A = 0$. Строим Л.В. R_A (см. рис. 5.1).

Определить и построить Л.В. Q_C – поперечной силы в сечении C:

а) положение груза $\overline{P} = 1$ справа от сечения *C*. Рассмотрим левую отсеченную часть: $Q_C = R_A$. Строим действительную часть $\Pi.B. Q_C$ справа от сечения *C*;

б) положение груза $\overline{P} = 1$ слева от сечения *C*. Рассмотрим правую отсеченную часть: $Q_C = -R_B$. Строим действительную часть $\Pi.B. Q_C$ слева от сечения *C*.

Определить и построить Л.В. M_C – изгибающего момента в сечении C;

в) положение груза $\overline{P} = 1$ справа от сечения C. Рассмотрим левую отсеченную часть: $M_C = R_A \cdot a = \left(1 - \frac{X}{l}\right) \cdot a$.

При X = 0 $M_C = a$. При X = l $M_C = 0$.

Строим действительную часть $\Pi.B. M_C$ по ординатам справа от сечения C;

г) положение груза $\overline{P} = 1$ слева от сечения C. Рассмотрим правую отсеченную часть: $M_C = R_B \cdot (l-a) = \frac{X}{l}(l-a).$

При X = 0 $M_C = 0$. При X = l $M_C = l - a$.

Строим действительную часть $Л.B. M_C$ по ординатам слева от сечения C. Ордината пересечения правой и левой ветвей определяет значение момента в сечении C.

При X = a значение момента

$$M_C = R_B(l-a) = \frac{a}{l}(l-a) = a\left(1 - \frac{a}{l}\right).$$

-20-

Задача № 6

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ ОПОР НАСТЕННОГО КРАНА С ПОМОЩЬЮ ЛИНИЙ ВЛИЯНИЯ

Расчетная схема настенного крана приведена на рис. 6.1. В расчетной схеме приняты следующие обозначения: геометрические параметры настенного крана – H и L, сосредоточенная нагрузка – P, распределенная нагрузка – q.

Рис. 6.1. Схема настенного крана

Кран загружен весом консоли и подвижной крановой нагрузкой.

Требуется построить линии влияния реакций опор R_A^X, R_A^Y, R_B для настенного крана и определить указанные величины от действия сосредоточенной силы *P* и распределенной нагрузки *q* при заданном значении *X*.

Размеры настенного крана и нагрузки приведены в табл. 6.1, а в приложении приведены данные соответствующего варианта.

Таблица	6.1
---------	-----

Показатель	Группа						
	1	2	3	4	5	6	
<i>Н</i> , м	2	3	4	5	6	7	
<i>L</i> , м	7	7	7	9	9	9	
<i>Р</i> , кН	15	16	17	18	19	20	
<i>q</i> , кН/м	2,0	2,5	3,0	3,5	4,0	4,5	

Численный пример. Исходные данные: H = 3 м; L = 7 м; P = 16 кH; q = 2,5 кH/м; X = 2,4 м.

Приведем упрощенную расчетную схему при действующей единичной подвижной нагрузке (рис. 6.2).

Рис. 6.2. Упрощенная расчетная схема

Для построения линии влияния R_B запишем уравнение моментов относительно (·) A:

$$\Sigma m_A = R_B \cdot H + P \cdot X = 0. \tag{6.1}$$

Отсюда

$$R_B = -\overline{P} \cdot \frac{X}{H}.$$
(6.2)

Строим линии влияния R_B (рис. 6.3), задав некоторые значения X в уравнении (6.2):

При
$$X = 0$$
 $R_B = 0$; при $X = L$ $R_B = -\frac{L}{H}$

Для построения линии влияния R_A^X запишем уравнение моментов относительно (\cdot) *B*:

$$\Sigma m_B = -R_A^X \cdot H + \overline{P} \cdot X = 0.$$
(6.3)

Отсюда

$$R_A^X = \overline{P}\frac{X}{H}.$$
(6.4)

Строим линии влияния R_A^X (рис. 6.3), задав некоторые значения X в уравнении (6.4).

Рис. 6.3. Линии влияния

Зависимость R_A^Y определяем из суммы проекций на ось Y:

$$\Sigma Y = R_A^Y - \overline{P} = 0. ag{6.5}$$

Отсюда

 $R_A^Y = \overline{P}.$

Строим линии влияния R_A^Y (см. рис. 6.3).

Применяя принцип пропорциональности и независимости действия сил, определяем реакции в опорах от действия сосредоточенной силы *P* и распределенной нагрузки *q*.

Задача № 7

ОПРЕДЕЛЕНИЕ ПОПЕРЕЧНОЙ СИЛЫ И ИЗГИБАЮЩЕГО МОМЕНТА НА КОНСОЛИ С ПОМОЩЬЮ ЛИНИЙ ВЛИЯНИЯ

Построить линии влияния Q и M на консоли в заданном сечении.

Определить силу Q и момент M от действия сосредоточенной силы P и распределенной нагрузки q.

На рис. 7.1 приведена расчетная схема балки. В расчетной схеме приняты следующие обозначения: сосредоточенная сила – P, распределенная нагрузка – q, расстояния между опорами – L, расстояние от шарнирной подвижной опоры B до точки F - C, расстояние от точки F до конца консоли балки – K.

Рис. 7.1. Л.В. поперечных сил и моментов на консоли балки

Размеры балки и величины действующих нагрузок приведены в табл. 7.1, а в приложении приведены данные соответствующего варианта.

Показатель	Группа							
	1	2	3	4	5	6		
<i>Р,</i> кН	15	20	25	30	35	40		
<i>q</i> , кН/м	2	3	4	5	6	7		
<i>L</i> , м	10	10	10	10	10	10		
С, м	2	2	2	2	2	2		
К, м	6	6	6	6	6	6		

Численный пример. Исходные данные: P = 20 кH; q = 3 кH/м; L = 10 м; C = 2 м; K = 10 м; $X_P = 14$ м.

На первом этапе рассмотрим действие на балку с консолью единичной подвижной нагрузки $\overline{P} = 1$. Определяем реакции опор R_A и R_B :

$$R_A = \frac{L - X}{L};$$
$$R_B = \frac{X}{L}.$$

Для построения линий влияния поперечных сил на консоли рассмотрим два случая положений единичной силой $\overline{P} = 1$:

1. Сила $\overline{P} = 1$ слева от сечения $F \cdot Q_F = 0 \cdot \mathcal{J} \cdot B \cdot Q_F$ слева от сечения F равна нулю.

2. Сила $\overline{P} = 1$ справа от сечения $F \cdot Q_F = \overline{P} = 1 \cdot \mathcal{J} \cdot B \cdot Q_F$ справа от сечения F равна единице.

Для построения линий влияния изгибающих моментов на консоли рассмотрим два случая положения единичной силой $\overline{P} = 1$:

1. Сила $\overline{P} = 1$ слева от сечения F, рассматриваем правую часть. $M_F = 0. \ \Pi.B. M_F$ слева от сечения F равна нулю.

2. Сила $\overline{P} = 1$ справа от сечения F, рассматриваем левую часть.

$$M_F = R_A (L+C) + R_B C. \tag{7.1}$$

Подставляя значения R_A и R_B , получим

$$M_F = \overline{P} \frac{L - X}{L} (L + C) + \overline{P} \frac{X}{L} C.$$
(7.2)

В уравнении (7.2) подставляем значения X = 0 и X = L. По этим данным строим линию влияния изгибающего момента в (·) *F* (см. рис. 7.1).

Применяя принцип независимости действия сил и пропорциональности, определяем перерезывающую силу Q_F^{∂} и изгибающий момент M_F^{∂} от действия сосредоточенной силы *P* и распределенной нагрузки *q*:

$$Q_F^{\,\partial} = P y_1 + q S_1 \; ; \tag{7.3}$$

$$M_F^{\,o} = P y_2 + q S_2, \tag{7.4}$$

где y_1 и y_2 – соответствующие ординаты линий влияния Q_F и M_F ; S_1 и S_2 – соответствующие площади линий влияния Q_F и M_F .

Задача № 8

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ С ПАРАЛЛЕЛЬНЫМИ ПОЯСАМИ ОТ ЕДИНИЧНОЙ ПОДВИЖНОЙ НАГРУЗКИ

Построить линии влияния усилий в стержнях $O_{6-8}, S_{6-7}, U_{5-7}$. Вычислить величины указанных усилий в сечении X. Езда по нижнему поясу.

На рис. 8.1 приведена расчетная схема фермы. В расчетной схеме приняты следующие обозначения: высота фермы – H, длина панели – a, угол наклона раскоса – α .

Рис. 8.1. Схема фермы с подвижной нагрузкой по нижнему поясу

Геометрические размеры фермы приведены в табл. 8.1, а в приложении приведены данные соответствующего варианта.

Показатель	Группа						
	1	2	3	4	5	6	
Н, м	1,0	1,3	1,5	1,7	1,9	2,1	
а, м	1,5	1,5	1,5	1,5	1,5	1,5	

Численный пример. Исходные данные: H = 1,3 м; a = 1,5 м; X = 2,2 м. Проводим сечение I - I при пересечении не более трех стержней.

Определим угол наклона раскоса:

$$\alpha = \operatorname{arctg} \frac{2H}{a} = \operatorname{arctg} \frac{2 \cdot 1,3}{1,5} = 60^{\circ}.$$

Строим линии влияния опорных реакций (см. задачу № 5).

Для построения *Л.В. О*₆₋₈ выберем моментную точку (рис. 8.2). Два других стержня пересекаются в точке.

Составим уравнение моментов:

а) груз находится справа от сечения, запишем уравнение моментов левой отсеченной части:

$$\Sigma m_7 = -O_{6-8}H - R_A 1,5a = 0;$$

$$O_{6-8} = -R_A \frac{1.5 \cdot 1.5}{1.3} = -1.73R_A.$$

Откладываем 1,73 R_A со знаком минус. Действительная ветвь расположена от узла 8, ближайшего от сечения, т.к. передача нагрузки происходит в узлах фермы, до опоры B, т.е. в загруженной части фермы;

б) груз находится слева от сечения, запишем уравнение моментов правой отсеченной части:

$$\Sigma m_7 = O_{6-8}H + R_B 1,5a = 0;$$

$$O_{6-8} = -R_B \frac{1.5 \cdot 1.5}{1.3} = -1.73R_B.$$

Откладываем $1,73R_B$ со знаком минус. Действительная ветвь расположена от узла 6 до опоры A. Соединим 6 на левой прямой и 8 на правой прямой 6-8, называемой передаточной прямой.

Для построения $\Pi.B.U_{5-7}$ берем моментную точку 6. Составим уравнение моментов:

а) груз находится справа от сечения, запишем уравнение моментов левой отсеченной части:

$$\Sigma m_6 = U_{5-7}H - R_A a = 0;$$
$$O = R_A \frac{1.5}{1.3} = 1.15R_A.$$

Откладываем 1,15 R_A со знаком плюс. Действительная ветвь расположена от узла 7 до опоры B, т.е. в загруженной части фермы;

б) груз находится слева от сечения, запишем уравнение моментов правой отсеченной части:

$$\Sigma m_6 = -U_{5-7}H + R_B 1,5a = 0;$$
$$U_{5-7} = R_B \frac{1,5 \cdot 1,5}{1,3} = 2,3R_B.$$

Откладываем 2,3 R_B со знаком плюс. Действительная ветвь расположена от узла 5 до опоры A. Строим передаточную прямую между узлами 5–7.

При построении линий влияния $\mathcal{J}.B.O_{6-8}$ и $\mathcal{J}.B.U_{5-7}$ следует помнить: пересечение линий влияния левых и правых ветвей должно происходить в моментных точках, т.е. в (·) 6 и (·)7.

Для построения линий влияния в раскосе *S* используем способ проекций, рассматривая левую и правую отсеченные части отдельно:

а) груз находится справа от сечения, рассмотрим равновесие левой отсеченной части как сумму проекций сил на ось Y:

$$\Sigma F_Y = -S\sin\alpha + R_A = 0;$$
$$S = \frac{R_A}{\sin 60^0} = 1,15R_A.$$

Откладываем 1,15 R_A со знаком плюс от узла 7 до опоры B;

б) груз находится слева от сечения, рассмотрим равновесие правой отсеченной части как сумму проекций сил на ось Y:

$$\Sigma F_Y = S \sin \alpha + R_B = 0;$$

Рис. 8.2. Линии влияния в сечении I - I

$$S = -\frac{R_B}{\sin 60^0} = -1.15R_B.$$

Откладываем $1,15R_B$ со знаком минус от узла 6 до опоры A. Строим передаточную прямую между узлами 6-7.

Задача № 9

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ ОПОР И ИЗГИБАЮЩЕГО МОМЕНТА В ПРОЛЕТЕ БАЛКИ С ПОМОЩЬЮ ЛИНИЙ ВЛИЯНИЯ ОТ ДЕЙСТВИЯ СИСТЕМЫ СОСРЕДОТОЧЕННЫХ СИЛ И РАСПРЕДЕЛЕННОЙ НАГРУЗКИ

На рис. 9.1 представлена расчетная схема. В расчетной схеме приняты следующие обозначения: пролет балки – l, длина консоли балки – b, сосредоточенные нагрузки от колес тележки – P_1 и P_2 , распределенная нагрузка – q, расстояние от опоры до сечения C в пролете балки – a, расстояние между колесами тележки – d.

Рис. 9.1. Схема балки с распределенной нагрузкой и грузовой тележкой

Геометрические размеры приведены в табл. 9.1, а в приложении приведены данные соответствующего варианта.

Таблица 9).	l
-----------	----	---

Потородати	Группа							
показатель	1	2	3	4	5	6		
<i>L</i> , м	4,0	5,0	6,0	4,0	5,0	6,0		
<i>b</i> , м	4,0	3,5	3,0	4,0	3,5	3,0		
а, м	1,0	2,0	3,0	1,5	2,5	3,5		
<i>d</i> , м	0,4	0,6	0,8	1,0	1,2	1,4		
$P_1 = P_2, \kappa H$	20	30	40	50	60	70		
<i>q</i> , кН/м	0,1	0,2	0,3	0,4	0,5	0,6		

Численный пример. Исходные данные: $P_1 = P_2 = 30$ кH; q = 0,2 кH/м; b = 3,5 м; d = 0,6 м; l = 5 м; a = X = 2,2 м.

Ввиду симметрии нагрузки от двухосной тележки упростим расчетную схему. На рис. 9.2 дана упрощенная схема. Строим $\Pi.B.R_A$ и $\Pi.B.R_B$. Затем строим $\Pi.B.Q_C$ и $\Pi.B.M_C$ (см. задачу № 8).

Рис. 9.2. Линии влияния реакций опор, поперечной силы и момента в сечении *С*

Определим значения сил и моментов в указанном сечении X = 2,2 м. Т.к. значения сосредоточенных сил на оси равны, установим тележку одной осью на вершину линий влияния, X = a = 2,2 м.

Для определения максимальных значений вторую ось необходимо расположить на более пологой ветви, т.е. иметь большие значения сил и моментов. В нашем примере вторые оси расположим справа от максимумов $\Pi.B.Q_C$ и $\Pi.B.M_C$.

Вычисление значений реакций R_A и R_B :

а) определим ординаты на $\Pi.B.R_A$ под сосредоточенными силами P_1 и P_2 . Составим пропорции с учетом d. При этом тележку размещаем слева от C (рис. 9.3). Вычисляем ординаты под сосредоточенными силами.

Реакция R_A от сосредоточенных сил:

$$R_{AP} = P_1 \left(1 - \frac{1}{l} (a - d) \right) + P_2 \left(1 - \frac{a}{l} \right) =$$

= $30 \left(1 - \frac{1}{5} (2, 2 - 0, 6) \right) + 30 \left(1 - \frac{2, 2}{5} \right) = 37, 2 \text{ KH}.$

Реакция R_B от сосредоточенных сил:

Рис. 9.3. Определение действительных реакций опор

Реакции R_A и R_B от распределенной нагрузки q;

б) определим площади *Л.В. R*_A и *Л.В. R*_B под распределенной нагрузкой с учетом знака (см. рис. 9.3).

Реакция R_A от распределенной нагрузки:

$$R_{Aq} = q \left(\frac{1}{2} \cdot l - \frac{1}{2} \cdot \frac{b^2}{l} \right) = 0, 2 \left(\frac{1}{2} \cdot 5 - \frac{1}{2} \cdot \frac{3, 5^2}{5} \right) = 0,255 \text{ kH}.$$

Реакция R_B от распределенной нагрузки:

$$R_{Bq} = q \frac{1}{2} \left(1 + \frac{b}{l} \right) (l+b) = 0, 2 \frac{1}{2} \left(1 + \frac{3,5}{5} (5+3,5) \right) = 0,695 \text{ KH}.$$

Полные реакции опор:

$$R_A = R_{AP} + R_{Aq} = 37,2 + 0,225 = 37,425$$
 кH;
 $R_B = R_{BP} + R_{Bq} = 30 + 0,695 = 30,695$ кH.

Вычисление действительных значений поперечной силы Q_C в сечении X = 2,2: представим Л.В. Q_C и Л.В. M_C для вычисления действительных значений (рис. 9.4).

Рис. 9.4. Определение действительных значений Q_C и M_C

Предварительно определим ординаты линий влияния под грузовой тележкой:

$$e = 1 - \frac{a}{l} = 1 - \frac{2,2}{5} = 0,56; \ f = l - a + \frac{d}{2} = 5 - 2,2 + \frac{0,6}{2} = 3,1;$$
$$k = l - a - \frac{d}{2} = 5 - 2,2 - \frac{0,6}{2} = 2,5.$$

Действительные значения поперечной силы Q_C от сосредоточенных сил:

$$Q_{CP} = Pe + P \frac{ake}{f} = 30 \cdot 0,56 + 30 \cdot \frac{2,2 \cdot 2,5 \cdot 0,56}{3,1} = 30,348$$
 кH.

Действительные значения поперечной силы Q_C от распределенной на-грузки:

$$Q_{Cq} = q \left(-\frac{1}{2} \frac{a}{l} a + \frac{1}{2} e(l-a) - \frac{1}{2} \frac{b^2}{l} \right) =$$
$$= 0.2 \left(-\frac{1}{2} \cdot \frac{2.2}{5} \cdot 2.2 + \frac{1}{2} \cdot 0.56 \cdot (5-2.2) - \frac{1}{2} \cdot \frac{3.5^2}{5} \right) = -0.185 \text{ KH}$$

Сумма:

$$Q_C = Q_{CP} + Q_{Cq} = 30,348 - 0,185 = 30,163$$
 кH.

Момент изгибающий от сосредоточенных сил:

$$M_{CP} = Pae + P\frac{ake}{l} = 30 \cdot 2, 2 \cdot 0, 56 + 30 \cdot \frac{2, 2 \cdot 2, 5 \cdot 0, 56}{5} = 55,44 \text{ KHM}.$$

Момент изгибающий от распределенной нагрузки:

$$\begin{split} M_{Cq} &= q \Biggl(\frac{1}{2} ae \Biggl(l - \frac{d}{2} \Biggr) + \frac{1}{2} aef - \frac{1}{2} \frac{ab^2}{l} \Biggr) = 0, 2 \Biggl(\frac{1}{2} \cdot 2, 2 \cdot 0, 56 \cdot \Biggl(5 - \frac{0, 6}{2} \Biggr) + \\ &+ \frac{1}{2} \cdot 2, 2 \cdot 0, 56 \cdot 3, 1 - \frac{1}{2} \cdot \frac{2, 2 \cdot 3, 5^2}{l} \Biggr) = 0,422 \text{ кHm.} \end{split}$$

Сумма:

$$M_C = M_{CP} + M_{Cq} = 55,44 + 0,442 = 55,882$$
 кНм.

Задача № 10

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ФЕРМЫ С ПАРАЛЛЕЛЬНЫМИ ПОЯСАМИ ОТ СОСРЕДОТОЧЕННОЙ И РАСПРЕДЕЛЕННОЙ НАГРУЗОК

Схема представлена на рис. 10.1. В расчетной схеме приняты следующие обозначения: длина панели – a, высота фермы – H, длина пролета – L, расстояния между колесами тележки – d, распределенная нагрузка от собственного веса фермы – q, нагрузки на колеса от веса тележки с грузом – P_1 и P_2 , расстояние от шарнирно-неподвижной опоры до оси тележки – X.

Рис. 10.1. Расчетная схема фермы с ездой поверху

Размеры фермы и действующие нагрузки приведены в табл. 10.1, а в приложении приведены данные соответствующего варианта.

Таблица 10.1

Показатель	Группа							
	1	2	3	4	5	6		
$P_1 = P_2$, кН	15	20	25	30	35	40		
<i>q</i> , кН/м	2	3	4	5	6	7		
<i>d</i> , м	1,0	1,0	1,0	1,0	1,0	1,0		
<i>Н</i> , м	2,5	2,3	2,1	1,9	1,7	1,5		
а, м	1,5	1,5	1,5	1,5	1,5	1,5		

Численный пример. Исходные данные: $P_1 = P_2 = 20$ кH; q = 3 кH/м; d = 1 м; H = 2,3 м; a = 1,5 м; X = 2,3 м.

Вычислить действительные значения сил и моментов от сосредоточенных сил и распределенной нагрузки в элементах фермы $O_{6-8}, U_{5-7}, S_{8-9}$.

Определим угол наклона раскоса:

$$\alpha = \operatorname{arctg} \frac{2H}{a} = \operatorname{arctg} \frac{2 \cdot 2,3}{1,5} = 72^{\circ} \cdot$$

Сечением I - I рассекаем три стержня: элементы верхнего пояса O_{6-8} , нижнего пояса U_{5-7} и раскоса S_{8-9} , требующие определения усилий.

На рис. 10.2 изображена упрощенная схема фермы с разрезами панелей.

Для элемента O_{6-8} моментной точкой является 5:

а) груз справа от I - I, рассматриваем левую отсеченную часть:

$$\Sigma m_5 = -O_{6-8}H - R_A 2a = 0$$

$$O_{6-8} = -R_A \frac{2a}{H} = -1.3R_A.$$

Действительная правая прямая – правая ветвь от узла 6 до 14; б) груз слева от I - I, рассматриваем правую отсеченную часть:

$$\Sigma m_5 = -O_{8-6}H - R_B 4a = 0.$$

$$O_{8-6} = -R_B \frac{4a}{H} = -2,6R_B$$

Действительная прямая – левая ветвь от узла 6 до 2. Переходная прямая 6–8. Элемент верхнего пояса сжат.

Рис. 10.2. Линии влияния $O_{6-8}, U_{5-7}, S_{8-9}$

Рассмотрим U_{5-7} . Моментной точкой является 8: а) груз справа от I - I, рассматриваем левую отсеченную часть:

$$\Sigma m_8 = U_{5-7}H - R_A 3a = 0.$$

 $U_{5-7} = R_A \frac{3a}{H} = 1,95R_A.$

Действительная прямая – правая ветвь от узла 7 до 13; б) груз слева от I - I, рассматриваем правую отсеченную часть:

$$\Sigma m_8 = -U_{7-5}H + R_B 3a = 0.$$
$$U_{7-5} = R_B \frac{3a}{H} = 1,95R_B.$$

Действительная прямая – левая ветвь от узла 7 до 1. Переходная прямая 5–7. Элемент нижнего пояса растянут.

По сечению II - II выделим раскос S_{8-9} :

а) груз справа от *II – II*, рассматриваем левую отсеченную часть:

$$\Sigma F_Y = -S_{8-9}\sin\alpha + R_A = 0.$$

$$S_{8-9} = R_A / \sin \alpha = \frac{1}{\sin \alpha} R_A.$$

Действительная положительная прямая – правая ветвь от узла 9 до 13; б) груз слева от II - II, рассматриваем правую отсеченную часть:

$$\Sigma F_Y = S_{9-8} \sin \alpha + R_B = 0.$$
$$S_{9-8} = -R_B / \sin \alpha = -\frac{1}{\sin \alpha} R_B.$$

Действительная отрицательная прямая – левая ветвь от узла 8 до 1. Переходная прямая 8–9. Панель меняет сжатие на растяжение.

Вычислим действительные усилия в стержнях. Отдельно определим усилия от сосредоточенных сил и распределенной нагрузки.

Предварительно необходимо вычислить ординаты под сосредоточенными силами, составив ряд пропорций (рис. 10.3).

Рис. 10.3. Линии влияния с определением ординат

Стержень O_{6-8} :

a)
$$Q_{P6-8} = -P\left(\frac{2,6}{l}\left(X - \frac{d}{2}\right) + \frac{2,6}{l}\left(X + \frac{d}{2}\right)\right);$$

$$\begin{split} \mathcal{Q}_{P6-8} &= -20 \bigg(\frac{2,6}{6 \cdot 1,5} \bigg(2,3 - \frac{1}{2} \bigg) + \frac{2,6}{6 \cdot 1,5} \bigg(2,3 + \frac{1}{2} \bigg) \bigg) = -26,58 \text{ \ KH}; \\ & 6) \ \mathcal{Q}_{q6-8} = q \bigg(-\frac{1}{2} \cdot \frac{2a \cdot 2,6}{l} \cdot 2a - \frac{1}{2} \cdot \frac{2a \cdot 2,6}{l} \cdot 4a \bigg); \\ \mathcal{Q}_{q6-8} &= 3 \bigg(-\frac{1}{2} \cdot \frac{2 \cdot 1,5 \cdot 2,6}{6 \cdot 1,5} \cdot 2 \cdot 1,5 - \frac{1}{2} \cdot \frac{2 \cdot 1,5 \cdot 2,6}{6 \cdot 1,5} \cdot 4 \cdot 1,5 \bigg) = -11,7 \text{ \ KH}. \end{split}$$

Суммарное усилие:

$$Q_{6-8} = Q_{P6-8} + Q_{q6-8} = -26,58 - 11,7 = -38,28$$
 кH.

Стержень O_{6-8} сжат. Стержень U_{5-7} :

a)
$$U_{P5-7} = -P\left(\frac{2,6}{l}\left(X - \frac{d}{2}\right) + \frac{2,6}{l}\left(X + \frac{d}{2}\right)\right);$$

 $U_{P5-7} = 20\left(\frac{2,6}{6\cdot 1,5}\left(2,3 - \frac{1}{2}\right) + \frac{2,6}{6\cdot 1,5}\left(2,3 + \frac{1}{2}\right)\right) = 26,58 \text{ KH};$
6) $U_{q5-7} = q\left(\frac{1}{2} \cdot \frac{3a \cdot 2,6}{l} \cdot 3a + \frac{1}{2} \cdot \frac{3a \cdot 2,6}{l} \cdot 3a\right);$
 $U_{q5-7} = 3\left(\frac{1}{2} \cdot \frac{3\cdot 1,5 \cdot 2,6}{6\cdot 1,5} \cdot 3\cdot 1,5 + \frac{1}{2} \cdot \frac{3\cdot 1,5 \cdot 2,6}{6\cdot 1,5} \cdot 3\cdot 1,5\right) = 17,55 \text{ KH}.$

Суммарное усилие:

$$U_{5-7} = U_{P5-7} + U_{q5-7} = 26,58 + 17,55 = 44,13$$
 кH.

Стержень U_{5-7} растянут.

Стержень S_{8-9} :

a)
$$S_{P8-9} = P\left(\left(X - \frac{d}{2}\right)\frac{1}{\sin \alpha} + \left(X + \frac{d}{2}\right)\frac{1}{\sin \alpha}\right);$$

 $S_{P8-9} = -20\left(\left(2,3 - \frac{1}{2}\right)\frac{1}{0,951} + \left(2,3 + \frac{1}{2}\right)\frac{1}{0,951}\right) = -96,72$ KH;

- 40 ----

$$S_{P8-9} = -20 \left(\left(2,3 - \frac{1}{2} \right) \frac{1}{0,951} + \left(2,3 + \frac{1}{2} \right) \frac{1}{0,951} \right) = -96,72 \text{ kH};$$

6)
$$S_{q8-9} = q \left(-\frac{1}{2} \frac{3a}{l} 3a - \frac{a^2}{2l} + \frac{1}{2} \frac{2a}{l} 2a \right) \cdot \frac{1}{\sin \alpha}.$$

Площадь на переходном участке S_{8-9} равна площади трапеции.

$$A_{8-9} = \frac{1}{2} \left(\frac{2a}{l} - \frac{3a}{l} \right) a = -\frac{a^2}{l}.$$
$$S_{q8-9} = 3 \left(-\frac{1}{2} \cdot \frac{3 \cdot 1.5}{6 \cdot 1.5} \cdot 3 \cdot 1.5 - \frac{1.5^2}{2 \cdot 1.5} + \frac{1}{2} \cdot \frac{2 \cdot 1.5}{6 \cdot 1.5} \cdot 2 \cdot 1.5 \right) = -4.125 \text{ KH}.$$

Суммарное усилие:

$$S_{8-9} = S_{P8-9} + S_{q8-9} = -96,72 - 4,125 = -100,845$$
 кH.

Стержень S₈₋₉ сжат.

Библиографический список

1. Доркин, В.В. Металлические конструкции : учебник / В.В. Доркин, М.П. Рябцева. – М. : Инфра-М, 2010. – 457 с.

2. Константинов, И.А. Строительная механика : учебник / И.А. Константинов, В.В. Лалин, И.И. Лалина. – М. : Проспект, 2015. – 432 с.

3. Москалев, Н.С. Металлические конструкции : учебник / Н.С. Москалев, Я.А. Пронозин. – М. : АСВ, 2010. – 344 с.

4. Юсупов, А.К. Металлические конструкции в вопросах, в ответах и в проектировании / А.К. Юсупов. – М. : Типография ДНЦ РАН, 2010. – 807 с.

ПРИЛОЖЕНИЕ

Исходные данные к задачам для соответствующих вариантов

	Номер задачи									
Вариант	1	2	3	4	5	6	7	8	9	10
	$G_{\kappa,}$ кН	$G_{гp}$, к ${ m H}$	_	<i>Q</i> ,кН	<i>Х</i> , м					
1	14	11		3,0	0,1	0,6	12,2	1,0	0,1	2,3
2	15	12		3,5	0,4	0,8	12,4	1,2	0,4	2,5
3	16	13		4,0	0,7	1,0	12,6	1,4	1,0	2,7
4	17	14		4,5	1,0	1,2	12,8	1,6	1,3	2,9
5	18	15		5,0	1,3	1,4	13,0	1,8	1,6	3,1
6	19	16		5,5	1,6	1,6	13,2	2,0	1,9	3,3
7	20	17		6,0	1,9	1,8	13,4	2,2	2,2	3,5
8	21	18		6,5	2,2	2,0	13,6	2,4	2,5	3,7
9	22	19		7,0	2,5	2,2	13,8	2,6	2,8	3,9
10	23	20		7,5	2,8	2,4	14,0	2,8	3,1	4,1
11	24	21		8,0	3,1	2,6	14,2	3,0	3,4	4,3
12	25	22		8,5	3,4	2,8	14,4	3,2	3,7	4,5
13	26	23		9,0	3,7	3,0	14,6	3,4	4,0	4,7
14	27	24		9,5	4,0	3,2	14,8	3,6	4,3	4,9
15	28	25		10,0	4,3	3,4	15,0	3,8	4,6	5,1
16	29	26		10,5	4,6	3,6	15,2	4,0	4,9	5,3
17	30	27		11,0	4,9	3,8	15,4	4,2	5,2	5,5
18	31	28		11,5	5,2	4,0	15,6	4,4	5,5	5,7
19	32	29		12,0	5,5	4,2	15,8	4,6	5,8	5,9
20	33	30		12,5	5,8	4,4	16,0	4,8	6,1	6,1
21	34	31		13,0	6,1	4,6	16,2	5,0	6,4	6,3
22	35	32		13,5	6,4	4,8	16,4	5,2	6,7	6,5
23	36	33		14,0	6,7	5,0	16,6	5,4	7,0	6,7
24	37	34		14,5	7,0	5,2	16,8	5,6	6,3	6,9
25	38	35		15,0	7,3	5,4	17,0	5,8	6,6	7,1
26	39	36		15,5	7,6	5,6	17,2	6,0	6,9	7,3
27	40	37		16,0	7,9	5,8	17,4	6,2	7,2	7,5
28	41	38		16,5	8,2	6,0	17,6	6,4	7,5	7,7
29	42	39		17,0	8,5	6,2	17,8	6,6	7,8	7,9
30	43	40		17,5	8,8	6,4	18,0	6,8	8,1	8,1