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PREFACE

INTRODUCTION

This book was written to serve the needs of practicing engineers and computer
scientists, and for students from a variety of backgrounds—computer science
and engineering, electrical engineering, mathematics, operations research, and
other disciplines—taking college- or professional-level courses. The field of
high-reliability, high-availability, fault-tolerant computing was developed for
the critical needs of military and space applications. NASA deep-space mis-
sions are costly, for they require various redundancy and recovery schemes to
avoid total failure. Advances in military aircraft design led to the development
of electronic flight controls, and similar systems were later incorporated in the
Airbus 330 and Boeing 777 passenger aircraft, where flight controls are tripli-
cated to permit some elements to fail during aircraft operation. The reputation
of the Tandem business computer is built on NonStop computing, a compre-
hensive redundancy scheme that improves reliability. Modern computer storage
uses redundant array of independent disks (RAID) techniques to link 50–100
disks in a fast, reliable system. Various ideas arising from fault-tolerant com-
puting are now used in nearly all commercial, military, and space computer
systems; in the transportation, health, and entertainment industries; in institu-
tions of education and government; in telephone systems; and in both fossil and
nuclear power plants. Rapid developments in microelectronics have led to very
complex designs; for example, a luxury automobile may have 30–40 micropro-
cessors connected by a local area network! Such designs must be made using
fault-tolerant techniques to provide significant software and hardware reliabil-
ity, availability, and safety.
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Computer networks are currently of great interest, and their successful oper-
ation requires a high degree of reliability and availability. This reliability is
achieved by means of multiple connecting paths among locations within a net-
work so that when one path fails, transmission is successfully rerouted. Thus
the network topology provides a complex structure of redundant paths that, in
turn, provide fault tolerance, and these principles also apply to power distri-
bution, telephone and water systems, and other networks.

Fault-tolerant computing is a generic term describing redundant design tech-
niques with duplicate components or repeated computations enabling uninter-
rupted (tolerant) operation in response to component failure (faults). Some-
times, system disasters are caused by neglecting the principles of redundancy
and failure independence, which are obvious in retrospect. After the September
11th, 2001, attack on the World Trade Center, it was revealed that although one
company had maintained its primary system database in one of the twin tow-
ers, it wisely had kept its backup copies at its Denver, Colorado office. Another
company had also maintained its primary system database in one tower but,
unfortunately, kept its backup copies in the other tower.

COVERAGE

Much has been written on the subject of reliability and availability since
its development in the early 1950s. Fault-tolerant computing began between
1965 and 1970, probably with the highly reliable and widely available AT&T
electronic-switching systems. Starting with first principles, this book develops
reliability and availability prediction and optimization methods and applies
these techniques to a selection of fault-tolerant systems. Error-detecting and
-correcting codes are developed, and an analysis is made of the probability
that such codes might fail. The reliability and availability of parallel, standby,
and voting systems are analyzed and compared, and such analyses are also
applied to modern RAID memory systems and commercial Tandem and Stratus
fault-tolerant computers. These principles are also used to analyze the primary
avionics software system (PASS) and the backup flight control system (BFS)
used on the Space Shuttle. Errors in software that control modern digital sys-
tems can cause system failures; thus a chapter is devoted to software reliability
models. Also, the use of software redundancy in the BFS is analyzed.

Computer networks are fundamental to communications systems, and local
area networks connect a wide range of digital systems. Therefore, the principles
of reliability and availability analysis for computer networks are developed,
culminating in an introduction to network design principles. The concluding
chapter considers a large system with multiple possibilities for improving reli-
ability by adding parallel or standby subsystems. Simple apportionment and
optimization techniques are developed for designing the highest reliability sys-
tem within a fixed cost budget.

Four appendices are included to serve the needs of a variety of practitioners
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PREFACE xxi

and students: Appendices A and B, covering probability and reliability princi-
ples for readers needing a review of probabilistic analysis; Appendix C, cov-
ering architecture for readers lacking a computer engineering or computer sci-
ence background; and Appendix D, covering reliability and availability mod-
eling programs for large systems.

USE AS A REFERENCE

Often, a practitioner is faced with an initial system design that does not meet
reliability or availability specifications, and the techniques discussed in Chap-
ters 3, 4, and 7 help a designer rapidly evaluate and compare the reliability and
availability gains provided by various improvement techniques. A designer or
system engineer lacking a background in reliability will find the book’s devel-
opment from first principles in the chapters, the appendices, and the exercises
ideal for self-study or intensive courses and seminars on reliability and avail-
ability. Intuition and quick analysis of proposed designs generally direct the
engineer to a successful system; however, the efficient optimization techniques
discussed in Chapter 7 can quickly yield an optimum solution and a range of
good suboptima.

An engineer faced with newly developed technologies needs to consult the
research literature and other more specialized texts; the many references pro-
vided can aid such a search. Topics of great importance are the error-correct-
ing codes discussed in Chapter 2, the software reliability models discussed in
Chapter 5, and the network reliability discussed in Chapter 6. Related exam-
ples and analyses are distributed among several chapters, and the index helps
the reader to trace the evolution of an example.

Generally, the reliability and availability of large systems are calculated
using fault-tolerant computer programs. Most industrial environments have
these programs, the features of which are discussed in Appendix D. The most
effective approach is to preface a computer model with a simplified analyti-
cal model, check the results, study the sensitivity to parameter changes, and
provide insight if improvements are necessary.

USE AS A TEXTBOOK

Many books that discuss fault-tolerant computing have a broad coverage of
topics, with individual chapters contributed by authors of diverse backgrounds
using different notations and approaches. This book selects the most important
fault-tolerant techniques and examples and develops the concepts from first
principles by using a consistent notation-and-analytical approach, with proba-
bilistic analysis as the unifying concept linking the chapters.

To use this book as a teaching text, one might: (a) cover the material
sequentially—in the order of Chapter 1 to Chapter 7; (b) preface approach
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(a) by reviewing probability; or (c) begin with Chapter 7 on optimization and
cover Chapters 3 and 4 on parallel, standby, and voting reliability; then aug-
ment by selecting from the remaining chapters. The sequential approach of (a)
covers all topics and increases the analytical level as the course progresses;
it can be considered a bottom-up approach. For a college junior- or senior-
undergraduate–level or introductory graduate–level course, an instructor might
choose approach (b); for an experienced graduate–level course, an instructor
might choose approach (c). The homework problems at the end of each chapter
are useful for self-study or classroom assignments.

At Polytechnic University, fault-tolerant computing is taught as a one-term
graduate course for computer science and computer engineering students at the
master’s degree level, although the course is offered as an elective to senior-
undergraduate students with a strong aptitude in the subject. Some consider
fault-tolerant computing as a computer-systems course; others, as a second
course in architecture.

ACKNOWLEDGMENTS

The author thanks Carol Walsh and Joann McDonald for their help in prepar-
ing the class notes that preceded this book; the anonymous reviewers for their
useful suggestions; and Professor Joanne Bechta Dugan of the University of
Virginia and Dr. Robert Swarz of Miter Corporation (Bedford, Massachusetts)
and Worcester Polytechnic for their extensive, very helpful comments. He is
grateful also to Wiley editors Dr. Philip Meyler and Andrew Prince who pro-
vided valuable advice. Many thanks are due to Dr. Alan P. Wood of Compaq
Corporation for providing detailed information on Tandem computer design,
discussed in Chapter 3, and to Larry Sherman of Stratus Computers for detailed
information on Stratus, also discussed in Chapter 3. Sincere thanks are due to
Sylvia Shooman, the author’s wife, for her support during the writing of this
book; she helped at many stages to polish and improve the author’s prose and
diligently proofread with him.

MARTIN L. SHOOMAN

Glen Cove, NY
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1
INTRODUCTION

1

The central theme of this book is the use of reliability and availability com-
putations as a means of comparing fault-tolerant designs. This chapter defines
fault-tolerant computer systems and illustrates the prime importance of such
techniques in improving the reliability and availability of digital systems that
are ubiquitous in the 21st century. The main impetus for complex, digital sys-
tems is the microelectronics revolution, which provides engineers and scien-
tists with inexpensive and powerful microprocessors, memories, storage sys-
tems, and communication links. Many complex digital systems serve us in
areas requiring high reliability, availability, and safety, such as control of air
traffic, aircraft, nuclear reactors, and space systems. However, it is likely that
planners of financial transaction systems, telephone and other communication
systems, computer networks, the Internet, military systems, office and home
computers, and even home appliances would argue that fault tolerance is nec-
essary in their systems as well. The concluding section of this chapter explains
how the chapters and appendices of this book interrelate.

1.1 WHAT IS FAULT-TOLERANT COMPUTING?

Literally, fault-tolerant computing means computing correctly despite the exis-
tence of errors in a system. Basically, any system containing redundant com-
ponents or functions has some of the properties of fault tolerance. A desktop
computer and a notebook computer loaded with the same software and with
files stored on floppy disks or other media is an example of a redundant sys-
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tem. Since either computer can be used, the pair is tolerant of most hardware
and some software failures.

The sophistication and power of modern digital systems gives rise to a host
of possible sophisticated approaches to fault tolerance, some of which are as
effective as they are complex. Some of these techniques have their origin in
the analog system technology of the 1940s–1960s; however, digital technology
generally allows the implementation of the techniques to be faster, better, and
cheaper. Siewiorek [1992] cites four other reasons for an increasing need for
fault tolerance: harsher environments, novice users, increasing repair costs, and
larger systems. One might also point out that the ubiquitous computer system
is at present so taken for granted that operators often have few clues on how
to cope if the system should go down.

Many books cover the architecture of fault tolerance (the way a fault-tolerant
system is organized). However, there is a need to cover the techniques required
to analyze the reliability and availability of fault-tolerant systems. A proper
comparison of fault-tolerant designs requires a trade-off among cost, weight,
volume, reliability, and availability. The mathematical underpinnings of these
analyses are probability theory, reliability theory, component failure rates, and
component failure density functions.

The obvious technique for adding redundancy to a system is to provide a
duplicate (backup) system that can assume processing if the operating (on-line)
system fails. If the two systems operate continuously (sometimes called hot
redundancy), then either system can fail first. However, if the backup system
is powered down (sometimes called cold redundancy or standby redundancy),
it cannot fail until the on-line system fails and it is powered up and takes over.
A standby system is more reliable (i.e., it has a smaller probability of failure);
however, it is more complex because it is harder to deal with synchronization
and switching transients. Sometimes the standby element does have a small
probability of failure even when it is not powered up. One can further enhance
the reliability of a duplicate system by providing repair for the failed system.
The average time to repair is much shorter than the average time to failure.
Thus, the system will only go down in the rare case where the first system fails
and the backup system, when placed in operation, experiences a short time to
failure before an unusually long repair on the first system is completed.

Failure detection is often a difficult task; however, a simple scheme called
a voting system is frequently used to simplify such detection. If three systems
operate in parallel, the outputs can be compared by a voter, a digital comparator
whose output agrees with the majority output. Such a system succeeds if all
three systems or two or the three systems work properly. A voting system can
be made even more reliable if repair is added for a failed system once a single
failure occurs.

Modern computer systems often evolve into networks because of the flexible
way computer and data storage resources can be shared among many users.
Most networks either are built or evolve into topologies with multiple paths
between nodes; the Internet is the largest and most complex model we all use.
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If a network link fails and breaks a path, the message can be routed via one or
more alternate paths maintaining a connection. Thus, the redundancy involves
alternate paths in the network.

In both of the above cases, the redundancy penalty is the presence of extra
systems with their concomitant cost, weight, and volume. When the trans-
mission of signals is involved in a communications system, in a network, or
between sections within a computer, another redundancy scheme is sometimes
used. The technique is not to use duplicate equipment but increased transmis-
sion time to achieve redundancy. To guard against undetected, corrupting trans-
mission noise, a signal can be transmitted two or three times. With two trans-
missions the bits can be compared, and a disagreement represents a detected
error. If there are three transmissions, we can essentially vote with the majority,
thus detecting and correcting an error. Such techniques are called error-detect-
ing and error-correcting codes, but they decrease the transmission speed by
a factor of two or three. More efficient schemes are available that add extra
bits to each transmission for error detection or correction and also increase
transmission reliability with a much smaller speed-reduction penalty.

The above schemes apply to digital hardware; however, many of the relia-
bility problems in modern systems involve software errors. Modeling the num-
ber of software errors and the frequency with which they cause system failures
requires approaches that differ from hardware reliability. Thus, software reli-
ability theory must be developed to compute the probability that a software
error might cause system failure. Software is made more reliable by testing to
find and remove errors, thereby lowering the error probability. In some cases,
one can develop two or more independent software programs that accomplish
the same goal in different ways and can be used as redundant programs. The
meaning of independent software, how it is achieved, and how partial software
dependencies reduce the effects of redundancy are studied in Chapter 5, which
discusses software.

Fault-tolerant design involves more than just reliable hardware and software.
System design is also involved, as evidenced by the following personal exam-
ples. Before a departing flight I wished to change the date of my return, but the
reservation computer was down. The agent knew that my new return flight was
seldom crowded, so she wrote down the relevant information and promised to
enter the change when the computer system was restored. I was advised to con-
firm the change with the airline upon arrival, which I did. Was such a procedure
part of the system requirements? If not, it certainly should have been.

Compare the above example with a recent experience in trying to purchase
tickets by phone for a concert in Philadelphia 16 days in advance. On my
Monday call I was told that the computer was down that day and that nothing
could be done. On my Tuesday and Wednesday calls I was told that the com-
puter was still down for an upgrade, and so it took a week for me to receive
a call back with an offer of tickets. How difficult would it have been to print
out from memory files seating plans that showed seats left for the next week
so that tickets could be sold from the seating plans? Many problems can be
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avoided at little cost if careful plans are made in advance. The planners must
always think “what do we do if . . .?” rather than “it will never happen.”

This discussion has focused on system reliability: the probability that the
system never fails in some time interval. For many systems, it is acceptable
for them to go down for short periods if it happens infrequently. In such cases,
the system availability is computed for those involving repair. A system is said
to be highly available if there is a low probability that a system will be down
at any instant of time. Although reliability is the more stringent measure, both
reliability and availability play important roles in the evaluation of systems.

1.2 THE RISE OF MICROELECTRONICS AND THE COMPUTER

1.2.1 A Technology Timeline

The rapid rise in the complexity of tasks, hardware, and software is why fault
tolerance is now so important in many areas of design. The rise in complexity
has been fueled by the tremendous advances in electrical and computer tech-
nology over the last 100–125 years. The low cost, small size, and low power
consumption of microelectronics and especially digital electronics allow prac-
tical systems of tremendous sophistication but with concomitant hardware and
software complexity. Similarly, the progress in storage systems and computer
networks has led to the rapid growth of networks and systems.

A timeline of the progress in electronics is shown in Shooman [1990, Table
K-1]. The starting point is the 1874 discovery that the contact between a metal
wire and the mineral galena was a rectifier. Progress continued with the vacuum
diode and triode in 1904 and 1905. Electronics developed for almost a half-cen-
tury based on the vacuum tube and included AM radio, transatlantic radiotele-
phony, FM radio, television, and radar. The field began to change rapidly after
the discovery of the point contact and field effect transistor in 1947 and 1949
and, ten years later in 1959, the integrated circuit.

The rise of the computer occurred over a time span similar to that of micro-
electronics, but the more significant events occurred in the latter half of the
20th century. One can begin with the invention of the punched card tabulating
machine in 1889. The first analog computer, the mechanical differential ana-
lyzer, was completed in 1931 at MIT, and analog computation was enhanced by
the invention of the operational amplifier in 1938. The first digital computers
were electromechanical; included are the Bell Labs’ relay computer (1937–40),
the Z1, Z2, and Z3 computers in Germany (1938–41), and the Mark I com-
pleted at Harvard with IBM support (1937–44). The ENIAC developed at the
University of Pennsylvania between 1942 and 1945 with U.S. Army support
is generally recognized as the first electronic computer; it used vacuum tubes.
Major theoretical developments were the general mathematical model of com-
putation by Alan Turing in 1936 and the stored program concept of computing
published by John von Neuman in 1946. The next hardware innovations were
in the storage field: the magnetic-core memory in 1950 and the disk drive
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in 1956. Electronic integrated circuit memory came later in 1975. Software
improved greatly with the development of high-level languages: FORTRAN
(1954–58), ALGOL (1955–56), COBOL (1959–60), PASCAL (1971), the C
language (1973), and the Ada language (1975–80). For computer advances
related to cryptography, see problem 1.25.

The earliest major computer systems were the U.S. Airforce SAGE air
defense system (1955), the American Airlines SABER reservations system
(1957–64), the first time-sharing systems at Dartmouth using the BASIC lan-
guage (1966) and the MULTICS system at MIT written in the PL-I language
(1965–70), and the first computer network, the ARPA net, that began in 1969.
The concept of RAID fault-tolerant memory storage systems was first pub-
lished in 1988. The major developments in operating system software were
the UNIX operating system (1969–70), the CM operating system for the 8086
Microprocessor (1980), and the MS-DOS operating system (1981). The choice
of MS-DOS to be the operating system for IBM’s PC, and Bill Gates’ fledgling
company as the developer, led to the rapid development of Microsoft.

The first home computer design was the Mark-8 (Intel 8008 Microproces-
sor), published in Radio-Electronics magazine in 1974, followed by the Altair
personal computer kit in 1975. Many of the giants of the personal computing
field began their careers as teenagers by building Altair kits and programming
them. The company then called Micro Soft was founded in 1975 when Gates
wrote a BASIC interpreter for the Altair computer. Early commercial personal
computers such as the Apple II, the Commodore PET, and the Radio Shack
TRS-80, all marketed in 1977, were soon eclipsed by the IBM PC in 1981.
Early widely distributed PC software began to appear in 1978 with the Word-
star word processing system, the VisiCalc spreadsheet program in 1979, early
versions of the Windows operating system in 1985, and the first version of the
Office business software in 1989. For more details on the historical develop-
ment of microelectronics and computers in the 20th century, see the following
sources: Ditlea [1984], Randall [1975], Sammet [1969], and Shooman [1983].
Also see www.intel.com and www.microsoft.com.

This historical development leads us to the conclusion that today one can
build a very powerful computer for a few hundred dollars with a handful of
memory chips, a microprocessor, a power supply, and the appropriate input,
output, and storage devices. The accelerating pace of development is breath-
taking, and of course all the computer memory will be filled with software
that is also increasing in size and complexity. The rapid development of the
microprocessor—in many ways the heart of modern computer progress—is
outlined in the next section.

1.2.2 Moore’s Law of Microprocessor Growth

The growth of microelectronics is generally identified with the growth of
the microprocessor, which is frequently described as “Moore’s Law” [Mann,
2000]. In 1965, Electronics magazine asked Gordon Moore, research director
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TABLE 1.1 Complexity of Microchips and Moore’s Law

Microchip Complexity: Moore’s Law
Year Transistors Complexity: Transistors

1959 1 20
� 1

1964 32 25
� 32

1965 64 26
� 64

1975 64,000 216
� 65,536

of Fairchild Semiconductor, to predict the future of the microchip industry.
From the chronology in Table 1.1, we see that the first microchip was invented
in 1959. Thus the complexity was then one transistor. In 1964, complexity had
grown to 32 transistors, and in 1965, a chip in the Fairchild R&D lab had 64
transistors. Moore projected that chip complexity was doubling every year,
based on the data for 1959, 1964, and 1965. By 1975, the complexity had
increased by a factor of 1,000; from Table 1.1, we see that Moore’s Law was
right on track. In 1975, Moore predicted that the complexity would continue to
increase at a slightly slower rate by doubling every two years. (Some people
say that Moore’s Law complexity predicts a doubling every 18 months.)

In Table 1.2, the transistor complexity of Intel’s CPUs is compared with

TABLE 1.2 Transistor Complexity of Microprocessors and Moore’s Law
Assuming a Doubling Period of Two Years

Microchip
Complexity

Moore’s Law Complexity:
Year CPU Transistors Transistors

1971.50 4004 2,300 (20) × 2,300 � 2,300
1978.75 8086 31,000 (27.25/ 2) × 2,300 � 28,377
1982.75 80286 110,000 (24/ 2) × 28,377 � 113,507
1985.25 80386 280,000 (22.5/ 2) × 113,507 � 269,967
1989.75 80486 1,200,000 (24.5/ 2) × 269,967 � 1,284,185
1993.25 Pentium (P5) 3,100,000 (23.5/ 2) × 1,284,185 � 4,319,466
1995.25 Pentium Pro 5,500,000 (22/ 2) × 4,319,466 � 8,638,933

(P6)
1997.50 Pentium II 7,500,000 (22.25/ 2) × 8,638,933 � 18,841,647

(P6 + MMX)
1998.50 Merced (P7) 14,000,000 (23.25/ 2) × 8,638,933 � 26,646,112
1999.75 Pentium III 28,000,000 (21.25/ 2) × 26,646,112 � 41,093,922
2000.75 Pentium 4 42,000,000 (21/ 2) × 41,093,922 � 58,115,582

Note: This table is based on Intel’s data from its Microprocessor Report: http:/ / www.physics.udel.
edu/ wwwusers.watson.scen103/ intel.html.
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Moore’s Law, with a doubling every two years. Note that there are many
closely spaced releases with different processor speeds; however, the table
records the first release of the architecture, generally at the initial speed.
The Pentium P5 is generally called Pentium I, and the Pentium II is a P6
with MMX technology. In 1993, with the introduction of the Pentium, the
Intel microprocessor complexities fell slightly behind Moore’s Law. Some
say that Moore’s Law no longer holds because transistor spacing cannot be
reduced rapidly with present technologies [Mann, 2000; Markov, 1999]; how-
ever, Moore, now Chairman Emeritus of Intel Corporation, sees no funda-
mental barriers to increased growth until 2012 and also sees that the physical
limitations on fabrication technology will not be reached until 2017 [Moore,
2000].

The data in Table 1.2 is plotted in Fig. 1.1 and shows a close fit to Moore’s
Law. The three data points between 1997 and 2000 seem to be below the curve;
however, the Pentium 4 data point is back on the Moore’s Law line. Moore’s
Law fits the data so well in the first 15 years (Table 1.1) that Moore has occu-
pied a position of authority and respect at Fairchild and, later, Intel. Thus,
there is some possibility that Moore’s Law is a self-fulfilling prophecy: that
is, the engineers at Intel plan their new projects to conform to Moore’s Law.
The problems presented at the end of this chapter explore how Moore’s Law
is faring in the 21st century.

An article by Professor Seth Lloyd of MIT in the September 2000 issue
of Nature explores the fundamental limitations of Moore’s Law for a laptop
based on the following: Einstein’s Special Theory of Relativity (E = mc2),
Heisenberg’s Uncertainty Principle, maximum entropy, and the Schwarzschild
Radius for a black hole. For a laptop with one kilogram of mass and one liter
of volume, the maximum available power is 25 million megawatt hours (the
energy produced by all the world’s nuclear power plants in 72 hours); the ulti-
mate speed is 5.4 × 1050 hertz (about 1043 the speed of the Pentium 4); and
the memory size would be 2.1 × 1031 bits, which is 4 × 1030 bytes (1.6 ×
1022 times that for a 256 megabyte memory) [Johnson, 2000]. Clearly, fabri-
cation techniques will limit the complexity increases before these fundamental
limitations.

1.2.3 Memory Growth

Memory size has also increased rapidly since 1965, when the PDP-8 mini-
computer came with 4 kilobytes of core memory and when an 8 kilobyte sys-
tem was considered large. In 1981, the IBM personal computer was limited
to 640,000 kilobytes of memory by the operating system’s nearsighted spec-
ifications, even though many “workaround” solutions were common. By the
early 1990s, 4 or 8 megabyte memories for PCs were the rule, and in 2000,
the standard PC memory size has grown to 64–128 megabytes. Disk memory
has also increased rapidly: from small 32–128 kilobyte disks for the PDP 8e
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Figure 1.1 Comparison of Moore’s Law with Intel data.

computer in 1970 to a 10 megabyte disk for the IBM XT personal computer
in 1982. From 1991 to 1997, disk storage capacity increased by about 60%
per year, yielding an eighteenfold increase in capacity [Fisher, 1997; Markoff,
1999]. In 2001, the standard desk PC came with a 40 gigabyte hard drive.
If Moore’s Law predicts a doubling of microprocessor complexity every two
years, disk storage capacity has increased by 2.56 times each two years, faster
than Moore’s Law.
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1.2.4 Digital Electronics in Unexpected Places

The examples of the need for fault tolerance discussed previously focused on
military, space, and other large projects. There is no less a need for fault toler-
ance in the home now that electronics and most electrical devices are digital,
which has greatly increased their complexity. In the 1940s and 1950s, the most
complex devices in the home were the superheterodyne radio receiver with 5
vacuum tubes, and early black-and-white television receivers with 35 vacuum
tubes. Today, the microprocessor is ubiquitous, and, since a large percentage of
modern households have a home computer, this is only the tip of the iceberg.
In 1997, the sale of embedded microcomponents (simpler devices than those
used in computers) totaled 4.6 billion, compared with about 100 million micro-
processors used in computers. Thus computer microprocessors only represent
2% of the market [Hafner, 1999; Pollack, 1999].

The bewildering array of home products with microprocessors includes
the following: clothes washers and dryers; toasters and microwave ovens;
electronic organizers; digital televisions and digital audio recorders; home
alarm systems and elderly medic alert systems; irrigation systems; pacemak-
ers; video games; Web-surfing devices; copying machines; calculators; tooth-
brushes; musical greeting cards; pet identification tags; and toys. Of course
this list does not even include the cellular phone, which may soon assume
the functions of both a personal digital assistant and a portable Internet inter-
face. It has been estimated that the typical American home in 1999 had 40–60
microprocessors—a number that could grow to 280 by 2004. In addition, a
modern family sedan contains about 20 microprocessors, while a luxury car
may have 40–60 microprocessors, which in some designs are connected via a
local area network [Stepler, 1998; Hafner, 1999].

Not all these devices are that simple either. An electronic toothbrush has
3,000 lines of code. The Furby, a $30 electronic–robotic pet, has 2 main pro-
cessors, 21,600 lines of code, an infrared transmitter and receiver for Furby-
to-Furby communication, a sound sensor, a tilt sensor, and touch sensors on
the front, back, and tongue. In short supply before Christmas 1998, Web site
prices rose as high as $147.95 plus shipping! [USA Today, 1998]. In 2000, the
sensation was Billy Bass, a fish mounted on a wall plaque that wiggled, talked,
and sang when you walked by, triggering an infrared sensor.

Hackers have even taken an interest in Furby and Billy Bass. They have
modified the hardware and software controlling the interface so that one Furby
controls others. They have modified Billy Bass to speak the hackers’ dialog
and sing their songs.

Late in 2000, Sony introduced a second-generation dog-like robot called
Aibo (Japanese for “pal”); with 20 motors, a 32-bit RISC processor, 32
megabytes of memory, and an artificial intelligence program. Aibo acts like
a frisky puppy. It has color-camera eyes and stereo-microphone ears, touch
sensors, a sound-synthesis voice, and gyroscopes for balance. Four different
“personality” modules make this $1,500 robot more than a toy [Pogue, 2001].
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What is the need for fault tolerance in such devices? If a Furby fails, you
discard it, but it would be disappointing if that were the only sensible choice
for a microwave oven or a washing machine. It seems that many such devices
are designed without thought of recovery or fault-tolerance. Lawn irrigation
timers, VCRs, microwave ovens, and digital phone answering machines are all
upset by power outages, and only the best designs have effective battery back-
ups. My digital answering machine was designed with an effective recovery
mode. The battery backup works well, but it “locks up” and will not function
about once a year. To recover, the battery and AC power are disconnected for
about 5 minutes; when the power is restored, a 1.5-minute countdown begins,
during which the device reinitializes. There are many stories in which failure
of an ignition control computer stranded an auto in a remote location at night.
Couldn’t engineers develop a recovery mode to limp home, even if it did use a
little more gas or emit fumes on the way home? Sufficient fault-tolerant tech-
nology exists; however, designers have to use it. Fortunately, the cellular phone
allows one to call for help!

Although the preceding examples relate to electronic systems, there is no
less a need for fault tolerance in mechanical, pneumatic, hydraulic, and other
systems. In fact, almost all of us need a fault-tolerant emergency procedure to
heat our homes in case of prolonged power outages.

1.3 RELIABILITY AND AVAILABILITY

1.3.1 Reliability Is Often an Afterthought

The attainment of high reliability and availability is very difficult to achieve in
very complex systems. Thus, a system designer should formulate a number of
different approaches to a problem and weigh the pluses and minuses of each
design before recommending an approach. One should be careful to base con-
clusions on an analysis of facts, not on conjecture. Sometimes the best solution
includes simplifying the design a bit by leaving out some marginal, complex
features. It may be difficult to convince the authors of the requirements that
sometimes “less is more,” but this is sometimes the best approach. Design deci-
sions often change as new technology is introduced. At one time any attempt to
digitize the Library of Congress would have been judged infeasible because of
the storage requirement. However, by using modern technology, this could be
accomplished with two modern RAID disk storage systems such as the EMC
Symmetrix systems, which store more than nine terabytes (9 × 1012 bytes)
[EMC Products-At-A-Glance, www.emc.com]. The computation is outlined in
the problems at the end of this chapter.

Reliability and availability of the system should always be two factors that
are included, along with cost, performance, time of development, risk of fail-
ure, and other factors. Sometimes it will be necessary to discard a few design
objectives to achieve a good design. The system engineer should always keep
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in mind that the design objectives generally contain a list of key features and a
list of desirable features. The design must satisfy the key features, but if one or
two of the desirable features must be eliminated to achieve a superior design,
the trade-off is generally a good one.

1.3.2 Concepts of Reliability

Formal definitions of reliability and availability appear in Appendices A and
B; however, the basic ideas are easy to convey without a mathematical devel-
opment, which will occur later. Both of these measures apply to how good the
system is and how frequently it goes down. An easy way to introduce reliabil-
ity is in terms of test data. If 50 systems operate for 1,000 hours on test and
two fail, then we would say the probability of failure, Pf , for this system in
1,000 hours of operation is 2/ 50 or Pf (1,000) = 0.04. Clearly the probability
of success, Ps, which is known as the reliability, R, is given by R(1,000) =
Ps(1,000) =  1 − Pf (1,000) =48/ 50 =0.96. Thus, reliability is the probability
of no failure within a given operating period. One can also deal with a fail-
ure rate, f r, for the same system that, in the simplest case, would be f r =2
failures/ (50 × 1,000) operating hours—that is, f r = 4 × 10−5 or, as it is some-
times stated, f r = z = 40 failures per million operating hours, where z is often
called the hazard function. The units used in the telecommunications industry
are fits (failures in time), which are failures per billion operating hours. More
detailed mathematical development relates the reliability, the failure rate, and
time. For the simplest case where the failure rate z is a constant (one gener-
ally uses l to represent a constant failure rate), the reliability function can be
shown to be R(t) = e−lt . If we substitute the preceding values, we obtain

R(1, 000) � e−4 × 10−5 × 1,000
� 0.96

which agrees with the previous computation.
It is now easy to show that complexity causes serious reliability problems.

The simplest system reliability model is to assume that in a system with n
components, all the components must work. If the component reliability is Rc,
then the system reliability, Rsys, is given by

Rsys(t) � [Rc(t)]n
� [e−lt]n

� e−nlt

Consider the case of the first supercomputer, the CDC 6600 [Thornton,
1970]. This computer had 400,000 transistors, for which the estimated fail-
ure rate was then 4 × 10−9 failures per hour. Thus, even though the failure
rate of each transistor was very small, the computer reliability for 1,000 hours
would be

R(1, 000) � e−400,000 × 4 × 10−9 × 1,000
� 0.20



12 INTRODUCTION

If we repeat the calculation for 100 hours, the reliability becomes 0.85.
Remember that these calculations do not include the other components in the
computer that can also fail. The conclusion is that the failure rate of devices
with so many components must be very low to achieve reasonable reliabilities.
Integrated circuits (ICs) improve reliability because each IC replaces hundreds
of thousands or millions of transistors and also because the failure rate of an
IC is low. See the problems at the end of this chapter for more examples.

1.3.3 Elementary Fault-Tolerant Calculations

The simplest approach to fault tolerance is classical redundancy, that is, to have
an additional element to use if the operating one fails. As a simple example, let
us consider a home computer in which constant usage requires it to be always
available. A desktop will be the primary computer; a laptop will be the backup.
The first step in the computation is to determine the failure rate of a personal
computer, which will be computed from the author’s own experience. Table 1.3
lists the various computers that the author has used in the home. There has been
a total of 2 failures and 29 years of usage. Since each year contains 8,766 hours,
we can easily convert this into a failure rate. The question becomes whether to
estimate the number of hours of usage per year or simply to consider each year
as a year of average use. We choose the latter for simplicity. Thus the failure
rate becomes 2/ 29 = 0.069 failures per year, and the reliability of a single PC
for one year becomes R(1) = e−0.069= 0.933. This means there is about a 6.7%
probability of failure each year based on this data.

If we have two computers, both must fail for us to be without a computer.
Assuming the failures of the two computers are independent, as is generally
the case, then the system failure is the product of the failure probabilities for

TABLE 1.3 Home Computers Owned by the Author

Computer Date of Ownership Failures Operating Years

IBM XT Computer: Intel 1983–90 0 failures 7 years
8088 and 10 MB disk

Home upgrade of XT to 1990–95 0 failures 5 years
Intel 386 Processor and
65 MB disk

IBM XT Components Repackaged plus 1 failure 2 years
(repackaged in 1990) added new

components used:
1990–92

Digital Equipment Laptop 1992–99 0 failures 7 years
386 and 80 MB disk

IBM Compatible 586 1995–2001 1 failure 6 years
IBM Notebook 240 1999–2001 0 failures 2 years



RELIABILITY AND AVAILABILITY 13

Boston

New York

Philadelphia
Pittsburgh

Boston

New York

Philadelphia
Pittsburgh

(a)

(b)

Figure 1.2 Examples of simple computer networks: (a), a tree network connecting
the four cities; (b), a Hamiltonian network connecting the four cities.

computer 1 (the primary) and computer 2 (the backup). Using the preceding
failure data, the probability of one failure within a year should be 0.067; of
two failures, 0.067 × 0.067 = 0.00449. Thus, the probability of having at least
one computer for use is 0.9955 and the probability of having no computer at
some time during the year is reduced from 6.7% to 0.45%—a decrease by a
factor of 15. The probability of having no computer will really be much less
since the failed computer will be rapidly repaired.

As another example of reliability computations, consider the primitive com-
puter network as shown in Fig. 1.2(a). This is called a tree topology because
all the nodes are connected and there are no loops. Assume that p is the reli-
ability for some time period for each link between the nodes. The probability
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that Boston and New York are connected is the probability that one link is
good, that is, p. The same probability holds for New York–Philadelphia and for
Philadelphia–Pittsburgh, but the Boston–Philadelphia connection requires two
links to work, the probability of which is p2. More commonly we speak of the
all-terminal reliability, which is the probability that all cities are connected—p3

in this example—because all three links must be working. Thus if p = 0.9, the
all-terminal reliability is 0.729.

The reliability of a network is raised if we add more links so that loops
are created. The Hamiltonian network shown in Fig. 1.2(b) has one more link
than the tree and has a higher reliability. In the Hamiltonian network, all nodes
are connected if all four links are working, which has a probability of p4. All
nodes are still connected if there is a single link failure, which has a probability
of three successes and one failure given by p3 (1 − p). However, there are 4
ways for one link to fail, so the probability of one link failing is 4p3(1− p). The
reliability is the probability that there are zero failures plus the probability that
there is one failure, which is given by [p4 + 4p3(1 − p)]. Assuming that p = 0.9
as before, the reliability becomes 0.9477—a considerable improvement over
the tree network. Some of the basic principles for designing and analyzing the
reliability of computer networks are discussed in this book.

1.3.4 The Meaning of Availability

Reliability is the probability of no failures in an interval, whereas availability
is the probability that an item is up at any point in time. Both reliability and
availability are used extensively in this book as measures of performance and
“yardsticks” for quantitatively comparing the effectiveness of various fault-tol-
erant methods. Availability is a good metric to measure the beneficial effects of
repair on a system. Suppose that an air traffic control system fails on the aver-
age of once a year; we then would say that the mean time to failure (MTTF),
was 8,766 hours (the number of hours in a year). If an airline’s reservation
system went down 5 times in a year, we would say that the MTTF was 1/ 5 of
the air traffic control system, or 1,753 hours. One would say that, based on the
MTTF, the air traffic control system was much better; however, suppose we
consider repair and calculate typical availabilities. A simple formula for cal-
culating the system availability (actually, the steady-state availability), based
on the Uptime and Downtime of the system, is given as follows:

A �

Uptime
Uptime + Downtime

If the air traffic control system goes down for about 1 hour whenever it fails,
the availability would be calculated by substitution into the preceding formula
yielding A = (8,765) / (8,765 + 1) =0.999886. In the case of the airline reserva-
tion system, let us assume that the outages are short, averaging 1 minute each.
Thus the cumulative downtime per year is five minutes = 0.083333 hours, and
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the availability would be A = (8,765.916666)/ (8,766) = 0.9999905. Comparing
the unavailabilities (U = 1 − A), we see (1 − 0.999886)/(1 − 0.9999905) =12.
Thus, we can say that based on availability the reservation system is 12 times
better than the air traffic control system. Clearly one must use both reliability
and availability to compare such systems.

A mathematical technique called Markov modeling will be used in this book
to compute the availability for various systems. Rapid repair of failures in
redundant systems greatly increases both the reliability and availability of such
systems.

1.3.5 Need for High Reliability and Safety in Fault-Tolerant Systems

Fault-tolerant systems are generally required in applications involving a high
level of safety, since a failure can injure or kill many people. A number of spec-
ifications, field failure data, and calculations are listed in Table 1.4 to give the
reader some appreciation of the ranges of reliability and availability required
and realized for various fault-tolerant systems.

A pattern emerges after some study of Table 1.4. The availability of several
of the highly reliable fault-tolerant systems is similar. The availability require-
ment for the ESS telephone switching system (0.9999943), which is spoken of
as “5 nines 43” in shorthand fashion, is seen to be equaled or bettered by actual
performance of “5 nines 05” for (3B, 1A) and “5 nines 62” for (3A). Often
one will compare system availability by quoting the downtime: for example,
5.7 hours per million for ESS requirements, 0.5 hours per million for (3B,
1A), and 3.8 hours per million for (3A). The Tandem goal was “5 nines 60”
and the Stratus quote was “5 nines 05.” Lastly, a standby system (if one could
construct a fault-tolerant standby architecture) using 1985 technology would
yield an availability of “5 nines 11.” It is interesting to speculate whether this
represents some level of performance one is able to achieve under certain lim-
itations or whether the only proven numbers (the ESS switching systems) have
become the goal others are quoting. The reader should remember that neither
Tandem nor Stratus provides data on their field-demonstrated availability.

In the aircraft field there are some established system safety standards for
the probability of catastrophe. These are extracted in Table 1.5, which also
shows data on avionics-software-problem occurrence rates.

The two standards plus the software data quoted in Table 1.5 provide a
rough but “overlapping” hierarchy of values. Some researchers have been pes-
simistic about the possibility of proving before use the reliability of hardware
or software with reliabilities of < 10−9. To demonstrate such a probability, we
would need to test 10,000 systems for 10 years (about 100,000 hours) with 1 or
0 failures. Clearly this is not feasible, and one must rely on modeling and test
data accumulated for major systems. However, from Shooman [1996], we can
estimate that the U.S. air fleet of larger passenger aircraft flew about 12,000,000
flight hours in 1994 and today must fly about 20,000,000 hours. Thus if it were
commercially feasible to install a new piece of equipment in every aircraft for
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TABLE 1.5 Aircraft Safety Standards and Data

Probability of
System Criticality Likelihood Failure/ Flight Hr

Nonessentiala Probable > 10−5

Essentiala Improbable 10−5–10−9

Flight controlb (e.g., Extremely remote 5 × 10−7

bombers, transports,
cargo, and tanker)

Criticala Extremely improbable < 10−9

Avionics software — Average failure rate of
failure rates 1.5 × 10−7 failures/ hr

for 6 major avionics
systems

a FAA, AC 25.1309-1A.
b MIL-F-9490.

Source: [Shooman, 1996].

one year and test it, but not have it connected to aircraft systems, one could
generate 20,000,000 test hours. If no failures are observed, the statistical rule
is to use 1/ 3 as the equivalent number of failures (see Section B3.5), and one
could demonstrate a failure rate as low as (1/ 3)/ 20,000,000 =1.7 × 10−8. It
seems clear that the 10−9 probabilities given in Table 1.5 are the reasons why
10−9 was chosen for the goals of SIFT and FTMP in Table 1.4.

1.4 ORGANIZATION OF THIS BOOK

1.4.1 Introduction

This book was written for a diverse audience, including system designers in
industry and students from a variety of backgrounds. Appendices A and B,
which discuss probability and reliability principles, are included for those read-
ers who need to deepen or refresh their knowledge of these topics. Similarly,
because some readers may need some background in digital electronics, there
is Appendix C that discusses digital electronics and architecture and provides a
systems-level summary of these topics. The emphasis of this book is on analy-
sis of systems and optimum design approaches. For large industrial problems,
this emphasis will serve as a prelude to complement and check more com-
prehensive and harder-to-interpret computer analysis. Often the designer has
to make a trade-off among several proposed designs. Many of the examples
and some of the theory in this text address such trade-offs. The theme of the
analysis and the trade-offs helps to unite the different subjects discussed in
the various chapters. In many ways, each chapter is self-contained when it is
accompanied by supporting appendix material; hence a practitioner can read
sections of the book pertinent to his or her work, or an instructor can choose a

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



ORGANIZATION OF THIS BOOK 19

selected group of chapters for a classroom presentation. This first chapter has
described the complex nature of modern system design, which is one of the
primary reasons that fault tolerance is needed in most systems.

1.4.2 Coding Techniques

A standard technique for guarding the veracity of a digital message/ signal is
to transmit the message more than once or to attach additional check bits to
the message to detect and sometimes correct errors caused by “noise” that
have corrupted some bits. Such techniques, called error-detecting and error-
correcting codes, are introduced in Chapter 2. These codes are used to detect
and correct errors in communications, memory storage, and signal transmission
within computers and circuitry. When errors are sparse, the standard parity-bit
and Hamming codes, developed from basic principles in Chapter 2, are very
successful. The effectiveness of such codes is compared based on the probabil-
ities that the codes fail to detect multiple errors. The probability that the cod-
ing and decoding chips may fail catastrophically is also included in the analy-
sis. Some original work is introduced to show under which circumstances the
chip failures are significant. In some cases, errors occur in groups of adjacent
bits, and an introductory development of burst error codes, which are used in
such cases, is presented. An introduction to more sophisticated Reed–Solomon
codes concludes this chapter.

1.4.3 Redundancy, Spares, and Repairs

One way of improving system reliability is to reduce the failure rate of piv-
otal individual components. Sometimes this is not a feasible or cost-effective
approach to meeting very high reliability requirements. Chapter 3 introduces
another technique—redundancy—and it considers the fundamental techniques
of system and component redundancy. The standard approach is to have two (or
more) units operating in parallel so that if one fails the other(s) take over. Paral-
lel components are generally more efficient than parallel systems in improving
the resulting reliability; however, some sort of “coupling device” is needed to
parallel the units. The reliability of the coupling device is modeled, and under
certain circumstances failures of this device may significantly degrade system
reliability. Various approximations are developed to allow easy comparison of
different approaches and, in addition, the system mean time to failure (MTTF)
is also used to simplify computations. The effects of common-cause failures,
which can negate much of the beneficial effects of redundancy, are discussed.

The other major form of redundancy is standby redundancy, in which the
redundant component is powered down until the on-line system fails. This is
often superior to parallel reliability. In the standby case, the sensing system
that detects failures and switches is more complex, and the reliability of this
device is studied to assess the degradation in predicted reliability caused by the
standby switch. The study of standby systems is based on Markov probability
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models that are introduced in the appendices and deliberately developed in
Chapter 3 because they will be used throughout the book.

Repair improves the reliability of both parallel and standby systems, and
Markov probability models are used to study the relative benefits of repair for
both approaches. Markov modeling generates a set of differential equations that
require a solution to complete the analysis. The Laplace transform approach is
introduced and used to simplify the solution of the Markov equations for both
reliability and availability analysis.

Several computer architectures for fault tolerance are introduced and dis-
cussed. Modern memory storage systems use the various RAID architectures
based on an array of redundant disks. Several of the common RAID techniques
are analyzed. The class of fault-tolerant computer systems called nonstop sys-
tems is introduced. Also introduced and analyzed are two other systems: the
Tandem system, which depends primarily on software fault tolerance, and the
Stratus system, which uses hardware fault tolerance. A brief description of a
similar system approach, a Sun computer system cluster, concludes the chapter.

1.4.4 N-Modular Redundancy

The problem of comparing the proper functioning of parallel systems was dis-
cussed earlier in this chapter. One of the benefits of a digital system is that all
outputs are strings of 1s or 0s so that the comparison of outputs is simplified.
Chapter 4 describes an approach that is often used to compare the outputs of
three identical digital circuits processing the same input: triple modular redun-
dancy (TMR). The most common circuit output is used as the system output
(called majority voting). In the case of TMR, we assume that if outputs dis-
agree, those two that are the same will together have a much higher probability
of succeeding rather than failing. The voting device is simple, and the resulting
system is highly reliable. As in the case of parallel or standby redundancy, the
voting can be done at the system or subsystem level, and both approaches are
modeled and compared.

Although the voter circuit is simple, it can fail; the effect of voter reliabil-
ity, much like coupler reliability in a parallel system, must then be included.
The possibility of using redundant voters is introduced. Repair can be used to
improve the reliability of a voter system, and the analysis utilizes a Markov
model similar to that of Chapter 3. Various simplified approximations are intro-
duced that can be used to analyze the reliability and availability of repairable
systems. Also introduced are more advanced voting and consensus techniques.
The redundant system of Chapter 3 is compared with the voting techniques of
Chapter 4.

1.4.5 Software Reliability and Recovery Techniques

Programming of the computer in early digital systems was largely done in com-
plex machine language or low-level assembly language. Memory was limited,
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and the program had to be small and concise. Expert programmers often used
tricks to fit the required functions into the small memory. Software errors—then
as now—can cause the system to malfunction. The failure mode is different
but no less disastrous than catastrophic hardware failures. Chapter 5 relates
these program errors to resulting system failures.

This chapter begins by describing in some detail the way programs are
now developed in modern higher-level languages such as FORTRAN, COBOL,
ALGOL, C, C+ +, and Ada. Large memories allow more complex tasks, and
many more programmers are involved. There are many potential sources of
errors, such as the following: (a), complex, error-prone specifications; (b), logic
errors in individual modules (self-contained sections of the program); and (c),
communications among modules. Sometimes code is incorporated from previ-
ous projects without sufficient adaptation analysis and testing, causing subtle
but disastrous results. A classical example of the hazards of reused code is the
Ariane-5 rocket. The European Space Agency (ESA) reused guidance software
from Ariane-4 in Ariane-5. On its maiden flight, June 4, 1996, Ariane-5 had to
be destroyed 40 seconds into launch—a $500 million loss. Ariane-5 developed
a larger horizontal velocity than Ariane-4, and a register overflowed. The soft-
ware detected an exception, but instead of taking a recoverable action it shut
off the processor as the specifications required. A more appropriate recovery
action might have saved the flight. To cite the legendary Murphy’s Law, “If
things can go wrong, they will,” and they did. Even better, we might devise a
corollary that states “then plan for it” [Pfleeger, 1998, pp. 37–39].

Various mathematical models describing errors are introduced. The intro-
ductory model is based on a simple assumption: the failure rate (error discov-
ery rate) is proportional to the number of errors remaining in the software after
it is tested and released. Combining this software failure rate with reliability
theory leads to a software reliability model. The constants in such models are
evaluated from test data recorded during software development. Applying such
models during the test phase allows one to predict the reliability of the software
once it is released for operational use. If the predicted reliability appears unsat-
isfactory, the developer can improve testing to remove more errors, rewrite cer-
tain problem modulus, or take other action to avoid the release of an unreliable
product.

Software redundancy can be utilized in some cases by using independently
developed but functionally identical software. The extent to which common
errors in independent software reduces the reliability gains is discussed; as a
practical example, the redundant software in the NASA Space Shuttle is con-
sidered.

1.4.6 Networked Systems Reliability

Networks are all around us. They process our telephone calls, connect us to the
Internet, and connect private industry and government computer and informa-
tion systems. In general, such systems have a high reliability and availability
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because there is more than one path that connects all of the terminals in the net-
work. Thus a single link failure will seldom interrupt communications because
a duplicate path will exist. Since network geometry (topology) is usually com-
plex, there are many paths between terminals, and therefore computation of
network reliability is often difficult. Computer programs are available for such
computations, two of which are referenced in the chapter. This chapter sys-
tematically develops methods based on graph theory (cut-sets and tie-sets) for
analysis of a network. Alternate methods for computation are also discussed,
and the chapter concludes with the application of such methods to the design
of a reliable backbone network.

1.4.7 Reliability Optimization

Initial design of a large, complex system focuses on several issues: (a), how to
structure the project to perform the required functions; (b), how to meet the per-
formance requirements; and (c), how to achieve the required reliability. Design-
ers always focus on issues (a) and (b), but sometimes, at the peril of develop-
ing an unreliable system, they spend a minimum of effort on issue (c). Chap-
ter 7 develops techniques for optimizing the reliability of a proposed design
by parceling out the redundancy to various subsystems. Choice among opti-
mized candidate designs should be followed by a trade-off among the feasible
designs, weighing the various pros and cons that include reliability, weight,
volume, and cost. In some ways, one can view this chapter as a generalization
of Chapter 3 for larger, more complex system designs.

One simplified method of achieving optimum reliability is to meet the overall
system reliability goal by fixing the level of redundancy for the various subsys-
tems according to various apportionment rules. The other end of the optimization
spectrum is to obtain an exact solution by means of exhaustively computing the
reliability for all the possible system combinations. The Dynamic Programming
method was developed as a way to eliminate many of the cases in an exhaustive
computation scheme. Chapter 7 discusses the above methods as well as an effec-
tive approximate method—a greedy algorithm, where the optimization is divided
into a series of steps and the best choice is made for each step.

The best method developed in this chapter is to establish a set of upper and
lower bounds on the number of redundancies that can be assigned for each
subsystem. It is shown that there is a modest number of possible cases, so
an exhaustive search within the allowed bounds is rapid and computationally
feasible. The bounded method displays the optimal configuration as well as
many other close-to-optimum alternatives, and it provides the designer with a
number of good solutions among which to choose.

1.4.8 Appendices

This book has been written for practitioners and students from a wide variety
of disciplines. In cases where the reader does not have a background in either
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probability or digital circuitry, or needs a review of principles, these appen-
dices provide a self-contained development of the background material of these
subjects.

Appendix A develops probability from basic principles. It serves as a tuto-
rial, review, or reference for the reader.

Appendix B summarizes reliability theory and develops the relationships
among reliability theory, conventional probability density and distributions
functions, and the failure rate (hazard) function. The popular MTTF metric, as
well as sample calculations, are given. Availability theory and Markov models
are developed.

Appendix C presents a concise introduction to digital circuit design and ele-
mentary computer architecture. This will serve the reader who needs a back-
ground to understand the architecture applications presented in the text.

Appendix D discusses reliability, availability, and risk-modeling programs.
Most large systems will require such software to aid in analysis. This appendix
categorizes these programs and provides information to aid the reader in con-
tacting the suppliers to make an informed choice among the products offered.
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PROBLEMS

1.1. Show that the combined capacity of several (two or three) modern
disk storage systems, such as the EMC Symmetrix System that stores
more than nine terabytes (9 × 1012 bytes) [EMC Products-At-A-Glance,
www.emc.com], could contain all the 26 million texts in the Library of
Congress [Web search, Library of Congress].
(a) Assume that the average book has 400 pages.
(b) Estimate the number of lines per page by counting lines in three

different books.
(c) Repeat (b) for the number of words per line.
(d) Repeat (b) for the number of characters per word.
(e) Use the above computations to find the number of characters in the

26 million books.
Assume that one character is stored in one byte and calculate the number
of Symmetrix units needed.

1.2. Estimate the amount of storage needed to store all the papers in a stan-
dard four-drawer business filing cabinet.

1.3. Estimate the cost of digitizing the books in the Library of Congress.
How would you do this?
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1.4. Repeat problem 1.3 for the storage of problem 1.2.

1.5. Visit the Intel Web site and check the release dates and transistor com-
plexities given in Table 1.2.

1.6. Repeat problem 1.5 for microprocessors from other manufacturers.

1.7. Extend Table 1.2 for newer processors from Intel and other manufactur-
ers.

1.8. Search the Web for articles about the change of mainframes in the air
traffic control system and identify the old and new computers, the past
problems, and the expected improvements from the new computers.
Hint: look at IEEE Computer and Spectrum magazines and the New York
Times.

1.9. Do some research and try to determine if the storage density for optical
copies (one page of text per square millimeter) is feasible with today’s
optical technology. Compare this storage density with that of a modern
disk or CD-ROM.

1.10. Make a list of natural, human, and equipment failures that could bring
down a library system stored on computer disks. Explain how you could
incorporate design features that would minimize such problems.

1.11. Complex solutions are not always needed. There are many good pro-
grams for storing cooking recipes. Many cooks use a few index cards or
a cookbook with paper slips to mark their favorite recipes. Discuss the
pros and cons of each approach. Under what circumstances would you
favor each approach?

1.12. An improved version of Basic, called GW Basic, followed the original
Micro Soft Basic. “GW” did not stand for our first president or the uni-
versity that bears his name. Try to find out what GW stands for and the
origin of the software.

1.13. Estimate the number of failures per year for a family automobile and
compute the failure rate (failures per mile). Assuming 10,000 miles
driven per year, compute the number of failures per year. Convert this
into failures per hour assuming that one drives 10,000 miles per year at
an average speed of 40 miles per hour.

1.14. Assume that an auto repair takes 8 hours, including drop-off, storage,
and pickup of the car. Using the failure rate computed in problem 1.13
and this information, compute the availability of an automobile.

1.15. Make a list of safety critical systems that would benefit from fault tol-
erance. Suggest design features that would help fault tolerance.

1.16. Search the Web for examples of the systems in problem 1.15 and list
the details you can find. Comment.
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1.17. Repeat problems 1.15 and 1.16 for systems in the home.

1.18. Repeat problems 1.15 and 1.16 for transportation, communication,
power, heating and cooling, and entertainment systems in everyday use.

1.19. To learn of a 180 terabyte storage project, search the EMC Web site for
the movie producer Steven Spielberg, or see the New York Times: Jan.
13, 2001, p. B11. Comment.

1.20. To learn of some of the practical problems in trying to improve an exist-
ing fault-tolerant system, consider the U.S. air traffic control system.
Search the Web for information on the current delays, the effects of
deregulation, and former President Ronald Reagan’s dismissal of strik-
ing air traffic controllers; also see Zuckerman [2000]. A large upgrade
to the system failed and incremental upgrades are being planned instead.
Search the Web and see [Wald, 1996] for a discussion of why the
upgrade failed.
(a) Write a report analyzing what you learned.
(b) What is the present status of the system and any upgrades?

1.21. Devise a scheme for emergency home heating in case of a prolonged
power outage for a gas-fired, hot-water heating system. Consider the fol-
lowing: (a), fireplace; (b), gas stove; (c), emergency generator; and (d),
other. How would you make your home heating system fault tolerant?

1.22. How would problem 1.21 change for the following:
(a) An oil-fired, hot-water heating system?
(b) A gas-fired, hot-air heating system?
(c) A gas-fired, hot-water heating system?

1.23. Present two designs for a fault-tolerant voting scheme.

1.24. Investigate the speed of microprocessors and how rapidly it has
increased over the years. You may wish to use the microprocessors in
Table 1.2 or others as data points. A point on the curve is the 1.7 giga-
hertz Pentium 4 microprocessor [New York Times, April 23, 2001, p.
C1]. Plot the data in a format similar to Fig. 1.1. Does a law hold for
speed?

1.25. Some of the advances in mechanical and electronic computers occurred
during World War II in conjunction with message encoding and decoding
and cryptanalysis (code breaking). Some of the details were, and still are,
classified as secret. Find out as much as you can about these machines
and compare them with those reported on in Section 1.2.1. Hint: Look
in Randall [1975, pp. 327, 328] and Clark [1977, pp. 134, 135, 140,
151, 195, 196]. Also, search the Web for key words: Sigaba, Enigma,
T. H. Flowers, William F. Friedman, Alan Turing, and any patents by
Friedman.
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2.1 INTRODUCTION

Many errors in a computer system are committed at the bit or byte level when
information is either transmitted along communication lines from one computer
to another or else within a computer from the memory to the microprocessor
or from microprocessor to input/ output device. Such transfers are generally
made over high-speed internal buses or sometimes over networks. The simplest
technique to protect against such errors is the use of error-detecting and error-
correcting codes. These codes are discussed in this chapter in this context. In
Section 3.9, we see that error-correcting codes are also used in some versions
of RAID memory storage devices.

The reader should be familiar with the material in Appendix A and Sections
B1–B4 before studying the material of this chapter. It is suggested that this
material be reviewed briefly or studied along with this chapter, depending on
the reader’s background.

The word code has many meanings. Messages are commonly coded and
decoded to provide secret communication [Clark, 1977; Kahn, 1967], a prac-
tice that technically is known as cryptography. The municipal rules governing
the construction of buildings are called building codes. Computer scientists
refer to individual programs and collections of programs as software, but many
physicists and engineers refer to them as computer codes. When information
in one system (numbers, alphabet, etc.) is represented by another system, we
call that other system a code for the first. Examples are the use of binary num-
bers to represent numbers or the use of the ASCII code to represent the letters,
numerals, punctuation, and various control keys on a computer keyboard (see
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Table C.1 in Appendix C for more information). The types of codes that we
discuss in this chapter are error-detecting and -correcting codes. The principle
that underlies error-detecting and -correcting codes is the addition of specially
computed redundant bits to a transmitted message along with added checks
on the bits of the received message. These procedures allow the detection and
sometimes the correction of a modest number of errors that occur during trans-
mission.

The computation associated with generating the redundant bits is called cod-
ing; that associated with detection or correction is called decoding. The use
of the words message, transmitted, and received in the preceding paragraph
reveals the origins of error codes. They were developed along with the math-
ematical theory of information largely from the work of C. Shannon [1948],
who mentioned the codes developed by Hamming [1950] in his original article.
(For a summary of the theory of information and the work of the early pio-
neers in coding theory, see J. R. Pierce [1980, pp. 159–163].) The preceding
use of the term transmitted bits implies that coding theory is to be applied to
digital signal transmission (or a digital model of analog signal transmission), in
which the signals are generally pulse trains representing various sequences of
0s and 1s. Thus these theories seem to apply to the field of communications;
however, they also describe information transmission in a computer system.
Clearly they apply to the signals that link computers connected by modems
and telephone lines or local area networks (LANs) composed of transceivers,
as well as coaxial wire and fiber-optic cables or wide area networks (WANs)
linking computers in distant cities. A standard model of computer architecture
views the central processing unit (CPU), the address and memory buses, the
input/ output (I/ O) devices, and the memory devices (integrated circuit memory
chips, disks, and tapes) as digital signal (computer word) transmission, stor-
age, manipulation, generation, and display devices. From this perspective, it is
easy to see how error-detecting and -correcting codes are used in the design of
modems, memory stems, disk controllers (optical, hard, or floppy), keyboards,
and printers.

The difference between error detection and error correction is based on the
use of redundant information. It can be illustrated by the following electronic
mail message:

Meet me in Manhattan at the information desk at Senn Station on July 43. I will
arrive at 12 noon on the train from Philadelphia.

Clearly we can detect an error in the date, for extra information about the cal-
endar tells us that there is no date of July 43. Most likely the digit should be a 1
or a 2, but we can’t tell; thus the error can’t be corrected without further infor-
mation. However, just a bit of extra knowledge about New York City railroad
stations tells us that trains from Philadelphia arrive at Penn (Pennsylvania) Sta-
tion in New York City, not the Grand Central Terminal or the PATH Terminal.
Thus, Senn is not only detected as an error, but is also corrected to Penn. Note
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that in all cases, error detection and correction required additional (redundant)
information. We discuss both error-detecting and error-correcting codes in the
sections that follow. We could of course send return mail to request a retrans-
mission of the e-mail message (again, redundant information is obtained) to
resolve the obvious transmission or typing errors.

In the preceding paragraph we discussed retransmission as a means of cor-
recting errors in an e-mail message. The errors were detected by a redundant
source and our knowledge of calendars and New York City railroad stations. In
general, with pulse trains we have no knowledge of “the right answer.” Thus if
we use the simple brute force redundancy technique of transmitting each pulse
sequence twice, we can compare them to detect errors. (For the moment, we
are ignoring the rare situation in which both messages are identically corrupted
and have the same wrong sequence.) We can, of course, transmit three times,
compare to detect errors, and select the pair of identical messages to provide
error correction, but we are again ignoring the possibility of identical errors
during two transmissions. These brute force methods are inefficient, as they
require many redundant bits. In this chapter, we show that in some cases the
addition of a single redundant bit will greatly improve error-detection capabili-
ties. Also, the efficient technique for obtaining error correction by adding more
than one redundant bit are discussed. The method based on triple or N copies
of a message are covered in Chapter 4. The coding schemes discussed so far
rely on short “noise pulses,” which generally corrupt only one transmitted bit.
This is generally a good assumption for computer memory and address buses
and transmission lines; however, disk memories often have sequences of errors
that extend over several bits, or burst errors, and different coding schemes are
required.

The measure of performance we use in the case of an error-detecting code
is the probability of an undetected error, Pue, which we of course wish to min-
imize. In the case of an error-correcting code, we use the probability of trans-
mitted error, Pe, as a measure of performance, or the reliability, R, (probability
of success), which is (1 − Pe). Of course, many of the more sophisticated cod-
ing techniques are now feasible because advanced integrated circuits (logic and
memory) have made the costs of implementation (dollars, volume, weight, and
power) modest.

The type of code used in the design of digital devices or systems largely
depends on the types of errors that occur, the amount of redundancy that is cost-
effective, and the ease of building coding and decoding circuitry. The source
of errors in computer systems can be traced to a number of causes, including
the following:

1. Component failure

2. Damage to equipment

3. “Cross-talk” on wires

4. Lightning disturbances
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5. Power disturbances

6. Radiation effects

7. Electromagnetic fields

8. Various kinds of electrical noise

Note that we can roughly classify sources 1, 2, and 3 as causes that are internal
to the equipment; sources 4, 6, and 7 as generally external causes; and sources 5
and 6 as either internal or external. Classifying the source of the disturbance is
only useful in minimizing its strength, decreasing its frequency of occurrence,
or changing its other characteristics to make it less disturbing to the equipment.
The focus of this text is what to do to protect against these effects and how the
effects can compromise performance and operation, assuming that they have
occurred. The reader may comment that many of these error sources are rather
rare; however, our desire for ultrareliable, long-life systems makes it important
to consider even rare phenomena.

The various types of interference that one can experience in practice can
be illustrated by the following two examples taken from the aircraft field.
Modern aircraft are crammed full of digital and analog electronic equipment
that are generally referred to as avionics. Several recent instances of military
crashes and civilian troubles have been noted in modern electronically con-
trolled aircraft. These are believed to be caused by various forms of electro-
magnetic interference, such as passenger devices (e.g., cellular telephones);
“cross-talk” between various onboard systems; external signals (e.g., Voice
of America Transmitters and Military Radar); lightning; and equipment mal-
function [Shooman, 1993]. The systems affected include the following: auto-
pilot, engine controls, communication, navigation, and various instrumentation.
Also, a previous study by Cockpit (the pilot association of Germany) [Taylor,
1988, pp. 285–287] concluded that the number of soft fails (probably from
alpha particles and cosmic rays affecting memory chips) increased in modern
aircraft. See Table 2.1 for additional information.

TABLE 2.1 Increase of Soft Fails with Airplane Generation

Altitude (1,000s feet) Soft
Airplane Total No. of Fails
Type Ground-5 5–20 20–30 30+ Reports Aircraft per a/ c

B707 2 0 0 2 4 14 0.29
B727/ 737 11 7 2 4 24 39/ 28 0.36
B747 11 0 1 6 18 10 1.80
DC10 21 5 0 29 55 13 4.23
A300 96 12 6 17 131 10 13.10

Source: [Taylor, 1988].
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It is not clear how the number of flight hours varied among the different
airplane types, what the computer memory sizes were for each of the aircraft,
and the severity level of the fails. It would be interesting to compare this data
to that observed in the operation of the most advanced versions of B747 and
A320 aircraft, as well as other more recent designs.

There has been much work done on coding theory since 1950 [Rao, 1989].
This chapter presents a modest sampling of theory as it applies to fault-tolerant
systems.

2.2 BASIC PRINCIPLES

Coding theory can be developed in terms of the mathematical structure of
groups, subgroups, rings, fields, vector spaces, subspaces, polynomial algebra,
and Galois fields [Rao, 1989, Chapter 2]. Another simple yet effective devel-
opment of the theory based on algebra and logic is used in this text [Arazi,
1988].

2.2.1 Code Distance

We will deal with strings of binary digits (0 or 1), which are of specified length
and called the following synonymous terms: binary block, binary vector, binary
word, or just code word. Suppose that we are dealing with a 3-bit message (b1,
b2, b3) represented by the bits x1, x2, x3. We can speak of the eight combi-
nations of these bits—see Table 2.2(a)—as the code words. In this case they
are assigned according to the sequence of binary numbers. The distance of a
code is the minimum number of bits by which any one code word differs from
another. For example, the first and second code words in Table 2.2(a) differ
only in the right-most digit and have a distance of 1, whereas the first and the
last code words differ in all 3 digits and have a distance of 3. The total number
of comparisons needed to check all of the word pairs for the minimum code
distance is the number of combinations of 8 items taken 2 at a time � 8

2 � , which
is equal to 8!/ 2!6! = 28.

A simpler way of visualizing the distance is to use the “cube method” of
displaying switching functions. A cube is drawn in three-dimensional space (x,
y, z), and a main diagonal goes from x = y = z = 0 to x = y = z = 1. The distance
is the number of cube edges between any two code words that represent the
vertices of the cube. Thus, the distance between 000 and 001 is a single cube
edge, but the distance between 000 and 111 is 3 since 3 edges must be traversed
to get between the two vertices. (In honor of one of the pioneers of coding
theory, the code distance is generally called the Hamming distance.) Suppose
that noise changes a single bit of a code word from 0 to 1 or 1 to 0. The
first code word in Table 2.2(a) would be changed to the second, third, or fifth,
depending on which bit was corrupted. Thus there is no way to detect a single-
bit error (or a multibit error), since any change in a code word transforms it
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TABLE 2.2 Examples of 3- and 4-Bit Code Words

(b)
4-Bit Code Words: (c)

(a) 3 Original Bits plus Illegal Code Words
3-Bit Code Added Even-Parity for the Even-Parity

Words (Legal Code Words) Code of (b)

x1 x2 x3 x1 x2 x3 x4 x1 x2 x3 x4
b1 b2 b3 p1 b1 b2 b3 p1 b1 b2 b3

0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0 0 1
0 1 0 1 0 1 0 0 0 1 0
0 1 1 0 0 1 1 1 0 1 1
1 0 0 1 1 0 0 0 1 0 0
1 0 1 0 1 0 1 1 1 0 1
1 1 0 0 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0 1 1 1

into another legal code word. One can create error-detecting ability in a code
by adding check bits, also called parity bits, to a code.

The simplest coding scheme is to add one redundant bit. In Table 2.2(b), a
single check bit (parity bit p1) is added to the 3-bit code words b1, b2, and b3

of Table 2.2(a), creating the eight new code words shown. The scheme used
to assign values to the parity bit is the coding rule; in this case, p1 is chosen
so that the number of one bits in each word is an even number. Such a code is
called an even-parity code, and the words in Table 2.1(b) become legal code
words and those in Table 2.1(c) become illegal code words. Clearly we could
have made the number of one bits in each word an odd number, resulting in
an odd-parity code, and so the words in Table 2.1(c) would become the legal
ones and those in 2.1(b) become illegal.

2.2.2 Check-Bit Generation and Error Detection

The code generation rule (even parity) used to generate the parity bit in Table
2.2(b) will now be used to design a parity-bit generator circuit. We begin with
a Karnaugh map for the switching function p1 (b1, b2, and b3) where the parity
bit is a function of the three code bits as given in Fig. 2.1(a). The resulting
Karnaugh map is given in this figure. The top left cell in the map corresponds
to p1 = 0 when b1, b2, and b3 = 000, whereas the top right cell represents p1

= 1 when b1, b2, and b3 = 001. These two cells represent the first two rows
of Table 2.2(b); the other cells in the map represent the other six rows in the
table. Since none of the ones in the Karnaugh map touch, no simplification is
possible, and there are four minterms in the circuit, each generated by the four
gates shown in the circuit. The OR gate “collects” these minterms, generating
a parity check bit p1 whenever a sequence of pulses b1, b2, and b3 occurs.
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Figure 2.1 Elementary parity-bit coding and decoding circuits. (a) Generation of an
even-parity bit for a 3-bit code word. (b) Detection of an error for an even-parity-bit
code for a 3-bit code word.
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The addition of the parity bit creates a set of legal and illegal words; thus
we can detect an error if we check for legal or illegal words. In Fig. 2.1(b) the
Karnaugh map displays ones for legal code words and zeroes for illegal code
words. Again, there is no simplification since all the minterms are separated,
so the error detector circuit can be composed by generating all the illegal word
minterms (indicated by zeroes) in Fig. 2.1(b) using eight AND gates followed
by an 8-input OR gate as shown in the figure. The circuits derived in Fig.
2.1 can be simplified by using exclusive or (EXOR) gates (as shown in the
next section); however, we have demonstrated in Fig. 2.1 how check bits can
be generated and how errors can be detected. Note that parity checking will
detect errors that occur in either the message bits or the parity bit.

2.3 PARITY-BIT CODES

2.3.1 Applications

Three important applications of parity-bit error-checking codes are as follows:

1. The transmission of characters over telephone lines (or optical, micro-
wave, radio, or satellite links). The best known application is the use of
a modem to allow computers to communicate over telephone lines.

2. The transmission of data to and from electronic memory (memory read
and write operations).

3. The exchange of data between units within a computer via various data
and control buses.

Specific implementation details may differ among these three applications, but
the basic concepts and circuitry are very similar. We will discuss the first appli-
cation and use it as an illustration of the basic concepts.

2.3.2 Use of Exclusive OR Gates

This section will discuss how an additional bit can be added to a byte for error
detection. It is common to represent alphanumeric characters in the input and
output phases of computation by a single byte. The ASCII code is almost uni-
versally used. One technique uses the entire byte to represent 28 = 256 possible
characters (the extended character set that is used on IBM personal computers,
containing some Greek letters, language accent marks, graphic characters, and
so forth, as well as an additional ninth parity bit. The other approach limits
the character set to 128, which can be expressed by seven bits, and uses the
eighth bit for parity.

Suppose we wish to build a parity-bit generator and code checker for the
case of seven message bits and one parity bit. Identifying the minterms will
reveal a generalization of the checkerboard diagram similar to that given in the



38 CODING TECHNIQUES

p1

b1

b2

b3

b4

b5

b6

b7

Parity bit

Message bits

Control
signal
1 = odd parity
0 = even parity

Inputs

Output-
generated
parity bit

p b b b b b b b1 = 1 2 3 4 5 6 7⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Inputs

Outputs

p1

b1

b2

b3

b4

b5

b6

b7

even parity odd parity

1 = error
0 = OK

1 = error
0 = OK

(a) Parity-Bit Encoder (generator)

(b) Parity-Bit Decoder (checker)

Figure 2.2 Parity-bit encoder and decoder for a transmitted byte: (a) A 7-bit parity
encoder (generator); (b) an 8-bit parity decoder (checker).

Karnaugh maps of Fig. 2.1. Such checkerboard patterns indicate that EXOR
gates can be used to simplify the circuit. A circuit using EXOR gates for parity-
bit generation and for checking of an 8-bit byte is given in Fig. 2.2. Note that
the circuit in Fig. 2.2(a) contains a control input that allows one to easily switch
from even to odd parity. Similarly, the addition of the NOT gate (inverter) at
the output of the checking circuit allows one to use either even or odd parity.
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Most modems have these refinements, and a switch chooses either even or odd
parity.

2.3.3 Reduction in Undetected Errors

The purpose of parity-bit checking is to detect errors. The extent to which
such errors are detected is a measure of the success of the code, whereas the
probability of not detecting an error, Pue, is a measure of failure. In this section
we analyze how parity-bit coding decreases Pue. We include in this analysis
the reliability of the parity-bit coding and decoding circuit by analyzing the
reliability of a standard IC parity code generator/ checker. We model the failure
of the IC chip in a simple manner by assuming that it fails to detect errors, and
we ignore the possibility that errors are detected when they are not present.

Let us consider the addition of a ninth parity bit to an 8-bit message byte. The
parity bit adjusts the number of ones in the word to an even (odd) number and
is computed by a parity-bit generator circuit that calculates the EXOR function
of the 8 message bits. Similarly, an EXOR-detecting circuit is used to check for
transmission errors. If 1, 3, 5, 7, or 9 errors are found in the received word, the
parity is violated, and the checking circuit will detect an error. This can lead to
several consequences, including “flagging” the error byte and retransmission of
the byte until no errors are detected. The probability of interest is the probability
of an undetected error, P ′ue, which is the probability of 2, 4, 6, or 8 errors, since
these combinations do not violate the parity check. These probabilities can be
calculated by simply using the binomial distribution (see Appendix A5.3). The
probability of r failures in n occurrences with failure probability q is given by the
binomial probability B(r : n, q). Specifically, n = 9 (the number of bits) and q = the
probability of an error per transmitted bit; thus

General:

B(r : 9, q) � � 9
r � qr(1 − q)9 − r (2.1)

Two errors:

B(2 : 9, q) � � 9
2 � q2(1 − q)9 − 2 (2.2)

Four errors:

B(4 : 9, q) � � 9
4 � q4(1 − q)9 − 4 (2.3)

and so on.
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For q, relatively small (10−4), it is easy to see that Eq. (2.3) is much smaller
than Eq. (2.2); thus only Eq. (2.2) needs to be considered (probabilities for r
= 4, 6, and 8 are negligible), and the probability of an undetected error with
parity-bit coding becomes

P ′ue � B(2 : 9, q) � 36q2(1 − q)7 (2.4)

We wish to compare this with the probabilty of an undetected error for an 8-bit
transmission without any checking. With no checking, all errors are undetected;
thus we must compute B(1 : 8, q) + · · · + B(8 : 8, q), but it is easier to compute

Pue � 1 − P(0 errors) � 1 − B(0 : 8, q) � 1 − � 8
0 � q0(1 − q)8 − 0

� 1 − (1 − q)8 (2.5)

Note that our convention is to use Pue for the case of no checking, and P ′ue for
the case of checking.

The ratio of Eqs. (2.5) and (2.4) yields the improvement ratio due to the
parity-bit coding as follows:

Pue/ P ′ue � [1 − (1 − q)8]/ [36q2(1 − q)7] (2.6)

For small q we can simplify Eq. (2.6) by replacing (1 ± q)n by 1 ± nq and
[1/ (1 − q)] by 1 + q, which yields

Pue/ P ′ue � [2(1 + 7q)/ 9q] (2.7)

The parameter q, the probability of failure per bit transmitted, is quoted as
10−4 in Hill and Peterson [1981]. The failure probability q was 10−5 or 10−6

in the 1960s and ’70s; now, it may be as low as 10−7 for the best telephone
lines [Rubin, 1990]. Equation (2.7) is evaluated for the range of q values; the
results appear in Table 2.3 and in Fig. 2.3.

The improvement ratio is quite significant, and the overhead—adding 1 par-
ity bit out of 8 message bits—is only 12.5%, which is quite modest. This prob-
ably explains why a parity-bit code is so frequently used.

In the above analysis we assumed that the coder and decoder are perfect. We
now examine the validity of that assumption by modeling the reliability of the
coder and decoder. One could use a design similar to that of Fig. 2.2; however,
it is more realistic to assume that we are using a commercial circuit device: the
SN74180, a 9-bit odd/ even parity generator/ checker (see Texas Instruments
[1988]), or the newer 74LS280 [Motorola, 1992]. The SN74180 has an equiv-
alent circuit (see Fig. 2.4), which has 14 gates and inverters, whereas the pin-
compatible 74LS280 with improved performance has 46 gates and inverters in
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TABLE 2.3 Evaluation of the Reduction in Undetected
Errors from Parity-Bit Coding: Eq. (2.7)

Bit Error Probability, Improvement Ratio:
q Pue/ P′ue

10−4 2.223 × 103

10−5 2.222 × 104

10−6 2.222 × 105

10−7 2.222 × 106

10−8 2.222 × 107

its equivalent circuit. Current prices of the SN74180 and the similar 74LS280
ICs are about 10–75 cents each, depending on logic family and order quantity.
We will use two such devices since the same chip can be used as a coder and
a decoder (generator/ checker). The logic diagram of this device is shown in
Fig. 2.4.
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Figure 2.3 Improvement ratio of undetected error probability from parity-bit coding.
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2.3.4 Effect of Coder–Decoder Failures

An approximate model for IC reliability is given in Appendix B3.3, Fig. B7.
The model assumes the failure rate of an integrated circuit is proportional to
the square root of the number of gates, g, in the equivalent logic model. Thus
the failure rate per million hours is given as lb = C(g)1/ 2, where C was com-
puted from 1985 IC failure-rate data as 0.004. We can use this model to esti-
mate the failure rate and subsequently the reliability of an IC parity generator
checker. In the equivalent gate model for the SN74180 given in Fig. 2.4, there
are 5 EXNOR, 2 EXOR, 1 NOT, 4 AND, and 2 NOR gates. Note that the
output gates (5) and (6) are NOR rather than OR gates. Sometimes for good
and proper reasons integrated circuit designers use equivalent logic using dif-
ferent gates. Assuming the 2 EXOR and 5 EXNOR gates use about 1.5 times
as many transistors to realize their function as the other gates, we consider
them as equivalent to 10.5 gates. Thus we have 17.5 equivalent gates and lb

= 0.004(17.5)1/ 2 failures per million hours = 1.67 × 10−8 failures per hour.
In formulating a reliability model for a parity-bit coder–decoder scheme, we

must consider two modes of failure for the coded word: A, where the coder and
decoder do not fail but the number of bit errors is an even number equal to 2
or more; and B, where the coder or decoder chip fails. We ignore chip failure
modes, which sometimes give correct results. The probability of undetected
error with the coding scheme is given by

P ′ue � P(A + B) � P(A) + P(B) (2.8)

In Eq. (2.8), the chip failure rates are per hour; thus we write Eq. (2.8) as

P ′ue � P[no coder or decoder failure during 1 byte transmission]

× P[2 or more errors]

+ P[coder or decoder failure during 1 byte transmission] (2.9)

If we let B be the bit transmission rate per second, then the number of
seconds to transmit a bit is 1/ B. Since a byte plus parity is 9 bits, it will take
9/ B seconds to transmit and 9/ 3,600B hours to transmit the 9 bits.

If we assume a constant failure rate lb for the coder and decoder, the relia-
bility of a coder–decoder pair is e−2lbt and the probability of coder or decoder
failure is (1 − e−2lbt). The probability of 2 or more errors per hour is given by
Eq. (2.4); thus Eq. (2.9) becomes

P ′ue � e−2lbt × 36q2(1 − q)7 + (1 − e−2lbt) (2.10)

where

t � 9/ 3,600B (2.11)
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TABLE 2.4 The Reduction in Undetected Errors from Parity-Rate Coding
Including the Effect of Coder–Decoder Failures

Improvement Ratio: Pue/ P′ue for Several Transmission Rates
Bit Error

Probability 300 1,200 9,600 56,000
q Bits/ Sec Bits/ Sec Bits/ Sec Bits/ Sec

10−4 2.223 × 103 2.223 × 103 2.223 × 103 2.223 × 103

10−5 2.222 × 104 2.222 × 104 2.222 × 104 2.222 × 104

10−6 2.228 × 105 2.218 × 105 2.222 × 105 2.222 × 105

10−7 1.254 × 106 1.962 × 106 2.170 × 106 2.213 × 106

5 × 10−8 1.087 × 106 2.507 × 106 4.053 × 106 4.372 × 106

10−8 2.841 × 105 1.093 × 106 6.505 × 106 1.577 × 107

The undetected error probability with no coding is given by Eq. (2.5) and
is independent of time

Pue � 1 − (1 − q)8 (2.12)

Clearly if the failure rate is small or the bit rate B is large, e−2lbt ≈ 1, the fail-
ure probabilities of the coder–decoder chips are insignificant, and the ratio of Eq.
(2.12) and Eq. (2.10) will reduce to Eq. (2.7) for high bit rates B. If we are using
a parity code for memory bit checking, the bit rate will be essentially the mem-
ory cycle time if we assume that a long succession of memory operations and
the effect of chip failures are negligible. However, in the case of parity-bit cod-
ing in a modem, the baud rate will be lower and chip failures can be significant,
especially in the case where q is small. The ratio of Eq. (2.12) to Eq. (2.10) is
evaluated in Table 2.4 (and plotted in Fig. 2.5) for typical modem bit rates B =
300, 1,200, 9,600, and 56,000. Note that the chip failure rate is insignificant for q
=10−4, 10−5, and 10−6; however, it does make a difference for q =10−7 and 10−8.
If the bit rate B is infinite, the effect of chip failure disappears, and we can view
Table 2.3 as depicting this case.

2.4 HAMMING CODES

2.4.1 Introduction

In this section, we develop a class of codes created by Richard Hamming
[1950], for whom they are named. These codes will employ c check bits to
detect more than a single error in a coded word, and if enough check bits are
used, some of these errors can be corrected. The relationships among the num-
ber of check bits and the number of errors that can be detected and corrected
are developed in the following section. It will not be surprising that the case
in which c =1 results in a code that can detect single errors but cannot correct
errors; this is the parity-bit code that we had just discussed.
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Figure 2.5 Improvement ratio of undetected error probability from parity-bit coding
(including the possibility of coder–decoder failure). B is the transmission rate in bits
per second.

2.4.2 Error-Detection and -Correction Capabilities

We defined the concept of Hamming distance of a code in the previous section.
Now, we establish the error-detecting and -correcting abilities of a code based
on its Hamming distance. The following results apply to linear codes, in which
the difference and sum between any two code words (addition and subtraction
of their binary representations) is also a code word. Most of this chapter will
deal with linear codes. The following notations are used in this chapter:

d = the Hamming distance of a code (2.13)

D = the number of errors that a code can detect (2.14a)

C = the number of errors that a code can correct (2.14b)

n = the total number of bits in the coded word (2.15a)
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m = the number of message or information bits (2.15b)

c = the number of check (parity) bits (2.15c)

where d, D, C, n, m, and c are all integers ≥ 0.
As we said previously, the model we will use is one in which the check bits

are added to the message bits by the coder. The message is then “transmitted,”
and the decoder checks for any detectable errors. If there are enough check bits,
and if the circuit is so designed, some of the errors are corrected. Initially, one
can view the error-detection process as a check of each received word to see
if the word belongs to the illegal set of words. Any set of errors that convert a
legal code word into an illegal one are detected by this process, whereas errors
that change a legal code word into another legal code word are not detected.
To detect D errors, the Hamming distance must be at least one larger than D.

d ≥ D + 1 (2.16)

This relationship must be so because a single error in a code word produces a
new word that is a distance of one from the transmitted word. However, if the
code has a basic distance of one, this error results in a new word that belongs
to the legal set of code words. Thus for this single error to be detectable, the
code must have a basic distance of two so that the new word produced by
the error does not belong to the legal set and therefore must correspond to
the detectable illegal set. Similarly, we could argue that a code that can detect
two errors must have a Hamming distance of three. By using induction, one
establishes that Eq. (2.16) is true.

We now discuss the process of error correction. First, we note that to cor-
rect an error we must be able to detect that an error has occurred. Suppose we
consider the parity-bit code of Table 2.2. From Eq. (2.16) we know that d ≥ 2
for error detection; in fact, d = 2 for the parity-bit code, which means that we
have a set of legal code words that are separated by a Hamming distance of
at least two. A single bit error creates an illegal code word that is a distance
of one from more than 1 legal code word; thus we cannot correct the error
by seeking the closest legal code word. For example, consider the legal code
word 0000 in Table 2.2(b). Suppose that the last bit is changed to a one yield-
ing 0001, which is the second illegal code word in Table 2.2(c). Unfortunately,
the distance from that illegal word to each of the eight legal code words is 1,
1, 3, 1, 3, 1, 3, and 3 (respectively). Thus there is a four-way tie for the clos-
est legal code word. Obviously we need a larger Hamming distance for error
correction. Consider the number line representing the distance between any 2
legal code words for the case of d = 3 shown in Fig. 2.6(a). In this case, if there
is 1 error, we move 1 unit to the right from word a toward word b. We are
still 2 units away from word b and at least that far away from any other word,
so we can recognize word a as the closest and select it as the correct word.
We can generalize this principle by examining Fig. 2.6(b). If there are C errors
to correct, we have moved a distance of C away from code word a; to have this
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Figure 2.6 Number lines representing the distances between two legal code words.

word closer than any other word, we must have at least a distance of C + 1
from the erroneous code word to the nearest other legal code word so we can
correct the errors. This gives rise to the formula for the number of errors that
can be corrected with a Hamming distance of d, as follows:

d ≥ 2C + 1 (2.17)

Inspecting Eqs. (2.16) and (2.17) shows that for the same value of d,

D ≥ C (2.18)

We can combine Eqs. (2.17) and (2.18) by rewriting Eq. (2.17) as

d ≥ C + C + 1 (2.19)

If we use the smallest value of D from Eq. (2.18), that is, D � C, and sub-
stitute for one of the Cs in Eq. (2.19), we obtain

d ≥ D + C + 1 (2.20)

which summarizes and combines Eqs. (2.16) to (2.18).
One can develop the entire class of Hamming codes by solving Eq. (2.20),

remembering that D ≥ C and that d, D, and C are integers ≥ 0. For d = 1, D
= C = 0—no code is possible; if d = 2, D = 1, C = 0—we have the parity bit
code. The class of codes governed by Eq. (2.20) is given in Table 2.5.

The most popular codes are the parity code; the d = 3 , D = C = 1
code—generally called a single error-correcting and single error-detecting
(SECSED) code; and the d = 4, D = 2, C= 1 code—generally called a single
error-correcting and double error-detecting (SECDED) code.

2.4.3 The Hamming SECSED Code

The Hamming SECSED code has a distance of 3, and corrects and detects 1
error. It can also be used as a double error-detecting code (DED).

Consider a Hamming SECSED code with 4 message bits (b1, b2, b3, and b4)
and 3 check bits (c1, c2, and c3) that are computed from the message bits by equa-
tions integral to the code design. Thus we are dealing with a 7-bit word. A brute
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TABLE 2.5 Relationships Among d, D, and C

d D C Type of Code

1 0 0 No code possible
2 1 0 Parity bit
3 1 1 Single error detecting; single error correcting
3 2 0 Double error detecting; zero error correcting
4 3 0 Triple error detecting; zero error correcting
4 2 1 Double error detecting; single error correcting
5 4 0 Quadruple error detecting; zero error correcting
5 3 1 Triple error detecting; single error correcting
5 2 2 Double error detecting; double error correcting
6 5 0 Quintuple error detecting; zero error correcting
6 4 1 Quadruple error detecting; single error correcting
6 3 2 Triple error detecting; double error correcting

etc.

force detection–correction algorithm would be to compare the coded word in
question with all the 27 = 128 code words. No error is detected if the coded word
matched any of the 24 = 16 legal combinations of message bits. No detected errors
means either that none have occurred or that too many errors have occurred (the
code is not powerful enough to detect so many errors). If we detect an error, we
compute the distance between the illegal code word and the 16 legal code words
and effect error correction by choosing the code word that is closest. Of course,
this can be done in one step by computing the distance between the coded word
and all 16 legal code words. If one distance is 0, no errors are detected; otherwise
the minimum distance points to the corrected word.

The information in Table 2.5 just tells us the possibilities in constructing a
code; it does not tell us how to construct the code. Hamming [1950] devised a
scheme for coding and decoding a SECSED code in his original work. Check
bits are interspersed in the code word in bit positions that correspond to powers
of 2. Word positions that are not occupied by check bits are filled with message
bits. The length of the coded word is n bits composed of c check bits added to
m message bits. The common notation is to denote the code word (also called
binary word, binary block, or binary vector) as (n, m). As an example, consider
a (7, 4) code word. The 3 check bits and 4 message bits are located as shown
in Table 2.6.

TABLE 2.6 Bit Positions for Hamming SECSED (d � 3) Code

Bit positions x1 x2 x3 x4 x5 x6 x7
Check bits c1 c2 — c3 — — —
Message bits — — b1 — b2 b3 b4
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TABLE 2.7 Relationships Among n, c, and m for a SECSED
Hamming Code

Length, n Check Bits, c Message Bits, m

1 1 0
2 2 0
3 2 1
4 3 1
5 3 2
6 3 3
7 3 4
8 4 4
9 4 5

10 4 6
11 4 7
12 4 8
13 4 9
14 4 10
15 4 11
16 5 11
etc.

In the code shown, the 3 check bits are sufficient for codes with 1 to 4
message bits. If there were another message bit, it would occupy position x9,
and position x8 would be occupied by a fourth check bit. In general, c check
bits will cover a maximum of (2c

− 1) word bits or 2c ≥ n + 1. Since n = c +
m, we can write

2c ≥ [c + m + 1] (2.21)

where the notation [c + m + 1] means the smallest integer value of c that
satisfies the relationship. One can solve Eq. (2.21) by assuming a value of n
and computing the number of message bits that the various values of c can
check. (See Table 2.7.)

If we examine the entry in Table 2.7 for a message that is 1 byte long, m
= 8, we see that 4 check bits are needed and the total word length is 12 bits.
Thus we can say that the ratio c/ m is a measure of the code overhead, which
in this case is 50%. The overhead for common computer word lengths, m, is
given in Table 2.8.

Clearly the overhead approaches 10% for long word lengths. Of course, one
should remember that these codes are competing for efficiency with the parity-
bit code, in which 1 check bit represents only a 1.6% overhead for a 64-bit
word length.

We now return to our (7, 4) SECSED code example to explain how the
check bits are generated. Hamming developed a much more ingenious and
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TABLE 2.8 Overhead for Various Word Lengths (m) for a Hamming
SECSED Code

Code Length, Word (Message) Number of Check Overhead
n Length, m Bits, c (c/ m) × 100%

12 8 4 50
21 16 5 31
38 32 6 19
54 48 6 13
71 64 7 11

efficient design and method for detection and correction. The Hamming code
positions for the check and message bits are given in Table 2.6, which yields
the code word c1c2b1c3b2b3b4. The check bits are calculated by computing
the exclusive, or ⊕, of 3 appropriate message bits as shown in the following
equations:

c1 � b1 ⊕ b2 ⊕ b4 (2.22a)

c2 � b1 ⊕ b3 ⊕ b4 (2.22b)

c3 � b2 ⊕ b3 ⊕ b4 (2.22c)

Such a choice of check bits forms an obvious pattern if we write the 3
check equations below the word we are checking, as is shown in Table 2.9.
Each parity bit and message bit present in Eqs. (2.22a–c) is indicated by a
“1” in the respective rows (all other positions are 0). If we read down in each
column, the last 3 bits are the binary number corresponding to the bit position
in the word.

Clearly, the binary number pattern gives us a design procedure for construct-
ing parity check equations for distance 3 codes of other word lengths. Reading
across rows 3–5 of Table 2.9, we see that the check bit with a 1 is on the left
side of the equation and all other bits appear as ⊕ on the right-hand side.

As an example, consider that the message bits b1b2b3b4 are 1010, in which
case the check bits are

TABLE 2.9 Pattern of Parity Check Bits for a Hamming (7, 4) SECSED Code

Bit positions in word x1 x2 x3 x4 x5 x6 x7
Code word c1 c2 b1 c3 b2 b3 b4
Check bit c1 1 0 1 0 1 0 1
Check bit c2 0 1 1 0 0 1 1
Check bit c3 0 0 0 1 1 1 1
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c1 � 1 ⊕ 0 ⊕ 0 � 1 (2.23a)

c2 � 1 ⊕ 1 ⊕ 0 � 0 (2.23b)

c3 � 0 ⊕ 1 ⊕ 0 � 1 (2.23c)

and the code word is c1c2b1c3b2b3b4 � 1011010.
To check the transmitted word, we recalculate the check bits using Eqs.

(2.22a–c) and obtain c′1, c′2, and c′3. The old and the new parity check bits
are compared, and any disagreement indicates an error. Depending on which
check bits disagree, we can determine which message bit is in error. Hamming
devised an ingenious way to make this check, which we illustrate by example.

Suppose that bit 3 of the message we have been discussing changes from
a “1” to a “0” because of a noise pulse. Our code word then becomes
c1c2b1c3b2b3b4 = 1011000. Then, application of Eqs. (2.22a–c) yields c′3, c′2,
and c′1 = 110 for the new check bits. Disagreement of the check bits in the
message with the newly calculated check bits indicates that an error has been
detected. To locate the error, we calculate error-address bits, e3e2e1, as follows:

e1 � c1 ⊕ c′1 � 1 ⊕ 1 � 0 (2.24a)

e2 � c2 ⊕ c′2 � 0 ⊕ 1 � 1 (2.24b)

e3 � c3 ⊕ c′3 � 1 ⊕ 0 � 1 (2.24c)

The binary address of the error bit is given by e3e2e1, which in our example
is 110 or 6. Thus we have detected correctly that the sixth position, b3, is
in error. If the address of the error bit is 000, it indicates that no error has
occurred; thus calculation of e3e2e1 can serve as our means of error detection
and correction. To correct a bit that is in error once we know its location, we
replace the bit with its complement.

The generation and checking operations described above can be derived in
terms of a parity code matrix (essentially the last three rows of Table 2.9), a
column vector that is the coded word, and a row vector called the syndrome,
which is e3e2e1 that we called the binary address of the error bit. If no errors
occur, the syndrome is zero. If a single error occurs, the syndrome gives the
correct address of the erroneous bit. If a double error occurs, the syndrome
is nonzero, indicating an error; however, the address of the erroneous bit is
incorrect. In the case of triple errors, the syndrome is zero and the errors are
not detected. For a further discussion of the matrix representation of Hamming
codes, the reader is referred to Siewiorek [1992].

2.4.4 The Hamming SECDED Code

The SECDED code is a distance 4 code that can be viewed as a distance 3
code with one additional check bit. It can also be a triple error-detecting code
(TED). It is easy to design such a code by first designing a SECSED code and
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TABLE 2.10 Interpretation of Syndrome for a Hamming (8, 4)
SECDED Code

e1 e2 e3 e4 Interpretation

0 0 0 0 No errors
a1 a2 a3 1 One error, a1a2a3
a1 a2 a3 0 Two errors, a1a2a3, not 000
0 0 0 1 Three errors
0 0 0 0 Four errors

then adding an appended check bit, which is a parity bit over all the other
message and check bits. An even-parity code is traditionally used; however, if
the digital electronics generating the code word have a failure mode in which
the chip is burned out and all bits are 0, it will not be detected by an even-
parity scheme. Thus odd parity is preferred for such a case. We expand on the
(7, 4) SECSED example of the previous section and affix an additional check
bit (c4) and an additional syndrome bit (e4) to obtain a SECDED code.

c4 � c1 ⊕ c2 ⊕ b1 ⊕ c3 ⊕ b2 ⊕ b3 ⊕ b4 (2.25)

e4 � c4 ⊕ c′4 (2.26)

The new coded word is c1c2b1c3b2b3b4c4. The syndrome is interpreted as given
in Table 2.10.

Table 2.8 can be modified for a SECDED code by adding 1 to the code
length column and 1 to the check bits column. The overhead values become
63%, 38%, 22%, 15%, and 13%.

2.4.5 Reduction in Undetected Errors

The probability of an undetected error for a SECSED code depends on the
error-correction philosophy. Either a nonzero syndrome can be viewed as a
single error—and the error-correction circuitry is enabled—or it can be viewed
as detection of a double error. Since the next section will treat uncorrected error
probabilities, we assume in this section that the nonzero syndrome condition
for a SECSED code means that we are detecting 1 or 2 errors. (Some people
would call this simply a distance 3 double error-detecting, or DED, code.) In
such a case, the error detection fails if 3 or more errors occur. We discuss these
probability computations by using the example of a code for a 1-byte message,
where m = 8 and c = 4 (see Table 2.8). If we assume that the dominant term in
this computation is the probability of 3 errors, then we can see Eq. (2.1) and
write

P ′ue � B(3 : 12) � 220q3(1 − q)9 (2.27)
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TABLE 2.11 Evaluation of the Reduction in Undetected
Errors for a Hamming SECSED Code: Eq. (2.25)

Bit Error Probability, Improvement Ratio:
q Pue/ P′ue

10−4 3.640 × 106

10−5 3.637 × 108

10−6 3.636 × 1010

10−7 3.636 × 1012

10−8 3.636 × 1014

Following simplifications similar to those used to derive Eq. (2.7), the unde-
tected error ratio becomes

Pue/ P ′ue � 2(1 + 9q)/ 55q2 (2.28)

This ratio is evaluated in Table 2.11.

2.4.6 Effect of Coder–Decoder Failures

Clearly, the error improvement ratios in Table 2.11 are much larger than those
in Table 2.3. We now must include the probability of the generator/ checker
circuitry failing. This should be a more significant effect than in the case of
the parity-bit code for two reasons. First, the undetected error probabilities are
much smaller with the SECSED code, and second, the generator/ checker will
be more complex. A practical circuit for checking a (7, 4) SECSED code is
given in Wakerly [p. 298, 1990] and is reproduced in Fig. 2.7. For the reader
who is not experienced in digital circuitry, some explanation is in order. The
three 74LS280 ICs (U1, U2, and U3) are similar to the SN74180 shown in Fig.
2.4. Substituting Eq. (2.22a) into Eq. (2.24a) shows that the syndrome bit e1

is dependent on the ⊕ of c1, b1, b2, and b4, and from Table 2.6 we see that
these are bit positions x1, x3, x5, and x7, which correspond to the inputs to
U1. Similarly, U2 and U3 compute e2 and e3. The decoder U4 (see Appendix
C6.3) activates one of its 8 outputs, which is the address of the error bit. The
8 output gates (U5 and U6) are exclusive or gates (see Appendix C; only 7 are
used). The output of the U4 selects the erroneous bit from the bus DU(1–7),
complements it (performing a correction), and passes through the other 6 bits
unchanged. Actually the outputs DU(1–7) are all complements of the desired
values; however, this is simply corrected by a group of inverters at the output
or inversion of the next stage of digital logic. For a check-bit generator, we
can use three 74LS280 chips to generate e1, e2, and e3.

We can compute the reliability of the generator/ checker circuitry by again
using the IC failure rate model of Section B3.3, lb = 0.004

�
g . We assume
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Figure 2.7 Error-correcting circuit for a Hamming (7, 4) SECSED code [Reprinted
by permission of Pearson Education, Inc., Upper Saddle River, NJ 07458; from Wak-
erly, 2000, p. 298].

that any failure in the IC causes system failure, so the reliability diagram is a
series structure and the failure rates add. The computation is detailed in Table
2.12. (See also Fig. 2.7.)

Thus the failure rate for the coder plus decoder is l = 13.58 × 10−8, which
is about four times as large as that for the parity bit case (2 × 1.67 × 10−8)
that was calculated previously.

We now incorporate the possibility of generator/ checker failure and how it
affects the error-correction performance in the same manner as we did with the
parity-bit code in Eqs. (2.8)–(2.11). From Table 2.8 we see that a 1-byte (8-bit)
message requires 4 check bits; thus the SECSED code is (12, 8). The example
developed in Table 2.12 and Fig. 2.7 was for a (7, 4) code, but we can easily
modify these results for the (12, 8) code we have chosen to discuss. First, let
us consider the code generator. The 74LS280 chips are designed to generate
parity check bits for up to an 8-bit word, so they still suffice; however, we now
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need to generate 4 check bits, so a total of 4 will be required. In the case of the
checker (see Fig. 2.7), we will also require four 74LS280 chips to generate the
y-syndrome bits. Instead of a 3-to-8 decoder we will need a 4-to-16 decoder
for the next stage, which can be implemented by using two 74LS138 chips
and the appropriate connections at the enable inputs (G1, G2A, and G2B), as
explained in Appendix C6.3. The output stage composed of 74LS86 chips will
not be required if we are only considering error detection, since the nonerror
output is sufficient for this. Thus we can modify Table 2.12 to compute the
failure rate that is shown in Table 2.13. Note that one could argue that since we
are only computing the error-detection probabilities, the decoders and output
correction EXOR gates are not needed, and only an OR gate with the syndrome
inputs is needed to detect a 0000 syndrome that indicates no errors.

Using the information in Table 2.13 and Eq. (2.27), we obtain an expression
similar to Eq. (2.10), as follows:

P ′ue � e−l t220q3(1 − q)9 + (1 − e−l t) (2.29)

where l is 19.50 × 10−8 failures per hour and t is 12/ 3600B.
We formulate the improvement ratio by dividing Eq. (2.29) by Eq. (2.12);

the ratio is given in Table 2.14 and is plotted in Fig. 2.8. The data presented
in Table 2.11 is also plotted in Fig. 2.8 and represents the line labeled B � ∞,
which represents the case for a nonfailing generator/ checker.

2.4.7 How Coder–Decoder Failures Affect SECSED Codes

Because the Hamming SECSED code results in a lower value for undetected
errors than the parity-bit code, the effect of chip failures is even more pro-
nounced. Of course the coding is still a big improvement, but not as much as
one would predict. In fact, by comparing Figs. 2.8 and 2.5 we see that for B
=300, the parity-bit scheme is superior to the SECSED scheme for values of
q less than about 2 × 10−7; for B =1,200, the parity-bit scheme is superior to
the SECSED scheme for values of q less than about 10−7. The general con-
clusion is that for more complex error detection schemes, one should evaluate
the effects of generator/ checker failures, since these may be of considerable
importance for small values of q. (Chip-specific failure rates may be required.)

More generally, we should compute whether generator/ checker failures sig-
nificantly affect the code performance for the given values of q and B. If such
failures are significant, we can consider the following alternatives:

1. Consider a simpler coding scheme if q is very small and B is low.
2. Consider other coding schemes if they use simpler generator/ checker

circutry.
3. Use other digital logic designs that utilize fewer but larger chips. Since

the failure rate is proportional to
�

g , larger-scale integration improves
reliability.
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TABLE 2.14 The Reduction in Undetected Errors from a Hamming (12, 8) DED
Code Including the Effect of Coder–Decoder Failures

Bit Error Improvement Ratio: Pue/ P′ue for Several Transmission Rates
Probability

q 300 Bits/ Sec 1,200 Bits/ Sec 9,600 Bits/ Sec 56,000 Bits/ Sec

10−4 3.608 × 106 3.629 × 106 3.637 × 106 3.638 × 106

10−5 3.88 × 107 1.176 × 108 2.883 × 108 3.480 × 108

10−6 4.34 × 106 1.738 × 107 1.386 × 108 7.939 × 108

10−7 4.35 × 105 1.739 × 106 1.391 × 107 8.116 × 107

10−8 4.35 × 104 1.739 × 105 1.391 × 106 8.116 × 106

4. Seek to lower IC failure rates via improved derating, burn-in, use of high
reliability ICs, and so forth.

5. Seek fault-tolerant or redundant schemes for code generator and code
checker circuitry.
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Figure 2.8 Improvement ratio of undetected error probability from a SECSED code,
including the possibility of coder–decoder failure. B is the transmission rate in bits per
second.
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2.5 ERROR-DETECTION AND RETRANSMISSION CODES

2.5.1 Introduction

We have discussed both error detection and correction in the previous sections
of this chapter. However, performance metrics (the probabilities of undetected
errors) have been discussed only for error detection. In this section, we intro-
duce metrics for evaluating the error-correction performance of various codes.
In discussing the applications for parity and Hamming codes, we have focused
on information transmission as a typical application. Clearly, the implementa-
tions and metrics we have developed apply equally well to memory scheme
protection, cache checking, bus-transmission checks, and so forth. Thus, when
we again use a data-transmission data application to discuss error correction,
the results will also apply to the other application.

The Hamming error-correcting codes provide a direct means of error cor-
rection; however, if our transmission channel allows communication in both
directions (bidirectional), there is another possibility. If we detect an error, we
can send control signals back to the source to ask for retransmission of the
erroneous byte, work, or code block. In general, the appropriate measure of
error correction is the reliability (probability of no error).

2.5.2 Reliability of a SECSED Code

To discuss the reliability of transmission, we again focus on 1 transmitted byte
and compute the reliability with and without error correction. The reliability
of a single transmitted byte without any error correction is just the probability
of no errors occurring, which was calculated as the second term in Eq. (2.5).

R � (1 − q)8 (2.30)

In the case of a SECSED code (12, 8), single errors are corrected; thus the
reliability is given by

R � P(no errors + 1 error) (2.31)

and since these are mutually exclusive events,

R � P(no errors) + P(1 error) (2.32)

the binomial distribution yields

R ′ � (1 − q)12 + 12q(1 − q)11
� (1 − q)11(1 + 11q) (2.33)

Clearly, R ′ ≥ R; however, for small values of q, both are very close to 1,
and it is easier to compare the unreliability U =1 − R. Thus a measure of the
improvement of a SECSED code is given by
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TABLE 2.15 Evaluation of the Reduction in Unreliability for
a Hamming SECSED Code: Eq. (2.35)

Improvement Ratio:
Bit Error Probability,

q
1 − U
1 − U ′

10−4 6.61 × 102

10−5 6.61 × 103

10−6 6.61 × 104

10−7 6.61 × 105

10−8 6.61 × 106

(1 − U )/ (1 − U ′) � [1 − (1 − q)8]/ [1 − (1 − q)11(1 + 11q)] (2.34)

and approximating this for small q yields

(1 − U)/ (1 − U ′) � 8/ 121q (2.35)

which is evaluated for typical values of q in Table 2.15.
The foregoing evaluations neglected the probability of IC generator and

checker failure. However, the analysis can be broadened to include these effects
as was done in the preceding sections.

2.5.3 Reliability of a Retransmitted Code

If it is possible to retransmit a code block after an error has been detected, one
can improve the reliability of the transmission. In such a case, the reliability
expression becomes

R ′ � P(no error + detected error and no error on retransmisson) (2.36)

and since these are mutually exclusive events and independent events,

R ′ � P(no error) + P(detected error) × P(no error on retransmission) (2.37)

Since the error probabilities on initial transmission and on retransmission
are the same, we obtain

R ′ � P(no error)[1 + P(detected error)] (2.38)

For the case of a parity-bit code, we transmit 9 bits; the probability of detect-
ing an error is approximately the probability of 1 error. Substitution in Eq.
(2.38) yields
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R ′ � (1 − q)9[1 + 9q(1 − q)8] (2.39)

Comparing the ratio of unreliabilities yields

(1 − U )/ (1 − U ′) � [1 − (1 − q)8]/ [1 − [(1 − q)9[1 + 9q(1 − q)8]]] (2.40)

and simplification for small q yields

(1 − U )/ (1 − U ′) � 8q/ [9q2
− 828q3] (2.41)

Similarly, we can use a Hamming distance 3 code (12, 8) to detect up to
2 errors and retransmit. In this case, the probability of detecting an error is
approximately the probability of 1 or 2 errors. Substitution in Eq. (2.38) yields

R ′ � (1 − q)12[1 + (12q(1 − q)11 + 66q2(1 − q)10)] (2.42)

and the unreliability ratio becomes

(1 − U )/ (1 − U ′) � [1 − (1 − q)8]/ [1 − [(1 − q)12[1 + (12q(1 − q)11

+ 66q2(1 − q)10]]] (2.43)

and simplification for small q yields

(1 − U )/ (1 − U ′) � 8q/ [78q2
− 66q3] (2.44)

Equations (2.41) and (2.44) are evaluated in Table 2.16 for typical values
of q. Comparison of Tables 2.15 and 2.16 shows that both retransmit schemes
are superior to the error correction of a SECSED code, and that the parity-
bit retransmit scheme is the best. However, retransmit has at least a 100%
overhead penalty, and Table 2.8 shows typical SECSED overheads of 11–50%.

TABLE 2.16 Evaluation of the Improvement in Reliability by Code
Retransmission for Parity and Hamming d � 3 Code

Parity-Bit Hamming d � 3
Retransmission Retransmission

Bit Error Probability, (1 − U)/ (1 − U ′): (1 − U)/ (1 − U′):
q Eq. (2.41) Eq. (2.44)

10−4 8.97 × 103 1.026 × 103

10−5 8.90 × 104 1.026 × 104

10−6 8.89 × 105 1.026 × 105

10−7 8.89 × 106 1.026 × 106

10−8 8.89 × 107 1.026 × 107
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The foregoing evaluations neglected the probability of IC generator and
checker failure as well as the circuitry involved in controlling retransmission.
However, the analysis can be broadened to include these effects, and a more
detailed comparison can be made.

2.6 BURST ERROR-CORRECTION CODES

2.6.1 Introduction

The codes previously discussed have all been based on the assumption that the
probability that bit bi is corrupted by an error is largely independent of whether
bit bi − 1 is correct or is in error. Furthermore, the probability of a single bit
error, q, is relatively small; thus the probability of more than one error in a
word is quite small. In the case of a burst error, the probability that bit bi is
corrupted by an error is much larger if bit bi − 1 is incorrect than if bit bi − 1 is
correct. In other words, the errors commonly come in bursts rather than singly.
One class of applications that are subject to burst errors are rotational magnetic
and optical storage devices (e.g., music CDs, CD-ROMs, and hard and floppy
disk drives). Magnetic tape used for pictures, sound, or data is also affected
by burst errors.

Examples of the patterns of typical burst errors are given in the four 12-bit
messages (m1–m4) shown in the forthcoming equations. The common notation
is used where b represents a correct message bit and x represents an erroneous
message bit. (For the purpose of identification, assume that the bits are num-
bered 1–12 from left to right.)

m1 � bbbxxbxbbbbb (2.45a)

m2 � bxbxxbbbbbbb (2.45b)

m3 � bbbbxbxbbbbb (2.45c)

m4 � bxxbbbbbbbbb (2.45d)

Messages 1 and 2 each have 3 errors that extend over 4 bits (e.g., in m1

the error bits are in positions 4, 5, and 7); we would refer to them as bursts
of length 4. In message 3, the burst is of length 3; in message 4, the burst is
of length 2. In general, we call the burst length t. The burst length is really a
matter of definition; for example, one could interpret messages 1 and 2 as 2
bursts—one of length 1 and one of length 2. In practice, this causes no con-
fusion, for t is a parameter of a burst code and is fixed in the initial design of
the code. Thus if t is chosen as length 4, all 4 of the messages would have 1
burst. If t is chosen as length 3, messages 1 and 2 would have two bursts, and
messages 3 and 4 would have 1 burst.

Most burst error codes are more complex than the Hamming codes that
were just discussed; thus the remainder of this chapter will present a succinct
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introduction to the basis of such codes and will briefly introduce one of the
most popular burst codes: the Reed–Solomon code [Golumb, 1986].

2.6.2 Error Detection

We begin by giving an example of a burst error-detection code [Arazi, 1988].
Consider a 12-bit-long code word (also called a code block or code vector, V),
which includes both message and check bits as follows:

V � (x1x2x3x4x5x6x7x8x9x10x11x12) (2.46)

Let us choose to deal with bursts of length t � 4. Equations for calculating the
check bits in terms of the message bits can be developed by writing a set of
equations in which the bits are separated by t positions. Thus for t � 4, each
equation contains every fourth bit.

x1 ⊕ x5 ⊕ x9 � 0 (2.47a)

x2 ⊕ x6 ⊕ x10 � 0 (2.47b)

x3 ⊕ x7 ⊕ x11 � 0 (2.47c)

x4 ⊕ x8 ⊕ x12 � 0 (2.47d)

Each bit appears in only one equation. Assume there is either 0 or only 1
burst in the code vector (multiple bursts in a single word are excluded). Thus
each time there is 1 erroneous bit, one of the four equations will equal 1 rather
than 0, indicating a single error. To illustrate this, suppose x2 is an error bit.
Since we are assuming a burst length of 4 and at most 1 burst per code vector,
the only other possible erroneous bits are x3, x4, and x5. (At this point, we don’t
know if 0, 1, 2, or 3 errors occur in bits 3–5.) Examining Eq. (2.47b), we see
that it is not possible for x6 or x10 to be erroneous bits, so it is not possible
for 2 errors to cancel out in evaluating Eq. (2.47b). In fact, if we analyze the
set of Eqs. (2.47a–d), we see that the number of nonzero equations in the set
is equal to the number of bit errors in the burst.

Since there are 4 check equations, we need 4 check bits; any set of 4 bits
in the vector can be chosen as check bits, provided that 1 bit is chosen from
each equation (2.47a–d). For clarity, it probably makes sense to choose the 4
check bits as the first or last 4 bits in the vector; such a choice in any type of
code is referred to as a systematic code. Suppose we choose the first 4 bits.
We then obtain a (12, 8) systematic burst code of length 4, where ci stands for
a check bit and bi a message bit.

V � (c1c2c3c4b1b2b3b4b5b6b7b8) (2.48)

A moment’s reflection shows that we have now maneuvered Eqs. (2.47a–d)
so that with cs and bs substituted for the xs, we obtain
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c1 ⊕ b1 ⊕ b5 � 0 (2.49a)

c2 ⊕ b2 ⊕ b6 � 0 (2.49b)

c3 ⊕ b3 ⊕ b7 � 0 (2.49c)

c4 ⊕ b4 ⊕ b8 � 0 (2.49d)

which can be used to compute the check bits. These equations are therefore
the basis of the check-bit generator, which can be done with 74180 or 74280
IC chips.

The same set of equations form the basis of the error-checking circuitry.
Based on the fact that the number of nonzero equations in the set of Eqs.
(2.47a–d) is equal to the number of bit errors in the burst, we can modify Eqs.
(2.47a–c) so that they explicitly yield bits of a syndrome vector, e1e2e3e4.

e1 � x1 ⊕ x5 ⊕ x9 (2.50a)

e2 � x2 ⊕ x6 ⊕ x10 (2.50b)

e3 � x3 ⊕ x7 ⊕ x11 (2.50c)

e4 � x4 ⊕ x8 ⊕ x12 (2.50d)

The nonerror condition occurs when all the syndrome bits are 0. In general,
the number of errors detected is the arithmetic sum: e1 + e2 + e3 + e4. Note that
because we originally chose t � 4 in this design, no more than 4 errors can
be detected. Again, the checker can be done with 74180 or 74280 IC chips.
Alternatively, one can use individual gates. To generate the check bits, 4 EXOR
gates are sufficient; 8 EXOR gates and an output OR gate are sufficient for
error checking (cf. Fig. 2.2). However, if one wishes to determine how many
errors have occurred, the output OR gate in the checker can be replaced by a
few half-adders or full-adders to compute the arithmetic sum: e1 + e2 + e3 + e4.

We can now state some properties of burst codes that were illustrated by the
above discussion. The reader is referred to the references for proof [Arazi, 1988].

Properties of Burst Codes

1. For a burst length of t, t check bits are needed for error detection. (Note:
this is independent of the message length m.)

2. For m message bits and a burst length of t, the code word length n � m
+ t.

3. There are t check-bit equations:
(a) The first check-bit equation starts with bit 1 and contains all the bits

that are t + 1, 2t + 1, . . . kt + 1 (where kt + 1 ≤ n).
(b) The second check-bit equation starts with bit 2 and contains all the

bits that are t + 2, 2t + 2, . . . kt + 2 (where kt + 2 ≤ n).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(t) The t′th check-bit equation starts with bit t and contains all the bits
that are 2t, 3t, . . . kt (where kt ≤ n).
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Information vector in

t-stage register

(a)

(b)

t-bits

IN

Figure 2.9 Burst error-detection circuitry using an LFSR: (a) encoder; (b) decoder.
[Reprinted by permission of MIT Press, Cambridge, MA 02142; from Arazi, 1988, p.
108.]

4. The EXOR of all the bits in 3a should � 0 and similarly for properties
3b, . . . 3t.

5. The word length n need not be an integer multiple of t, but for practi-
cality, we assume that it is. If necessary, the word can be padded with
additional dummy bits to achieve this.

6. Generation and checking for a burst error code (as well as other codes)
can be realized by a linear feedback shift register (LFSR). (See Fig. 2.9.)

7. In general, the LFSR has a delay of t × the shift time.
8. The generating and checking for a burst error code can be realized by

an EXOR tree circuit (cf. Fig. 2.2), in which the number of stages is
≤ log2(t) and the delay is ≤ log2(t) × the EXOR gate-switching time.

These properties are explored further in the problems at the end of this chap-
ter. To summarize, in this section we have developed the basic equations for
burst error-detection codes and have shown that the check-bit generator and
checker circuitry can be implemented with EXOR trees, parity-bit chips, or
LFSRs. In general, the LFSR implementation requires less hardware, but the
delay time is linear in the burst length t. In the case of EXOR trees, there is
more hardware needed; however, the time delay is less, for it increases pro-
portionally to the log of t. In either case, for the modest size t � 4 or 5, the
differences in time delay and hardware are not that significant. Both designs
should be attempted, and a choice should be made.

The case of burst error correction is more difficult. It is discussed in the
next section.
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2.6.3 Error Correction

We now state some additional properties of burst codes that will lead us to
an error-correction procedure. In general, these are properties associated with
a shifting of the error syndrome of a burst code and an ancient theorem of
number theory related to the mod function. The theorem from number theory
is called the Chinese Remainder Theorem [Rosen, 1991, p. 134] and was first
given as a puzzle by the first-century Chinese mathematician Sun-Tsu. It will
turn out that the method of error correction will depend on first locating a
region in the code word of t consecutive bits that contains the start of the error
burst, followed by pinpointing which of these t bits is the start of the burst. The
methodology is illustrated by applying the principles to the example given in
Eq. (2.46). For a development of the theory and proofs, the reader is referred
to Arazi [1988] and Rosen [1991].

The error syndrome can be viewed as a cyclic shift of the burst error pat-
tern. For example, if we assume a single burst and t = 4, then substitution
of error pattern for x1x2x3x4 into Eqs. (2.50a–d) will yield a particular syn-
drome pattern. To compute what the syndrome would be, we note that if
x1x2x3x4 = bbbb, all the bits are correct and the syndrome must be 0000.
If bit 1 is in error (either changed from a correct 1 to an erroneous 0 or from a
correct 0 to an erroneous 1), then Eq. (4.50a) will yield a 1 for e1 (since there
is only 1 burst, bits x5–x12 must be all valid bs). Suppose the error pattern is
x1x2x3x4 = xbxx, then all other bits in the 12-bit vector are b and substitution
into Eqs. (2.50a–d) yields

e1 � x ⊕ x5 ⊕ x9 � 1 (2.51a)

e2 � b ⊕ x6 ⊕ x10 � 0 (2.51b)

e3 � x ⊕ x7 ⊕ x11 � 1 (2.51c)

e4 � x ⊕ x8 ⊕ x12 � 1 (2.51d)

which is a syndrome pattern e1e2e3e4 = 1011. Similarly, error pattern
x4x5x6x7 = xbxx, where all other bits are b, yields syndrome equations as
follows:

e1 � x1 ⊕ b ⊕ x9 � 0 (2.52a)

e2 � x2 ⊕ x ⊕ x10 � 1 (2.52b)

e3 � x3 ⊕ x ⊕ x11 � 1 (2.52c)

e4 � x ⊕ x8 ⊕ x12 � 1 (2.52d)

which is a syndrome pattern e1e2e3e4 = 0111. We can view 0111 as a pattern
that can be transformed into 1011 by cyclic-shifting left (end-around-rotation
left) three times. We will show in the following material that the same syn-
drome is obtained by shifting the code vector right four times.

We begin marking a burst error pattern with the first erroneous bit in the



BURST ERROR-CORRECTION CODES 67

word; thus burst error patterns always start with an x. Since the burst is t bits
long, the syndrome equations (2.50a–d) include bits that differ by t positions.
Therefore, if we shift the burst error pattern in the code vector by t positions
to the right, the burst error pattern generates the same syndrome. There can
be at most u placements of the burst pattern in a code vector that results in
the same syndrome; if the code vector is n bits long, u is the largest integer
such that ut ≤ n. Without loss of generality, we can always pad the message
bits with dummy bits such that ut = n. We define the mod function x mod y
as the remainder that is obtained when we divide the integer x by the integer
y. Thus, if ut = n, we can then say that n mod u = 0. These relationships will
soon be used to devise an algorithm for burst error correction.

The location of the start of the burst error pattern in a word is related to the
amount of shift (end-around and cyclic) of the pattern that is observed in the
syndrome. We can illustrate this relationship by using the burst pattern xbxx
as an example, where xbxx is denoted by 1011: meaning incorrect, correct,
incorrect, incorrect. In Table 2.17, we illustrate the relationship between the
start of the error burst and the rotational shift (end-around shift) in the detected
error syndrome. We begin by renumbering the code vector, Eq. (2.46), so it
starts with bit 0:

V � (x0x1x2x3x4x5x6x7x8x9x10x11) (2.53)

A study of Table 2.17 shows that the number of syndrome shifts is related
to the bit number by (bit number) mod 4. For example, if the burst starts with
bit no. 3, we have 3 mod 4 (which is 3), so the syndrome is the error pattern
shifted 3 places to the right. If we want to recover the syndrome, we shift 3
places to the left. In the case of a burst starting with bit no. 4, 4 mod 4 is 0,
so the syndrome pattern and the burst pattern agree.

Thus, if we know the position in the code word at which the burst starts
(defined as x), and if the burst length is t, then we can obtain the burst pattern by
shifting the syndrome x mod t places to the left. Knowing the starting position
of the burst (x) and the burst pattern, we can correct any erroneous bits. Thus
our task is now to find x.

The procedure for solving for x depends on the Chinese Remainder The-
orem, a previously mentioned mathematical theorem in number theory. This
theorem states that if p and q are relatively prime numbers (meaning their only
common factor is 1), and if 0 ≤ x ≤ (pq − 1), then knowledge of x mod p and x
mod q allows us to solve for x. We already have one equation: x mod t; to gen-
erate another equation, we define u =2t−1 and calculate x from x mod u [Arazi,
1988]. Note that t and 2t − 1 are relatively prime since if a number divides t,
it also divides 2t but not 2t − 1. Also, we must show that 0 ≤ x ≤ (tu − 1);
however, we already showed that tu ≤ n. Substitution yields 0 ≤ x ≤ (n − 1),
which must be true since the latest bit position to start a burst error (x) for a
burst of length t is n − t < n − 1.

The above relationships show that it is possible to solve for the beginning
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of the burst error x and the burst error pattern. Given this information, by
simply complementing the incorrect bits, error correction is performed. The
remainder of this section details how we set up equations to calculate the check
bits (generator) and to calculate the burst pattern and location (checker); this
is done by means of an illustrative example. One circuit implementation using
shift registers is discussed as well.

The number of check bits is equal to u + t, and since u = 2c − 1 and n =ut,
the number of message bits is determined. We formulate check bit equations
in a manner analogous to that used in error checking.

The following example illustrates how the two sets of check bits are gen-
erated, how one formulates and solves for x mod u and x mod t to solve for
x, and how the burst error pattern is determined. In our example, we let t � 3
and calculate u =2t − 1 = 2 × 3 − 1 =5. In this case, the word length n = u × t
=5 × 3 =15. The code vector is given by

V � (x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14) (2.54)

The t + u check equations are generated from a set of u equations that form the
auxiliary syndrome. For our example, the u =5 auxiliary syndrome equations
are:

s0 � x0 ⊕ x5 ⊕ x10 (2.55a)

s1 � x1 ⊕ x6 ⊕ x11 (2.55b)

s2 � x2 ⊕ x7 ⊕ x12 (2.55c)

s3 � x3 ⊕ x8 ⊕ x13 (2.55d)

s4 � x4 ⊕ x9 ⊕ x14 (2.55e)

and the set of t =3 equations that form the syndrome are

e1 � x0 ⊕ x3 ⊕ x6 ⊕ x9 ⊕ x12 (2.56a)

e2 � x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 (2.56b)

e3 � x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 (2.56c)

If we want a systematic code, we can place the 8 check bits at the beginning
or the end of the word. Let us assume that they go at the end (x7–x14) and that
these check bits c0–c7 are calculated from Eqs. (2.55a–e) and (2.56a–c). The
first 7 bits (x0–x6) are message bits, and the transmitted word is

V � (b0b1b2b3b4b5b6c0c1c2c3c4c5c6c7) (2.57)

As an example, let us assume that the message bits b0–b6 are 1011010.
Substitution of these values in Eqs. (2.55a–e) and (2.56a–c) that must initially
be 0 yields a set of equations that can be solved for the values of c0–c7. One can
show by substitution that the values c0–c7 =10000010 satisfy the equations.
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(Shortly, we will describe code generation circuitry that can solve for the check
bits in a straightforward manner.) Thus the transmitted word is

Vt � (b0b1b2b3b4b5b6) � 1011010 for the message part (2.58a)

Vt � (c0c1c2c3c4c5c6c7) � 10000010 for the check part (2.58b)

Let us assume that the received word is

Vr � (101101000100010) (2.59)

We now begin the error-recovery procedure by calculating the auxiliary syn-
drome by substitution of Eq. (2.59) in Eqs. (2.55a–e) yielding

s0 � 1 ⊕ 1 ⊕ 0 � 0 (2.60a)

s1 � 0 ⊕ 0 ⊕ 0 � 0 (2.60b)

s2 � 1 ⊕ 0 ⊕ 1 � 1 (2.60c)

s3 � 1 ⊕ 0 ⊕ 0 � 0 (2.60d)

s4 � 0 ⊕ 1 ⊕ 0 � 1 (2.60e)

The fact that the auxiliary syndrome is not all 0’s indicates that 1 or more
errors have occurred. In fact, since two equations are nonzero, there are two
errors. Furthermore, it can be shown that the burst error pattern associated with
the auxiliary syndrome must always start with an x and all bits > t must be
valid bits. Thus, the burst error pattern (since t = 3) must be x??bb = 1??00.
This means the auxiliary syndrome pattern should start with a 1 and end in
two 0’s. The unique solution is that the auxiliary syndrome pattern must be
shifted to the left two places yielding 10100 so that the first bit is 1 and the
last two bits are 0. In addition, we deduce that the real syndrome (and the burst
pattern) is 101. Similarly, Eqs. (2.56a–c) yield

e0 � 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 � 1 (2.61a)

e1 � 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 � 1 (2.61b)

e2 � 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 � 0 (2.61c)

Thus, to get the known syndrome—found from Eqs. (2.61a–c)—to be 101, we
must shift the real syndrome left one place. Based on these shift results, our
two mod equations become

for u: x mod u � x mod 5 � 2 (2.62a)

for t: x mod t � x mod 3 � 1 (2.62b)

We now know the burst pattern 101 and have two equations (2.62a, b) that
can be solved for the start of the burst pattern given by x. Substitution of trial
values into Eq. (2.62a) yields x = 2, which satisfies (2.62a) but not (2.62b). The
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15 bits

inR1

R2

R3

Figure 2.10 Basic error decoder for u � 5 and t � 3 burst code based on three shift
registers. (Additional circuitry is needed for a complete decoder.) The input (IN) is a
train of shift pulses. [Reprinted by permission of MIT Press, Cambridge, MA 02142;
from Arazi, 1988, p. 123.]

next value that satisfies Eq. (2.62a) is x = 7, and since this value also satisfies
Eq. (2.62b), it is a solution. We conclude that the burst error started at position
x = 7 (the eighth bit, since the count starts with 0) and that is was xbx, so the
eighth and tenth bits must be complemented. Thus the received and corrected
versions of the code vector are

Vr � (101101000100010) (2.63a)

↔ ↔ ↔
Vc � (101101010000010) (2.63b)

Note that Eqs. (2.63a, b) agrees with Eqs. (2.58a, b).
One practical decoder implementation for the u = 5 and t = 3 code discussed

above is based on three shift registers (R1, R2, and R3) shown in Fig. 2.10.
Such a circuit is said to employ linear feedback shift registers (LFSR).

Initially, R1 is loaded with the received code vector, R2 is loaded with the
auxiliary syndrome calculated from EXOR trees or parity-bit chips that imple-
ment Eqs. (2.60a–e), and R3 is loaded with the syndrome calculated from
EXOR trees or parity-bit chips that implement Eqs. (2.61a–c). Using our pre-
vious example, R1 is loaded with Eqs. (2.58a, b), R2 with 00101, and R3 with
110. R2 and R3 are shifted left until the left 3 bits of R2 agree with R3, and
the leftmost bit is a 1. A count of the number of left shifts yields the start posi-
tion of the burst error (x), and the contents of R3 is the burst pattern. Circuitry
to complement the appropriate bits results in error correction. In the circuit
shown, when the error pattern is recovered in R3, R1 has the burst error in
the left 3 bits of the register. If correction is to be performed by shifting, the
leftmost 3 bits in R1 and R3 can be EXORed and restored in R1. This would
assume that the bits shifted out of R1 go to a storage register or are circulated
back to R1 and, after error detection, the bits in the repaired word are shifted
to their proper position. For more details, see Arazi [1988].
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Information vector in

Figure 2.11 Basic encoder circuit for u = 5 and t = 3 burst code based on three shift
registers. (Additional circuitry is needed for a complete decoder.) The input (IN) is
the information vector (message). [Reprinted by permission of MIT Press, Cambridge,
MA 02142; from Arazi, 1988, p. 125.]

One can also generate the check bits (encoder) by using LFSRs. One such
circuit for our code example is given in Fig. 2.11. For more details, see Arazi
[1988].

2.7 REED–SOLOMON CODES

2.7.1 Introduction

One technique to mitigate against burst errors is to simply interleave data so
that a burst does not affect more than a few consecutive data bits at a time. A
more efficient approach is to use codes that are designed to detect and correct
burst errors. One of the most popular types of error-correcting codes is the
Reed–Solomon (RS) code. This code is useful for correcting both random and
burst errors, but it is especially popular in burst error situations and is often
used with other codes in a convolutional code (see Section 2.8).

2.7.2 Block Structure

The RS code is a block-type code and operates on multiple rather than indi-
vidual bits. Data is processed in a batch called a block instead of continuously.
Each block is composed of n symbols, each of which has m bits. The block
length n = 2m

− 1 symbols. A message is k symbols long, and n–k additional
check symbols are added to allow error correction of up to t error symbols.
Block length and symbol sizes can be adjusted to accommodate a wide range
of message sizes. For an RS code, one can show that

(n − k) � 2t for n–k even (2.64a)

(n − k) � 2t + 1 for n–k odd (2.64b)

minimum distance � dmin � 2t + 1 symbols (2.64c)

As a typical example [AHA Applications Note], we will assume n =255
and m =8 (a symbol is 1 byte long). Thus from Eq. (2.64a), if we wish to
correct up to 10 errors, then t =10 and (n − k) = 20. We therefore have 235
message symbols and 20 check symbols. The code rate (efficiency) of the code
is given by k/ n, which is (235/ 255) � 0.92 or 92%.
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2.7.3 Interleaving

Interleaving is a technique that can be used with RS and other block codes to
improve performance. Individual bits are shifted to spread them over several
code blocks. The effect is to spread out long bursts so that error correction
can occur even for code bursts that are longer than t bits. After the message
is received, the bits are deinterleaved.

2.7.4 Improvement from the RS Code

We can calculate the improvement from the RS code in a manner similar to
that which was used in the Hamming code. Now, the Pue is the probability
of an undetected error in a code block and Pse is the probability of a symbol
error. Since the code can correct up to t errors, the block error probability is
that of having more than t symbol errors in a block, which can be written as

Pue � 1 −

t

���
i � 0 �

n
i � (Pse)i(1 − Pse)n − i (2.65)

If we didn’t have an RS code, any error in a code block would be uncorrectable,
and the probability is given as

Pue � 1 − (1 − Pse)n (2.66)

One can plot a set of curves to illustrate the error-correcting performance
of the code. A graph of Eq. (2.65) appears in Fig. 2.12 for the example in our
discussion. Figure 2.12 is similar to Figs. 2.5 and 2.8 except that the x-axis is
plotted in opposite order and the y-axis has not been normalized by dividing
by Eq. (2.66). Reading from the curve, we see for the case where t =5 and
Pse =10−3:

Pue � 3 × 10−7 (2.67)

2.7.5 Effect of RS Coder–Decoder Failures

We can use Eqs. (2.8) and (2.9) to evaluate the effect of coder–decoder failures.
However, instead of computing per byte of transmission, we compute per block
of transmission. Thus, by analogy with Eqs. (2.10) and (2.11), for our example
we have

Pue � e−2lbt × 3 × 10−7 + (1 − e−2lbt) (2.68)

where

t � 8 × 255/ 3, 600B (2.69)
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Figure 2.12 Probability of an uncorrected error in a block of 255 1-byte symbols
with 235 message symbols, 20 check symbols, and an error-correcting capacity of up
to 10 errors versus the probability of symbol error [AHA Applications Note, used with
permission].

We can compute when Pue is composed of equal values for code failures and
chip failures by equating the first and second terms of Eq. (2.68). Substituting
a typical value of B = 19,200, we find that this occurs when the chip failure
rate is equal to about 5.04 × 10−3 failures per hour. Using our model, the chip
failure rate = 0.004

�
g 10−6, which is equivalent to g =1.6 × 1012—a very

unlikely value. However, if we assume that Pse =10−4, then from Fig. 2.12
we see that Pue = 3 × 10−13 and for B =19,200 that the effects are equal if the
chip failure is equal to about 5.08 × 10−9. Substitution into our chip failure
rate model shows that this occurs when g ≈ 2. Thus coder–decoder failures
predominate for the second case.

Another approach to investigating the impact of chip failures is to use manu-
facturers’ data on RS coder–decoder failures. Some data exists [AHA Reliabil-
ity Report, 1995] that is derived from accelerated tests. To collect enough fail-
ure data for low-failure-rate components, an accelerated life test—the Arrhe-
nius Relationship—is used to scale back the failure rates to normal operating
temperatures (70–85�C). The resulting failure rates range from 50 to 700 ×
10−9 failures per hour, which certainly exceeds the just-calculated significant
failure rate threshold of 5.08 × 10−9, which was the value calculated for 19,200
baud and a block error of 10−4. (Note: using the gate model, we calculate l =
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700 × 10−9 as equivalent to about 30,000 gates.) Clearly we conclude that the
chip failures will predominate for some common ranges of the system param-
eters.

2.8 OTHER CODES

There are many other types of error codes. We will briefly discuss the special
features of the more popular codes and refer the reader to the references for
additional details.

1. Burst error codes. All the foregoing codes assume that errors occur
infrequently and are independent, generally corrupting a single bit or a
few bits in a word. In some cases, errors may occur in bursts. If a study
of the failure modes of the device or medium we wish to protect by our
coding indicates that errors occur in bursts to affect all the bits in a word,
other coding techniques are required. The reader should consult the ref-
erences for works that discuss Binary Block codes, m-out-of-n codes,
Berger codes, Cyclic codes, and Reed–Solomon codes [Pradhan, 1986,
1993].
BCH codes. This is a code that was independently discovered by Bose,
Chaudhury, and Hocquenghem. (Reed–Solomon codes are a subclass of
BCH codes.) These codes can be viewed as extensions of Hamming
codes, which are easier to design and implement for a large number of
correctable errors.
Concatenated codes. This refers to the process of lumping more than one
code word together to reduce the overhead—generally less for long code
words (cf., Table 2.8). Disadvantages include higher error probability
(since check bits cover several words), more complexity and depth, and
a delay for associated decoding trees.
Convolutional codes. Sometimes, codes are “nested”; for example, infor-
mation can be coded by an inner code, and the resulting alphabet of legal
code words can be treated as a “symbol” subjected to an outer code. An
example might be the use of a Hamming SECSED code as the inner code
word and a Reed–Solomon code as an outer code scheme.
Check sum. The sum of all the numbers in a block of words is added,
modulo 2, and the block and the sum are transmitted. The words in the
received block are added again and the check sum is recomputed and
checked with the transmitted sum. This is an error-detecting code.
Duplication. One can always transmit the result twice and check the two
copies. Although this may be inefficient, it is the only technique in some
cases: for example, if we wish to check logical operations, AND, OR,
and NAND.
Fire code. An interleaved code for burst errors. The similar Reed–



76 CODING TECHNIQUES

Solomon code is now more popular since it is somewhat more efficient.

Hamming codes. Other codes in the family use more error-correcting
and -detecting bits, thereby achieving higher levels of fault tolerance.

IC chip parity. Can be one bit per word, one bit per byte, or interlaced
parity where b bits are watched over by i check bits. Thus each check
bit “watches over” b/ i bits.

Interleaving. One approach to dealing with burst codes is to disassemble
codes into a number of words, then reassemble them so that one bit is
chosen from each word. For example, one could take 8 bytes and inter-
leave (also called interlace) the bits so that a new byte is constructed
from all the first bits of the original 8 bytes, another is constructed from
all the second bits, and so forth. In this example, as long as the burst
length is less than 8 bits and we have only one burst per 8 bytes, we are
guaranteed that each new word can contain at most one error.

Residue m codes. This is used for checking certain arithmetic operations,
such as addition, multiplication, and shifting. One computes the code bits
(residue, R) that are concatenated (| , i.e., appended) to the message N to
from N |R. The residue is the remainder left when N/ m. After transmis-
sion or computation, the new message bits N ′ are divided by m to form
R ′. Disagreement of R and R ′ indicates an error.

Viterby decoding. A decoding algorithm for error correction of a
Reed–Solomon or other convolutional code based on enumerating all the
legal code words and choosing the one closest to the received words. For
medium-sized search spaces, an organized search resembling a branch-
ing tree was devised by Viterbi in 1967; it is often used to shorten the
search. Forney recognized in 1968 that such trees are repetitive, so he
devised an improvement that led to a diagram looking like a “lattice”
used for supporting plants and trees.
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PROBLEMS

2.1. Find a recent edition of Jane’s all the World’s Aircraft in a technical or
public library. Examine the data given in Table 2.1 for soft failures for
the 6 aircraft types listed. From the book, determine the approximate
number of electronic systems (aircraft avionics) for each of the aircraft
that are computer-controlled (digital rather than analog). You may have
to do some intelligent estimation to determine this number. One section
in the book gives information on the avionics systems installed. Also,
it may help to know that the U.S. companies (all mergers) that provide
most of the avionics systems are Bendix/ King/ Allied, Sperry/ Honeywell,
and Collins/ Rockwell. (Hint: You may have to visit the Web sites of
the aircraft manufacturers or the avionics suppliers for more details.
(a) Plot the number of soft fails per aircraft versus the number of avion-

ics systems on board. Comment on the results.
(b) It would be better to plot soft fails per aircraft versus the number of

words of main memory for the avionics systems on board. Do you
have any ideas on how you could obtain such data?

2.2. Compute the minimum code distance for all the code words given in
Table 2.2.
(a) Compute for column (a) and comment.
(b) Compute for column (b) and comment.
(c) Compute for column (c) and comment.
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2.3. Repeat the parity-bit coder and decoder designs given in Fig. 2.1 for an
8-bit word with 7 message bits and 1 parity bit. Does this approach to
design of a coder and decoder present any difficulties?

2.4. Compare the design of problem 2.3 with that given in Fig. 2.2 on the
basis of ease of design, complexity, practicality, delay time (assume all
gates have a delay of D), and number of gates.

2.5. Compare the results of problem 2.4 with the circuit of Fig. 2.4.

2.6. Compute the binomial probabilities B(r : 8, q) for r = 1 to 8.
(a) Does the sum of these probabilities check with Eq. (2.5)?
(b) Show for what values of q the term B(1 : 8, q) dominates all the error-

occurrence probabilities.

2.7. Find a copy of the latest military failure-rate manual (MIL-HDBK-217)
and plot the data on Fig. B7 of Appendix B. Does it agree? Can you
find any other IC failure-rate information? (Hint: The telecommunication
industry and the various national telephone companies maintain large
failure-rate databases. Also, the Annual Reliability and Maintainability
Symposium from the IEEE regularly publishes papers with failure-rate
data.) Does this data agree with the other results? What advances have
been made in the last decade or so?

2.8. Assume that a 10% reduction in the probability of undetected error from
coder and decoder failures is acceptable.
(a) Compute the value of B at which a 10% reduction occurs for fixed

values of q.
(b) Plot the results of part (a) and interpret.

2.9. Check the results given in Table 2.5. How is the distance d related to
the number of check bits? Explain.

2.10. Check the values given in Tables 2.7 and 2.8.

2.11. The Hamming SECSED code with 4 message bits and 3 check bits is
used in the text as an example (Section 2.4.3). It was stated that we could
use a brute force technique of checking all the legal or illegal code words
for error detection, as was done for the parity-bit code in Fig. 2.1.
(a) List all the legal and illegal code words for this example and show

that the code distance is 3.
(b) Design an error-detector circuit using minimized two-level logic (cf.

Fig. 2.1).

2.12. Design a check bit generating circuit for problem 2.11 using Eqs.
(2.22a–c) and EXOR gates.

2.13. One technique for error correction is to pick the nearest code word as
the correct word once an error has been detected.
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(a) Devise a software algorithm that can be used to program a micro-
processor to perform such error correction.

(b) Devise a hardware design that performs the error correction by
choosing the closest word.

(c) Compare complexity and speed of designs (a) and (b).

2.14. An error-correcting circuit for a Hamming (7, 4) SECSED is given in
Fig. 2.7. How would you generate the check bits that are defined in Eqs.
(2.22a–c)? Is there a better way than that suggested in problem 2.12?

2.15. Compare the designs of problems 2.11, 2.12, and 2.13 with Hamming’s
technique in problem 2.14.

2.16. Give a complete design for the code generator and checker for a Ham-
ming (12, 8) SECSED code following the approach of Fig. 2.7.

2.17. Repeat problem 2.16 for a SECDED code.

2.18. Repeat problem 2.8 for the design referred to in Table 2.14.

2.19. Retransmission as described in Section 2.5 tends to decrease the effec-
tive baud rate (B) of the transmission. Compare the unreliability and the
effective baud rate for the following designs:
(a) Transmit each word twice and retransmit when they disagree.
(b) Transmit each word three times and use the majority of the three

values to determine the output.
(c) Use a parity-bit code and only retransmit when the code detects an

error.
(d) Use a Hamming SECSED code and only retransmit when the code

detects an error.

2.20. Add the probabilities of generator and checker failure for the reliability
examples given in Section 2.5.3.

2.21. Assume we are dealing with a burst code design for error detection
with a word length of 12 bits and a maximum burst length of 4, as
noted in Eqs. (2.46)–(2.50). Assume the code vector V(x1, x2, . . . , x12) =
V(c1c2c3c410100011).
(a) Compute c1c2c3c4.
(b) Assume no errors and show how the syndrome works.
(c) Assume one error in bit c2 and show how the syndrome works.
(d) Assume one error in bit x9; then show how the syndrome works.
(e) Assume two errors in bits x8 and x9; then show how the syndrome

works.
(f) Assume three errors in bits x8, x9, and x10; then show how the syn-

drome works.
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(g) Assume four errors in bits x7, x8, x9, and x10; then show how the
syndrome works.

(h) Assume five errors in bits x7, x8, x9, x10, and x11; then show how
the syndrome fails.

(i) Repeat the preceding computations using a different set of four equa-
tions to calculate the check bits.

2.22. Draw a circuit for generating the check bits, the syndrome vector, and
the error-detection output for the burst error-detecting code example of
Section 2.6.2.
(a) Use parallel computation and use EXOR gates.
(b) Use serial computation and a linear feedback shift register.

2.23. Compute the probability of undetected error for the code of problem
2.22 and compare with the probability of undetected error for the case
of no error detection. Assume perfect hardware.

2.24. Repeat problem 2.23 assuming that the hardware is imperfect.
(a) Assume a model as in Section 2.3.4 and 2.4.5.
(b) Plot the results as in Figs. 2.5 and 2.8.

2.25. Repeat problem 2.22 for the burst error-detecting code in Section 2.6.3.

2.26. Repeat problem 2.23 for the burst error-detecting code in Section 2.6.3.

2.27. Repeat problem 2.24 for the burst error-detecting code in Section 2.6.3.

2.28. Analyze the design of Fig. 2.4 and show that it is equivalent to Fig. 2.2.
Also, explain how it can be used as a generator and checker.

2.29. Explain in detail the operation of the error-correcting circuit given in
Fig. 2.7.

2.30. Design a check bit generator circuit for the SECDED code example in
Section 2.4.4.

2.31. Design an error-correcting circuit for the SECDED code example in Sec-
tion 2.4.4.

2.32. Explain how a distance 3 code can be implemented as a double error-
detecting code (DED). Give the circuit for the generator and checker.

2.33. Explain how a distance 4 code can be implemented as a triple error-
detecting code (TED). Give the circuit for the generator and checker.

2.34. Construct a table showing the relationship between the burst length t,
the auxiliary check bits u, the total number of check bits, the number
of message bits, and the length of the code word. Use a tabular format
similar to Table 2.7.
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2.35. Show for the u � 5 and t � 3 code example given in Section 2.6.3 that
after x shifts, the leftmost bits of R2 and R3 in Fig. 2.10 agree.

2.36. Show a complete circuit for error correction that includes Fig. 2.10 in
addition to a counter, a decoder, a bit-complementing circuit, and a cor-
rected word storage register, as well as control logic.

2.37. Show a complete circuit for error correction that includes Fig. 2.10 in
addition to a counter, an EXOR-complementing circuit, and a corrected
word storage register, as well as control logic.

2.38. Show a complete circuit for error correction that includes Fig. 2.10 in
addition to a counter, an EXOR-complementing circuit, and a circulating
register for R1 to contain the corrected word, as well as control logic.

2.39. Explain how the circuit of Fig. 2.11 acts as a coder. Input the message
bits; then show what is generated and which bits correspond to the auxil-
iary syndrome and which ones correspond to the real syndrome.

2.40. What additional circuitry is needed (if any) to supplement Fig. 2.11 to
produce a coder. Explain.

2.41. Using Fig. 2.12 for the Reed–Solomon code, plot a graph similar to Fig.
2.8.
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3.1 INTRODUCTION

This chapter deals with a variety of techniques for improving system reliability
and availability. Underlying all these techniques is the basic concept of redun-
dancy, providing alternate paths to allow the system to continue operation even
when some components fail. Alternate paths can be provided by parallel com-
ponents (or systems). The parallel elements can all be continuously operated,
in which case all elements are powered up and the term parallel redundancy
or hot standby is often used. It is also possible to provide one element that is
powered up (on-line) along with additional elements that are powered down
(standby), which are powered up and switched into use, either automatically
or manually, when the on-line element fails. This technique is called standby
redundancy or cold redundancy. These techniques have all been known for
many years; however, with the advent of modern computer-controlled digital
systems, a rich variety of ways to implement these approaches is available.
Sometimes, system engineers use the general term redundancy management
to refer to this body of techniques. In a way, the ultimate cold redundancy
technique is the use of spares or repairs to renew the system. At this level
of thinking, a spare and a repair are the same thing—except the repair takes
longer to be effected. In either case for a system with a single element, we
must be able to tolerate some system downtime to effect the replacement or
repair. The situation is somewhat different if we have a system with two hot
or cold standby elements combined with spares or repairs. In such a case, once
one of the redundant elements fails and we detect the failure, we can replace
or repair the failed element while the system continues to operate; as long as the
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replacement or repair takes place before the operating element fails, the system
never goes down. The only way the system goes down is for the remaining
element(s) to fail before the replacement or repair is completed.

This chapter deals with conventional techniques of improving system or
component reliability, such as the following:

1. Improving the manufacturing or design process to significantly lower
the system or component failure rate. Sometimes innovative engineer-
ing does not increase cost, but in general, improved reliability requires
higher cost or increases in weight or volume. In most cases, however, the
gains in reliability and decreases in life-cycle costs justify the expendi-
tures.

2. Parallel redundancy, where one or more extra components are operating
and waiting to take over in case of a failure of the primary system. In
the case of two computers and, say, two disk memories, synchronization
of the primary and the extra systems may be a bit complex.

3. A standby system is like parallel redundancy; however, power is off in
the extra system so that it cannot fail while in standby. Sometimes the
sensing of primary system failure and switching over to the standby sys-
tem is complex.

4. Often the use of replacement components or repairs in conjunction with
parallel or standby systems increases reliability by another substantial
factor. Essentially, once the primary system fails, it is a race to fix or
replace it before the extra system(s) fails. Since the repair rate is gener-
ally much higher than the failure rate, the repair almost always wins the
race, and reliability is greatly increased.

Because fault-tolerant systems generally have very low failure rates, it is
hard and expensive to obtain failure data from tests. Thus second-order factors,
such as common mode and dependent failures, may become more important
than they usually are.

The reader will need to use the concepts of probability in Appendix A,
Sections A1–A6.3 and those of reliability in Appendix B3 for this chapter.
Markov modeling will appear later in the chapter; thus the principles of the
Markov model given in Appendices A8 and B6 will be used. The reader who
is unfamiliar with this material or needs review should consult these sections.

If we are dealing with large complex systems, as is often the case, it is
expedient to divide the overall problem into a number of smaller subproblems
(the “divide and conquer” strategy). An approximate and very useful approach
to such a strategy is the method of apportionment discussed in the next section.
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Figure 3.1 A system model composed of k major subsystems, all of which are nec-
essary for system success.

3.2 APPORTIONMENT

One might conceive system design as an optimization problem in which one
has a budget of resources (dollars, pounds, cubic feet, watts, etc.), and the goal
is to achieve the highest reliability within the constraints of the available bud-
get. Such an approach is discussed in Chapter 7; however, we need to use some
of the simple approaches to optimization as a structure for comparison of the
various methods discussed in this chapter. Also, in a truly large system, there
are too many possible combinations of approach; a top–down design philoso-
phy is therefore useful to decompose the problem into simpler subproblems.
The technique of apportionment serves well as a “divide and conquer” strategy
to break down a large problem.

Apportionment techniques generally assume that the highest level—the over-
all system—can be divided into 5–10 major subsystems, all of which must work
for the system to work. Thus we have a series structure as shown in Fig. 3.1.

We denote x1 as the event success of element (subsystem) 1, x′1 is the event
failure of element 1, P(x1) = 1 − P(x′1) is the probability of success (the reli-
ability, r1). The system reliability is given by

Rs � P(x1
U

x2 · · ·
U

xk) (3.1a)

and if we use the more common engineering notation, this equation becomes

Rs � P(x1x2 · · · xk) (3.1b)

If we assume that all the elements are independent, Eq. (3.1a) becomes

Rs �

k

∏
i � 1

ri (3.2)

To illustrate the approach, let us assume that the goal is to achieve a system
reliability equal to or greater than the system goal, R0, within the cost budget,
c0. We let the single constraint be cost, and the total cost, c, is given by the
sum of the individual component costs, ci.

c �

k

���
i � 1

ci (3.3)
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We assume that the system reliability given by Eq. (3.2) is below the sys-
tem specification or goal, and that the designer must improve the reliability
of the system. We further assume that the maximum allowable system cost,
c0, is generally sufficiently greater than c so that the system reliability can be
improved to meet its reliability goal, Rs ≥ R0; otherwise, the goal cannot be
reached, and the best solution is the one with the highest reliability within the
allowable cost constraint.

Assume that we have a method for obtaining optimal solutions and, in
the case where more than one solution exceeds the reliability goal within the
cost constraint, that it is useful to display a number of “good” solutions. The
designer may choose to just meet the reliability goal with one of the subop-
timal solutions and save some money. Alternatively, there may be secondary
factors that favor a good suboptimal solution. Lastly, a single optimum value
does not give much insight into how the solution changes if some of the cost
or reliability values assumed as parameters are somewhat in error. A family of
solutions and some sensitivity studies may reveal a good suboptimal solution
that is less sensitive to parameter changes than the true optimum.

A simple approach to solving this problem is to assume an equal apportion-
ment of all the elements ri = r1 to achieve R0 will be a good starting place.
Thus Eq. (3.2) becomes

R0 �

k

∏
i � 1

ri � (r1)k (3.4)

and solving for r1 yields

r1 � (R0)1/ k (3.5)

Thus we have a simple approximate solution for the problem of how to
apportion the subsystem reliability goals based on the overall system goal.
More details of such optimization techniques appear in Chapter 7.

3.3 SYSTEM VERSUS COMPONENT REDUNDANCY

There are many ways to implement redundancy. In Shooman [1990, Sec-
tion 6.6.1], three different designs for a redundant auto-braking system are
compared: a split system, which presently is used on American autos either
front/ rear or LR–RF/ RR–LF diagonals; two complete systems; or redundant
components (e.g., parallel lines). Other applications suggest different possibili-
ties. Two redundancy techniques that are easily classified and studied are com-
ponent and system redundancy. In fact, one can prove that component redun-
dancy is superior to system redundancy in a wide variety of situations.

Consider the three systems shown in Fig. 3.2. The reliability expression for
system (a) is
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Figure 3.2 Comparison of three different systems: (a) single system, (b) unit redun-
dancy, and (c) component redundancy.

Ra(p) � P(x1)P(x2) � p2 (3.6)

where both x1 and x2 are independent and identical and P(x1) = P(x2) = p. The
reliability expression for system (b) is given simply by

Rb(p) � P(x1x2 + x3x4) (3.7a)

For independent identical units (IIU) with reliability of p,

Rb(p) � 2Ra − R2
a � p2(2 − p2) (3.7b)

In the case of system (c), one can combine each component pair in parallel
to obtain

Rb(p) � P(x1 + x3)P(x2 + x4) (3.8a)

Assuming IIU, we obtain

Rc(p) � p2(2 − p)2 (3.8b)

To compare Eqs. (3.8b) and (3.7b), we use the ratio

Rc(p)
Rb(p)

�

p2(2 − p)2

p2(2 − p2)
�

(2 − p)2

(2 − p2)
(3.9)

Algebraic manipulation yields

Rc(p)
Rb(p)

�

(2 − p)2

(2 − p2)
�

4 − 4p + p2

2 − p2
�

(2 − p2) + 2(1 − p)2

2 − p2
� 1 +

2(1 − p)2

2 − p2

(3.10)
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Because 0 < p < 1, the term 2 − p2 > 0, and Rc(p)/ Rb(p) ≥ 1; thus compo-
nent redundancy is superior to system redundancy for this structure. (Of course,
they are equal at the extremes when p = 0 or p =1.)

We can extend these chain structures into an n-element series structure, two
parallel n-element system-redundant structures, and a series of n structures of
two parallel elements. In this case, Eq. (3.9) becomes

Rc(p)
Rb(p)

�

(2 − p)n

(2 − pn)
(3.11)

Roberts [1964, p. 260] proves by induction that this ratio is always greater
than 1 and that component redundancy is superior regardless of the number of
elements n.

The superiority of component redundancy over system redundancy also
holds true for nonidentical elements; an algebraic proof is given in Shooman
[1990, p. 282].

A simpler proof of the foregoing principle can be formulated by consider-
ing the system tie-sets. Clearly, in Fig. 3.2(b), the tie-sets are x1x2 and x3x4,
whereas in Fig. 3.2(c), the tie-sets are x1x2, x3x4, x1x4, and x3x2. Since the sys-
tem reliability is the probability of the union of the tie-sets, and since system (c)
has the same two tie-sets as system (b) as well as two additional ones, the com-
ponent redundancy configuration has a larger reliability than the unit redun-
dancy configuration. It is easy to see that this tie-set proof can be extended to
the general case.

The specific result can be broadened to include a large number of structures.
As an example, consider the system of Fig. 3.3(a) that can be viewed as a
simple series structure if the parallel combination of x1 and x2 is replaced by
an equivalent branch that we will call x5. Then x5, x3, and x4 form a simple
chain structure, and component redundancy, as shown in Fig. 3.3(b), is clearly
superior. Many complex configurations can be examined in a similar manner.
Unit and component redundancy are compared graphically in Fig. 3.4.

Another interesting case in which one can compare component and unit

x3 x4

x1

x2

x1

x1′

x2′

x2

x3 x4

x3′ x4′

(a) (b)

Figure 3.3 Component redundancy: (a) original system and (b) redundant system.
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Figure 3.4 Redundancy comparison: (a) component redundancy and (b) unit redun-
dancy. [Adapted from Figs. 7.10 and 7.11, Reliability Engineering, ARINC Research
Corporation, used with permission, Prentice-Hall, Englewood Cliffs, NJ, 1964.]
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Figure 3.5 Comparison of component and unit redundancy for r-out-of-n systems:
(a) a 2-out-of-4 system and (b) a 3-out-of-4 system.

redundancy is in an r-out-of-n system (the system succeeds if r-out-of-n com-
ponents succeed). Immediately, one can see that for r = n, the structure is a
series system, and the previous result applies. If r = 1, the structure reduces
to n parallel elements, and component and unit redundancy are identical. The
interesting cases are then 2 ≤ r < n. The results for 2-out-of-4 and 3-out-of-
4 systems are plotted in Fig. 3.5. Again, component redundancy is superior.
The superiority of component over unit redundancy in an r-out-of-n system is
easily proven by considering the system tie-sets.

All the above analysis applies to two-state systems. Different results are
obtained for multistate models; see Shooman [1990, p. 286].
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(a) System redundancy
(one coupler)

(b) Component redundancy
(three couplers)

x3 xc
x1

x2

x2’
x1’ x3’

x1
xc1

xc2
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x2

x1’ x2’

x3

x3’

Figure 3.6 Comparison of system and component redundancy, including coupling.

In a practical case, implementing redundancy is a bit more complex than
indicated in the reliability graphs used in the preceding analyses. A simple
example illustrates the issues involved. We all know that public address sys-
tems consisting of microphones, connectors and cables, amplifiers, and speak-
ers are notoriously unreliable. Using our principle that component redundancy
is better, we should have two microphones that are connected to a switching
box, and we should have two connecting cables from the switching box to dual
inputs to amplifier 1 or 2 that can be selected from a front panel switch, and we
select one of two speakers, each with dual wires from each of the amplifiers.
We now have added the reliability of the switches in series with the parallel
components, which lowers the reliability a bit; however, the net result should
be a gain. Suppose we carry component redundancy to the extreme by trying
to parallel the resistors, capacitors, and transistors in the amplifier. In most
cases, it is far from simple to merely parallel the components. Thus how low
a level of redundancy is feasible is a decision that must be left to the system
designer.

We can study the required circuitry needed to allow redundancy; we will
call such circuitry or components couplers. Assume, for example, that we have
a system composed of three components and wish to include the effects of
coupling in studying system versus component reliability by using the model
shown in Fig. 3.6. (Note that the prime notation is used to represent a “com-
panion” element, not a logical complement.) For the model in Fig. 3.6(a), the
reliability expression becomes

Ra � P(x1x2x3 + x′1x′2x′3)P(xc) (3.12)

and if we have IIU and P(xc) = Kp(xc) = Kp,

Ra � (2p3
− p6)Kp (3.13)

Similarly, for Fig. 3.6(b) we have

Rb � P(x1 + x′1)P(x2 + x′2)P(x3 + x′3)P(xc1)P(xc2)P(xc3) (3.14)
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and if we have IIU and P(xc1) = P(xc2) = P(xc3) = Kp,

Rb � (2p − p2)3k3p3 (3.15)

We now wish to explore for what value of K Eqs. (3.13) and (3.15) are
equal:

(2p3
− p6)Kp � (2p − p2)3K3p3 (3.16a)

Solving for K yields

K2
�

(2p3
− p6)

(2p − p2)3p2
(3.16b)

If p = 0.9, substitution in Eq. (3.16) yields K =1.085778501, and the cou-
pling reliability Kp becomes 0.9772006509. The easiest way to interpret this
result is to say that if the component failure probability 1 − p is 0.1, then
component and system reliability are equal if the coupler failure probability is
0.0228. In other words, if the coupler failure probability is less than 22.8% of
the component failure probability, component redundancy is superior. Clearly,
coupler reliability will probably be significant in practical situations.

Most reliability models deal with two element states—good and bad; how-
ever, in some cases, there are more distinct states. The classical case is a diode,
which has three states: good, failed-open, and failed-shorted. There are also
analogous elements, such as leaking and blocked hydraulic lines. (One could
contemplate even more than three states; for example, in the case of a diode,
the two “hard”-failure states could be augmented by an “intermittent” short-
failure state.) For a treatment of redundancy for such three-state elements, see
Shooman [1990, p. 286].

3.4 APPROXIMATE RELIABILITY FUNCTIONS

Most system reliability expressions simplify to sums and differences of var-
ious exponential functions once the expressions for the hazard functions are
substituted. Such functions may be hard to interpret; often a simple computer
program and a graph are needed for interpretation. Notwithstanding the case of
computer computations, it is still often advantageous to have techniques that
yield approximate analytical expressions.

3.4.1 Exponential Expansions

A general and very useful approximation technique commonly used in many
branches of engineering is the truncated series expansion. In reliability work,
terms of the form e−z occur time and again; the expressions can be simplified by
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series expansion of the exponential function. The Maclaurin series expansion
of e−z about Z = 0 can be written as follows:

e−Z
� 1 − Z +

Z2

2!
−

Z3

3!
+ · · · +

(−Z)n

n!
+ · · · (3.17)

We can also write the series in n terms and a remainder term [Thomas, 1965,
p. 791], which accounts for all the terms after (−Z)n/ n!

e−Z
� 1 − Z +

Z2

2!
−

Z3

3!
+ · · · +

(−Z)n

n!
+ Rn(Z) (3.18)

where

Rn(Z) � (−1)n + 1 ∫
Z

0

(Z − y)n

n!
e−y dy (3.19)

We can therefore approximate e−Z by n terms of the series and use Rn(Z)
to approximate the remainder. In general, we use only two or three terms of
the series, since in the high-reliability region e−Z ∼ 1, Z is small, and the high-
order terms Zn in the series expansion becomes insignificant. For example, the
reliability of two parallel elements is given by

(2e−Z) + (−e−2Z) � �2 − 2Z +
2Z2

2!
−

2Z3

3!
+ · · · +

2(−Z)n

n!
+ · · ·�

+ �−1 + 2Z −

(2Z)2

2!
+

(2Z)3

3!
− · · · −

(2Z)n

n!
+ · · ·�

� 1 − Z2 + Z3
−

7
12

Z4 +
1
4

Z5
− · · · + (3.20)

Two- and three-term approximations to Eqs. (3.17) and (3.20) are compared
with the complete expressions in Fig. 3.7(a) and (b). Note that the two-term
approximation is a “pessimistic” one, whereas the three-term expression is
slightly “optimistic”; inclusion of additional terms will give a sequence of alter-
nate upper and lower bounds. In Shooman [1990, p. 217], it is shown that the
magnitude of the nth term is an upper bound on the error term, Rn(Z), in an
n-term approximation.

If the system being modeled involves repair, generally a Markov model is
used, and oftentimes Laplace transforms are used to solve the Markov equa-
tions. In Section B8.3, a simplified technique for finding the series expansion
of a reliability function—cf. Eq. (3.20)—directly from a Laplace transform is
discussed.
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Figure 3.7 Comparison of exact and approximate reliability functions: (a) single unit
and (b) two parallel units.

3.4.2 System Hazard Function

Sometimes it is useful to compute and study the system hazard function (fail-
ure rate). For example, suppose that a system consists of two series elements,
x2x3, in parallel with a third, x1. Thus, the system has two “success paths”: it
succeeds if x1 works or if x2 and x3 both work. If all elements have identical
constant hazards, l, the reliability function is given by

R(t) � P(x1 + x2x3) � e−lt + e−2lt
− e−3lt (3.21)
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From Appendix B, we see that z(t) is given by the density function divided
by the reliability function, which can be written as the negative of the time
derivative of the reliability function divided by the reliability function.

z(t) �
f (t)
R(t)

� −

Ṙ(t)
R(t)

�

l(1 + 2e−lt
− 3e−2lt)

1 + e−lt
− e−2lt

(3.22)

Expanding z(t) in a Taylor series,

z(t) � 1 + lt − 3l2t2/ 2 + · · · (3.23)

We can use such approximations to compare the equivalent hazard of various
systems.

3.4.3 Mean Time to Failure

In the last section, it was shown that reliabiilty calculations become very com-
plicated in a large system when there are many components and a diverse reli-
ability structure. Not only was the reliability expression difficult to write down
in such a case, but computation was lengthy, and interpretation of the individual
component contributions was not easy. One method of simplifying the situa-
tion is to ask for less detailed information about the system. A useful figure
of merit for a system is the mean time to failure (MTTF).

As was derived in Eq. (B51) of Appendix B, the MTTF is the expected value
of the time to failure. The standard formula for the expected value involves
the integral of t f (t); however, this can be expressed in terms of the reliability
function.

MTTF � ∫
∞

0
R(t) dt (3.24)

We can use this expression to compute the MTTF for various configura-
tions. For a series reliability configuration of n elements in which each of the
elements has a failure rate zi(t) and Z(t) = ∫ z(t) dt, one can write the reliability
expression as

R(t) � exp [ − n

���
i � 1

Zi(t)] (3.25a)

and the MTTF is given by

MTTF � ∫
∞

0
{exp [ − n

���
i � 1

Zi(t)]} dt (3.25b)
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If the series system has components with more than one type of hazard
model, the integral in Eq. (3.25b) is difficult to evaluate in closed form but can
always be done using a series approximation for the exponential integrand; see
Shooman [1990, p. 20].

Different equations hold for a parallel system. For two parallel elements,
the reliability expression is written as R(t) = e−Z1(t) + e−Z2(t)

− e[−Z1(t) + Z2(t)]. If
both system components have a constant-hazard rate, and we apply Eq. (3.24)
to each term in the reliability expression,

MTTF �

1
l1

+
1
l2

+
1

l1 + l2
(3.26)

In the general case of n parallel elements with constant-hazard rate, the
expression becomes

MTTF � � 1
l1

+
1
l2

+ · · · +
1
ln

� − � 1
l1 + l2

+
1

l1 + l3
+ · · · +

1
li + lj

�
+ � 1

l1 + l2 + l3
+

1
l1 + l2 + l4

+ · · · +
1

li + lj + lk
�

− · · · + (−1)n + 1 1
n

���
i � 1

li

(3.27)

If the n units are identical—that is, l1 =l2 � · · ·=ln =l—then Eq. (3.27)
becomes

MTTF �






� n

1 �
1

−

� n
2 �
2

+
� n

3 �
3

− · · · + (−1)n + 1
� n

n �
n






�

1
l

n

���
i � 1

1
i

(3.28a)

The preceding series is called the harmonic series; the summation form is
given in Jolley [1961, p. 26, Eq. (200)] or Courant [1951, pp. 380]. This series
occurs in number theory, and a series expansion is attributed to the famous
mathematician Euler; the constant in the expansion (0.577) is called Euler’s
constant [Jolley, 1961, p. 14, Eq. (70)].

1
l

n

���
i � 1

1
i
�

1
l [ 0.577 + ln n +

1
2n

−

1
12n(n + 1)

· · ·] (3.28b)
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xcx2

Figure 3.8 Parallel reliability configuration of n elements and a coupling device xc.

3.5 PARALLEL REDUNDANCY

3.5.1 Independent Failures

One classical approach to improving reliability is to provide a number of ele-
ments in the system, any one of which can perform the necessary function. If
a system of n elements can function properly when only one of the elements is
good, a parallel configuration is indicated. (A parallel configuration of n items
is shown in Fig. 3.8.) The reliability expression for a parallel system may be
expressed in terms of the probability of success of each component or, more
conveniently, in terms of the probability of failure (coupling devices ignored).

R(t) � P(x1 + x2 + · · · + xn) � 1 − P(x1x2 · · · xn) (3.29)

In the case of constant-hazard components, Pf =P(x i) =1 − e−li t , and Eq.
(3.29) becomes

R(t) � 1 − [ n

∏
i − 1

(1 − e−li t)] (3.30)

In the case of linearly increasing hazard, the expression becomes

R(t) � 1 − [ n

∏
i − 1

(1 − e−Kit2/ 2)] (3.31)

We recall that in the example of Fig. 3.6(a), we introduced the notion that
a coupling device is needed. Thus, in the general case, the system reliability
function is

R(t) � {1 − [ n

∏
i − 1

(1 − e−Zi(t))]} P(xc) (3.32)

If we have IIU with constant-failure rates, then Eq. (3.32) becomes
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R(t) � [1 − (1 − e−lt)n]e−lct (3.33a)

where l is the element failure rate and lc is the coupler failure rate. Assuming
lct < lt << 1, we can simplify Eq. (3.33) by approximating e−lct and e−lt by
the first two terms in the expansion—cf. Eq. (3.17)—yielding (1 − e−lt) ≈ lt,
e−lct ≈ 1 − lct. Substituting these approximations into Eq. (3.33a),

R(t) ≈ [1 − (lt)n](1 − lct) (3.33b)

Neglecting the last term in Eq. (3.33b), we have

R(t) ≈ 1 − lct − (lt)n (3.34)

Clearly, the coupling term in Eq. (3.34) must be small or it becomes the
dominant portion of the probability of failure. We can obtain an “upper limit”
for lc if we equate the second and third terms in Eq. (3.34) (the probabilities
of coupler failure and parallel system failure) yielding

lc

l
< (lt)n − 1 (3.35)

For the case of n = 3 and a comparison at lt = 0.1, we see that lc /l < 0.01.
Thus the failure rate of the coupling device must be less than 1/ 100 that of the
element. In this example, if lc = 0.01l, then the coupling system probability of
failure is equal to the parallel system probability of failure. This is a limiting
factor in the application of parallel reliability and is, unfortunately, sometimes
neglected in design and analysis. In many practical cases, the reliability of
the several elements in parallel is so close to unity that the reliability of the
coupling element dominates.

If we examine Eq. (3.34) and assume that lc ≈ 0, we see that the number
of parallel elements n affects the curvature of R(t) versus t. In general, the
more parallelism in a reliability block diagram, the less the initial slope of
the reliability curve. The converse is true with more series elements. As an
example, compare the reliability functions for the three reliability graphs in
Fig. 3.9 that are plotted in Fig. 3.10.

x1 x1 x2

x1

x2

(a) (b) (c)

Figure 3.9 Three reliability structures: (a) single element, (b) two series elements,
and (c) two parallel elements.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



PARALLEL REDUNDANCY 99

0

0

0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

(a)

(b)

R
el

ia
bi

lit
y

R
el

ia
bi

lit
y

Two in parallel 2e –t – e –2t

Two in parallel 2e – 2/2 –t te – 2

Two in
series e –2t

Two in series e –t2

Single element e –t

Single element e –t2/2

Normalized time =t lt

Normalized time =t kt√

Figure 3.10 Comparison of reliability functions: (a) constant-hazard elements and
(b) linearly increasing hazard elements.

3.5.2 Dependent and Common Mode Effects

There are two additional effects that must be discussed in analyzing a parallel
system: that of common mode (common cause) failures and that of depen-
dent failures. A common mode failure is one that affects all the elements in a
redundant system. The term was popularized when the first reliability and risk
analyses of nuclear reactors were performed in the 1970s [McCormick, 1981,
Chapter 12]. To protect against core melt, reactors have two emergency core-
cooling systems. One important failure scenario—that of an earthquake—is
likely to rupture the piping on both cooling systems.

Another example of common mode activity occurred early in the space pro-
gram. During the reentry of a Gemini spacecraft, one of the two guidance com-
puters failed, and a few minutes later the second computer failed. Fortunately,
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the astronauts had an additional backup procedure. Based on rehearsed pro-
cedures and precomputations, the Ground Control advised the astronauts to
maneuver the spacecraft, to align the horizon with one of a set of horizontal
scribe marks on the windows, and to rotate the spacecraft so that the Sun was
aligned with one set of vertical scribe marks. The Ground Control then gave
the astronauts a countdown to retro-rocket ignition and a second countdown
to rocket cutoff. The spacecraft splashed into the ocean—closer to the recov-
ery ship than in any previous computer-controlled reentry. Subsequent analysis
showed that the temperature inside the two computers was much higher than
expected and that the diodes in the separate power supply of each computer
had burned out. From this example, we learn several lessons:

1. The designers provided two computers for redundancy.
2. Correctly, two separate power supplies were provided, one for each com-

puter, to avoid a common power-supply failure mode.
3. An unexpectedly high ambient temperature caused identical failues in the

diodes, resulting in a common mode failure.
4. Fortunately, there was a third redundant mode that depended on a com-

pletely different mechanism, the scribe marks, and visual alignment.
When parallel elements are purposely chosen to involve devices with
different failure mechanisms to avoid common mode failures, the term
diversity is used.

In terms of analysis, common mode failures behave much like failures of
a coupling mechanism that was studied previously. In fact, we can use Eq.
(3.33) to analyze the effect if we use lc to represent the sum of coupling and
common mode failure rates. (A fortuitous choice of subscript!)

Another effect to consider in parallel systems is the effect of dependent
failures. Suppose we wish to use two parallel satellite channels for reliable
communication, and the probability of each channel failure is 0.01. For a single
channel, the reliability would be 0.99; for two parallel channels, c1 and c2, we
would have

R � P(c1 + c2) � 1 − P(c1c2) (3.36)

Expanding the last term in Eq. (3.36) yields

R � 1 − P(c1c2) � 1 − P(c1)P(c2 |c1) (3.37)

If the failures of both channels, c1 and c2, are independent, Eq. (3.37) yields
R = 1 − 0.01 × 0.01 = 0.9999. However, suppose that one-quarter of satel-
lite transmission failures are due to atmospheric interference that would affect
both channels. In this case, P(c2 |c1) is 0.25, and Eq. (3.37) yields R = 1 −

0.01 × 0.25 = 0.9975. Thus for a single channel, the probability of failure is
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0.01; with two independent parallel channels, it is 0.0001, but for dependent
channels, it is 0.0025. This means that dependency has reduced the expected
100-fold reduction in failure probabilities to a reduction by only a factor of 4.
In general, a modeling of dependent failures requires some knowledge of the
failure mechanisms that result in dependent modes.

The above analysis has explored many factors that must be considered
in analyzing parallel systems: coupling failures, common mode failures, and
dependent failures. Clearly, only simple models were used in each case. More
complex models may be formulated by using Markov process models—to be
discussed in Section 3.7, where we analyze standby redundancy.

3.6 AN r-OUT-OF-n STRUCTURE

Another simple structure that serves as a useful model for many reliability
problems is an r-out-of-n structure. Such a model represents a system of n
components in which r of the n items must be good for the system to succeed.
(Of course, r is less than n.) An example of an r-out-of-n structure is a fiber-
optic cable, which has a capacity of n circuits. If the application requires r
channels of the transmission, this is an r-out-of-n system (r : n). If the capacity
of the cable n exceeds r by a significant amount, this represents a form of
parallel redundancy. We are of course assuming that if a circuit fails it can be
switched to one of the n–r “extra circuits.”

We may formulate a structural model for an r-out-of-n system, but it is
simpler to use the binomial distribution if applicable. The binomial distribution
can be used only when the n components are independent and identical. If the
components differ or are dependent, the structural-model approach must be
used. Success of exactly r-out-of-n identical and independent items is given
by

B(r : n) � � n
r � pr(1 − p)n − r (3.38)

where r : n stands for r out of n, and the success of at least r-out-of-n items is
given by

Ps �

n

���
k � r

B(k : n) (3.39)

For constant-hazard components, Eq. (3.38) becomes

R(t) �
n

���
k � r �

n
k � e−klt(1 − e−lt)n − k (3.40)
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Similarly, for linearly increasing or Weibull components, the reliability func-
tions are

R(t) �
n

���
k � r �

n
k � e−kKt2/ 2(1 − e−Kt2/ 2)n − k (3.41a)

and

R(t) �
n

���
k � r �

n
k � e−kKtm + 1/ (m + 1)(1 − e−Ktm + 1/ (m + 1))n − k (3.41b)

Clearly, Eqs. (3.39)–(3.41) can be studied and evaluated by a parametric
computer study. In many cases, it is useful to approximate the result, although
numerical evaluation via a computer program is not difficult. For an r-out-of-n
structure of identical components, the exact reliability expression is given by
Eq. (3.38). As is well known, we can approximate the binomial distribution by
the Poisson or normal distributions, depending on the values of n and p (see
Shooman, 1990, Sections 2.5.6 and 2.6.8). Interestingly, we can also develop
similar approximations for the case in which the n parameters are not identical.

The Poisson approximation to the binomial holds for p ≤ 0.05 and n ≥ 20,
which represents the low-reliability region. If we are interested in the high-
reliability region, we switch to failure probabilities, requiring q =1 − p ≤ 0.05
and n ≥ 20. Since we are assuming different components, we define average
probabilities of success and failure p and q as

p �

1
n

n

���
i � 1

pi � 1 − q � 1 −

1
n

n

���
i � 1

(1 − pi) (3.42)

Thus, for the high-reliability region, we compute the probability of n–r or fewer
failures as

R(t) �
n − r

���
k � 0

(nq)ke−nq

k!
(3.43)

and for the low-reliability region, we compute the probability of r or more
successes as

R(t) �
n

���
k � r

(np)ke−np

k!
(3.44)

Equations (3.43) and (3.44) avoid a great deal of algebra in dealing with
nonidentical r-out-of-n components. The question of accuracy is somewhat dif-
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ficult to answer since it depends on the system structure and the range of values
of p that make up p. For example, if the values of q vary only over a 2 : 1 range,
and if q ≤ 0.05 and n ≥ 20, intuition tells us that we should obtain reasonably
accurate results. Clearly, modern computer power makes explicit enumeration
of Eqs. (3.39)–(3.41) a simple procedure, and Eqs. (3.43) and (3.44) are useful
mainly as simplified analytical expressions that provide a check on computa-
tions. [Note that Eqs. (3.43) and (3.44) also hold true for IIU with p = p and
q = q.]

We can appreciate the power of an r : n design by considering the following
example. Suppose we have a fiber-optic cable with 20 channels (strands) and a
system that requires all 20 channels for success. (For simplicity of the discus-
sion, assume that the associated electronics will not fail.) Suppose the proba-
bility of failure of each channel within the cable is q = 0.0005 and p = 0.9995.
Since all 20 channels are needed for success, the reliability of a 20-channel
cable will be R20 = (0.9995)20 = 0.990047. Another option is to use two paral-
lel 20-channel cables and associated electronics switch from cable A to cable
B whenever there is any failure in cable A. The reliability of such an ordinary
parallel system of two 20-channel cables is given by R2 /20 = 2(0.990047) −

(0.990047)2 = 0.9999009. Another design option is to include extra channels
in the single cable beyond the 20 that are needed—in such a case, we have an
r : n system. Suppose we approach the design in a trial-and-error fashion. We
begin by trying n =21 channels, in which case we have

R21 � B(21 : 21) + B(20 : 21) � p21q0 + 21p20q

� (0.9995)21 + 21(0.9995)20(0.0005) � 0.98755223 + 0.010395497

� 0.999947831 (3.45)

Thus R21 exceeds the design with two 20-channel cables. Clearly, all the
designs require some electronic steering (couplers) for the choice of channels,
and the coupler reliability should be included in a detailed comparison. Of
course, one should worry about common mode failures, which could com-
pletely change the foregoing results. Construction damage—that is, line-sev-
ering by a contractor’s excavating maching (backhoe)—is a significant failure
mode for in-soil fiber-optic telephone lines.

As a check on Eq. (3.45), we compute the approximation Eq. (3.43) for n
= 21, r =20.

R(t) �
1

���
k � 0

(nq)ke−nq

k!
� (1 + nq)e−nq

� [1 + 21(0.0005)]e−22 × 0.0005

� 0.999831687 (3.46)

These values are summarized in Table 3.1.
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TABLE 3.1 Comparison of Design for Fiber-Optic Cable
Example

Unreliability,
System Reliability, R (1 − R)

Single 20-channel cable 0.990047 0.00995
Two 20-channel cables 0.9999009 0.000099

in parallel
A 21-channel cable (exact) 0.999948 0.000052
A 21-channel cable (approx.) 0.99983 0.00017

Essentially, the efficiency of the r : n system is because the redundancy is
applied at a lower level. In practice, a 24- or 25-channel cable would probably
be used, since a large portion of the cable cost would arise from the land used
and the laying of the cable. Therefore, the increased cost of including four or
five extra channels would be “money well spent,” since several channels could
fail and be locked out before the cable failed. If we were discussing the number
of channels in a satellite communications system, the major cost would be the
launch; the economics of including a few extra channels would be similar.

3.7 STANDBY SYSTEMS

3.7.1 Introduction

Suppose we consider two components, x1 and x′1, in parallel. For discussion
purposes, we can think of x1 as the primary system and x′1 as the backup;
however, the systems are identical and could be interchanged. In an ordinary
parallel system, both x1 and x′1 begin operation at time t = 0, and both can fail.
If t1 is the time to failure of x1, and t2 is the time to failure of x2, then the time
to system failure is the maximum value of (t1, t2). An improvement would be
to energize the primary system x1 and have backup system x′1 unenergized so
that it cannot fail. Assume that we can immediately detect the failure of x1 and
can energize x′1 so that it becomes the active element. Such a configuration is
called a standby system, x1 is called the on-line system, and x′1 the standby
system. Sometimes an ordinary parallel system is called a “hot” standby, and
a standby system is called a “cold” standby. The time to system failure for
a standby system is given by t = t1 + t2. Clearly, t1 + t2 > max(t1, t2), and a
standby system is superior to a parallel system. The “coupler” element in a
standby system is more complex than in a parallel system, requiring a more
detailed analysis.

One can take a number of different approaches to deriving the equations for
a standby system. One is to determine the probability distribution of t = t1 + t2,
given the distributions of t1 and t2 [Papoulis, 1965, pp. 193–194]. Another
approach is to develop a more general system of probability equations known
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TABLE 3.2 States for a Parallel System

s0 � x1x2 � Both components good.
s1 � x1x2 � x1, good; x2, failed.
s2 � x1x2 � x1, failed; x2, good.
s3 � x1x2 � Both components failed.

as Markov models. This approach is developed in Appendix B and will be
used later in this chapter to describe repairable systems.

In the next section, we take a slightly simpler approach: we develop two
difference equations, solve them, and by means of a limiting process develop
the needed probabilities. In reality, we are developing a simplified Markov
model without going through some of the formalism.

3.7.2 Success Probabilities for a Standby System

One can characterize an ordinary parallel system with components x1 and x2 by
the four states given in Table 3.2. If we assume that the standby component in
a standby system won’t fail until energized, then the three states given in Table
3.3 describe the system. The probability that element x fails in time interval Dt
is given by the product of the failure rate l (failures per hour) and Dt. Similarly,
the probability of no failure in this interval is (1 − lDt). We can summarize
this information by the probabilistic state model (probabilistic graph, Markov
model) shown in Fig. 3.11.

The probability that the system makes a transition from state s0 to state s1 in
time Dt is given by l1Dt, and the transition probability for staying in state s0 is
(1−l1Dt). Similar expressions are shown in the figure for staying in state s1 or
making a transition to state s2. The probabilities of being in the various system
states at time t = t + Dt are governed by the following difference equations:

Ps0 (t + Dt) � (1 − l1Dt)Ps0 (t), (3.47a)

Ps1 (t + Dt) � l1DtPs0 (t) + (1 − l2Dt)Ps1 (t) (3.47b)

Ps2 (t + Dt) � l2DtPs1 (t) + (1)Ps2 (t) (3.47c)

We can rewrite Eq. (3.47) as

TABLE 3.3 States for a Standby System

s0 � x1x2 � On-line and standby components good.
s1 � x1x2 � On-line failed and standby component good.
s2 � x1x2 � On-line and standby components failed.
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1 – l1 Dt

l1 Dt l2 Dt

s x= 10 2x

1 – l2 Dt 1

s x= 11 2x s x= 12 2x

Figure 3.11 A probabilistic state model for a standby system.

Ps0 (t + Dt) − Ps0 (t) � −l1DtPs0 (t) (3.48a)

Ps0 (t + Dt) − Ps0 (t)
Dt

� −l1Ps0 (t) (3.48b)

Taking the limit of the left-hand side of Eq. (3.48b) as Dt � 0 yields the time
derivative, and the equation becomes

dPs0 (t)
dt

+ l1Ps0 � 0 (3.49)

This is a linear, first-order, homogeneous differential equation and is known to
have the solution Ps0 = Ae−l1t . To verify that this is a solution, we substitute
into Eq. (3.49) and obtain

−l1Ae−l1t + l1Ae−l1t
� 0

The value of A is determined from the initial condition. If we start with a good
system, Ps0 (t = 0) =1; thus A = 1 and

Ps0 � e−l1t (3.50)

In a similar manner, we can rewrite Eq. (3.47b) and take the limit obtaining

dPs1 (t)
dt

+ lPs1 (t) � l1Ps0 (3.51)

This equation has the solution

Ps1 (t) � B1e−l1t + B2e−l2t (3.52)

Substitution of Eq. (3.52) into Eq. (3.51) yields a group of exponential terms
that reduces to
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[l2B1 − l1B1 − l1]e−l1t
� 0 (3.53)

and solving for B1 yields

B1 �
l1

l2 − l1
(3.54)

We can obtain the other constant by substituting the initial condition Ps1 (t =0)
= 0, and solving for B 2 yields

B2 � −B1 �
l1

l1 − l2
(3.55)

The complete solution is

Ps1 (t) �
l1

l2 − l1
[e−l1t

− e−l2t] (3.56)

Note that the system is successful if we are in state 0 or state 1 (state 2 is
a failure). Thus the reliability is given by

R(t) � Ps0 (t) + Ps1 (t) (3.57)

Equation (3.57) yields the reliability expression for a standby system where
the on-line and the standby components have two different failure rates. In the
more general case, both the on-line and standby components have the same
failure rate, and we have a small difficulty since Eq. (3.56) becomes 0/ 0. The
standard approach in such cases is to use l’Hospital’s rule from calculus. The
procedure is to take the derivative of the numerator and the denominator sep-
arately with respect to l2; then to take the limit as l2 � l1. This results in
the expression for the reliability of a standby system with two identical on-line
and standby components:

R(t) � e−lt + lte−lt (3.58)

A few general comments are appropriate at this point.

1. The solution given in Eq. (3.58) can be recognized as the first two terms
in the Poisson distribution, the probability of zero occurrences in time
t plus the probability of one occurrence in time t hours, where l is the
occurrence rate per hour. Since the “exposure time” for the standby com-
ponent does not start until the on-line element has failed, the occurrences
are a sequence in time that follows the Poisson distribution.

2. The model in Fig. 3.11 could have been extended to the right to incorpo-
rate a very large number of components and states. The general solution
of such a model would have yielded the Poisson distribution.
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3. A model could have been constructed composed of four states: (x1x2,
x1x2, x1x2, x1x2). Solution of this model would yield the probability
expressions for a parallel system. However, solution of a parallel system
via a Markov model is seldom done except for tutorial purposes because
the direct methods of Section 3.5 are simpler.

4. Generalization of a probabilistic graph, the resulting differential equa-
tions, the solution process, and the summing of appropriate probabilities
leads to a generalized Markov model. This is further illustrated in the
next section on repair.

5. In Section 3.8.2 and Chapter 4, we study the formulation of Markov
models using a more general algorithm to derive the equations, and we
use Laplace transforms to solve the equations.

3.7.3 Comparison of Parallel and Standby Systems

It is assumed that the reader has studied the material in Sections A8 and B6
that cover Markov models. We now compare the reliability of parallel and
standby systems in this section. Standby systems are inherently superior to
parallel systems; however, much of this superiority depends on the reliability of
the standby switch. Also, the reliability of the coupler in a parallel system must
also be considered in the comparison. The reliability of the standby system
with an imperfect switch will require a more complex Markov model than
that developed in the previous section, and such a model is discussed below.

The switch in a standby system must perform three functions:

1. It must have some sort of decision element or algorithm that is capable
of sensing improper operation.

2. The switch must then remove the signal input from the on-line unit and
apply it to the standby unit, and it must also switch the output as well.

3. If the element is an active one, the power must be transferred from the
on-line to the standby element (see Fig. 3.12). In some cases, the input
and output signals can be permanently connected to the two elements;
only the power needs to be switched.

Often the decision unit and the input (and output) switch can be incorpo-
rated into one unit: either an analog circuit or a digital logic circuit or processor
algorithm. Generally, the power switch would be some sort of relay or elec-
tronic switch, or it could be a mechanical device in the case of a mechanical,
hydraulic, or pneumatic system. The specific implementation will vary with
the application and the ingenuity of the designer.

The reliability expression for a two-element standby system with constant
hazards and a perfect switch was given in Eqs. (3.50), (3.56), and (3.57) and
for identical elements in Eq. (3.58). We now introduce the possibility that the
switch is imperfect.
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Figure 3.12 A standby system in which input and power switching are shown.

We begin with a simple model for the switch where we assume that any
failure of the switch is a failure of the system, even in the case where both the
on-line and the standby components are good. This is a conservative model that
is easy to formulate. If we assume that the switch failures are independent of
the on-line and standby component failures and that the switch has a constant
failure rate ls, then Eq. (3.58) holds. Thus we obtain

R1(t) � e−lst(e−lt + lte−lt) (3.59)

Clearly, the switch reliability multiplies the reliability of the standby sys-
tem and degrades the system reliability. We can evaluate how significant the
switch reliability problem is by comparing it with an ordinary parallel system.
A comparison of Eqs. (3.59) and (3.30) (for n = 2 and identical failure rates)
is given in Fig. 3.13. Note that when the switch failure rate is only 10% of the
component failure rates (ls = 0.1l), the degradation is only minor, especially
in the high-reliability region of most interest: (1 ≥ R(t) ≥ 0.9). The standby
system degrades to about the same reliability as the parallel system when the
switch failure rate is about half the component failure rate.

A simple way to improve the switch reliability model is to assume that the
switch failure mode is such that it only fails to switch from on-line to standby
when the on-line element fails (it never switches erroneously when the on-line
element is good). In such a case, the probability of no failures is a good state
and the probability of one failure and no switch failure is also a good state,
that is, the switch reliability only multiplies the second term in Eq. (3.58). In
such a case, the reliability expression becomes
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Figure 3.13 A comparison of a two-element ordinary parallel system with a two-
element standby system with imperfect switch reliability.

R2(t) � e−lt + lte−lte−lst (3.60)

Clearly, this is less conservative and a more realistic switch model than the
previous one.

One can construct even more complex failure models for the switch in a
standby system [Shooman, 1990, Section 6.9].

1. Switch failure modes where the switching occurs even when the on-line
element is good or where the switch jitters between elements can be
included.

2. The failure rate of n nonidentical standby elements was first derived by
Bazovsky [1961, p. 117]; this can be shown as related to the gamma dis-
tribution and to approach the normal distribution for large n [Shooman,
1990].

3. For n identical standby elements, the system succeeds if there are n–1 or
fewer failures, and the probabilities are given by the Poisson distribution
that leads to the expression
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R(t) � e−lt
n − 1

���
i � 0

(lt)i

i!
(3.61)

3.8 REPAIRABLE SYSTEMS

3.8.1 Introduction

Repair or replacement can be viewed as the same process, that is, replacement
of a failed component with a spare is just a fast repair. A complete description
of the repair process takes into account several steps: (a) detection that a failure
has occurred; (b) diagnosis or localization of the cause of the failure; (c) the
delay for replacement or repair, which includes the logistic delay in waiting
for a replacement component or part to arrive; and (d) test and/ or recalibration
of the system. In this section, we concentrate on modeling the basics of repair
and will not decompose the repair process into a finer model that details all of
these substates.

The decomposition of a repair process into substates results in a non-
constant-repair rate (see Shooman [1990, pp. 348–350]). In fact, there is evi-
dence that some repair processes lead to lognormal repair distributions or other
nonconstant-repair distributions. One can show that a number of distributions
(e.g., lognormal, Weibull, gamma, Erlang) can be used to model a repair pro-
cess [Muth, 1967, Chapter 3]. Some software for modeling system availabil-
ity permits nonconstant-failure and -repair rates. Only in special cases is such
detailed data available, and constant-repair rates are commonly used. In fact,
it is not clear how much difference there is in compiling the steady-state avail-
ability for constant- and nonconstant-repair rates [Shooman, 1990, Eq. (6.106)
ff.]. For a general discussion of repair modeling, see Ascher [1984].

In general, repair improves two different measures of system performance:
the reliability and the availability. We begin our discussion by considering a
single computer and the following two different types of computer systems:
an air traffic control system and a file server that provides electronic mail and
network access to a group of users. Since there is only a single system, a
failure of the computer represents a system failure, and repair will not affect
the system reliability function. The availability of the system is a measure of
how much of the operating time the system is up. In the case of the air traffic
control system, the fact that the system may occasionally be down for short
time periods while repair or replacement goes on may not be tolerable, whereas
in the case of the file server, a small amount of downtime may be acceptable.
Thus a computation of both the reliability and the availability of the system is
required; however, for some critical applications, the most important measure
is the reliability. If we say the basic system is composed of two computers in
parallel or standby, then the problem changes. In either case, the system can
tolerate one computer failure and stay up. It then becomes a race to see if the
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failed element can be repaired and restored before the remaining element fails.
The system only goes down in the rare event that the second component fails
before the repair or replacement is completed.

In the following sections, we will model a two-element parallel and a two-
element standby system with repair and will comment on the improvements in
reliability and availability due to repair. To facilitate the solutions of the ensu-
ing Markov models, some simple features of the Laplace transform method will
be employed. It is assumed that the reader is familiar with Laplace transforms
or will have already read the brief introduction to Laplace transform methods
given in Appendix B, Section B8. We begin our discussion by developing a
general Markov model for two elements with repair.

3.8.2 Reliability of a Two-Element System with Repair

The benefits of repair in improving system reliability are easy to illustrate in a
two-element system, which is the simplest system used in high-reliability fault-
tolerant situations. Repair improves both a hot standby and a cold standby sys-
tem. In fact, we can use the same Markov model to describe both situations if
we appropriately modify the transition probabilities. A Markov model for two
parallel or standby systems with repair is given in Fig. 3.14. The transition rate
from state s0 to s1 is given by 2l in the case of an ordinary parallel system
because two elements are operating and either one can fail. In the case of a
standby system, the transition is given by l since only one component is pow-
ered and only that one can fail (for this model, we ignore the possibility that
the standby system can fail). The transition rate from state s1 to s0 represents
the repair process. If only one repairman is present (the usual case), then this
transition is governed by the constant repair rate m. In a rare case, more than
one repairman will be present, and if all work cooperatively, the repair rate is
> m. In some circumstances, there will be only a shared repairman among a
number of equipments, in which case the repair rate is <m.

In many cases, study of the repair statistics shows a nonexponential distri-
bution (the exponential distribution is the one corresponding to a constant tran-
sition rate)—specifically, the lognormal distribution [Ascher, 1984; Shooman,
1990, pp. 348–350]. However, much of the benefits of repair are illustrated by

1 – l’Dt

l Dt’

m Dt’

lDt

s x= 10 2x

1 – ( +l m Dt’) 1

s x= 11 2 1 2x x x+ s x= 12 2x

l l
l l
m m
m m

’
’
’
’

= 2
=
=
= k

where for an ordinary system
for a standby system
for one repairman
for more than one
repairman ( > 1)k

Figure 3.14 A Markov reliability model for two identical parallel elements and k
repairmen.
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the constant transition rate repair model. The Markov equations corresponding
to Fig. 3.14 can be written by utilizing a simple algorithm:

1. The terms with 1 and Dt in the Markov graph are deleted.

2. A first-order Markov differential equation is written for each node where
the left-hand side of the equation is the first-order time derivative of the
probability of being in that state at time t.

3. The right-hand side of each equation is a sum of probability terms for
each branch that enters the node in question. The coefficient of each
probability term is the transition probability for the entering branch.

We will illustrate the use of these steps in formulating the Markov of Fig.
3.14.

dPs0 (t)
dt

� −l′Ps0 (t) + m′Ps1 (t) (3.62a)

dPs1 (t)
dt

� l′Ps0 (t) − (l + m′)Ps1 (t) (3.62b)

dPs2 (t)
dt

� l′Ps1 (t) (3.62c)

Assuming that both systems are initially good, the initial conditions are

Ps0 (0) � 1, Ps1 (0) � Ps2 (0) � 0

One great advantage of the Laplace transform method is that it deals simply
with initial conditions. Another is that it transforms differential equations in the
time domain into a set of algebraic equations in the Laplace transform domain
(often called the frequency domain), which are written in terms of the Laplace
operator s.

To transform the set of equations (3.62a–c) into the Laplace domain, we
utilize transform theorem 2 (which incorporates initial conditions) from Table
B7 of Appendix B, yielding

sPs0 (s) − 1 � −l′Ps0 (s) + m′Ps1 (s) (3.63a)

sPs1 (s) − 0 � l′Ps0 (s) − (l + m′)Ps1 (s) (3.63b)

sPs2 (s) − 0 � lPs1 (s) (3.63c)

Writing these equations in a more symmetric form yields
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(s + l′)Ps0 (s) − m′Ps1 (s) � 1 (3.64a)

−l′Ps0 (s) + (s + m′ + l)Ps1 (s) � 0 (3.64b)

−lPs1 (s) + sPs2 (s) � 0 (3.64c)

Clearly, Eqs. (3.64a–c) lead to a matrix formulation if desired. However,
we can simply solve these equations using Cramer’s rule since they are now
algebraic equations.

Ps0 (s) �
(s + l + m′)

[s2 + (l + l′ + m′)s + ll′]
(3.65a)

Ps1 (s) �
l′

[s2 + (l + l′ + m′)s + ll′]
(3.65b)

Ps2 (s) �
ll′

s[s2 + (l + l′ + m′)s + ll′]
(3.65c)

We must now invert these equations—transform them from the frequency
domain to the time domain—to find the desired time solutions. There are sev-
eral alternatives at this point. One can apply transform No. 10 from Table B6
of Appendix B to Eqs. (3.65a, b) to obtain the solution as a sum of two expo-
nentials, or one can use a partial fraction expansion as illustrated in Eq. (B104)
of the appendix. An algebraic solution of these equations using partial fractions
appears in Shooman [1990, pp. 341–342], and further solution and plotting of
these equations is covered in the problems at the end of this chapter as well as
in Appendix B8. One can, however, make a simple comparison of the effects
of repair by computing the MTTF for the various models.

3.8.3 MTTF for Various Systems with Repair

Rather than compute the complete reliabiity function of the several systems
we wish to compare, we can simplify the analysis by comparing the MTTF
for these systems. Furthermore, the MTTF is given by an integral of the reli-
ability function, and by using Laplace theory we can show [Section B8.2, Eqs.
(B105)–(B106)] that the MTTF is just given by the limit of the Laplace trans-
form expression as s � 0.

For the model of Fig. 3.14, the reliability expression is the sum of the first
two-state probabilities; thus, the MTTF is the limit of the sum of Eqs. (3.65a,
b) as s � 0, which yields

MTTF �
l + m′ + l′

(ll′)
(3.66)
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TABLE 3.4 Comparison of MTTF for Several Systems

For l � 1,
Element Formula m � 10

Single element 1/l 1.0
Two parallel elements—no repair 1.5/l 1.5
Two standby elements—no repair 2/l 2.0
Two parallel elements—with repair (3l + m)/ 2l2 6.5
Two standby elements—with repair (2l + m)/l2 12.0

We substitute the various values of l′ shown in Fig. 3.14 in the expression;
since we are assuming a single repairman, m′ = m. The MTTF for several sys-
tems is compared in Table 3.4. Note how repair strongly increases the MTTF
of the last two systems in the table. For large m/l ratios, which are common
in practice, the MTTF of the last two systems approaches 0.5m/l2 and m/l2.

3.8.4 The Effect of Coverage on System Reliability

In Fig. 3.12, we portrayed a fairly complex block diagram for a standby sys-
tem. We have already modeled the possibility of imperfection in the switch-
ing mechanism. In this section, we develop a model for imperfections in the
decision unit that detects failures and switches from the on-line system to the
standby system. In some cases, even in the n-ordinary parallel system (hot
standby), it is not possible to have both systems fully connected, and a deci-
sion unit and switch are needed. Another way of describing this phenomenon
is to say that the decision unit cannot detect 100% of all the on-line unit fail-
ures; it only “covers” (detects) the fraction c (0 < c < 1) of all the possible
failures. (The formulation of this concept is generally attributed to Bouricius,
Carter, and Schneider [1969].) The problem is that if the decision unit does
not detect a failure of the on-line unit, input and output remain connected to
the failed on-line element. The result is a system failure, because although the
standby unit is good, there is no indication that it must be switched into use.
We can formulate a Markov model in Fig. 3.15, which allows us to evaluate
the effect of coverage. (Compare with the model of Fig. 3.14.) In fact, we can
use Fig. 3.15 to model the effects of coverage on either a hot or cold standby
system. Note that the symbol D stands for the decision unit correctly detecting
a failure in the on-line unit, and the symbol D means that the decision unit
has not been able to (failed to) detect a failure in the on-line unit. Also, a new
arc has been added in the figure from the good state s0 to the failed state s2

for modeling the failure of the decision unit to “cover” a failure of the on-line
element.

The Markov equations for Fig. 3.15 become the following:
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Figure 3.15 A Markov reliability model for two identical, parallel elements, k repair-
men, and coverage effects.

sPs0 (s) − 1 � − (l′ + l′′)Ps0 (s) + m′Ps1 (s) (3.67a)

sPs1 (s) − 0 � l′Ps0 (s) − (l + m′)Ps1 (s) (3.67b)

sPs2 (s) − 0 � l′′Ps0 (s) + l Ps1 (s) (3.67c)

Compare the preceding equations with Eqs. (3.63a–c) and (3.64a–c). Writing
these equations in a more symmetric form yields

(s + l′ + l′′)Ps0 (s) − m′Ps1 (s) � 1 (3.68a)

−l′Ps0 (s) + (s + m′ + l)Ps1 (s) � 0 (3.68b)

−l′′Ps0 (s) − lPs1 (s) + sPs2 (s) � 0 (3.68c)

The solution of these equations yields

Ps0 (s) �
(s + l + m′)

s2 + (l + l′ + l′′ + m′)s + (ll′ + l′′m′ + ll′′)
(3.69a)

Ps1 (s) �
l′

s2 + (l + l′ + l′′ + m′)s + (ll′ + l′′m′ + ll′′)
(3.69b)

Ps2 (s) �
l′′s + ll′ + m′l′′ + ll′′

s[s2 + (l + l′ + l′′ + m′)s + (ll′ + l′′m′ + ll′′)]
(3.69c)

For the model of Fig. 3.15, the reliability expression is the sum of the first
two-state probabilities; thus the MTTF is the limit of the sum of Eqs. (3.69a,
b) as s � 0, which yields



REPAIRABLE SYSTEMS 117

TABLE 3.5 Comparison of MTTF for Several Systems

For For For
l � 1, l � 1 l � 1,

m � 10, m � 10, m � 10,
Element Formula c � 1 c � 0.95 c � 0.90

Single element 1/l 1.0 — —

Two parallel elements—no repair: (0.5 + c)/l 1.5 1.45 1.40
[m′ � 0, l′ � 2cl,
l′′ � 2(1 − c)l]

Two standby elements—no repair: (1 + c)/l 2.0 1.95 1.90
[m′ � 0, l′ � cl,
l′′ � (1 − c)l]

Two parallel elements—with repair:
[m′ � m,l′ � 2cl,
l′′ � 2(1 − c)l]

(1 + 2c)l + m

2l[l + (1 − c)m]
6.5 4.3 3.2

Two standby elements—with repair:
[m′ � m,l′ � cl,
l′′ � (1 − c)l]

(1 + c)l + m

l[l + (1 − c)m]
12.0 7.97 5.95

MTTF �

l + m′ + l′
(ll′ + l′′m′ + ll′′)

(3.70)

When c = 1, l′′ = 0, and we see that Eq. (3.70) reduces to Eq. (3.66).
The effect of coverage on the MTTF is evaluated in Table 3.5 by making
appropriate substitutions for l′, l′′, and m′. Notice what a strong effect the
coverage factor has on the MTTF of the systems with repair. For two parallel
and two standby systems, c = 0.90—more than half the MTTF. Practical values
for c are hard to find in the literature and are dependent on design. Sieworek
[1992, p. 288] comments, “a typical diagnostic program, for example, may
detect only 80–90% of possible faults.” Bell [1978, p. 91] states that static
testing of PDP-11 computers at the end of the manufacturing process was able
to find 95% of faults, such as solder shorts, open-circuit etch connections, dead
components, and incorrectly valued resistors. Toy [1987, p. 20] states, “realistic
coverages range between 95% and 99%.” Clearly, the value of c should be a
major concern in the design of repairable systems.

A more detailed treatment of coverage can be found in the literature. See
Bouricius and Carter [1969, 1971]; Dugan [1989, 1996]; Kaufman and Johnson
[1998]; and Pecht [1995].

3.8.5 Availability Models

In some systems, it is tolerable to have a small amount of downtime as the
system is rapidly repaired and restored. In such a case, we allow repair out
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Figure 3.16 Markov availability graph for two identical parallel elements.

of the system down state, and the model of Fig. 3.16 is obtained. Note that
Fig. 3.14 and Fig. 3.16 only differ in the repair branch from state s2 to state s1.
Using the same techniques that we used above, one can show that the equations
for this model become

(s + l′)Ps0 (s) − m′Ps1 (s) � 1 (3.71a)

−l′Ps0 (s) + (s + m′ + l)Ps1 (s) − m′′Ps2 (s) � 0 (3.71b)

−lPs1 (s) + (s + m′′)Ps2 (s) � 0 (3.71c)

See Shooman [1990, Section 6.10] for more information.
The solution follows the same procedure as before. In this case, the sum of

the probabilities for states 0 and 1 is not the reliability function but the avail-
ability function: A(t). In most cases, A(t) does not go to 0 as t � ∞, as is true
with the R(t) function. A(t) starts at 1 and, for well-designed systems, decays to
a steady-state value close to 1. Thus a lower bound on the availability function
is the steady-state value. A simple means for solving for the steady-state value
is to formulate the differential equations for the Markov model and set all the
time derivatives to 0. The set of equations now becomes an algebraic set of
equations; however, the set is not independent. We obtain an independent set
of equations by replacing any of these equations by the equation—the sum of
all the state probabilities =1. The algebraic solution for the steady-state avail-
ability is often used in practice. An even simpler procedure for computing the
steady-state availability is to apply the final value theorem to the transformed
expression for A(s). This method is used in Section 4.9.2.

This chapter and Chapter 4 are linked in many ways. The technique of vot-
ing reliability joins parallel and standby system reliability as the three most
common techniques for fault tolerance. Also, the analytical techniques involv-
ing Markov models are used in both chapters. In Chapter 4, a comparison is
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made of the reliability and availability of parallel, standby, and voting systems;
in addition, some of the Markov modeling begun in this chapter is extended
in Chapter 4 for the purpose of this comparison. The following chapter also
has a more extensive discussion of the many shortcuts provided by Laplace
transforms.

3.9 RAID SYSTEMS RELIABILITY

3.9.1 Introduction

The reliability techniques discussed in Chapter 2 involved coding to detect
and correct errors in data streams. In this chapter, various parallel and standby
techniques have been introduced that significantly increase the reliability of
various systems and components. This section will discuss a newly developed
technology for constructing computer secondary-storage systems that utilize
the techniques of both Chapters 2 and 3 for the design of reliable, compact,
high-performance storage systems. The generic term for such memory sys-
tem technology is redundant disk arrays [Gibson, 1992]; however, it was soon
changed to redundant array of inexpensive disks (RAID), and as technology
evolved so that the quality and capacity of small disks rapidly increased, the
word “inexpensive” was replaced by “independent.” The term “array,” when
used in this context, means a collection of many disks organized in a specific
fashion to improve speed of data transfer and reliability. As the RAID tech-
nology evolved, cache techniques (the use of small, very high-speed memories
to accelerate processing by temporarily retaining items expected to be needed
again soon) were added to the mix. Many varieties of RAID have been devel-
oped and more will probably emerge in the future. The RAID systems that
employ cache techniques for speed improvement are sometimes called cached
array of inexpensive disks (CAID) [Buzen, 1993]. The technology is driven
by the variety of techniques available for connecting multiple disks, as well as
various coding techniques, alternative read-and-write techniques, and the flexi-
bility in organization to “tune” the architecture of the RAID system to match
various user needs.

Prior to 1990, the dominant technology for secondary storage was a group
of very large disks, typically 5–15, in a cabinet the size of a clothes washer.
Buzen [1993] uses the term single large expensive disk (SLED) to refer to
this technology. RAID technology utilizes a large number, typically 50–100,
of small disks the size of those used in a typical personal computer. Each disk
drive is assumed to have one actuator to position reads or writes, and large
and small drives are assumed to have the same I/ O read- or write-time. The
bandwidth (BW) of such a disk is the reciprocal of the read-time. If data is bro-
ken into “chunks” and read (written) in parallel chunks to each of the n small
disks in a RAID array, the effective BW increases. There is some “overhead”
in implementing such a parallel read-write scheme, however, in the limit:
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effective bandwidth � nBW (3.72)

Thus, one possible beneficial effect of a RAID configuration in which many
disks are written in parallel is a large increase in the BW.

If the RAID configuration depends on all the disks working, then the reli-
ability of so many disks is lower than a smaller number of large disks. If the
failure rate of each of the n disks is denoted by l = 1/ MTTF, then the failure
rate and MTTF of n disks is given by

effective failure rate � nl � 1/ effective MTTF � n/ MTTF (3.73)

The failure rate is n times as large and the MTTF is n times smaller. If data
is stored in “chunks” over many disks so that the write operation occurs in
parallel for increased BW, the reliability of the block of data decreases signif-
icantly as per Eq. (3.73). Writing data in a distributed manner over a group
of disks is called striping or interleaving. The size of the “chunk” is a design
parameter in striping. To increase the reliability of a striped array, one can use
redundant disks and/ or error-detecting and -correcting codes for “chunks” of
data of various sizes. We have purposely used the nonspecific term “chunk”
because one of the design choices, which will soon be discussed, is the size
of the “chunk” and how “the chunk” is distributed across various disks.

The various trade-offs among objectives and architectural approaches have
changed over the decade (1990–2000) in which RAID storage systems were
developed. At the beginning, small disks had modest capacity, longer access
and transfer times, higher cost, and lower reliability. The improvements in all
these parameters have had major effects on design.

The designers of RAID systems utilize various techniques of redundancy
and error-correcting codes to raise the reliability of the RAID sysem [Buzen,
1993]. The early literature defined six levels of RAID [Patterson, 1987, 1988;
Gibson, 1992], and most manufacturers followed these levels as guidelines in
describing their products. However, as variations and options developed, classi-
fication became difficult, and some marketing managers took the classification
system to mean that a higher level of RAID meant a better system. Thus, one
vendor whose system included features of RAID 2 and RAID 5 decided to call
his product RAID 10, claiming the levels multiplied! [Friedman, 1996.] Situ-
ations such as these led to the creation of the RAID Advisory Board, which
serves as an industry standards body to define seven (and possibly more) lev-
els of RAID [RAID, 1995; Massaglia, 1997]. The basic levels of RAID are
given in Table 3.6, and the reader is cautioned to remember that because the
various levels of RAID are to differentiate architectural approach, an increase
in level does not necessarily correspond to an increase in BW or reliability.
Complexity, however, does probably increase as the RAID level increases.
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TABLE 3.6 Summary Comparison of RAID Technologies

Level Common Name Features

0 No RAID or JBOD No redundancy; thus, many claim that to
(“just a bunch of disks”). consider this RAID is a misnomer. A

Level 0 system could have a striped
array and even a cache for speed im-
provement. There is, however, decreased
reliability compared to a single disk
if striping is employed, and the BW is
increased.

1 Mirrored disks Two physical disk drives store identical
(duplexing, shadowing). copies of the data, one on each drive.

This concept may be generalized to n
drives with n identical copies or to k
sets of pairs with identical data. It is a
simple scheme with high reliability and
speed improvement, but there is high cost.

2 Hamming error-correcting Hamming SECSED (SECDED) code is
code with bit-level computed on the data blocks and is striped
interleaving. across the disks. It is not often used in

practice.
3 Parity-bit code at the A parity-bit code is applied at the bit level

bit level. and the parity bits are stored on a
separate parity disk. Since parity bits are
calculated for each strip, and strips
appear on different disks, error detection
is possible with a simple parity code. The
parity disk must be accessed on all reads;
generally, the disk spindles are
synchronized.

4 Parity-bit code at the A parity-bit code is applied at the block level,
block level. and the parity bits are stored on a

separate parity disk.
5 Parity-bit code at the A parity-bit code is applied at the sector level

sector level. and the parity information is distributed
across the disks.

6 Parity-bit code at the Parity is computed in two different independent
bit level applied in manners so that the array can recover from
two ways to provide two disk failures.
correction when two
disks fail.

Source: [The RAIDbook, 1995].
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3.9.2 RAID Level 0

This level was introduced as a means of classifying techniques that utilize
a disk array and striping to improve the BW; however, no redundancy is
included, and the reliability decreases. Equations (3.72) and (3.73) describe
these basic effects. The BW of the array has increased over individual disks,
but the reliability has decreased. Since high reliability is generally required
in the disk storage system, this level would rarely be used except for special
applications.

3.9.3 RAID Level 1

The use of mirrored disks is an obvious way to improve reliability; if the two
disks are written in parallel, the BW is increased. If the data is striped across
the two disks, the parallel reading of a transaction can increase the BW by
a factor of 2. However, the second (backup) copy of the transaction must be
written, and if there is a continuous transaction stream, the duplicate data copy
requirement reduces the BW by a factor of 2, resulting in no change in the BW.
However, if transactions occur in bursts with delays between bursts, the pri-
mary copy can be written at twice the BW during the burst, and the backup
copy can be performed during the pauses between bursts. Thus the doubling of
BW can be realized under those circumstances. Since memory systems repre-
sent 40%–60% of the cost of computer systems [Gibson, 1992, pp. 50–51], the
use of mirrored disks greatly increases the cost of a computer system. Also,
since the reliability is that of a parallel system, the reliability function is given
by Eq. (3.8) and the MTTF by Eq. (3.26) for constant disk failure rates. If both
disks are identical and have the same failure rates, the MTTF of the mirrored
disks becomes 1.5 times greater than that of a single disk system. The Tan-
dem line of “Nonstop” computers (discussed in Section 3.10.1) are essentially
mirrored disks with the addition of duplicate computers, disk controllers, and
I/ O buses. The RAIDbook [1995, p. 45] calls the Tandem configuration a fully
redundant system.

RAID systems of Level 2 and higher all have at least one hot spare disk.
When a disk error is detected via an error-detecting code or other form of built-
in disk monitoring, the disk system takes the remaining stored and redundant
information and reconstructs a valid copy on the hot disk, which is switched-in,
instead of the failed disk. Sometime later during maintenance, the failed disk
is repaired or replaced. The differences among the following RAID levels are
determined by the means of error detection, the size of the chunk that has
associated error checking, and the pattern of striping.

3.9.4 RAID Level 2

This level of RAID introduces Hamming error-correcting codes similar to those
discussed in Chapter 2 to detect and correct data errors. The error-correcting
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codes are added to the “chunks” of data and striped across the disks. In general,
this level of RAID employs a SECSED code or a SECDED code such as one
described in Chapter 2. The code is applied to data blocks, and the disk spindles
must be synchronized. One can roughly compare the reliability of this scheme
with a Level 1 system. For the Level 1 RAID system to fail, both disks must
fail, and the probability of failure is

Pf 1 � q2 (3.74)

For a Level 2 system to fail, one of the two disks must fail that has a prob-
ability of 2q, and the Hamming code must fail to detect an error. The example
used in the The RAIDbook [1995] to discuss a Level 2 system is for ten data
disks and four check disks, representing a 40% cost overhead for redundancy
compared with a 100% overhead for a Level 1 system. In Chapter 2, we com-
puted the probability of undetected error for eight data bits and four check bits
in Eq. (2.27) and shall use these results to estimate the probability of failure
of a typical Level 2 system. For this example,

Pf 2 � (2q) × [220q3(1 − q)9] (3.75)

Clearly, for very small q, the Level 2 system has a smaller probability of failure.
The two equations—(3.74) and (3.75)—are approximately equal for q = 0.064,
at which level the probability of failure is 0.0642 = 0.00041.

To appreciate how this level would apply to a typical disk, let us assume
that the MTTF for a typical disk is 300,000 hours. Assuming a constant failure-
rate model, l = 1 / 300,000 =3.3 × 10−6. The associated probability of failure
for a single disk would be 1 – exp(– 3.3 × 10−6t), and setting this expression
to 0.064 shows that a single disk reaches this probability of failure at about
20,000 hours. Since a year is roughly 10,000 hours (8,766), a mirrored disk
system would be superior for a few years of operation. A detailed reliability
comparison would require a prior design of a Level 2 system with the appro-
priate number of disks, choice of chunk level (bit, byte, block, etc.), inclusion
of a swapping disk, disk striping, and other details.

Detailed design of a Level 2 system such a disk system leads to nonstandard
disks, significantly raising the cost of the system, and the technique is seldom
used in practice.

3.9.5 RAID Levels 3, 4, and 5

In Chapter 2, we discussed the fact that a single parity bit is an inexpensive
and fairly effective way of significantly increasing reliability. Levels 3, 4, and
5 apply such a parity-bit code to different size data “chunks” in various ways to
increase the reliability of a disk array at a lower cost than a mirrored disk. We
will model the reliability of a Level 3 system as an example. A disk can fail in
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Figure 3.17 A common mapping for a RAID Level 3 array [adapted from Fig. 48,
The RAIDbook, 1995].

several ways: two are a surface failure (where stored bits are corrupted) and an
actuator, head, or spindle failure (where the entire disk does not work—total
failure). We assume that disk optimization software that periodically locks out
bad bits on a disk generally protects against local surface failures, and the main
category of failures requiring fault tolerance are total failures.

Normally, a single parity bit will provide an error-detecting but not an error-
correcting code; however, the availability of parity checks for more than one
group of strips provides error-correcting ability. Consider the typical example
shown in Fig. 3.17. The parity disk computes a parity copy for strips (0–3)
and (4–7) using the EXOR function:

P(0–3) � strip 0 ⊕ strip 1 ⊕ strip 2 ⊕ strip 3 (3.76)

P(4–7) � strip 4 ⊕ strip 5 ⊕ strip 6 ⊕ strip 7 (3.77)

Assume that there is a failure of disk 2, corrupting the data on strip 1 and
strip 5. To regenerate the data on strip 1, we compute the EXOR of P(0–3)
along with strip 0, strip 2, and strip 3 that are on unfailed disks 5, 1, 3, 4.

REGEN(1) � P(0–3) ⊕ strip 0 ⊕ strip 2 ⊕ strip 3 (3.78a)

and substitution of Eq. (3.76) into Eq. (3.78a) yields
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Figure 3.18 A Markov model for N + 1 disks protected by a single parity disk.

REGEN(1) � (strip 0 ⊕ strip 1 ⊕ strip 2 ⊕ strip 3)

⊕ (strip 0 ⊕ strip 2 ⊕ strip 3) (3.78b)

Since strip 0 ⊕ strip 0 = 0, and similarly for strip 2 and strip 3, Eq. (3.78b)
results in the regeneration of strip 1.

REGEN(1) � strip 1 (3.78c)

The conclusion is that we can regenerate the information on strip 1, which
was on the catastrophically failed disk 2 from the other unfailed disks. Clearly
one could recover the other data for strip 5, which is also on failed disk 2 in a
similar manner. These recovery procedures generalize to other Level 3, 4, and
5 recovery procedures. Allocating data to strips is called stripping.

A Level 3 system has N data disks that store the system data and one parity
disk that stores the error-detection data for a total of N + 1 disks. The system
succeeds if there are zero failures or one disk failure, since the damaged strips
can be regenerated (repaired) using the above procedures. A Markov model
for such operation is shown in Fig. 3.18. The solution follows the same path
as that of Fig 3.14, and the same solution can be used if we set l′ = (N +
1)l, l = Nl, and m′ = m. Substitution of these values into Eqs. (3.65a, b) and
adding these probabilities yields the reliability function. Substitution into Eq.
(3.66) yields the MTTF:

MTTF � [Nl + m + (N + 1)l]/ [Nl(N + 1)l] (3.79a)

MTTF � [(2N + 1)l + m]/ [N(N + 1)l2] (3.79b)

These equations check with the model given in Gibson [1992, pp. 137–139].
In most cases, m >> l, and the MTTF expression given in Eq. (3.79b) becomes
MTTF = m [N(N + 1)l2]. If the recovery time were 1 hour, N = 4 as in the

/
4.5 × 109. Clearly, the recovery built into this example makes the loss of data
very improbable. A comprehensive analysis would include the investigation of
other possible modes of failure, common mode failures, and so forth. If one
wishes to compute the availability of a RAID Level 3 system, a model similar
to that given in Fig. 3.16 can be used.

/
design of Fig. 3.17, and l = 1 300,000 as previously assumed, then MTTF =
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3.9.6 RAID Level 6

There are several choices for establishing two independent parity checks. One
approach is a horizontal–vertical parity approach. A parity bit for a string is
computed in two different ways. Several rows of strings are written, from
which a set of horizontal parity bits are computed for each row and a set of
vertical parity bits are computed for each column. Actually, this description is
just one approach to Level 6; any technique that independently computes two
parity bits is classified as Level 6 (e.g., applying parity to two sets of bits, using
two different algorithms for computing parity, and Reed–Solomon codes). For
more comprehensive analysis of RAID systems, see Gibson [1992]. A com-
parison of the various RAID levels was given in Table 3.6, on page 121.

3.10 TYPICAL COMMERCIAL FAULT-TOLERANT SYSTEMS:
TANDEM AND STRATUS

3.10.1 Tandem Systems

In the 1980s, Tandem captured a significant share of the business market with
its “NonStop” computer systems. The name was a great asset, since it captured
the aspirations of many customers in the on-line transaction processing market
who required high reliability, such as banks, airlines, and financial institutions.
Since 1997, Tandem Computers has been owned by the Compaq Computer Cor-
poration, and it still stresses fault-tolerant computer systems. A 1999 survey esti-
mates that 66% of credit card transactions, 95% of securities transactions, and
80% of automated teller machine transactions are processed by Tandem com-
puters (now called NonStop Himalaya computers). “As late as 1985 it was esti-
mated that a conventional, well-managed, transaction-processing system failed
about once every two weeks for about an hour” [Siewiorek, 1992, p. 586]. Since
there are 168 hours in a week, substitution into the basic steady-state equation
for availability Eq. (B95a) yields an availability of 0.997. (Remember that l =
1/ MTTF and m  = 1/ MTTR for constant failure and repair rates.) To appreciate
how mediocre such an availability is for a high-reliability system, let us consider
the availability of an automobile. Typically an auto may require one repair per
year (sometimes referred to as nonscheduled maintenance to eliminate inclusion
of scheduled maintenance, such as oil changes, tire replacements, and new spark
plugs), which takes one day (drop-off to pickup time). The repair rate becomes
1 per day; the failure rate, 1/ 365 per day. Substitution into Eq. (B95a) yields a
steady-state availability of 0.99726—nearly identical to our computer computa-
tion. Clearly, a highly reliable computer system should have a much better avail-
ability than a car! Tandem’s original goal was to build a system with an MTTF
of 100 years! There was clearly much to do to improve the availability in terms
of increasing the MTTF, decreasing the MTTR, and structuring a system config-
uration with greatly increased reliability and availability. Suppose one chooses a
goal of 1 hour for repair. This may be realistic for repairs such as board-swapping,
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but suppose the replacement part is not available? If we assume that 1 hour repre-
sents 90% of the repairs but that 10% of the repairs require a replacement part that
is unavailable and must be obtained by overnight mail (24 hours), the weighted
repair time is then (0.9 × 1 + 0.1 × 24) =3.3 hours. Clearly, the MTTR will depend
on the distribution of failure modes, the stock of spare parts on hand, and the effi-
ciency of ordering procedures for spare parts that must be ordered from the manu-
facturer. If one were to achieve an MTTF of 100 years and an MTTR of 3.3 hours,
the availability given by Eq. (B95) would be an impressive 0.999996.

The design objectives of Tandem computers were the following [Anderson,
1985]:

• No single hardware failure should stop the system.

• Hardware elements should be maintainable with the on-line system.

• Database integrity should be ensured.

• The system should be modularly extensible without incurring application
software changes.

The last objective, extensibility of the system without a software change,
played a role in Tandem’s success. The software allowed the system to grow by
adding new pairs of Tandem computers while the operation continued. Many
of Tandem’s competitors required that the system be brought down for system
expansion, that new software and hardware be installed, and that the expanded
system be regenerated.

The original Tandem system was a combination of hardware and software
fault tolerance. (The author thanks Dr. Alan P. Wood of Compaq Corporation
for his help in clarifying the Tandem architecture and providing details for this
section [Wood, 2001].) Each major hardware subsystem (CPUs, disks, power
supplies, controllers, and so forth) was (and still is) implemented with parallel
units continuously operating (hot redundancy). A diagram depicting the Tan-
dem architecture is shown in Fig. 3.19. The architecture supports N processors
in which N is at an even number between 2 and 16.

The Tandem processor subsystem uses hardware fault detection and soft-
ware fault tolerance to recover from processor failures. The Tandem operating
system called Guardian creates and manages heartbeat signals, saying “I’m
alive,” which each processor sends to all the other processors every second. If
a processor has not received a heartbeat signal from another processor within
two seconds, each operating processor enters a system state called regroup. The
regroup algorithm determines the hardware element(s) that has failed (which
could be a processor or the communications between a group of processors, or
it could be multiple failures) and also determines which system resources are
still available, avoiding bisection of the system, called the split-brain condi-
tion, in which communications are lost between two processor groups and each
group tries to continue on its own. At the end of the regroup, each processor
knows the available system resources.



128 REDUNDANCY, SPARES, AND REPAIRS

Tandem Architecture
Dual dynabus

Processor
1

Processor
2

Processor
N

Operations
and support
processor

Dual-ported
device

controller

Dual-ported
device

controller

Dual-ported
device

controller

I/O device

I/O device

I/O device

I/O bus
I/O bus I/O bus

. .

Figure 3.19 Basic architecture of a Tandem NonStop computer system. [Reprinted
with permission of Compaq Computer Corporation.]

The original Tandem systems used custom microprocessors and checking
logic to detect hardware faults. If a hardware fault was detected, the processor
would stop sending output (including the heartbeat signal), causing the remain-
ing processors to regroup. Software fault tolerance is implemented via process
pairs using the Tandem Guardian operating system. A process pair consists
of a primary and a backup process running in separate processors. If the pri-
mary process fails because of a software defect or processor hardware failure,
the backup process assumes all the duties of the primary process. While the
primary process is running, it sends checkpoint messages to the backup pro-
cess for ensuring that the backup process has all the process state information
it needs to assume responsibility in case of a failure. When a processor fail-
ure is detected, the backup processes for all the processes that were running
in that processor take over, using the process state from the last checkpoint
and reexecuting any operations that were pending at the time of the failure.
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Since checkpointing requires very little processing, the “backup” processor is
actually the primary processor for many tasks. In other words, all Tandem pro-
cessors spend most of their time processing transactions; only a small fraction
of their time is spent doing backup processing to protect against a failure.

In the Tandem system, hardware fault tolerance consists of multiple proces-
sors performing the same operations and determining the correct output by using
either comparative or self-checking logic. The redundant processors serve as
standbys for the primary processor and do not perform additional useful work. If
a single processor fails, a redundant processor continues to operate, which pre-
vents an outage. The process pairs in the Tandem system provide software fault
tolerance and, like hardware fault tolerance, provide the ability to recover from
single hardware failures. Unlike hardware fault tolerance, however, they pro-
tect against transient software failures because the backup process reexecutes an
operation rather than simultaneously performing the same operation.

The K-series NonStop Himalaya computers released by Tandem in 1992 oper-
ate under the same basic principles as the original machines. However, they use
commercial microprocessors instead of custom-designed microprocessors. Since
commercial microprocessors do not have the custom fault-detection capabilities
of custom-designed microprocessors, Tandem had to develop a new architec-
ture to ensure data integrity. Each NonStop Himalaya processor contains two
microprocessor chips. These microprocessors are lock-stepped—that is, they run
exactly the same instruction stream. The output from the two microprocessors
is compared; if it should ever differ, the processor output is frozen within a few
nanoseconds so that the corrupted data cannot propagate. The output compari-
son provides the processor fault detection. The takeover is still managed by pro-
cess pairs using the Tandem operating system, which is now called the NonStop
Kernel.

The S-series NonStop Himalaya servers released in 1997 provided new
architectural features. The processor and I/ O buses were replaced with a net-
work architecture called ServerNet (see Fig. 3.20). The network architecture
allows any device controller to serve as the backup for any other device con-
troller. ServerNet incorporates a number of data integrity and fault-isolation
features, such as a 32-bit cyclic redundancy check (CRC) [Siewiorek, 1992, pp.
120–123], on all data packets and automatic low-level link error detection. It
also provides the interconnect for NonStop Himalaya servers to move beyond
the 16-processor node limit using an architecture called ServerNet Clusters.
Another feature of NonStop Himalaya servers is that all hardware replacements
and reconfigurations can be done without interrupting system operations. The
database can be reconfigured and some software patches can be installed with-
out interrupting system operations as well.

The S-series line incorporates many additional fault-tolerant features. The
power and cooling systems are redundant and derated so that a single power
supply or fan has sufficient capability to power or cool an entire cabinet. The
speed of the remaining fans automatically increases to maintain cooling if any fan
should fail. Temperature and voltage levels at key points are continuously mon-
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Figure 3.20 S-Series NonStop Himalaya architecture. (Supplied courtesy of Wood
[2001].)

itored, and alarms are sounded whenever the levels exceed safe thresholds. Bat-
tery backup is provided to continue operation through any short-duration power
outages (up to 30 seconds) and to preserve the contents of memory to provide a
fast restart from outages shorter than 2 hours. (If it is necessary to protect against
longer power outages, the common solution for high-availability systems is to
provide a power supply with backup storage batteries plus DC–AC converters
and diesel generators to recharge the batteries. The superior procedure is to have
autostart generators, which automatically start when a power outage is detected;
however, they must be tested—perhaps once a week—to see if they will start.)
All controllers are redundant and dual-ported to serve the primary and secondary
connection paths. Each hardware and software module is self-checking and halts
immediately instead of permitting an error to propagate—a concept known as the
fail-fast design, which makes it possible to determine the source of errors and cor-
rect them. NonStop systems incorporate state-of-the-art memory-detection and
-correction codes to correct single-bit errors, detect double-bit errors, and detect
“nibble” errors (3 or 4 bits in a row). Tandem has modified the memory vendor’s
error-correcting code (ECC) to include address bits, which helps avoid the read-
ing from or writing to the wrong block of memory. Active techniques are used to
check for latent faults. A background memory “sniffer” checks the entire mem-
ory every few hours.

System data is protected in many ways. The multiple data paths provided
for fault tolerance are alternately used to ensure correct operation. Data on
all the buses is parity-protected, and parity errors cause immediate interrupts
to trigger error recovery. Disk-driver software provides an end-to-end check-
sum that is appended to a standard 512-byte disk sector. For structured data,
such as SQL files, an additional end-to-end checksum (called a block check-
sum) encodes data values, the physical location of the data, and transaction
information. These checksums protect against corrupted data values, partial
writes, and misplaced or misaligned data. NonStop systems can use the Non-
Stop remote duplicate database facility (NonStop RDF) to help recover from
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disasters such as earthquakes, hurricanes, fires, and floods. NonStop RDF sends
database updates to a remote site up to thousands of miles away. If a disas-
ter occurs, the remote system takes over within a few minutes without losing
any transactions. NonStop Himalaya servers are even “coffee fault-tolerant,”
meaning the air vents are on the sides to protect against coffee spills on top of
the processor cabinet (or, more likely, if the sprinkler system in the computer
room is triggered). One would hope that Tandem has also thought about pro-
tection against failure modes caused by inadvertant operator errors. Tandem
plans to use the alpha microprocessor sometime in the future.

To analyze the Tandem fault-tolerant system, one would formulate a Markov
model and proceed as was done previously in this chapter (but for more detail,
consult Chapter 4). One must also anticipate the possibilities of errors of com-
mission and omission in generating and detecting the heartbeat signals. This
could be modeled by a coverage factor representing the fraction of proces-
sor faults that the heartbeat signal would diagnose. (This basic approach is
explored in the problems at the end of this chapter.) In Chapter 4, the avail-
ability formulas are derived for a parallel system to compare with the avail-
ability of a voting system [see Eq. (4.48) and Table 4.9]. Typical computations
at the end of Section 4.9.2 for a parallel system apply to the Tandem system.
A complete analysis would require the use of a Markov modeling program and
multiple models that include more detail and fault-tolerant features.

The original Guardian operating system was responsible for creating, destroy-
ing, and monitoring processes, reporting on the failure or restoration of proces-
sors, and handling the conventional functions of operating systems in addition to
multiprogramming system functions and I/ O handling. The early Guardian sys-
tem required the user to exactingly program the checkpointing, the record lock-
ing, and other functions. Thus expert programmers were needed for these tasks,
which were often slow in addition to exacting. To avoid such problems, Tandem
developed two simpler software systems: the terminal control program (TCP)
called Pathway, which provided users with a control program having screen-
handling modules written in a higher level (COBOL-like) language to issue
checkpoints and dealt with process management and processor failure; and the
transaction-monitoring facility (TMF) program, which dealt with the consistency
and recoverability of the database and provided concurrence control. The new
Himalaya software greatly simplifies such programming, and it provides options
to increase throughput. It also supports Tuxedo, Corba, and Java to allow users to
write to industry-standard interfaces and still get the benefits of fault tolerance.
For further details, see Anderson [1985], Baker [1995], Siewiorek [1992, p. 586],
Wood [1995], and the Tandem Web site: [http:/ / himalaya.compaq.com]. Also,
see the discussion in Chapter 5, Section 5.10.

3.10.2 Stratus Systems

The Stratus line of continuous processing systems is designed to provide unin-
terrupted operation without loss of data and performance degradation, as well
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as without special application programming. In 1999, Stratus was acquired by
Investcorp, but it continues its operation as Stratus Computers. Stratus’s cus-
tomers include major credit card companies, 4 of the 6 U.S. regional securi-
ties exchanges, the largest stock exchange in Asia, 15 of the world’s 20 top
banks, 9-1-1 emergency services, and others. (The author thanks Larry Sher-
man of Stratus Computers for providing additional information about Stratus.)
The Stratus system uses the basic architecture shown in Fig. 3.21. Compari-
son with the Tandem system architecture shown in Fig. 3.19 shows that both
systems have duplicated CPUs, I/ O and memory controllers, disk controllers,
communication controllers, and high-speed buses. In addition, power supplies
and other buses are duplicated.
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The Stratus lockstepped microprocessor architecture appears similar to the
Tandem architecture described in the previous section, but fault tolerance
is achieved through different mechanisms. The Stratus architecture is hard-
ware fault-tolerant, with four microprocessors (all running the same instruction
stream) configured as redundant pairs of physical processors. Processor failure
is detected by a microprocessor miscompare, and the redundant processor (pair
of microprocessors) continues processing with no takeover time. The Tandem
architecture is software fault-tolerant; although failure of a processor is also
detected by a microprocessor miscomparison, takeover is managed by software
requiring a few seconds’ delay.

To summarize the comparison, the Tandem system is more complex, higher
in cost, and aimed at the upper end of the market. The Stratus system, on the
other hand, is more simple, lower in cost, and competes in the middle and
lower end portion of the market.

Each major Stratus circuit board has self-checking hardware that contin-
uously monitors operation, and if the checks fail, the circuit board removes
itself from service. In addition, each CPU board has two or more CPUs that
process the same data, and the outputs are compared at each clock cycle. If
the comparison fails, the CPU board removes itself from service and its twin
board continues processing without stop. Stratus calls the architecture with two
CPUs being checked pair and spare, and claims that its architecture is superior
in detecting transient errors, is lower in cost, and does not require intensive
programming. Tandem points out that software fault tolerance also protects
against software faults (90% of all software faults are transient); note, how-
ever, that there is the small possibility of missed or imagined software errors.
The Stratus approach requires a dedicated backup processor, whereas the Tan-
dem system can use the backup processor in a two-processor configuration to
do “useful work” before a failure occurs.

For a further description of the pair-and-spare architecture, consider logical
processor A and B. As previously discussed in the case of Tandem, logical
processor A is composed of lockstepped microprocesors A1 and A2 and logical
processor B is composed of lockstepped microprocessors B1 and B2. Processors
A1 and A2 compare outputs and will lock out processor A if there is disagree-
ment. A similar comparison is made for processor B, as lockout of processor B
occurs if processors B1 and B2 disagree. The basic mode of failure is if there
is a failure of one processor from logical A and one processor from logical
B. The outputs of logical processors A and B are not further checked and are
ORED on the output bus. Thus, if a very rare failure mode occurs where both
processors A1 and A2 fail in the same manner and if both have the same wrong
output, the comparitor would be fooled, the faulty output of logical processor
A would be ORED with the correct output of logical processor B, and wrong
results would appear on the output bus. Because of symmetry, identical failures
of B1 and B2 would also pass the comparitor and corrupt the output. Although
these two failure modes would be rare, they should be included and evaluated
in a detailed analysis.
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Recovery of partially completed transactions is performed by software using
the Stratus virtual operating system (VOS) and the transaction protection facil-
ity (TPF). The latest Stratus servers also support Microsoft Windows 2000
operating systems. The Stratus Continuum 400 systems are based on the
Hewlett-Packard (HP) PA-RISC microprocessor family and run a version of
the HP-UX operating system.

The system can be expanded vertically by adding more processor boards or
horizontally via the StrataLINK. The StrataLINK will connect modules within
a building or miles away if extenders are used. Networking allows distributed
processing at remote distances under control of the VOS: one module could
run a program, another could acess a file, and a third could print the results. To
shorten repair time, a board taken out of service is self-tested to determine if it
is a transient or permanent fault. In the former case, the system automatically
returns the board to service. In the case of a permanent failure, however, the
customer assistance center can immediately ship replacement parts or aid in the
diagnosis of problems by means of a secured, built-in communications link.

Stratus claims that its systems have about five minutes of downtime per
year. One can relate this statistic to availability if we start with Eq. (4.53),
which was derived for a single element; however, in this case the element is
a system. Repair rates are related to the amount of downtime in an interval
and failure rates to the amount of uptime in an interval. For convenience, we
let the interval be one year and denote the average uptime by U and the aver-
age downtime by D. The repair rate, in repairs per year, is the reciprocal of
the years per repair, which is the downtime per year; thus, m = 1 D . Similar
reasoning leads to a relationship for the failure rate, l = 1 U. Substituting the
above expressions for l and m into Eq. (B95a) yields (also see Section 1.3.4):
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+
1
U

�

U

U + D
(3.80)

Since a year contains 8,766 hours, and 5 minutes of downtime is 5/ 60 of an
hour, we can substitute in Eq. (3.80) and obtain

Ass �
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� 0.9999905 (3.81)

Stratus calls this result a “five-nines availability.” The quoted value is
slightly less than the Bell Labs’ ESS No. 1A goal of 2 hours downtime in
40 years (which yields an availability of 0.9999943) and is equivalent to 3
minutes of downtime per year (see Section 1.3.5). Of course, it is easier to
compare the unavailability, A = 1 –  A , of such highly reliable systems. Thus
ESS No. 1 had an unavailability goal of 57 × 10−7, and Stratus claims that it
achieves an unavailability of 95 × 10−7, which is (5/ 3) larger. The availability

/
/
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formulation given in Eq. (3.80) is often used to estimate availability based on
measured up- and downtimes. For more details on the derivation, see Shooman
[1990, pp. 358–359].

To analyze such a system, one would formulate a Markov model and pro-
ceed as was done in this chapter and also in Chapter 4. One must also anti-
cipate the possibilities of errors of commission and omission in the hardware
comparisons of the various processors. This could be modeled by a coverage
factor representing the fraction of processor faults that go undetected by the
comparison logic. This basic approach is explored in the problems at the end
of this chapter.

Considerable effort must be expended during the design of a high-availabil-
ity computer system to decrease the mean time between repairs and increase
the mean time between failures. Stratus provides a number of diagnostic LEDs
(light-emitting diodes) to aid in diagnosis and repair. The status of various sub-
systems is indicated by green, red, and sometimes amber lights (there may also
be flashing red lights). Also, considerable emphasis is given to the power sup-
ply. Manufacturers of high-reliability equipment know that the power supply
of a computer system is sometimes an overlooked feature but that it is of great
importance. During the late 1960s, the SABRE airlines reservation system was
one of the first large-scale multilocation transaction systems. During the early
stages of operation, many of the system outages were caused by power supply
problems [Shooman, 1983, p. 502]. As was previously stated, power supplies
for such large critical installations as air traffic control and nuclear plant con-
trol are dual systems with a local power company as a primary supply backed
up by storage batteries with DC–AC converters and diesel generators as a third
line of defense. Small details must be attended to, such as running the diesel
generators for a few minutes a week to ensure that they will start in an emer-
gency. The Stratus power supply system contains three or four power supply
units as well as backup batteries and battery-temperature monitoring. The bat-
teries have sufficient load capacity to power the system for up to four minutes,
which is sufficient for one minute of operation during a power fluctuation plus
time for safe shutdown, or four consecutive outages of less than one minute
without time to recharge the batteries. Clearly, long power outages will bring
down the system unless there are backup batteries and generators. High battery
temperature and low battery voltage are monitored. To increase the MTTF of
the fan system (and to reduce acoustic noise), fans are normally run at two-
thirds speed, and in the case of overtemperature, failures, or other warning
conditions, they increase to full speed to enhance cooling.

For more details on Stratus systems, see Anderson [1985], Siewiorek [1992,
p. 648], and the Stratus Web site: [http:/ / www.stratus.com].

3.10.3 Clusters

In general, the term cluster refers to a group of off-the-shelf computers orga-
nized by software to serve a specific purpose requiring very large computing
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power or high availability, fault tolerance, and on-line repairability. We are of
course interested in the latter application of clustering; however, we should first
cite two historic achievements of clusters designed for the former application
class [Hennessy, 1998, pp. 734–736].

• In 1997, the IBM SP2 computer, a cluster of 32 IBM nodes similar to
the RS/ 6000 workstation with added hardware accelerators for chessboard
evaluation, beat the then-reigning world chess champion Gary Kasparov
in a human–machine contest.

• A cluster of 100 Sun UltraSPARC computers at the University of
California–Berkeley, connected by 160 MB/ sec Myrinet switches, set two
world records: (a), 8.6 gigabytes of data stored on disk was sorted in 1
minute; and (b), a 40-bit DES key encrypted message was cracked in 3.5
hours.

Fault-tolerant applications of clusters involve a different architecture. The
simplest scheme is to have two computers: one that is processing on-line and
the other that is operating in standby. If the operating system senses a fail-
ure of the on-line computer, a recovery procedure is started to bring the sec-
ond computer on line. Unfortunately, such an architecture results in downtime
during the recovery period, which may be either satisfactory or unsatisfactory
depending on the application. For a university-computing center, downtime is
acceptable as long as it is minimal, but even a small amount of downtime
would be inadequate for electronic funds transfer. A superior procedure is to
have facilities in the operating system that allow transfer from the on-line to
the standby computer without the system going down and without the loss of
information. The Tandem system can be considered a cluster, and some of the
VAX clusters in the 1980s were very popular.

As an example, we will discuss the hardware and Solaris operating-system
features used by a Sun cluster [www.sun.com, 2000]. Some of the incorporated
fault-tolerant features are the following:

• Error-correcting codes are used on all memories and caches.
• RAID controllers.
• Redundant power supplies and cooling fans, each with overcapacity.
• The system can lock out bad components during operation or when the

server is rebooted.
• The Solaris 8 operating system has error-capture capabilities, and more

such capabilities will be included in future releases.
• The Solaris 8 operating system provides recovery with a reboot, though

outages occur.
• The Sun Cluster 2.2 software, which is an add-on to the Solaris system,

will handle up to four nodes, providing networking and fiber-channel inter-
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connections as well as some form of nonstop processing when failures
occur.

• The Sun Cluster 3.0 software, released in 2000, will improve on Sun Clus-
ter 2.2 by increasing the number of nodes and simplifying the software.

It seems that the Sun Cluster software is now beginning to develop fault-tol-
erant features that have been available for many years in the Tandem systems.
For a comprehensive discussion of clusters, see Pfister [1995].
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PROBLEMS

3.1. Assume that a system consists of five series elements. Each of the elements
has the same reliability p, and the system goal is Rs = 0.9. Find p.

3.2. Assume that a system consists of five series elements. Three of the ele-
ments have the same reliability p, and two have known reliabilities of
0.95 and 0.97. The system goal is Rs = 0.9. Find p.

3.3. Assume that a system consists of five series elements. The initial reli-
ability of all the elements is 0.9, each costing $1,000. All components
must be improved so that they have a lower failure rate for the sys-
tem to meet its goal of Rs = 0.9. Suppose that for three of the elements,
each 50% reduction in failure probability adds $200 to the element cost;
for the other two components, each 50% reduction in failure probability
adds $300 to the element cost. Find the lowest cost system that meets
the system goal of Rs = 0.9.
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3.4. Would it be cheaper to use component redundancy for some or all of the
elements in problem 3.3? Explain. Give the lowest cost system design.

3.5. Compute the reliability of the system given in problem 3.1, assuming
that one is to use
(a) System reliability for all elements.
(b) Component reliability for all elements.
(c) Component reliability for selected elements.

3.6. Compute the reliability of the system given in problem 3.2, assuming
that one is to use
(a) System reliability for all elements.
(b) Component reliability for all elements.
(c) Component reliability for selected elements.

3.7. Verify the curves for m = 3 for Fig. 3.4.

3.8. Verify the curves for Fig. 3.5.

3.9. Plot the system reliability versus K (0 < K < 2) for Eqs. (3.13) and
(3.15).

3.10. Verify that Eq. (3.16) leads to the solution Kp = 0.9772 for p = 0.9.

3.11. Find the solution for problem 3.10 corresponding to p = 0.95.

3.12. Use the approximate exponential expansion method discussed in Section
3.4.1 to compute an approximate reliability expression for the systems
shown in Figs. 3.3(a) and 3.3(b). Use these expressions to compare the
reliability of the two configurations.

3.13. Repeat problem 3.12 for the systems of Fig. 3.6(a) and 3.6(b). Are you
able to verify the result given in problem 3.10 using these equations?
Explain.

3.14. Compute the system hazard function as discussed in Section 3.4.2 for
the systems of Fig. 3.3(a) and Fig. 3.3(b). Do these expressions allow
you to compare the reliability of the two configurations?

3.15. Repeat problem 3.14 for the systems of Fig. 3.6(a) and 3.6(b). Are you
able to verify the result given in problem 3.10 using these equations?
Explain.

3.16. The mean time to failure, MTTF, is defined as the mean (expected value,
first moment) of the time to failure distribution [density function f (t)].
Thus, the basic definition is

MTTF � ∫
∞

t � 0
t f(t) dt
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Using integration by parts, show that this expression reduces to Eq.
(3.24).

3.17. Compute the MTTF for Fig. 3.2(a)–(c) and compare.

3.18. Compute the MTTF for
(a) Fig. 3.3(a) and (b).
(b) Fig. 3.6(a) and (b).
(c) Fig. 3.8.
(d) Eq. (3.40).

3.19. Sometimes a component may have more than one failure state. For
example, consider a diode that has 3 states: good, x1; failed as an open
circuit, xo; failed as a short circuit, xs;
(a) Make an RBD model.
(b) Write the reliability equation for a single diode.
(c) Write the reliability equation for two diodes in series.
(d) Write the reliability equation for two diodes in parallel.
(e) If the P(x1)= 0.9, P (xo) = 0.07, P(xs) = 0.03, calculate the reliability

for parts (b), (c), and (d).

3.20. Suppose that in problem 3.19 you had only made a two-state
model—diode either good or bad, P(xg) = 0.9, P(xb) = 0.1. Would the
reliabilities of the three systems have been the same? Explain.

3.21. A mechanical component, such as a valve, can have two modes of fail-
ure: leaking and blocked. Can we treat this with a three-state model as
we did in problem 3.19? Explain.

3.22. It is generally difficult to set up a reliability model for a system with
common mode failures. Oftentimes, making a three-state model will
help. Suppose x1 denotes element 1 that is good, xc denotes element
1 that has failed in a common mode, and xi denotes element 1 that
has failed in an independent mode. Set up reliability models and equa-
tions for a single element, two series elements, and two parallel elements
based on the one success and two failures modes. Given the probabili-
ties P(x1) = 0.9, P(xc) = 0.03, P(xi) = 0.07, evaluate the reliabilities of
the three systems.

3.23. Suppose we made a two-state model for problem 3.22 in which the ele-
ment was either good or bad, P(x1) = 0.9, P(x1) = 0.10. Would the reli-
abilities of the single element, two in series, and two in parallel be the
same as computed in problem 3.22?

3.24. Show that the sum of Eqs. (3.65a–c) is unity in the time domain. Is this
result correct? Explain why.

3.25. Make a model of a standby system with one on-line element and two
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standby elements, all with identical failure rates. Formulate the Markov
model, write the equations, and solve for the reliability.

3.26. Compute the MTTF for problem 3.25.

3.27. Extend the model of Fig. 3.11 to n states. If all the transition probabilities
are equal, show that the state probabilities follow the Poisson distribu-
tion. (This is one way of deriving the Poisson distribution.). Hint: use
of Laplace transforms helps in the derivation.

3.28. Compute the MTTF for problem 3.27.

3.29. Compute the reliability of a two-element standby system with unequal
on-line failure rates for the two components. Modify Fig. 3.11.

3.30. Compute the MTTF for problem 3.29.

3.31. Compute the reliability of a two-element standby system with equal on-
line failure rates and a nonzero standby failure rate.

3.32. Compute the MTTF for problem 3.31.

3.33. Verify Fig. 3.13.

3.34. Plot a figure similar to Fig. 3.13, where Eq. (3.60) replaces Eq. (3.58).
Under what conditions are the parallel and standby systems now approx-
imately equal? Compare with Fig. 3.13 and comment.

3.35. Reformulate the Markov model of Fig. 3.14 for two nonidentical parallel
elements with one repairman; then write the equations and solve for the
reliability.

3.36. Compute the MTTF for problem 3.35.

3.37. Reformulate the Markov model of Fig. 3.14 for two identical parallel
elements with one repairman and a nonzero standby failure rate. Write
the equations and solve for the reliability.

3.38. Compute the MTTF for problem 3.37.

3.39. Compute the reliability of a two-element standby system with unequal
on-line failure rates for the two components. Include coverage. Modify
Fig. 3.11 and Fig. 3.15.

3.40. Compute the MTTF for problem 3.39.

3.41. Compute the reliability of a two-element standby system with equal on-
line and a nonzero standby failure rate. Include coverage.

3.42. Compute the MTTF for problem 3.1.

3.43. Plot a figure similar to Fig. 3.13 where we compare the effect of cov-
erage (rather than an imperfect switch) in reducing the reliability of
a standby system. For what value of coverage are the parallel and
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standby systems approximately equal? Compare with Fig. 3.13 and
comment.

3.44. Reformulate the Markov model of Fig. 3.14 for two nonidentical parallel
elements with one repairman; then write the equations and solve for the
reliability. Include coverage.

3.45. Compute the MTTF for problem 3.44.

3.46. Reformulate the Markov model of Fig. 3.14 for two identical parallel
elements with one repairman and a nonzero standby failure rate. Write
the equations and solve for the reliability. Include coverage.

3.47. Compute the MTTF for problem 3.46.

(In the following problems, you may wish to use a program that solves
differential equations or Laplace transform equations algebraically or
numerically: Maple, Mathcad, and so forth. See Appendix D.)

3.48. Compute the availability of a single element with repair. Draw the
Markov model and show that the availability becomes

A(t) �
m

l + m
+

l

l + m
e− (l + m)t

Plot this availability function for m = 10l, m = 100l, and m = 1, 000l.

3.49. If we apply the MTTF formula to the A(t) function, what quantity do
we get? Compute for problem 3.48 and explain.

3.50. Show how we can get the steady-state value of A(t) for problem 3.48,

A(t � ∞) �
m

l + m

in the following two ways:
(a) Set the time derivatives equal to zero in the Markov equations and

and combine with the equation that states that the sum of all the
probabilities is unity.

(b) Use the Laplace transform final value theorem.

3.51. Solve the model of Fig. 3.16 for one repairman, an ordinary parallel
system, and values of m = 10l, m = 100l, and m = 1, 000l. Plot the
results.

3.52. Find the steady-state value of A(t � ∞) for problem 3.51.

3.53. Solve the model of Fig. 3.16 for one repairman, a standby system, and
values of m = 10l, m = 100l, and m = 1, 000l. Plot the results.

3.54. Find the steady-state value of A(t � ∞) for problem 3.53.
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3.55. Solve the model of Fig. 3.16 augmented to include coverage for one
repairman, an ordinary parallel system, and values of m = 10l, m = 100l,
m = 1, 000l, c = 0.95, and c = 0.90. Plot the results.

3.56. Find the steady-state value of A(t � ∞) for problem 3.55.

3.57. Solve the model of Fig. 3.16 augmented to include coverage for one
repairman, a standby system, and values of m = 10l, m = 100l, m =
1, 000l, c = 0.95, and c = 0.90. Plot the results.

3.58. Find the steady-state value of A(t � ∞) for problem 3.57.

3.59. Show by induction that Eq. (3.11) is always greater than unity.

3.60. Derive Eqs. (3.22) and (3.23).

3.61. Derive Eqs. (3.27) and (3.28).

3.62. Consider the effect of common mode failures on the computation of Eq.
(3.45). How large would the probability of common mode failures have
to be to negate the advantage of a 20 : 21 system?

3.63. Formulate a Markov model for a Tandem computer system. Include
the possibilities of errors of commission and omission in generating the
heartbeat signal—a coverage factor representing the fraction of proces-
sor faults that the heartbeat signal would diagnose. Discuss, but do not
solve.

3.64. Formulate a Markov model for a Stratus computer system. Include the
possibilities of errors of commission and omission in the hardware com-
parison of the various processors. This could be modeled by a coverage
factor representing the fraction of processor faults that go undetected by
the comparison logic. Discuss, but do not solve.

3.65. Compare the models of problems 3.63 and 3.64. What factors will deter-
mine which system has a higher availability?

3.66. Determine what fault-tolerant features are supported by the latest release
of the Sun operating system.

3.67. Model the reliability of the system described in problem 3.66.

3.68. Model the availability of the system described in problem 3.66.

3.69. Search the Web to see if the Digital Equipment Corporation’s popular
VAX computer clusters are still being produced by Digital now that they
are owned by Compaq. (Note: Tandem is also owned by Compaq.) If
so, compare with the Sun cluster system.
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4.1 INTRODUCTION

In the previous chapter, parallel and standby systems were discussed as means
of introducing redundancy and ways to improve system reliability. After the
concepts were introduced, we saw that one of the complicating design fea-
tures was that of the coupler in a parallel system and that of the decision unit
and switch in a standby system. These complications are present in the design
of analog systems as well as digital systems. However, a technique known as
voting redundancy eliminates some of these problems by taking advantage of
the digital nature of the output of digital elements. The concept is simple to
explain if we view the output of a digital circuit as a string of bits. Without
loss of generality, we can view the output as a parallel byte (8 bits long). (The
concept generalizes to serial or parallel outputs n bits long.) Assume that we
apply the same input to two identical digital elements and compare the out-
puts. If each bit agrees, then either they are both working properly (likely) or
they have both failed in an identical manner (unlikely). Using the concepts of
coding theory, we can describe this as an error-detection, not an error-correc-
tion, method. If we detect a difference between the two outputs, then there is
an error, although we cannot tell which element is in error. Suppose we add
a third element and compare all three. If all three outputs agree bitwise, then
either all three are working properly (most likely) or all three have failed in the
same manner (most unlikely). If two of the element outputs (say, one and three)
agree, then most likely element two has failed and we can rely on the output
of elements one and three. Thus with three elements, we are able to correct
one error. If two errors have occurred, it is very possible that they will fail in the
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same manner, and the comparison will agree (vote along) with the majority.
The bitwise comparison of the outputs (which are 1s or 0s) can be done easily
with simple digital logic. The next section references some early works that
led to the development of this concept, now called N-modular redundancy.

This chapter and Chapter 3 are linked in many ways. For example, the tech-
nique of voting reliability joins the parallel and standby system reliability of
the previous chapter as the three most common techniques for fault tolerance.
(Also, the analytical techniques involving binomial probabilities and Markov
models are used in both chapters.) Thus many of the analyses in this chapter
that are aimed at comparing the three techniques constitute a continuation of
the analyses that were begun in the previous chapter.

The reader not familiar with the binomial distribution discussed in Sections
A5.3 and B2.4 or the concepts of Markov modeling in Sections A8 and B7
should read the material in these appendix sections first. Also, the introductory
material on digital logic in Appendix C is used in this chapter for discussing
voter circuitry.

4.2 THE HISTORY OF N-MODULAR REDUNDANCY

The history of majority voting begins with the work of some of the most illus-
trious mathematicians of the 20th century, as outlined by Pierce [1965, pp.
2–7]. There were underlying currents of thought (linked together by theoreti-
cians) that focused on the following:

1. How to use automata theory (logic gates and state machines) to model
digital circuit and digital computer operation.

2. A model of the human nervous system based on an interconnection of
logic elements.

3. A means of making reliable computing machines from unreliable com-
ponents.

The third topic was driven by the maintenance problems of the early com-
puters related to relay and vacuum tube failures. A study of the Univac com-
puter that was undertaken by Bell and Newell [1971, pp. 157–169] yields
insight into these problems. The first Univac system passed its acceptance tests
and was put into operation by the Bureau of the Census in March 1951. This
machine was designed to operate 24 hours per day, 7 days per week (168
hours), except for approximately 32 hours of regularly scheduled preventa-
tive maintenance per week. Thus the availability would be 136/ 168 (81%) if
there were no failures. In the 7-month period from June to December 1951, the
computer experienced about 22 hours of nonscheduled engineering time (repair
time due to failures), which reduced availability to 114/ 168 (68%). Some of
the stated causes of troubles were uniservo failures, noise, long time constants,
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and tube failures occurring at a rate of about 2 per week. It is therefore clear
that reliability was a compelling issue.

Moore and Shannon of Bell Labs in a classic article [1956] developed meth-
ods for making reliable relay circuits by various series and parallel connections
of relay contacts. (The relay was the active element of its time in the switching
networks of the telephone company as well as many elevator control systems
and many early computers built at Bell Labs starting in 1937. See Randell
[1975, Chapter VI] and Shooman [1990, pp. 310–320] for more information.)
The classic paper on majority logic was written by John von Neuman (pub-
lished in the work of Moore and Shannon [1956]), who developed the basic
idea of majority voting into a sophisticated scheme with many NAND elements
in parallel. Each input to the NAND element is supplied by a bundle of N iden-
tical inputs, and the 2N inputs are cross-coupled so that each NAND element
has one input from each bundle. One of von Neuman’s elements was called
a restoring organ, since erroneous data that entered at the input was com-
pared with the correct input data, producing the correct output and restoring
the data.

4.3 TRIPLE MODULAR REDUNDANCY

4.3.1 Introduction

The basic modular redundancy circuit is triple modular redundancy (often
called TMR). The system shown in Fig. 4.1 consists of three parallel digi-
tal circuits—A, B, and C—all with the same input. The outputs of the three
circuits are compared by the voter, which sides with the majority and gives
the majority opinion as the system output. If all three circuits are operating
properly, all outputs agree; thus the system output is correct. However, if one
element has failed so that it has produced an incorrect output, the voter chooses
the output of the two good elements as the system output because they both
agree; thus the system output is correct. If two elements have failed, the voter
agrees with the majority (the two that have failed); thus the system output is
incorrect. The system output is also incorrect if all three circuits have failed.
All the foregoing conclusions assume that a circuit fault is such that it always
yields the complement of the correct input. A slightly different failure model
is often used that assumes the digital circuit to have a fault that makes it stuck-
at-one (s-a-1) or stuck-at-zero (s-a-0). Assuming that rapidly changing signals
are exciting the circuit, a failure occurs within fractions of a microsecond of
the fault occurrence regardless of the failure model assumed. Therefore, for
reliability purposes, the two models are essentially equivalent; however, the
error-rate computation differs from that discussed in Section 4.3.3. For further
discussion of fault models, see Siewiorek [1982, pp. 17; 105–107] and [1992,
pp. 22; 32; 35; 37; 357; 804].



148 N-MODULAR REDUNDANCY

Digital circuit

Digital circuit

Digital circuit

A

C

B
Voter

System
inputs
(0,1)

System
output
(0,1)

Figure 4.1 Triple modular redundancy.

4.3.2 System Reliability

To apply TMR, all circuits—A, B, and C—must have equivalent logic and
must have the same truth tables. In most cases, they are three replications of
the same design and are identical. Using this assumption, and assuming that
the voter does not fail, the system reliability is given by

R � P(A . B + A . C + B . C ) (4.1)

If all the digital circuits are independent and identical with probability of suc-
cess p, then this equation can be rewritten as follows in terms of the binomial
theorem.

R � B(3 : 3) + B(2 : 3)

� � 3
3 � p3(1 − p)0 + � 3

2 � p2(1 − p)1

� 3p2
− 2p3

� p2(3 − 2p) (4.2)

This is, of course, the reliability expression for a two-out-of-three system. The
assumption that the digital elements fail so that they produce the complement
of the correct input may not be valid. (It is, however, a worst-case type of
result and should yield a lower bound, i.e., a pessimistic answer.)

4.3.3 System Error Rate

The probability model derived in the previous secton enabled us to compute
the system reliability, that is, the probability of no failures. In many prob-
lems, this is the primary measure of interest; however, there are also a number
of applications in which another approach is important. In a digital commu-
nications system, for example, we are interested not only in the probability
that the system makes no errors but also in the error rate. In other words, we
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assume that errors from temporary equipment malfunction or noise are not
catastrophic if they occur only rarely, and we wish to compute the probability
of such occurrence. Similarly, in digital computer processing of non-safety-
critical data, we could occasionally tolerate an error without shutting down
the operation for repair. A third, less clear-cut example is that of an inertial
guidance computer for a rocket. At every computation cycle, the computer gen-
erates a course change and directs the missile control system accordingly. An
error in one computation will direct the missile off course. If the error is large,
the time between computations moderately long, the missile control system
and dynamics quick to respond, and the flight near its end, the target may be
missed, from which a catastrophic failure occurs. If these factors are reversed,
however, a small error will temporarily steer the missile off course, much as
a wind gust does. As long as the error has cleared in one or two computa-
tion cycles, the missile will rapidly return to its proper course. A model for
computing transmission-error probabilities is discussed below.

To construct the type of failure model discussed previously, we assume that
one good state and two failed states exist:

A1 = element A gives a one output regardless of input (stuck-at-one, or s-a-1)

A0 = element A gives a zero output regardless of input (stuck-at-zero, or
s-a-0)

To work with this three-state model, we shall change our definition of reliability
to “the probability that the digital circuit gives the correct output to any given
input.” Thus, for the circuits of Fig. 4.1, if the correct output is to be a one,
the probability expression is

P1 � 1 − P(A0B0 + A0C0 + B0C0) (4.3a)

Equation (4.3a) states that the probability of correctly indicating a one output is
given by unity minus the probability of two or more “zero failures.” Similarly,
the probability of correctly indicating zero output is given by Eq. (4.3b):

P0 � 1 − P(A1B1 + A1C1 + B1C1) (4.3b)

If we assume that a one output and a zero output have equal probability of
occurrence, 1/ 2, on any particular transmisson, then the system reliability is
the average of Eqs. (4.3a) and (4.3b). If we let

P(A) � P(B) � P(C ) � p (4.4a)

P(A1) � P(B1) � P(C1) � q1 (4.4b)

P(A0) � P(B0) � P(C0) � q0 (4.4c)
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and assume that all states and all elements fail independently, keeping in mind
that the expansion of the second term in Eq. (4.3a) has seven terms, then sub-
stitution of Eqs. (4.4a–c) in Eq. (4.3a) yields the following equations:

P1 � 1 − P(A0B0) − P(A0C0) − P(B0C0) + 2P(A0B0C0) (4.5a)

� 1 − 3q2
0 + 2q3

0 (4.5b)

Similarly, Eq. (4.3b) becomes

P0 � 1 − P(A1B1) − P(A1C1) − P(B1C1) + 2P(A1B1C1) (4.6a)

� 1 − 3q2
1 + 2q3

1 (4.6b)

Averaging Eq. (4.5a) and Eq. (4.6a) gives

P �

P0 + P1

2
(4.7a)

� −

1
2

(3q2
0 + 3q2

1 − 2q3
0 − 2q3

1) (4.7b)

To compare Eq. (4.7b) with Eq. (4.2), we choose the same probability for
both failure modes q0 = q1 = q; therefore, p + q0 + q1 = p + q + q = 1, and
q = (1 – p)/ 2. Substitution in Eq. (4.7b) yields

P �

1
2

+
3
4

p −

1
4

p3 (4.8)

The two probabilities, Eq. (4.2) and Eq. (4.8), are compared in Fig. 4.2.
To interpret the results, it is assumed that the digital circuit in Fig. 4.1 is

turned on at t = 0 and that initially the probability of each digital circuit being
successful is p = 1.00. Thus both the reliability and probability of successful
transmission are unity. If after 1 year of continuous operation p drops to 0.750,
the system reliability becomes 0.844; however, the probability that any one
message is successfully transmitted is 0.957. To put the result another way,
if 1,000 such digital circuits were operated for 1 year, on average 156 would
not be operating properly at that time. However, the mistakes made by these
machines would amount to 43 mistakes per 1,000 on the average. Thus, for
the entire group, the error rate would be 4.3% after 1 year.

4.3.4 TMR Options

Systems with N-modular redundancy can be designed to behave in different
ways in practice [Toy, 1987; Arsenault, 1980, p. 137]. Let us examine in more
detail the way a TMR system works. As previously described, the TMR sys-



TRIPLE MODULAR REDUNDANCY 151

0

0.2

0.4

0.6

0.8

1.0

1 0.75 0.50 0.25 0

Element reliability, p

Pr
ob

ab
ili

ty
 o

f 
su

cc
es

s

Any one transmission correct

All transmissions correct

Reliability of a single element

Figure 4.2 Comparison of probability of successful transmission with the reliability.

tem functions properly if there are no system failures or one system failure.
The reliability expression was previously derived in terms of the probability
of element success, p, as

R � 3p2
− 2p3 (4.9)

If we assume a constant-failure rate l, then each component has a reliability
p =e−l t , and substitution into Eq. (4.9) yields

R(t) � 3e−2l t
− 2e−3l t (4.10)

We can compute the MTTF for this system by integrating the reliability func-
tion, which yields

MTTF �

3
2l

−

2
3l

�

5
6l

(4.11)

Toy calls this a TMR 3–2 system because the system succeeds if 3 or 2 units
are good. Thus when a second failure occurs, the voter does not know which
of the systems has failed and cannot determine which is the good system.

In some cases, additional information is available by such means as obser-
vation (from a human operator or an automated system) of the two remaining
units after the first failure occurs. For agreement in the event of failure, if one
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of the two remaining units has behaved strangely or erratically, the “strange”
system would be locked out (i.e., disconnected) and the other unit would be
assumed to operate properly. In such a case, the TMR system really becomes a
1 : 3 system with a voter, which Toy calls a TMR 3–2–1 system. Equation (4.9)
will change, and we must add the binomial probability of 1 : 3 to the equation,
that is, B(1 : 3) = 3p(1 – p)2, yielding

R � 3p2
− 2p3 + 3p(1 − p)2

� p3
− 3p2 + 3p (4.12a)

−l t gives

R(t) � e−3l t
− 3e−2l t + 3e−l t (4.12b)

and an MTTF calculation yields

MTTF �

1
3l

−

3
2l

+
3
l

�

11
6l

(4.13)

If we compare these results with those given in Table 3.4, we see that on
the basis of MTTF, the TMR 3–2 system is slightly worse than a system with
two standby elements. However, if we make a series expansion of the two
functions and compare them in the high-reliability region, the TMR 3–2 system
is superior. In the case of the TMR 3–2–1 system, it has an MTTF that is
nearly the same as two standby elements. Again, a series expansion of the two
functions and comparison in the high-reliability region is instructive.

For a single element, the truncated expansion of the reliability function e−l t

is

Rs � 1 − l t (4.14)

For a TMR 3–2 system, the truncated expansion of the reliability function, Eq.
(4.9), is

RTMR(3–2) � e−2l t(3 − 2e−l t) � [1 − 2l t + (2l t)2/ 2]
. [3 − 2(1 − l t + (l t)2/ 2)] � 1 − 3(l t)2 (4.15)

For a TMR 3–2–1 system, the truncated expansion of the reliability function,
Eq. (4.12b), is

RTMR(3–2–1) � e−3l t
− 3e−2l t + 3e−l t � [1 − 3l t + (3l t)2/ 2 − (3l t)3/ 6]

− 3[1 − 2l t + (2l t)2/ 2 − (2l t)3/ 6]

+ 3[1 − l t + (l t)2/ 2 − (l t)3/ 6] � 1 − l3t3 (4.16)

Equations (4.14), (4.15), and (4.16) are plotted in Fig. 4.3 showing the
superiority of the TMR systems in the high-reliability region. Note that the
TMR(3–2) system reliability decreases to about the same value as a single

Substitution of p = e
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Figure 4.3 Comparison of the reliability functions of a single system, a TMR 3–2
system, and a TMR 3–2–1 system in the high-reliability region.

element when l t increases from about 0.3 to 0.35. Thus, the TMR is of most
use for l t < 0.2, whereas TMR (3–2–1) is of greater benefit and provides a
considerably higher reliability for l t < 0.5.

For further comparisons of MTTF and reliability for N-modular systems,
refer to the problems at the end of the chapter.

4.4 N-MODULAR REDUNDANCY

4.4.1 Introduction

The preceding section introduced TMR as a majority voting scheme for
improving the reliability of digital systems and components. Of course, this is
the most common implementation of majority logic because of the increased
cost of replicating systems. However, with the reduction in cost of digital sys-
tems from integrated circuit advances, it is practical to discuss N-version voting
or, as it is now more popularly called, N-modular redundancy. In general, N is
an odd integer; however, if we have additional information on which systems
are malfunctioning and also the ability to lock out malfunctioning systems, it
is feasible to let N be an even integer. (Compare advanced voting techniques in
Section 4.11 and the Space Shuttle control system example in Section 5.9.3.)

The reader should note there is a pitfall to be skirted if we contemplate
the design of, say, a 5-level majority logic circuit on a chip. If the five digital
circuits plus the voter are all on the same chip, and if only input and output
signals are accessible, there would be no way to test the chip, for which reason
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additional best outputs would be needed. This subject is discussed further in
Sections 4.6.2 and 4.7.4.

In addition, if we contemplate using N-modular redundancy for a digital
system composed of the three subsystems A, B, and C, the question arises:
Do we use N-modular redundancy on three systems (A1B1C1, A2B2C2, and
A3B3C3) with one voter, or do we apply voting on a lower level, with one
voter comparing A1A2A3, a second comparing B1B2B3, and a third comparing
C1C2C3? If we apply the principles of Section 3.3, we will expect that voting
on a component level is superior and that the reliability of the voter must be
considered. This section explores such models.

4.4.2 System Voting

A general treatment of N-modular redundancy was developed in the 1960s
[Knox-Seith, 1953; Pierce, 1961]. If one considers a system of 2n + 1 voters
(note that this is an odd number), parallel digital elements, and a single perfect
voter, the reliability expression is given by

R �

2n + 1

���
i � n + 1

B(i : 2n + 1) �
2n + 1

���
i � n + 1 �

2n + 1
i � pi(1 − p)2n + 1 − i (4.17)

The preceding expression is plotted in Fig. 4.4 for the case of one, three,
five, and nine elements, assuming p = e−l t . Note that as n � ∞, the MTTF of
the system � 0.69/ l. The limiting behavior of Eq. (4.17) as n � ∞ is dis-
cussed in Shooman [1990, p. 302]; the reliability function approaches the three
straight lines shown in Fig. 4.4. Further study of this figure reveals another
important principle—N-modular redundancy is only superior to a single sys-
tem in the high-reliability region. To be more specific, N-modular redundancy
is superior to a single element for l t < 0.69; thus, in system design, one must
carefully evaluate the values of reliability obtained over the range 0 < t <
maximum mission time for various values of n and l.

Note that in the foregoing analysis, we assumed a perfect voter, that is,
one with a reliability equal to unity. Shortly, we will discard this assumption
and assign a more realistic reliability to voting elements. However, before we
investigate the effect of the voter, it is germane to study the benefits of par-
titioning the original system into subsystems and using voting techniques on
the subsystem level.

4.4.3 Subsystem Level Voting

Assume that a digital system is composed of m series subsystems, each having
a constant-failure rate l, and that voting is to be applied at the subsystem level.
The majority voting circuit is shown in Fig. 4.5. Since this configuration is
composed of just the m-independent series groups of the same configuration
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Figure 4.4 Reliability of a majority voter containing 2n + 1 circuits. (Adapted from
Knox-Seith [1963, p. 12].)

as previously considered, the reliability is simply given by Eq. (4.17) raised
to the mth power.

R � [ 2n + 1

���
i � n + 1 �

2n + 1
i � pi

ss(1 − pss)
2n + 1 − i] m

(4.18)

where pss is the subsystem reliability.
The subsystem reliability pss is, of course, not equal to a fixed value of p; it

instead decays in time. In fact, if we assume that all subsystems are identical
and have constant-hazard and -failure rates, and if the system failure rate if
l, the subsystem failure rate would be l/ n, and pss = e−l t/ m. Substitution of
the time-dependent expression (pss = e−l t/ m

dependent expression for R(t).
Numerical computations of the system reliability functions for several val-

ues of m and n appear in Fig. 4.6. Knox-Seith [1963] notes that as n � ∞, the
MTTF ≈ 0.7m/ l. This is a direct consequence of the limiting behavior of Eq.
(4.17), as was discussed previously.

To use Eq. (4.18) in design, one chooses values of n and m that yield a
value of R, which meets the design goals. If there is a choice of values (n,
m) that yield the desired reliability, one would choose the pair that represents
the lowest cost system. The subject of optimizing voter systems is discussed
further in Chapter 7.

)  into Eq. (4.18) yields the time-
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Figure 4.5 Component redundancy and majority voting.

4.5 IMPERFECT VOTERS

4.5.1 Limitations on Voter Reliability

One of the main reasons for using a voter to implement redundancy in a digital
circuit or system is the ease with which a comparison is made of the digital
signals. In this section, we consider an imperfect voter and compute the effect
that voter failure will have on the system reliability. (The reader should com-
pare the following analysis with the analogous effect of coupler reliability in
the discussion of parallel redundancy in Section 3.5.)

In the analysis presented so far in this chapter, we have assumed that the
voter itself cannot fail. This is, of course, untrue; in fact, intuition tells us that
if the voter is poor, its unreliability will wipe out the gains of the redundancy
scheme. Returning to the example of Fig. 4.1, the digital circuit reliability will
be called pc, and the voter reliability will be called pv. The system reliability
formerly given by Eq. (4.2) must be modified to yield

R � pv(3p2
c − 2p3

c) � pvp2
c(3 − 2pc) (4.19)

To achieve an overall gain, the voting scheme with the imperfect voter must
be better than a single element, and

R > pc or
R
pc

> 1 (4.20)

Obviously, this requires that
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R
pc

� pvpc(3 − 2pc) > 1 (4.21)

The minimum value of pv for reliability improvement can be computed by
setting pvpc(3 –  2pc) =1. A plot of pc(3 – 2pc) is given in Fig. 4.7. One can
obtain information on the values of pv that allow improvement over a single cir-
cuit by studying this equation. To begin with, we know that since pv is a proba-
bility, 0 < pv < 1. Furthermore, a study of Fig. 4.3 (lower curve) and Fig. 4.4
(note that e−0.69

if 0 < pc < 1. Examining Fig. 4.7, we see that the minimum value of pv will be
obtained when the expression pc(3– 2pc) =3pc – 2p2

c . Differentiating with respect
to pc and equating to zero yields pc = 3/ 4, which agrees with Fig. 4.7. Substitut-
ing this value of pc into [pvpc(3 – 2pc) =1] yields pv = 8/ 9 =0.889, which is the
reciprocal of the maximum of Fig. 4.7. (For additional details concerning voter
reliability, see Siewiorek [1992, pp. 140–141].) This result has been generalized
by Grisamone [1963] for N-voter redundancy, and the results are shown in Table
4.1. This table provides lower bounds on voter reliability that are useful during
design; however, most voters have a much higher reliability. The main objective
is to make pv close enough to unity by using reliable components, by derating,
and by exercising conservative design so that the voter reliability has only a neg-
ligible effect on the value of R given in Eq. (4.19).

4.5.2 Use of Redundant Voters

In some cases, it is not possible to devise individual voters that have a high
enough reliability to meet the requirements of an ultrareliable system. Since the
voter reliability multiplies the N-modular redundancy reliability, as illustrated
in Eq. (4.19), the system reliability can never exceed that of the voter. If voting

= 0.5 ) reminds us that N-modular redundancy is only beneficial
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TABLE 4.1 Minimum Voter Reliability

Number of redundant circuits,
2n + 1 3 5 7 9 11 ∞

Minimum voter reliability, pv 0.889 0.837 0.807 0.789 0.777 0.75

is done at the component level, as shown in Fig. 4.5, the situation is even
worse: the reliability function in Eq. (4.18) is multiplied by pm

v , which can
significantly lower the reliability of the N-modular redundancy scheme. In such
cases, one should consider the possibility of using redundant voters.

The standard TMR configuration including redundant voters is shown in Fig.
4.8. Note that Fig. 4.8 depicts a system composed of n subsystems with a triple
of subsystems A, B, and C and a triple of voters V, V ′, V ′′. Also, in the last stage
of voting, only a single voter can be employed. One interesting property of the
circuit in Fig. 4.8 is that errors do not propagate more than one stage. If we assume
that subsystems A1, B1, and C1 are all operating properly and that their outputs
should be one, then the outputs of the triplicated voters V1 should also all be one.
Say that one circuit, B1, has failed, yielding a zero output; then, each of the three
voters V1, V ′1, V ′′1 will agree with the majority (A1 = C1 = 1) and have a unity
output, and the single error does not show up at the output of any voter. In the case
of voter failure, say that voter V ′′1 fails and yields an erroneous output of zero.
Circuits A2 and B2 will have the correct inputs and outputs, and C2 will have an
incorrect output since it has an incorrect input. However, the next stage of voters
will have two correct inputs from A2 and B2, and these will outvote the erroneous
output from V ′′1 ; thus, voters V2, V ′2, and V ′′2 will all have the correct output. One
can say that single circuit errors do not propagate at all and that single voter errors
only propagate for one stage.

The reliability expressions for the system of Fig. 4.8 and other similar
arrangements are more complex and depend on which of the following assump-
tions (or combination of assumptions) is true:

1. All circuits Ai, Bi, and Ci and voters Vi are independent circuits or inde-
pendent integrated circuit chips.

2. All circuits Ai, Bi, and Ci are independent circuits or independent inte-
grated circuit chips, and voters Vi, V ′i , and V ′′i are all on the same chip.

A1 A2 An

B1 B2 Bn

C1 C2 Cn

V1 V2 Vn–

Vn– Vn

Vn–

V1 V2

V1 V2

′ ′ ′

′′ ′′ ′′

• • •

• • •

• • •

OutputInput

1

1

1

Figure 4.8 A TMR circuit with redundant voters.
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3. All voters Vi, V ′i , and V ′′i are independent circuits or independent inte-
grated circuit chips, and circuits Ai, Bi, and Ci are all on the same chip.

4. All circuits Ai, Bi, and Ci are all on the same chip, and voters Vi, V ′i ,
and V ′′i are all on the same chip.

5. All circuits Ai, Bi, and Ci and voters Vi, V ′i , and V ′′i are on one large
chip.

Reliability expressions for some of these different assumptions are developed
in the problems at the end of this chapter.

4.5.3 Modeling Limitations

The emphasis of this book up to this point has been on analytical models for
predicting the reliability of various digital systems. Although this viewpoint
will also prevail for the remainder of the text, there are limitations. This section
will briefly discuss a few situations that limit the accuracy of analytical models.

The following situations can be viewed as effects that are difficult to model
analytically, that lead to pessimistic results from analytical models, and that
represent cases in which the methods of Appendix D would be warranted.

1. Some of the failures in digital (and analog) systems are transient in nature
[compare the rationale behind adaptive voting; see Eq. (4.63)]. A trans-
ient failure only occurs over a brief period of time or following certain
triggering events. Thus the equipment may or may not be operating at
any point in time. The analysis associated with the upper curve in Fig.
4.2 took such effects into account.

2. Sometimes, the resulting output of a TMR circuit is correct even if there
are two failures. Suppose that all three circuits compute one bit, that unit
two is good, unit one has failed s-a-1, and that unit three has failed s-a-
0. If the correct output should be a one, then the good unit produces a
one output that votes along with the failed unit one, producing a correct
voter output. Similarly, if zero were the correct output, unit three would
vote with the good unit, producing a correct voter output.

3. Suppose that the circuit in question produces a 4-bit binary word and that
circuit one is working properly and produces the 4-bit word 0110. If the
first bit of circuit two is bad, we obtain 1110; if the last bit of circuit three
is bad, we obtain 0111. Thus, if we vote on the three complete words,
then no two agree, but if we vote on the outputs one bit at a time, we
get the correct results for all bits.

The more complex fault-tolerant computer programs discussed in Appendix
D allow many of these features, as well as other, more complex issues, to be
modeled.
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TABLE 4.2 A Truth Table for a Three-Input Majority
Voter

Inputs Outputs

x1 x2 x3 f v(x1x2x3)

0 0 0 0 Two
0 0 1 0 or
0 1 0 0 three
1 0 0 0 zeroes
1 1 0 1 Two
1 0 1 1 or
0 1 1 1 three
1 1 1 1 ones

4.6 VOTER LOGIC

4.6.1 Voting

It is useful to discuss the structure of a majority logic voter. This allows the
designer to appreciate the complexity of a voter and to judge when majority
voter techniques are appropriate. The structure of a voter is easy to realize
in terms of logic gates and also through the use of other digital logic-design
techniques [Shiva, 1988; Wakerly, 1994]. The basic logic function for a TMR
voter is based on the Truth Table given in Table 4.2, which leads to the simple
Karnaugh map shown in Table 4.3.

A direct approach to designing a majority voter is to include a term for
all the minterms in Table 4.2, that is, the last four rows corresponding to an
output of one. The logic circuit would require three three-input AND gates, a
three-input OR gate, and three inverters (NOT gates) for each bit.

f v(x1x2x3) � x1x2x3 + x1x2x3 + x1x2x3 (4.22)

TABLE 4.3 Karnaugh Map for a TMR Voter

00 01 11 10

0 0 0 1 0

1 0 1 1 1

x1

x2 3x
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TABLE 4.4 Minterm Simplification for Table 4.3

00 01 11 10

0 0 0 1 0

1 0 1 1 1

x1

x2 3x

The minterm simplification for the TMR voter is shown in Table 4.4 and
yields the logic function given in Eq. (4.23). The result of the simplification
yields a voter logic function, as follows:

f v(x1x2x3) � x1x2 + x1x3 + x2x3 (4.23)

Such a circuit is easy to realize with basic logic gates as shown in Fig. 4.9(a),
where three AND gates plus one OR gate is used, and in Fig. 4.9(b), where four
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Figure 4.9 Two circuit realizations of a TMR voter. (a) A voter constructed from
AND/ OR gates; and (b) a voter constructed from NAND gates.
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NAND gates are used. The voter in Fig. 4.9(b) can be seen as equivalent to
that in Fig. 4.9(a) if one examines the output and applies DeMorgan’s theorem:

f v(x1x2x3) � (x1x2 ) . (x1x3 ) . (x2x3 ) � x1x2 + x1x3 + x2x3 (4.24)

4.6.2 Voting and Error Detection

There are many reasons why it is important to know which circuit has failed
when N-modular redundancy is employed, such as the following:

1. If a panel with light-emitting diodes (LEDs) indicates circuit failures, the
operator has a warning about which circuits are operative and can initiate
replacement or repair of the failed circuit. This eliminates much of the
need for off-line testing.

2. The operator can take the failure information into account in making a
decision.

3. The operator can automatically lock out a failed circuit.
4. If spare circuits are available, they can be powered up and switched in

to replace a failed component.

If one compares the voter inputs the first time that a circuit disagrees with
the majority, a failed warning can be initiated along with any automatic action.
We can illustrate this by deriving the logic circuits that would be obtained
for a TMR system. If we let f v(x1x2x3) represent the voter output as before
and f e1(x1x2x3), f e2(x1x2x3), and f e3(x1x2x3) represent the signals that indicate
errors in circuits one, two, and three, respectively, then the truth table shown
in Table 4.5 holds.

A simple logic realization of these 4 outputs using NAND gates is shown in

TABLE 4.5 Truth Table for a TMR Voter Including Error-Detection
Outputs

Inputs Outputs

x1 x2 x3 f v f e 1 f e 2 f e 3

0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 1 0
0 1 1 1 1 0 0
1 0 0 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 1 0 0 0
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Figure 4.10 Circuit that realizes the four switching functions given in Table 4.5 for
a TMR majority voter and error detector.

Fig. 4.10. The reader should realize that this circuit, with 13 NAND gates and 3
inverters, is only for a single bit output. For a 32-bit computer word, the circuit
will have 96 inverters and 416 NAND gates. In Appendix B, Fig. B7, we show
that the integrated circuit failure rate, l, is roughly proportional to the square
root of the number of gates, l ∼

�
g , and for our example, l ∼

�
512 = 22.6.

If we assume that the circuit on which we are voting should have 10 times the
failure rate of the voter, the circuit would have 51,076 or about 50,000 gates.
The implication of this computation is clear: One should not employ voters
to improve the reliability of small circuits because the voter reliability may
wipe out most of the intended improvement. Clearly, it would also be wise
to consult an experienced logic circuit designer to see if the 512-gate circuit
just discussed could be simplified by using other technology, semicustom gate
circuits, available microelectronic chips, and so forth.

The circuit given in Fig. 4.10 could also be used to solve the chip test prob-
lem mentioned in Section 4.4.1. If the entire circuit of Fig. 4.10 were on a
single IC, the outputs “circuit A, B, C bad” would allow initial testing and
subsequent monitoring of the IC.
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4.7 N-MODULAR REDUNDANCY WITH REPAIR

4.7.1 Introduction

In Chapter 3, we argued that as long as the operating system possesses redun-
dancy, the addition of repair raises the reliability. One might ask at the outset
why N-modular redundancy should be used with repair when ordinary parallel
or standby redundancy with repair is very effective in achieving highly reli-
able and available systems. The answer to this question involves the coupling
device reliability that was explored in Chapter 3. To be specific, suppose that
we wish to compare the reliability of two parallel systems with that of a TMR
system. Both systems fail if two of the elements fail, but in the TMR case,
there are three systems that could fail; thus the probability of failure is higher.
However, in general, the coupler in a parallel system will be more complex
than a TMR voter, so a comparison of the two designs requires a detailed eval-
uation of coupler versus voter reliability. Analysis of TMR system reliability
and availability can be found in Siewiorek [1992, p. 335] and in Toy [1987].

4.7.2 Reliability Computations

One might expect that it would be most efficient to seek a general solution
for the reliability and availability of a system with N-modular redundancy and
repair, then specify that N = 3 for a TMR system, N = 5 for 5-level voting, and
so on. A moment’s thought, however, suggests quite a different approach. The
conventional solution for the reliability and availability of a system with repair
involves making a Markov model and solving it much as was done in Chapter
3. In the process, the Laplace transform was computed, and a partial fraction
expansion was used to find the individual exponential terms in the solution. For
the case of repair, in general the repair rates couple the n states, and solution
of the set of n first-order differential equations leads to the solution of an nth-
order differential equation. If one applies Laplace transform theory, solution
of the nth-order differential equation is “transformed into” a simpler sequence
of steps. However, one step involves the solution for the roots of an nth-order
polynomial.

Unfortunately, closed-form solutions exist only for first- through fourth-
order polynomials, and solution procedures for cubic and quadratic polynomi-
als are lengthy and seldom used. We learned in high-school algebra the formula
for the roots of a quadratic equation (polynomial). A somewhat more complex
solution exists for the solution of a cubic, which is listed in various handbooks
[Iyanaga, p. 1396], and also for a fourth-order equation [Iyanaga, p. 1396].

A brief historical note about the origin of closed-form solutions is of interest.
The formula for the third-order equation is generally attributed to Giordamo
Cardano (also known as Jerome Cardan) [Cardano, 1545; Cardan, 1963]; how-
ever, he obtained the solution from Nicolo Tartaglia, and apparently it was dis-
covered by Scipio Ferreo in circa 1505 [Hall, 1957, pp. 480–481]. Ludovico
Ferrari, a pupil of Cardan, developed the formula for the fourth-order equation.
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Neils Henrik Abel developed a proof that no closed-form solution exists for
n ≥ 5 [Iyanaga, p. 1].

The conclusion from the foregoing information on polynomial roots is that
we should start with TMR and other simpler systems if we wish to use alge-
braic solutions. Numerical solutions are always possible for higher-order equa-
tions, and the mathematical software discussed in Appendix D expedites such
an approach; however, the insight of an analytical solution is generally lacking.
Another approach is to use simplifications and approximations such as those
discussed in Appendix B (Sections B8.2 and B8.3). We will use the tried and
true three-step engineering approach:

1. Represent the main features of the system by a low-order model that is
amenable to closed-form solution.

2. Add further effects one at a time that complicate the model; study the
effect (if necessary, use simplifying assumptions and approximations or
numerical results computed over a range of parameters).

3. Put all the effects into a comprehensive model and solve numerically.

Our development begins by studying the reliability and availability of a
TMR system, assuming that the design is truly TMR or that we are using a
TMR model as step one in our solution approach.

4.7.3 TMR Reliability

Markov Model. We begin the analysis of voting systems with repair by ana-
lyzing the reliability of a TMR system. The Markov reliability diagram for a
TMR system composed of a voter, V, and three digital subsystems x1, x2, and
x3 is given in Fig. 4.11. It is assumed that the xs are identical and have the
same failure rate, l, and that the voter does not fail.

If we compare Fig. 4.11 with the model given in Fig. 3.14 of Chapter 3,
we see that they are essentially the same, only with different parameter values
(transition rates). There are three states in both models: repair occurs from
state s1 to s0, and state s2 is an absorbing state. (Actually, a complete model
for Fig. 4.11 would have a fourth state, s3, which is reached by an additional
failure from state s2. However, we have included both states in state s2 since
either two or three failures both represent system failure. As a rule, it is almost
always easier to use a Markov model with fewer states even if one or more of
the states represent combined states. State s2 is actually a combined state, also
known as a merged state, and a complete discussion of the rules for merging
appears in Shooman [1990, p. 529]. One could decompose the third state in
Fig. 4.11 into s2 = x1x2x3 + x1x2x3 + x1x2x3 and s3 = x1x2x3 by reformulating
the model as a more complex four-state model. However, the four-state model
is not needed to solve for the upstate probabilities Ps0 and Ps1 . Thus the simpler
three-state model of Fig. 4.11 will be used.)
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Figure 4.11 A Markov reliability model for a TMR system with repair.

In the TMR model of Fig. 4.11, there are three ways to experience a single
failure from s0 to s1 and two ways for failures to move the system state from
s1 to s2. Figure 3.14 of Chapter 3 uses failure rates of l′ and l in the model; by
substituting appropriate values, the model could hold for two parallel elements
or for one on-line and one standby element. One can save repeating a lot of
analysis and solution by realizing that the solution given in Eqs. (3.62)–(3.66)
will also hold for the model of Fig. 4.11 if we let l′ = 3l (three ways to go
from state s1 to state s2); l = 2l (two ways to go from state s2 to state s3);
and m′ = m (single repairman in both cases). Substituting these values in Eqs.
(3.65) yields

Ps0 (s) �
s + 2l + m

s2 + (5l + m)s + 6l2
(4.25a)

Ps1 (s) �
3l

s2 + (5l + m)s + 6l2
(4.25b)

Ps2 (s) �
6l

s[s2 + (5l + m)s + 6l2]
(4.25c)

Note that as a check, we sum Eqs. (4.25a–c) and obtain the value 1/ s, which
is the transform of unity. Thus the three equations sum to 1, as they should.

One can add the equations for Ps0 and Ps1 to obtain the reliability of a TMR
system with repair in the transform domain.

RTMR(s) �
s + 5l + m

s2 + (5l + m)s + 6l2
(4.26a)

The denominator polynomial factors into (s + 2l) and (s + 3l), and partial
fraction expansion yields
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RTMR(s) �
� 3l + m

l �
s + 2l

−

� 2l + m

l �
s + 3l

(4.26b)

Using transform #4 in Table B6 in Appendix B, we obtain the time function:

RTMR(t) � �3 +
m

l � e−2l t
− �2 +

m

l � e−3l t (4.26c)

One can check the above result by letting m � 0 (no repair), which yields
RTMR(t) =3e−2l t – 2e−3l t , and if p = e−l t , this becomes RTMR = 3p2 – 2p3,
which of course agrees with the result previously computed [see Eq. (4.2)].

Initial Behavior. The complete solution for the reliability of a TMR system
with repair is given in Eq. (4.26c). It is useful to practice with the simplifying
effects of initial behavior, final behavior, and MTTF solutions on this simple
problem before they are applied later in this chapter to more complex models
where the simplification is needed. One can evaluate the effects of repair on
the initial behavior of the TMR system simply by using the transform for t n,
which is discussed in Appendix B, Section B8.3. We begin with Eq. (4.26a),
where division of the denominator into the numerator using polynomial long
division yields for the first three terms:

RTMR(s) �
1
s

−

6l2

s3
+

6l2(5l + m)
s4

− · · · (4.27a)

Using inverse transform no. 5 of Table B6 of Appendix B yields

L { 1
(n − 1)!

t n − 1e−at} �

1
(s + a)n

(4.27b)

Setting a � 0 yields

L { 1
(n − 1)!

t n − 1} �

1
(s)n

(4.27c)

Using the transform in Eq. (4.27c) converts Eq. (4.27a) into the time function,
which is a three-term polynomial in t (the first three terms in the Taylor series
expansion of the time function).

RTMR(t) � 1 − 3l2t2 + l2(5l + m)t3 · · · (4.27d)

We previously studied the first two terms in the Taylor series expansion of
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the TMR reliability expansion in Eq. (4.15). In Eq. (4.27d), we have a three-
term solution, and one can compare Eqs. (4.15) and (4.27b) by calculating an
additional third term in the expansion of Eq. (4.15). The expansions in Eq.
(4.15) are augmented by including the cubic terms in the expansions of the
bracketed terms, that is, – 4l3t3/ 3 in the first bracket and +l3t3/ 3 in the second
bracket. Carrying out the algebra adds a third term, and Eq. (4.15) becomes
expanded as follows:

RTMR(3–2) � 1 − 3l2t2 + 5l3t3 (4.27e)

Thus the first three terms of Eq. (4.15) and Eq. (4.27d) are identical for the
case of no repair, m = 0. Equation (4.27d) is larger (closer to unity) than the
expanded version of Eq. (4.15) because of the additional term +l2mt3 that is
significant for large values of repair rate; we therefore see that repair improves
the reliability. However, we note that repair only affects the cubic term in Eq.
(4.27d) and not the quadratic term. Thus, for very small t, repair does not
affect the initial behavior; however, from the above solution, we can see that
it is beneficial for small and modest size t.

A numerical example will illustrate the improvement in initial reliability
due to repair. Let m = 10l; then the third term in Eq. (4.27d) becomes +15l3t3

rather than +5l3t3 with no repair. One can evaluate the increase due to m = 10l
at one point in time by letting t = 0.1 / l. At this point in time, the TMR
reliability without repair is equal to 0.975; with repair, it is 0.985. Further
comparisons of the effects of repair appear in the problems at the end of the
chapter.

The approximate analysis of this section led to a useful evaluation of the
effects of repair through the computation of the power series expansion of the
time function for the model with repair. This approximate result avoids the need
to factor the denominator polynomial in the Laplace transform solution, which
was found to be a stumbling block in obtaining a complete closed solution for
higher-order systems. The next section will discuss the mean time to failure
(MTTF) as another approximate solution that also avoids polynomial factoring.

Mean Time to Failure. As we saw in the preceding chapter, the computa-
tion of MTTF greatly simplifies the analysis, but it is not without pitfalls. The
MTTF computes the “area under the reliability curve” (see also Section 3.8.3).
Thus, for a single element with a reliability function of e−l t , the area under the
curve yields 1/ l; however, the MTTF calculation for the TMR system given
in Eq. (4.11) yields a value of 5/ 6l. This implies that a single element is bet-
ter than TMR, but we know that TMR has a higher reliability than a single
element (see also Siewiorek [1992, p. 294]). The explanation of this apparent
contradiction is simple if we examine the n = 0 and n = 1 curves in Fig. 4.4.
In the region of primary interest, 0 < lt < 0.69, TMR is superior to a single
element, but in the region 0.69 < lt < ∞ (not a region of primary interest),
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the single element has a superior reliability. Thus, in computing the integral
between t = 0 and t = ∞, the long tail controls the result. The lesson is that
we should not trust an MTTF comparison without further study unless there is
a significant superiority or unless the two reliability functions have the same
shape. Clearly, if the two functions have the same shape, then a comparison
of the MTTF values should be definitive. Graphing of reliability functions in
the high-reliability region should always be included in an analysis, especially
with the ready availability, power, and ease provided by software on a modern
PC. One can also easily integrate the functions in question by using an analysis
program to compute MTTF.

We now apply the simple method given in Appendix B, Section B8.2 to
evaluate the MTTF by letting s approach zero in the Laplace transform of the
reliability function—Eq. (4.26a). The result is

MTTF �

5 + m/ l

6l
(4.28)

To evaluate the effect of repair, let m = 10l. The MTTF without repair increases
from 5/ 6l to 16/ 6l—a threefold improvement.

Final Behavior. The Laplace transform has a simple theorem that allows us
to easily calculate the final value of a time function based on its transform.
(See Appendix B, Table B7, Theorem 7.) The final-value theorem states that
the value of the time function f (t) as t � ∞ is given by sF(s) (the transform
multiplied by s) as s � 0. Applying this to Eq. (4.26a), we obtain

lim
s� 0

{sRTMR} � lim
s� 0

s(s + 5l + m)
s2 + (5l + m)s + 6l2

� 0 (4.29)

A little thought shows that this is the correct result since all reliability func-
tions go to zero as time increases. However, when we study the availability
function later in this chapter, we will see that the final value of the availability
is nonzero. This value is an important measure of system behavior.

4.7.4 N-Modular Reliability

Having explored the analysis of the reliability of a TMR system with repair,
it would be useful to develop general expressions for the reliability, MTTF,
and initial behavior for N-modular systems. This task is difficult and probably
unnecessary since most practical systems have 3- or 5-level majority voting.
(An intermediate system with 4-level voting used by NASA in the Space Shut-
tle will be discussed later in this chapter.) The main focus of this section will
therefore be the analysis.

Markov Model. We begin the analysis of 5-level modular reliability with
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Figure 4.12 A Markov reliability model for a 5-level majority voting system with
repair.

repair by formulating the Markov model given in Fig. 4.12. We follow the same
approach used to formulate the Markov model given in Fig. 4.11. There are,
however, additional states. (Actually, there is one additional state that lumps
together three other states.)

The Markov time-domain differential equations are written in a manner
analogous to that used in developing Eqs. (3.62a–c). The notation Ṗs = dPs/dt
is used for convenience, and the following equations are obtained:

Ṗs0 (t) � −5l Ps0 (t) + mPs1 (t)
Ṗs1 (t) � 5l Ps0 (t) − (4l + m)Ps1 (t)
Ṗs2 (t) � 4l Ps1 (t)
Ṗs3 (t) �

+ mPs2 (t)
− (3l + m)Ps2 (t)

3l Ps2 (t)

(4.30a)
(4.30b)
(4.30c)
(4.30d)

Taking the Laplace transform of the preceding equations and incorporating
the initial conditions Ps0 (0) = 1, Ps1 (0) = Ps2 (0) = Ps3 (0) = 0 leads to the
transformed equations as follows:

(s + 5l)Ps0 (s)
−5l Ps0 (s)

− mPs1 (s)
+ (s + 4l + m)Ps1 (s)
− 4l Ps1 (s)

− mPs2 (s)
+ (s + 3l + m)Ps2 (s)

3lPs2 (s)

� 1
� 0
� 0

+ sPs3 (s) � 0

(4.31a)
(4.31b)
(4.31c)
(4.31d)

Equations (4.31a–d) can be solved by a variety of means for the probabili-
ties Ps0 (t), Ps1 (t), Ps2 (t), and Ps3 (t). One technique based on Cramer’s rule is
to formulate a set of determinants associated with the equations. Each of the
probabilities becomes a ratio of two of the determinants: a numerator deter-
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minant divided by a denominator determinant. The denominator determinant
is the same for each ratio; it is generally denoted by D and is the determinant
of the coefficients of the equations. (One can develop the form of these equa-
tions in a more elaborate fashion using matrix theory; see Shooman [1990, pp.
239–243].) A brief inspection of Eqs. (4.31a–d) shows that the first three are
uncoupled from the last and can be solved separately, simplifying the algebra
(this will always be true in a Markov model with repair when the last state is
an absorbing one). Thus, for the first three equations,

D �

|
|
|
|
|
|

s + 5l −m 0
−5l s + 4l + m −m

0 −4l s + 3l + m

|
|
|
|
|
|

(4.32)

The numerator determinants in the solution are similar to the denominator
determinants; however, one column is replaced by the right-hand side of the
Eqs. (4.31a–d); that is,

D1 �

|
|
|
|
|
|

1 −m 0
0 s + 4l + m −m

0 −4l s + 3l + m

|
|
|
|
|
|

(4.33a)

D2 �

|
|
|
|
|
|

s + 5l 1 0
−5l 0 −m

0 0 s + 3l + m

|
|
|
|
|
|

(4.33b)

D3 �

|
|
|
|
|
|

s + 5l −m 1
−5l s + 4l + m 0

0 −4l 0

|
|
|
|
|
|

(4.33c)

In terms of this group of determinants, the probabilities are

Ps0 (s) �
D1

D
(4.34a)

Ps1 (s) �
D2

D
(4.34b)

Ps2 (s) �
D3

D
(4.34c)

The reliability of the 5-level modular redundancy system is given by

R5 MR(t) � Ps0 (t) + Ps1 (t) + Ps2 (t) (4.35)
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Expansion of the denominator determinant yields the following polynomial:

D � s3 + (12l + 2m)s2 + (47l2 + 8lm + m2)s + 60l3 (4.36a)

Similarly, expanding the other determinants yields the following polynomials:

D1 � s2 + (7l + 2m)s + 12l2 + 3lm + m2 (4.36b)

D2 � 5l(s + 3l + m) (4.36c)

D3 � 20l2 (4.36d)

Substitution in Eqs. (4.34a–c) and (4.35) yields the transform of the reliability
function:

R5 MR(s) �
s2 + (12l + 2m)s + 47l2 + 8lm + m2

s3 + (12l + 2m)s2 + (47l2 + 8lm + m2)s + 60l3
(4.37)

As a check, we compute the probability of being in the fourth state Ps3 (s) from
Eq. (4.31d) as

Ps3 (s) �
3l Ps2 (s)

s
�

60l3

sD
(4.38)

Adding Eq. (4.37) to Eq. (4.38) and performing some algebraic manipulation
yields 1/ s, which is the transform of unity. Thus the sum of all the state prob-
abilities adds to unity as it should and the results check.

Initial Behavior. As in the preceding section, we can model the initial behav-
ior by expanding the transform Eq. (4.37) into a series in inverse powers of s
using polynomial division. The division yields

R5 MR(s) �
1
2

−

60l3

s4
+

60l3(12l + 2m)
s5

− · · · (4.39a)

Applying the inverse transform of Eq. (4.27c) yields

R5 MR(s) � 1 − 10l3t3 + 2.5l3(12l + 2m)t4 · · · (4.39b)

We can compare the gain due to 5-level modular redundancy with repair
to that of TMR with repair by letting m = 10l and t = 0.1 / l, as in Section
4.7.3, which gives a reliability of 0.998. Without repair, the reliability would
be 0.993. These values should be compared with the TMR reliability without
repair, which is equal to 0.975, and TMR with repair, which is 0.985. Since it
is difficult to compare reliabilities close to unity, we can focus on the unreli-
abilities with repair. The 5-level voting has an unreliability of 0.002; the TMR,
0.015. Thus, the change in voting from 3-level to 5-level has reduced the unre-
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TABLE 4.6 Comparison of the MTTF for Several Voting and Parallel
Systems with Repair

System MTTF Equation m � 0 m � 10 m � 100

TMR with repair
5 +

m

l
6l

0.83
l

2.5
l

17.5
l

5MR with repair
47 + 8

m

l
+ �

m

l �
2

60l3

0.78
l

3.78
l

180.78
l

Two parallel
3l + m

2l2

1.5
l

6.5
l

51.5
l

Two standby
2l + m

l2

2
l

12
l

102
l

liability by a factor of 7.5. Further comparisons of the effects of repair appear
in the problems at the end of this chapter.

Mean Time to Failure Comparison. The MTTF for 5-level voting is easily
computed by letting s approach 0 in the transform equation, which yields

MTTF5 MR �

47l2 + 8lm + m2

60l3
(4.40)

This MTTF is compared with some other systems in Table 4.6. The table
shows, as expected, that 5MR is superior to TMR when repair is present. Note
that two parallel or two standby elements appear more reliable. Once reduction
in reliability due to the reliability of the coupler and coverage is included and
compared with the reduction due to the reliability of the voter, this advantage
may disappear.

Initial Behavior Comparison. The initial behavior of the systems given in
Table 4.6 is compared in Table 4.7 using Eqs. (4.27d) and (4.39b) for TMR and
5MR systems. For the case of two ordinary parallel and two standby systems,
we must derive the initial behavior equation by adding Eqs. (3.65a) and (3.65b)
to obtain the transform of the reliability function that holds for both parallel
and standby systems.

R(s) � Ps0 (s) + Ps1 (s) �
s + l + l′ + m′

s2 + (l + l′ + m′)s + ll′
(4.41)

For an ordinary parallel system, l′ = 2l and m′ = m, and substitution into Eq.
(4.41), long division of the denominator into the numerator, and inversion of
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TABLE 4.7 Comparison of the Initial Behavior for Several
Voting and Parallel Systems with Repair

Initial Reliability Value of t
Equation, at which

System m � 10l R � 0.999

TMR with repair 1 − 3(lt)2 + 15(lt)3 0.0192
l

5MR with repair 1 − 10(lt)3 + 80(lt)4 0.057
l

Two parallel 1 − (lt)2 + 4.33(lt)3 0.034
l

Two standby 1 − 0.5(lt)2 + 2(lt)3 0.045
l

the transform (as was done previously) yields

Rparallel(t) � 1 − (lt)2 + l2(3l + m)t3/ 3 (4.42a)

For a standby system, l′ = l and m′ =m, and substitution into Eq. (4.41), long
division, and inversion of the transform yields

Rstandby(t) � 1 − (lt)2/ 2 + l2(2l + m)t3/ 6 (4.42b)

Equations (4.42a) and (4.42b) appear in Table 4.7 along with Eqs. (4.27d) and
(4.39b), where m =10l has been substituted.

Table 4.7 shows that the length of time the reliability takes to decay from 1
to 0.999, which makes it clearly a high-reliability region. For the TMR system,
the duration is t = 0.0192l; for the 5-level voting system, t =0.057l. Thus the
5-level system represents an increase of nearly 3 over the 3-level system. One
can better appreciate these numerical values if typical values are substituted for
l. The length of a year is 8,766 hours, which is often approximated as 10,000
hours. A high-reliability computer may have an MTTF(1/ l) of about 10 years,
or approximately 100,000 hours. Substituting this value for t shows that the
reliability of a TMR system with a repair rate of 10 times the failure rate will
have a reliability exceeding 0.999 for about 1,920 hours. Similarly, a 5-level
voting system will have a reliability exceeding 0.999 for about 5,700 hours.
In the case of the parallel and standby systems, the high-reliability region is
longer than in a TMR system, but is less than in a 5-level voter system.

Higher-Level Voting. One could extend the above analysis to cover higher-
level voting systems; for example, 7-level and 9-level voting. Even though it
is easy to replicate many different copies of a logic circuit on a chip at low
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cost, one seldom goes beyond the 3-level or 5-level voting system, although
the foregoing methods could be used to solve for the reliability of such higher-
level systems.

If one fabricates a very large scale integrated circuit (VLSI) with many cir-
cuits and a voter, an interesting question arises. There is a yield problem with
complex chips caused by imperfections. With so much redundancy, how can
one be sure that the chip does not contain such imperfections that a 5-level
voter system with imperfections is really equivalent to a 4- or 3-level voter
system? In fact, a 5-level voter system with two failed circuits is actually infe-
rior to a 3-level voter. One more failure in the former will result in three failed
and two good circuits, and the voter believes the failed three. In the case of a
3-level voter, a single failure will still leave the remaining two good circuits
in control. The solution is to provide internal test inputs on an IC voter system
so that the components of the system can be tested. This means that extra pins
on the chip must be dedicated to test points. The extra outputs in Fig. 4.10
could provide these test points, as was discussed in Section 4.6.2.

The next section discusses the effect of voter reliability on N-modular redun-
dancy. Note that we have not discussed the effects of coverage in a TMR sys-
tem. In general, the simple nature of a voter catches almost all failures, and
coverage is not significant in modeling the system.

4.8 N-MODULAR REDUNDANCY WITH REPAIR AND
IMPERFECT VOTERS

4.8.1 Introduction

The analysis of the preceding section did not include two imperfections in a
voting system: the reliability of the voter itself and also the concept of cover-
age. In the case of parallel and standby systems, which were treated in Chapter
3, coverage made a considerable difference in the reliability. The circuit that
detected failures of the active system and switched to the standby (hot or cold)
element in a parallel or standby system is reasonably complex and will have
a significant failure rate. Furthermore, it will have the problem that it cannot
detect all faults and will sometimes fail to switch when it should or switch
when it should not. In the case of a voter, the concept and the resulting circuit
is much simpler. Thus one might be justified in assuming that the voter does
not have a coverage problem and so reduce our evaluation to the reliability of
a voter and how it affects the system reliability. This can then be contrasted
with the reliability of a coupler and a parallel system (introduced in Section
3.5).

4.8.2 Voter Reliability

We begin our discussion of voter reliability by considering the reliability of
a TMR system as shown in Fig. 4.1 and the reliability expression given in
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Eq. (4.19). In Section 4.5, we asked how small the voter reliability, pv, can
be so that the gains of TMR still exceed the reliability of a single circuit.
The analysis was given in Eqs. (3.34) and (3.35). Now, we perform a similar
analysis for a TMR system with an imperfect voter. The computation proceeds
from a consideration of Eq. (4.19). If the voter were perfect, pv = 1, then the
reliability would be computed as

RTMR � 3p2
c − 2p3

c (4.43a)

If we include an imperfect voter, this expression becomes

RTMR � 3pvp2
c − 2pvp3

c � pv(3p2
c − 2p3

c) (4.43b)

If we assume constant-failure rates for the voter and the circuits in the TMR
configuration, then for the voter we have pv = e−lvt , and for the TMR circuits,
p = e−l t . If we use a three-term approximation for the exponential and sub-
stitute into Eq. (4.43b), one obtains an expression for the initial reliability, as
follows:

RTMR � �1 − lvt +
(lvt)2

2!
−

(lvt)3

3! � × [ 3 �1 − 2lvt +
(2l t)2

2!
−

(2l t)3

3! �
− 2 �1 − 3l t +

(3l t)2

2!
−

(3lvt)3

3! � ] (4.44a)

Expanding the preceding equation and retaining only the first four terms yields

RTMR � 1 − lvt +
(lvt)2

2
− 3(l t)2 (4.44b)

Furthermore, we are mainly interested in the cases where lv < l; thus we can
omit the third term (which is a second-order term in lv) and obtain

RTMR � 1 − lvt − 3(l t)2 (4.44c)

If we want the effect of the voter to be negligible, we let lvt < 3(l t)2,

lv

l
< 3l t (4.45)

One can compare this result with that given in Eq. (3.35) for two parallel sys-
tems by setting n =2, yielding
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lc

l
< l t (3.35)

The approximate result is that the coupler must have a failure rate three times
smaller than that of the voter for the same decrease in reliability.

One can examine the effect of repair on the above results by examining
Eq. (4.27d) and Eq. (4.42). In both cases, the effect of the repair rate does
not appear until the cubic term is encountered. The above comparisons only
involved the linear and quadratic terms, so the effect of repair would only
become apparent if the repair rate were very large and the time interval of
interest were extended.

4.8.3 Comparison of TMR, Parallel, and Standby Systems

Another advantage of voter reliability over parallel and standby reliability is
that there is a straightforward scheme for implementing voter redundancy (e.g.,
Fig. 4.8). Of course, one can also make redundant couplers for parallel or
standby systems, but they may be more complex than redundant voters.

It is easy to make a simple model for Fig. 4.8. Assume that the voters fail
so that their outputs are stuck-at-zero or stuck-at-one and that voter failures
do not corrupt the outputs of the circuits that feed the voters (e.g., A1, B1, and
C1). Assume just a single stage (A1, B1, and C1) and a single redundant voter
system (V1, V′1, and V′′1 ). The voter works if two or three of the three voters
work. Thus this is the same formula for TMR systems, and the reliability of
the system becomes

RTMR × Rvoter � (3p2
c − 2p3

c) × (3p2
v − 2p3

v) (4.46)

It is easy to evaluate the advantages of redundant voters. Assume that pc =
0.9 and that the voter is 10 times as reliable: (1 – pc) = 0.1, (1 –  pv) = 0.01,
and pv = 0.99. With a single voter, R = 0.99[3(0.9)2 – 2(0.9)3] =0.99 × 0.972
=0.962. In the case of a redundant voter, we have [3(0.99)2 – 2(0.99)3] ×
[3(0.9)2 – 2(0.9)3] = 0.999702 × 0.972 = 0.9717. The redundant voter is thus
significant; if the voter is less reliable, voter redundancy is even more effective.
Assume that pv = 0.95; for a single voter, R = 0.95 [3(0.9)2 – 2(0.9)3]= 0.95 ×
0.972 =0.923. In the case of a redundant voter, we have [3(0.95)2 –  2(0.95)3]
× [3(0.9)2 – 2(0.9)3] =0.99275 × 0.972 = 0.964953.

The foregoing calculations and discussions were performed for a TMR cir-
cuit with a single voter or redundant voters. It is possible to extend these com-
putations to the subsystem level for a system such as that depicted in Fig. 4.8.
In addition, one can repair a failed component of a redundant voter; thus one
can use the analysis techniques previously derived for TMR and 5MR systems
where the systems and voters can both be repaired. However, repair of voters
really begs a larger question: How will we modularize the system architecture?
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Assume one is going to design the system architecture with redundant voters
and voting at a subsystem level. If the voters are to be placed on a single chip
along with the circuits, then there is no separate repair of a voter system—only
repair of the circuit and voter subsystem. The alternative is to make a separate
chip for the N circuits and a separate chip for the redundant voter. The proper
strategy to choose depends on whether there will be scheduled downtime for
the system during which testing and replacement can occur and also whether
the chips have sufficient test points. No general conclusion can be reached; the
system architecture should be critiqued with these issues in mind.

4.9 AVAILABILITY OF N-MODULAR REDUNDANCY WITH
REPAIR AND IMPERFECT VOTERS

4.9.1 Introduction

When repair is present in a system, it is often possible for the system to fail
and be down for a short period of time without serious operational effects.
Suppose a computer used for electronic funds transfers is down for a short
period of time. This is not catastrophic if the system is designed so that it can
tolerate brief outages and perform the funds transfers at a later time period. If
the system is designed to be self-diagnostic, and if a technician and a replace-
ment plug in boards are both available, the machine can be restored quickly
to operational status. For such systems, availability is a useful measure of sys-
tem performance, as with reliability, and is the probability that the system is
up at any point in time. It can be measured during operation by recording the
downtimes and operating times for several failure and repair cycles. The avail-
ability is given by the ratio of the sum of the uptimes for the system divided
by the sum of the uptimes and the downtimes. (Formally, this ratio becomes
the availability in the limit as the system operating time approaches infinity.)
The availability A(t) is the probability that the system is up at time t, which
can be written as a sum of probabilities:

A(t) � P(no failures) + P(one failure + one repair)

+ P(two failures + two repairs)

+ · · · + P(n failures + n repairs) + · · · (4.47)

Availability is always higher than reliability, since the first term in Eq. (4.47)
is the reliability and all the other terms are positive numbers. Note that only
the first few terms in Eq. (4.47) are significant for a moderate time interval
and higher-order terms become negligible. Thus one could evaluate availability
analytically by computing the terms in Eq. (4.47); however, the use of the
Markov model simplifies such a computation.
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Figure 4.13 A Markov availability model for a TMR system with repair.

4.9.2 Markov Availability Models

A brief introduction to availability models appeared in Section 3.8.5; such com-
putations will continue to be used in this section, and availabilities for TMR
systems, parallel systems, and standby systems will be computed and com-
pared. As in the previous section, we will make use of the fact that the Markov
availability model given in Fig. 3.16 will hold with minor modifications (see
Fig. 4.13). In Fig. 3.16, the value of l′ is either one or two times l, but in the
case of TMR, it is three times l. For the second transmission between s1 and
s2 for the TMR system, there are two possibilities of failure; thus the transition
rate is 2l. Since there is only one repairman, the repair rate is m.

A set of Markov equations can be written that will hold for two in parallel
and two in standby, as well as for TMR. The algorithm used in the preceding
chapter will be employed. The terms 1 and Dt are deleted from Fig. 4.13. The
time derivative of the probability of being in state s0 is set equal to the “flows”
from the other nodes; for example, −l′Ps0 (t) is from the self-loop and m′Ps1 (t)
is from the repair branch. Applying the algorithm to the other nodes and using
algebraic manipulation yields the following:

Ṗs0 (t) + l′Ps0 (t) � m′Ps1 (t) (4.48a)

Ṗs1 (t) + (l + m′)Ps1 (t) � l′Ps0 (t) + m′′Ps2 (t) (4.48b)

Ṗs2 (t) + m′′Ps2 (t) � l Ps1 (t) (4.48c)

Ps0 (0) � 1 Ps1 (0) � Ps2 (0) � 0 (4.48d)

The appropriate values of parameters for this set of equations is given in Table
4.8. A complete solution of these equations is given in Shooman [1990, pp.
344–347]. We will use the Laplace transform theorems previously introduced
to simplify the solution.

The Laplace transforms of Eqs. (4.48a–d) become
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TABLE 4.8 Parameters of Eqs. (4.48a–d) for Various Systems

System l l′ m′ m′′
Two in parallel l 2l m m
Two standby l l m m
TMR 2l 3l m m

(s + l′)Ps0 (s)
−l′Ps0 (s)

−m′Ps1 (s)
+ s(s + l + m′)Ps1 (s)

−l Ps1 (s)

� 1
−m′′Ps2 (s) � 0

+ (s + m′′)Ps2 (s) � 0

(4.49a)
(4.49b)
(4.49c)

In the case of a system composed of two in parallel, two in standby, or
TMR, the system is up if it is in state s0 or state s1. The availability is thus
the sum of the probabilities of being in one of these two states. If one uses
Cramer’s rule or a similar technique to solve Eqs. (4.49a–c), one obtains a
ratio of polynomials in s for the availability:

A(s) � Ps0 (s) + Ps1 (s) �
s2 + (l + l′ + m′ + m′′)s + (l′m′′ + m′m′′)

s[s2 + (l + l′ + m′ + m′′)s + (ll′ + l′m′′ + m′m′′)]

(4.50)

Before we begin applying the various Laplace transform theorems to this
availability function, we should discuss the nature of availability and what sort
of analysis is needed. In general, availability always starts at 1 because the sys-
tem is always assumed to be up at t =0 . Examination of Eq. (4.47) shows that
initially near t = 0, the availability is just the reliability function that of course
starts at 1. Gradually, the next term P(one failure and one repair) becomes
significant in the availability equation; as time progresses, other terms in the
series contribute. Although the overall effect based on the summation of these
many terms is hard to understand, we note that they generally lead to a slow
decay of the availability function to some steady-state value that is reasonably
close to 1. Thus the initial behavior of the availability function is not as impor-
tant as that of the reliability function. In addition, the MTTF is not always a
significant measure of system behavior. The one measure of interest is the final
value of the availability function. If the availability function for a particular
system has an initial value of unity at t = 0 and decays slowly to a steady-state
value close to unity, this system must always have a high value of availability,
in which case the final value is a lower bound on the availability. Examining
Table B7 in Appendix B, Section B8.1, we see that the final value and ini-
tial value theorems both depend on the limit of sF(s) [in our case, sA(s)] as s
approaches 0 and ∞. The initial value is when s approaches ∞. Examination
of Eq. (4.50) shows that multiplication of A(s) by s results in a cancellation of
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TABLE 4.9 Comparison of the Steady-State Availability, Eq. (4.50) for Various
Systems

System Eq. (4.50) m � l m � 10l m � 100l

Two in parallel
m(2l + m)

2l2 + 2lm + m2 0.6 0.984 0.9998

Two standby
m(l + m)

l2 + lm + m2 0.667 0.991 0.9999

TMR
m(3l + m)

6l2 + 3lm + m2 0.4 0.956 0.9994

the multiplying s term in the denominator. As s approaches infinity, both the
numerator and denominator polynomials approach s2; thus the ratio approaches
1, as it should. However, to find the final value, we let s approach zero and
obtain the ratio of the two constant terms given in Eq. (4.51).

A(steady state) �
(l′m′′ + m′m′′)

(ll′ + l′m′′ + m′m′′)
(4.51)

The values of the parameters given in Table 4.8 are substituted in this equation,
and the steady-state availabilities are compared for the three systems noted in
Table 4.9.

Clearly, the Laplace transform has been of great help in solving for steady-
state availability and is superior to the simplified time-domain method: (a) let
all time derivatives equal 0; (b) delete one of the resulting algebraic equations;
(c) add the equation’s sum of all probabilities to equal 1; and (d) solve (see
Section B7.5).

Table 4.9 shows that the steady-state availability of two elements in standby
exceeds that of two parallel items by a small amount, and they both exceed
the TMR system by a greater margin. In most systems, the repair rate is much
higher than the failure, so the results of the last column in the table are probably
the most realistic. Note that these steady-state availabilities depend only on the
ratio m/ l. Before one concludes that the small advantages of one system over
another in the table are significant, the following factors should be investigated:

• It is assumed that a standby element cannot fail when it is in standby.
This is not always true, since batteries discharge in standby, corrosion
can occur, insulation can break down, etc., all of which may significantly
change the comparison.

• The reliability of the coupling device in a standby or parallel system is
more complex than the voter reliability in a TMR circuit. These effects
on availability may be significant.

• Repair in any of these systems is predicated on knowing when a system
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has failed. In the case of TMR, we gave a simple logic circuit that would
detect which element has failed. The equivalent detection circuit in the
case of a parallel or standby system is more complex and may have poorer
coverage.

Some of these effects are treated in the problems at the end of this chapter.
It is likely, however, that the detailed design of comparative systems must be
modeled to make a comprehensive comparison.

A simple numerical example will show the power of increasing system
availability using parallel and standby system configurations. In Section 3.10.1,
typical failure and repair information for a circa-1985 transaction-processing
system was quoted. The time between failures of once every two weeks trans-
lates into a failure rate l = 1/ (2 × 168) = 2.98 × 10−3 failures /
time to repair of one hour becomes a repair rate m =1 repair / hour. These val-
ues were shown to yield a steady-state availability of 0.997—a poor value for
what should be a highly reliable system. If we assume that the computer system
architecture will be configured as a parallel system or a standby system, we
can use the formulas of Table 4.9 to compute the expected increase in avail-
ability. For an ordinary parallel system, the steady-state availability would be
0.999982; for a standby system, it would be 0.9999911. Both translate into
unavailability values A =1 – A of 1.8 × 10−5 and 8.9 × 10−6. The unavail-
ability of the single system would of course be 3 × 10−3. The steady-state
availability of the Stratus system was discussed in Section 3.10.2 and, based
on claimed downtime, was computed as 0.9999905, which is equivalent to an
unavailability of 95 × 10−7. In Section 3.10.1, the Tandem unavailability, based
on hypothetical goals, was 4 × 10−6. Comparison of these four unavailability
values yields the following: (a) for a single system, 3,000 × 10−6; (b) for a
parallel system, 18 × 10−6; (c) for a standby system, 8.9 × 10−6 ; (d) for a Stra-
tus system, 9.5 × 10−6; and (e) for a Tandem system, 4 × 10−6

the Bell Labs’ ESS switching system unavailability goals and demonstrated
availability of 5.7 × 10−6 and 3.8 × 10−6. (See Table 1.4.) Of course, more
definitive data or complete models are needed for detailed comparisons.

4.9.3 Decoupled Availability Models

A simplified technique can be used to compute the steady-state value of avail-
ability for parallel and TMR systems. Availability computations really involve
the evaluation of certain conditional probabilities. Since conditional probabil-
ities are difficult to deal with, we introduced the Markov model computation
technique. There is a case in which the dependent probabilities become inde-
pendent and the computations simplify. We will introduce this case by focusing
on the availability of two parallel elements.

Assume that we wish to compute the steady-state availability of two par-
allel elements, A and B. The reliability is the probability of no system fail-
ures in interval 0 to t, which is the probability that either A or B is good,

hour,  and the

. Also compare
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P(Ag + Bg) = P(Ag) + P(Bg) – P(AgBg). The subscript “g” means that the ele-
ment is good, that is, has not failed. Similarly, the availability is the prob-
ability that the system is up at time t, which is the probability that either
A or B is up, P(Aup + Bup) = P(Aup) + P(Bup) = P(AupBup). The subscript
“up” means that the element is up, that is, is working at time t. The prod-
uct terms in each of the above expressions, P(AgBg) = P(Ag)P(Bg |Ag) and
P(AupBup) = P(Aup)P(Bup |Aup) are the conditional probabilities discussed pre-
viously. If there are two repairmen—one assigned to component A and one
assigned to component B—the events (Bg |Ag) and (Bup |Aup) become decou-
pled, that is, the events are independent. The coupling (dependence) comes
from the repairmen. If there is only one repairman and element A is down
and being repaired, then if element B fails, it will take longer to restore B to
operation; the repairman must first finish fixing A before working on B. In the
case of individual repairmen, there is no wait for repair of the second element
if two items have failed because each has its own assigned repairman. In the
case of such decoupling, the dependent probabilities become independent and
P(Bg |Ag) = P(Bg) and P(Bup |Aup) = P(Bup). This represents considerable sim-
plification; it means that one can compute P(Bg), P(Ag), P(Bup), and P(Aup)
separately and substitute into the reliability or availability equation to achieve
a simple solution. Before we apply this technique and illustrate the simplicity
of the solution, we should comment that because of the high cost, it is unlikely
that there will be two separate repairmen. However, if the repair rate is much
larger than the failure rate, m >> l, the decoupled case is approached. This is
true since repairs are relatively fast and there is only a small probability that
a failed element A will still be under repair when element B fails. For a more
complete discussion of this decoupled approximation, consult Shooman [1990,
pp. 521–529].

To illustrate the use of this approximation, we calculate the steady-state
availability of two parallel elements. In the steady state,

A(steady state) � P(Ass) + P(Bss) − P(Ass)P(Bss) (4.52)

The steady-state availability for a single element is given by

Ass �
m

l + m
(4.53)

One can verify this formula by reading the derivation in Appendix B, Sec-
tions B7.3 and B7.4, or by examining Fig. 3.16. We can reduce Fig. 3.16 to a
single element model by setting l = 0 to remove state s 2 and letting l′ =l and
m′ = m. Solving Eqs. (3.71a, b) for P s0 (t) and applying the final value theorem
(multiply by s and let s approach 0) also yields Eq. (4.53). If A and B have
identical failure and repair rates, substitution of Eq. (4.53) into Eq. (4.52) for
both Ass and Bss yields
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Ass �
2m

l + m
− � m

l + m �
2

�

m(2l + m)
(l + m)2

(4.54)

If we compare this result with the exact one in Table 4.9, we see that the
numerator is the same and the denominator differs only by a coefficient of two
in the l2 term. Furthermore, since we are assuming that m >> l, the difference
is very small.

We can repeat this simplification technique for a TMR system. The TMR
reliability equation is given by Eq. (4.2), and modification for computing the
availability yields

A(steady state) � [P(Ass)]
2[3 − P(Ass)] (4.55)

Substitution of Eq. (4.53) into Eq. (4.55) gives

A(steady state) � � m

l + m �
2

�3 −

2m

l + m � � � m

l + m �
2

� 3l + m

l + m � (4.56)

There is no obvious comparison between Eq. (4.56) and the exact TMR avail-
ability expression in Table 4.9. However, numerical comparison will show that
the formulas yield nearly equivalent results.

The development of approximate expressions for a standby system requires
some preliminary work. The Poisson distribution (Appendix A, Section A5.4)
describes the probabilities of success and failure in a standby system. The sys-
tem succeeds if there are no failures or one failure; thus the reliability expres-
sion is computed from the Poisson distribution as

R(standby) � P(0 failures) + P(1 failure) � e−l t + l te−l t (4.57)

If we wish to transform this equation in terms of the probability of success p
of a single element, we obtain p = e−l t and l t = – ln p. (See also Shooman
[1990, p. 147].) Substitution into Eq. (4.57) yields

R(standby) � p(1 − ln p) (4.58)

Finally, substitution in Eq. (4.58) of the steady-state availability from Eq. (4.53)
yields an approximate expression for the availability of a standby system as
follows:

A(steady state) � [ m

l + m ] [ 1 − ln � m

l + m � ] (4.59)

Comparing Eq. (4.59) with the exact expression in Table 4.9 is difficult
because of the different forms of the equations. The exact and approximate
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expressions are compared numerically in Table 4.10. Clearly, the approxima-
tions are close to the exact values. The best way to compare availability num-
bers, since they are all so close to unity, is to compare the differences with

for the parallel system is (0.99990197 – 0.99980396) / (1 – 0.99980396) =
0.49995, or about 50%. Similarly, for the standby system, the difference in
the results is (0.999950823 – 0.999901)/ (1 –  0.999901) = 0.50326, which is
also 50%. For the TMR system, the difference in the results is (0.999707852
– 0.999417815)/(1 – 0.999417815) =0.498819—again, 50%. The reader will
note that these results are good approximations, all approximations yield a
slightly higher result than the exact value, and all are satisfactory for prelimi-
nary calculations. It is recommended that an exact computation be made once a
design is chosen; however, these approximations are always useful in checking
more exact results obtained from analysis or a computer program.

The foregoing approximations are frequently used in industry. However, it
is important to check their accuracy. The first reference known to the author
of such approximations appears in Calabro [1962, pp. 136–139].

4.10 MICROCODE-LEVEL REDUNDANCY

One can employ redundancy at the microcode level in a computer.
Microcode consists of the elementary instructions that control the CPU or
microprocessor—the heart of modern computers. Microinstructions perform
such elementary operations as the addition of two numbers, the complement of
a number, and shift left or right operations. When one structures the microcode
of the computing chip, more than one algorithm can often be used to realize
a particular operation. If several equivalent algorithms can be written, each
one can serve the same purpose as the independent circuits in the N-modular
redundancy. If the algorithms are processed in parallel, there is no reduction in
computing speed except for the time to perform a voting algorithm. Of course,
if all the algorithms use some of the same elements, and if those elements are
faulty, the computations are not independent. One of the earliest works on
microinstruction redundancy is Miller [1967].

4.11 ADVANCED VOTING TECHNIQUES

The voting techniques described so far in this chapter have all followed a sim-
ple majority voting logic. Many other techniques have been proposed, some
of which have been implemented. This section introduces a number of these
techniques.

4.11.1 Voting with Lockout

When N-modular redundancy is employed and N is greater than three, addi-
tional considerations emerge. Let us consider a 4-level majority voter as an

the unavailability 1 – A. Thus, in Table 4.10, the difference in the results
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example. (This is essentially the same architecture that is embedded into the
Space Shuttle’s primary flight control system—discussed in Chapter 5 as an
example of software redundancy and shown in Fig. 5.19. However, if we focus
on the first four computers in the primary flight control system, we have an
example of 4-level voting with lockout. The backup flight control system serves
as an additional level of redundancy; it will be discussed in Chapter 5.)

The question arises of what to do with a failed system when N is greater
than three. To provide a more detailed discussion, we introduce the fact that
failures can be permanent as well as transient. Suppose that hardware B in Fig.
5.19 experiences a failure and we know that it is permanent. There is no reason
to leave it in the circuit if we have a way to remove it. The reasoning is that
if there is a second failure, there is a possibility that the two failed elements
will agree and the two good elements will agree, creating a standoff. Clearly,
this can be avoided if the first element is disconnected (locked out) from the
comparison. In the Space Shuttle control system, this is done by an astronaut
who has access to onboard computer diagnostic information and also by con-
sultation with Ground Control, which has access to telemetered data on the
control system. The switch shown at the output of each computer in Fig. 5.19
is activated by an astronaut after appropriate deliberation and can be reversed
at any time. NASA refers to this system as fail-safe–fail-operational, mean-
ing that the system can experience two failures, can disconnect the two failed
computers, and can have two remaining operating computers connected in a
comparison arrangement. The flight rules that NASA uses to decide on safe
modes of shuttle operation would rule on whether the shuttle must terminate
a mission if only two valid computers in the primary system remain. In any
event, there would clearly be an emergency situation in which the shuttle is
still in orbit and one of the two remaining computers fails. If other tests could
determine which computer gives valid information, then the system could con-
tinue with a single computer. One such test would be to switch out one of the
computers and see if the vehicle is still stable and handles properly. The com-
puters could then be swapped, and stability and control can be observed for
the second computer. If such a test identifies the failed computer, the system
is still operating with one good computer. Clearly, with Ground Control and
an astronaut dealing with an emergency, there is the possibility of switching
back in a previously disconnected computer in the hope that the old failure
was only a transient problem that no longer exists. Many of these cases are
analyzed and compared in the following paragraphs.

If we consider that the lockout works perfectly, the system will succeed if
there are 0, 1, or 2 failures. The probability computation is simple using the
binomial distribution.

R(2 : 4) � B(4 : 4) + B(3 : 4) + B(2 : 4)

� [p4] + [4p3
− 4p4] + [6p2

− 12p3 + 6p4]

� 3p4
− 8p3 + 6p2 (4.60)
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TABLE 4.11 Comparison of Reliabilities for Various Voting Systems

Single Element TMR Voting Two-out-of-Four One-out-of-Four

p p2(3 − 2p) p2(3p2
− 8p + 6) p(4p2

− p3
− 6p + 4)

1 1 1 1
0.8 0.896 0.9728 0.9984
0.6 0.648 0.8208 0.9744
0.4 0.352 0.5248 0.8704
0.2 0.104 0.1808 0.5904
0 0 0 0

The reliability will be higher if we can detect and isolate a third failure. To
compute the reliability, we start with Eq. (4.60) and add the binomial proba-
bility B(1 : 3) = (– p4 + 4p3 – 6p2 + 4p). The result is given in the following
equation:

R(1 : 4) � R(2 : 4) + B(1 : 4)

� −p4 + 4p3
− 6p2 + 4p (4.61)

Note that deriving Eqs. (4.60) and (4.61) involves some algebra, and a sim-
ple check on the result can help detect some common errors. We know that if
every element in a system has failed, p = 0 and the reliability must be 0 regard-
less of the system configuration. Thus, one necessary but not sufficient check
is to substitute p = 0 in the reliability polynomial and see if the reliability is 0.
Clearly both Eqs. (4.60) and (4.61) satisfy this requirement. Similarly, we can
check to see that the reliability is 1 when p = 1. Again, both equations also
satisfy this necessary check. Equations (4.60) and (4.61) are compared with
a TMR system Eq. (4.43a) and a single element in Table 4.11 and Fig. 4.14.
Note that the TMR voter is poorer than a single element for p < 0.5 but better
than a single element for p > 0.5.

4.11.2 Adjudicator Algorithms

A comprehensive discussion of various voting techniques appears in McAl-
lister and Vouk [1996]. The authors frame the discussion of voting based on
software redundancy—the use of two or more independently developed ver-
sions of the same software. In this book, N-version software is discussed in
Sections 5.9.2 and 5.9.3. The more advanced voting techniques will be dis-
cussed in this section since most apply to both hardware and software.

McAllister and Vouk [1996] introduce a more general term for the voter
element: an adjudicator, the underlying logic of which is the adjudicator algo-
rithm. The adjudicator algorithm for majority voting (N-modular redundancy)
is simply n + 1 or more agreements out of N = 2n + 1 elements (see also
Section 4.4), where n is an integer greater than 0 (it is commonly 1 or 2).
This algorithm is formulated for an odd number of elements. If we wish to



190 N-MODULAR REDUNDANCY

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 0.8 0.6 0.4 0.2 0

Element Success Probability, p

R
el

ia
bi

lit
y

Single Element

TMR 2:4 1:4

Figure 4.14 Reliability comparison of the three voter circuits given in Table 4.11.

also include even values of N, we can describe the algorithm as an m-out-of-N
voter, with N taking on any integer value equal to or larger than 3. The algo-
rithm represents agreement if m or more element outputs agree and m is the
integer, which is the ceiling function of (N + 1)/ 2 written as m ≥ (N + 1)/ 2.
The ceiling function, x, is the smallest integer that is greater than or equal
to x (e.g., the roundup function).

4.11.3 Consensus Voting

If there is a sizable number of elements that process in parallel (hardware or
software), then a number of agreement situations arise. The majority vote may
fail, yet there may be agreement among some of the elements. An adjudication
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algorithm can be defined for the consensus case, which is more complex than
majority voting. Again, N is the number of parallel elements (N > 1) and k is
the largest number of element outputs that agree. The symbol Ok denotes the
set of k-element outputs that agree. In some cases, there can be more than one
set of agreements, resulting in Oki , and the adjudication must choose between
the multiple agreements. A flow chart is given in Fig. 4.15 that is based on
the consensus voting algorithm in McAllister and Vouk [1996, p. 578].

If k = 1, there are obviously ties in the consensus algorithm. A similar situ-
ation ensues if k > 1, but because there is more then one group with the same
value of k, a tie-breaking algorithm must be used. One such algorithm is a random
choice among the ties; another is to test the elements for correct operation, which
in terms of software version consensus is called acceptance testing of the soft-
ware. Initially, such testing may seem better suited to software than to hardware;
in reality, however, such is not the case because hardware testing has been used in
the past. The Carousel Inertial Navigation System used on the early Boeing 747
and other aircraft had three stable platforms, three computers, and a redundancy
management system that performed majority voting. One means of checking the
validity of any of the computers was to submit a stored problem for solution and
to check the results with a stored solution. The purpose was to help diagnose com-
puter malfunctions and lock a defective computer out of the system. Also during
the time when adaptive flight control systems were in use, some designs used test
signals mixed with the normal control signals. By comparing the input test sig-
nals and the output response, one could measure the parameters of the aircraft
(the coefficients of the governing differential equations) and dynamically adjust
the feedback signals for best control.

4.11.4 Test and Switch Techniques

The discussion in the previous section established the fact that hardware test-
ing is possible in certain circumstances. Assuming that such testing has a high
probability of determining success or failure of an element and that two or more
elements are present, we can operate with element one alone as long as it tests
valid. When a failure of element one is detected, we can switch to element two,
etc. The logic of such a system differs little from that of the standby system
shown in Fig. 3.12 for the case of two elements, but the detailed implementa-
tion of test and switch may differ somewhat from the standby system. When
these concepts are applied to software, the adjudication algorithm becomes an
acceptance test. The switch to an earlier state of the process before failure was
detected and the substitution of a second version of the software is called roll-
back and recovery, but the overall philosophy is generally referred to as the
recovery block technique.

4.11.5 Pairwise Comparison

We assume that the number of elements is divisible by two, that is, N = 2n,
where n is an integer greater than one. The outputs of modules are compared
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in pairs; if these pairs do not check, they are switched out of the circuit. The
most practical application is where n = 2 and N = 4. For discussion purposes,
we call the elements digital circuits A, B, C, and D. Circuit A is compared with
circuit B; circuit C is compared with circuit D. The output of the AB pair is
then compared with the output of the CD pair—an activity that I refer to as
pairwise comparison. The software analog I call N self-checking programming.
The reader should reflect that this is essentially the same logic used in the
Stratus system fault detection described in Section 3.11.

Assuming that all the comparitors are perfect, the pairwise comparison
described in the preceding paragraph for N = 4 will succeed if (a), all four
elements succeed (ABCD); (b), if three elements succeed (ABCD + ABCD +
ABCD + ABCD); and (c), if two elements fail but in opposite pairs (ABCD +
ABCD). In the case of (a), all elements succeed and no failures are present;
in (b), on the other hand, the one failure means that one pair of elements dis-
connects itself but that the remaining pair continues to operate successfully.
There are six ways for two failures to occur, but only the two ways given in
(c) mean that a single pair fails because one failure in each pair represents a
system failure. If each of the four elements is identical with a probability of
success of p, the probability of success can be obtained as follows from the
binomial distribution:

R(pairwise : 4) � B(4 : 4) + B(3 : 4) + (2/ 6)B(2 : 4) (4.62a)

Substituting terms from Eq. (4.60) into Eq. (4.62a) yields

R(pairwise : 4) � (p4) + (4p3
− 4p4) + (1/ 3)(6p2

− 12p3 + 6p4)

� p2(2 − p2) (4.62b)

Equation (4.62b) is compared with other systems in Table 4.12, where we see
that the pairwise voting is slightly worse than it is for TMR.

There are various other combinations of advanced voting techniques de-

TABLE 4.12 Comparison of Reliabilities for Various Voting Systems

Pairwise-out-of-
Single Element Voting Two-out-of-Four TMR Voting

p p2(2 − p2) p2(3p2
− 8p + 6) p2(3 − 2p)

1 1 1 1
0.8 0.8704 0.9728 0.896
0.6 0.590 0.8208 0.648
0.4 0.2944 0.5248 0.352
0.2 0.0784 0.1808 0.104
0 0 0 0
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scribed by McAllister and Vouk [1996], who also compute and compare the
reliability of many of these systems by assuming independent as well as depen-
dent failures.

4.11.6 Adaptive Voting

Another technique for voting makes use of the fact that some circuit failure
modes are intermittent or transient. In such a case, one does not wish to lock
out (i.e., ignore) a circuit when it is behaving well (but when it is malfunc-
tioning, it should be ignored). The technique of adaptive voting can be used to
automatically switch between these situations [Pierce, 1961; Shooman, 1990,
p. 324; Siewiorek, 1992, pp. 174, 178–182].

An ordinary majority voter may be visualized as a device that takes the
average of the outputs and gives a one output if the average is > 0.5 and a
zero output if the average is ≤ 0.5. (In the case of software outputs, a range of
values not limited to the range 0–1 will occur, and one can deal with various
point estimates such as the average, the arithmetic mean of the min and max
values, or, as McAllister and Vouk suggest, the median.) An adaptive voter may
be viewed as a weighted sum where each outpt xi is weighted by a coefficient.
The coefficient ai could be adjusted to equal the probability that the output xi

was correct. Thus the test quantity of the adaptive voter (with an even number
of elements) would be given by

a1x1 + a2x2 + · · · + a2n + 1x2n + 1

a1 + a2 + · · · + a2n + 1
(4.63)

The coefficients ai can be adjusted dynamically by taking statistics on the
agreement between each xi and the voter output over time. Another technique
is to periodically insert test inputs and compare each output xi with the known
(i.e., precomputed) correct output. If some xi is frequently in error, it should be
disconnected. The adaptive voter adjusts ai to be a very small number, which
is in essence the same thing. The reliability of the adaptive-voter scheme is
superior to the ordinary voter; however, there are design issues that must be
resolved to realize an adaptive voter in practice.

The reader will appreciate that there are many choices for an adjudicator
algorithm that yield an associated set of architectures. However, cost, volume,
weight, and simplicity considerations generally limit the choices to a few of
the simpler configurations. For example, when majority voting is used, it is
generally limited to TMR or, in the case of the Space Shuttle example, 4-level
voting with lockout. The most complex arrangement the author can remember
is a 5-level majority logic system used to control the Apollo Mission’s main
Saturn engine. For the Space Shuttle and Carousel navigation system exam-
ples, the astronauts/ pilots had access to other information, such as previous
problems with individual equipment and ground-based measurements or obser-
vations. Thus the accessibility of individual outputs and possible tests allow
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human operators to organize a wide variety of behaviors. Presently, commer-
cial airliners are switching from inertial navigation systems to navigation using
the satellite-based Global Positioning System (GPS). Handheld GPS receivers
have dropped in price to the $100–$200 range, so one can imagine every airline
pilot keeping one in his or her flight bag as a backup. A similar trend occurred
in the 1780s when pocket chronometers dropped in price to less than £65.
Ship captains of the East India Company as well as those of the Royal Navy
(who paid out of their own pockets) eagerly bought these accurate watches to
calculate longitude while at sea [Sobel, 1995, p. 162].
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PROBLEMS

4.1. Derive the equation analogous to Eq. (4.9) for a four-element majority
voting scheme.



PROBLEMS 197

4.2. Derive the equation analogous to Eq. (4.9) for a five-element majority
voting scheme.

4.3. Verify the reliability functions sketched in Fig. 4.2.

4.4. Compute the reliability of a 3-level majority voting system for the case
where the failure rate is constant, l = 10−4 failures per hour, and t =
1,000 hours. Compare this with the reliability of a single system.

4.5. Repeat problem 4.4 for a 5-level majority voting system.

4.6. Compare the results of problem 4.4 with a single system: two elements
in parallel, two elements in standby.

4.7. Compare the results of problem 4.5 with a single system: two elements
in parallel, two elements in standby.

4.8. What should the reliability of the voter be if it increases the probability
of failure of the system of problem 4.4 by 10%?

4.9. Compute the reliability at t =1,000 hours of a system composed of a
series connection of module 1 and module 2, each with a constant failure
rate of l1 = 0.5 × 10−4 failures per hour. If we design a 3-level majority
voting system that votes on the outputs of module 2, we have the same
system as in problem 4.4. However, if we vote at the outputs of modules
1 and 2, we have an improved system. Compute the reliability of this
system and compare it with problem 4.4.

4.10. Expand the reliability functions in series in the high-reliability region for
the TMR 3–2–1 system and the TMR 3–2 system for the three systems
of Fig. 4.3. [Include more terms than in Eqs. (4.14)–(4.16).]

4.11. Compute the MTTF for the expansions of problem 4.10, compare these
with the exact MTTF for these systems, and comment.

4.12. Verify that an expansion of Eqs. (4.3a, b) leads to seven terms in addition
to the term one, and that this leads to Eqs. (4.5a, b) and (4.6a, b).

4.13. The approximations used in plotting Fig. 4.3 are less accurate for the
larger values of l t. Recompute the values using the exact expressions
and comment on the accuracy of the approximations.

4.14. Inspection of Fig. 4.4 shows that N-modular redundancy is of no advan-
tage over a single unit at t = 0 (they both have a reliability of 1) and at
l t = 0.69 (they both have a reliability of 0.5). The maximum advantage
of N-modular redundancy is realized somewhere in between them. Com-
pute the ratio of the N-modular redundancy given by Eq. (4.17) divided
by the reliability of a single system that equals p. Maximize (i.e., dif-
ferentiate this ratio with respect to p and set equal to 0) to solve for the
value of p that gives the biggest improvement in reliability. Since p = e−l t ,
what is the value of l t that corresponds to the optimum value of p?
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4.15. Repeat problem 4.14 for the case of component redundancy and majority
voting as shown in Fig. 4.5 by using the reliability equation given in Eq.
(4.18).

4.16. Verify Grisamone’s results given in Table 4.1.

4.17. Develop a reliability expression for the system of Fig. 4.8 assuming that
(1): All circuits Ai, Bi, Ci, and the voters Vi are independent circuits or
independent integrated circuit chips.

4.18. Develop a reliability expression for the system of Fig. 4.8 assuming that
(2): All circuits Ai, Bi, and Ci are independent circuits or independent
integrated circuit chips and the voters Vi, V′i , and V′′i are all on the same
chip.

4.19. Develop a reliability expression for the system of Fig. 4.8 assuming that
(3): All voters Vi, V′i , and V′′i are independent circuits or independent
integrated circuit chips and circuits Ai, Bi, and Ci are all on the same
chip.

4.20. Develop a reliability expression for the system of Fig. 4.8 assuming that
(4): All circuits Ai, Bi, and Ci and all voters Vi, V′i , and V′′i are all on
the same chip.

4.21. Section 4.5.3 discusses the difference between various failure models.
Compare the reliability of a 1-bit TMR system under the following fail-
ure model assumptions:
(a) The failures are always s-a-1.
(b) The failures are always s-a-0.
(c) The circuits fail so that they always give the complement of the

correct output.
(d) The circuits fail at a transient rate lt and produce the complement

of the correct output.

4.22. Repeat problem 4.21, but instead of calculating the reliability, calculate
the probability that any one transmission is in error.

4.23. The circuit of Fig. 4.10 for a 32-bit word leads to a 512-gate circuit
as described in this chapter. Using the information in Fig. B7, calculate
the reliability of the voter and warning circuit. Using Eq. (4.19) and
assuming that the voter reliability decreases the system reliability to 90%
of what would be achieved with a perfect voter, calculate pc. Again using
Fig. B7, calculate the equivalent gate complexity of the digital circuit in
the TMR scheme.

4.24. Repeat problem 4.10 for an r-level voting system.

4.25. Drive a set of Markov equations for the model given in Fig. 4.11 and
show that the solution of each equation leads to Eqs. (4.25a–c).
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4.26. Formulate a four-state model related to Fig. 4.11, as discussed in the
text, where the component states two failures and three failures are not
merged but are distinct. Solve the model for the four-state probabilities
and show that the first two states are identical with Eqs. (4.25a, b) and
that the sum of the third and fourth states equals Eq. (4.25c).

4.27. Compare the effects of repair on TMR reliability by plotting Eq. (4.27e),
including the third term, with Eq. (4.27d). Both equations are to be plot-
ted versus time for the cases where m = 10l, m =  25l, and m =  100l.

4.28. Over what time range will the graphs in the previous problem be valid?
(Hint: When will the next terms in the series become significant?)

4.29. The logic function for a voter was simplified in Eq. (4.23) and Table 4.5.
Suppose that all four minterms given in Table 4.5 were included without
simplification, which provides some redundancy. Compare the reliability
of the unminimized voter with the minimized voter (cf. Shooman [1990,
p. 324]).

4.30. Make a model for coupler reliability and for a TMR voter. Compare the
reliability of two elements in parallel with that for a TMR.

4.31. Repeat problem 4.30 when both systems include repair.

4.32. Compare the MTTF of the systems in Table 3.4 with TMR and 5MR
voter systems.

4.33. Repeat problem 4.32 for Table 3.5.

4.34. Compute the initial reliability for the systems of Tables 3.4 and 3.5 and
compare with TMR and 5MR voter systems.

4.35. Sketch and compare the initial reliabilities of TMR and 5MR Eqs.
(4.27d) and (4.39b). Both equations are to be plotted versus time for
the cases where m = 0, m = 10l, m = 25l, and m = 100l. Note that for
m = 100l and for points where the reliability has decreased to 0.99 or
0.95, the series approximations may need additional terms.

4.36. Check the values in Table 4.6.

4.37. Check the series expansions and the values in Table 4.7.

4.38. Plot the initial reliability of the four systems in Table 4.7. Calculate the
next term in the series expansion and evaluate the time at which it rep-
resents a 10% correction in the unreliability. Draw a vertical bar on the
curve at this point. Repeat for each of the systems yielding a comparison
of the reliabilities and a range of validity of the series expressions.

4.39. Compare the voter circuit and reliability of (a) a TMR system, (b) a
5MR system, and (c) five parallel elements with a coupler. Assume the
voters and the coupler are imperfect. Compute and plot the reliability.
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4.40. What time interval will be needed before the repair terms in the com-
parison made in problem 4.39 become significant?

4.41. It is assumed that a standby element cannot fail when it is in standby.
However, this is not always true for many reasons; for example, batter-
ies discharge in standby, corrosion can occur, and insulation can break
down, all of which may significantly change the comparison. How large
can the standby failure rate be and still be ignored?

4.42. The reliability of the coupling device in a standby or parallel system is
more complex than the voter reliability in a TMR circuit. These effects
on availability may be significant. How large can the coupling failure
rate be and still be ignored?

4.43. Repair in any of these systems is predicted by knowing when a system
has failed. In the case of TMR, we gave a simple logic circuit that would
detect which element has failed. What is the equivalent detection circuit
in the case of a parallel or standby system and what are the effects?

4.44. Check the values in Table 4.9.

4.45. Check the values in Table 4.10.

4.46. Add another line to Table 4.10 for 5-level modular redundancy.

4.47. Check the computations given in Tables 4.11 and 4.12.

4.48. Determine the range of p for which the various systems in Table 4.11
are superior to a single element.

4.49. Determine the range of p for which the various systems in Table 4.12
are superior to a single element.

4.50. Explain how a system based on the adaptive voting algorithm of Eq.
(4.63) will operate if 50% of all failures are transient and clear in a
short period of time.

4.51. Explain how a system based on the adaptive voting algorithm of Eq.
(4.63) will operate if it is basically a TMR system and 50% of all element
one failures are transient and 25% of all elements two and three failures
are transient.

4.52. Repeat and verify the availability computations in the last paragraph of
Section 4.9.2.

4.53. Compute the auto availability of a two-car family in which both the hus-
band and wife need a car every day. Repeat the computation if a single
car will serve the family in a pinch while the other car gets repaired.
(See the brief discussion of auto reliability in Section 3.10.1 for failure
and repair rates.)

4.54. At the end of Section 4.9.2 before the final numerical example, three
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factors not included in the model were listed. Discuss how you would
model these effects for a more complex Markov model.

4.55. Can you suggest any approximate procedures to determine if any of the
effects in problem 4.54 are significant?

4.56. Repeat problem 4.39 for the system availability. Make approximations
where necessary.

4.57. Repeat problem 4.30 for system availability.

4.58. Repeat the derivation of Eq. (4.26c).

4.59. Repeat the derivation of Eq. (4.37).

4.60. Check the values given in Table 4.9.

4.61. Derive Eq. (4.59).
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5.1 INTRODUCTION

The general approach in this book is to treat reliability as a system problem
and to decompose the system into a hierarchy of related subsystems or com-
ponents. The reliability of the entire system is related to the reliability of the
components by some sort of structure function in which the components may
fail independently or in a dependent manner. The discussion that follows will
make it abundantly clear that software is a major “component” of the system
reliability,1 R. The reason that a separate chapter is devoted to software reli-
ability is that the probabilistic models used for software differ from those used
for hardware; moreover, hardware and software (and human) reliability can be
combined only at a very high system level. (Section 5.8.5 discusses a macro-
software reliability model that allows hardware and software to be combined at
a lower level.) Specifically, if the hardware, software, and human failures are
independent (often, this is not the case), one can express the system reliabil-
ity, RSY, as the product of the hardware reliability, RH , the software reliability,
RS, and the human operator reliability, RO. Thus, if independence holds, one
can model the reliability of the various factors separately and combine them:
RSY = RH × RS × RO [Shooman, 1983, pp. 351–353].

This chapter will develop models that can be used for the software reliabil-
ity. These models are built upon the principles of continuous random variables

1Another important “component” of system reliability is human reliability if an operator is
involved in any control, monitoring, input, or similar task. A discussion of human reliability
models is beyond the scope of this book; the reader is referred to Dougherty and Fragola [1988].
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developed in Appendix A, Sections A6 and A7, and Appendix B, Section B3;
the reader may wish to review these concepts while reading this chapter.

Clearly every system that involves a digital computer also includes a signif-
icant amount of software used to control system operation. It is hard to think
of a modern business system, such as that used for information, transportation,
communication, or government, that is not heavily computer-dependent. The
microelectronics revolution has produced microprocessors and memory chips
that are so cheap and powerful that they can be included in many commercial
products. For example, a 1999 luxury car model contained 20–40 micropro-
cessors (depending on which options were installed), and several models used
local area networks to channel the data between sensors, microprocessors, dis-
plays, and target devices [New York Times, August 27, 1998]. Consumer prod-
ucts such as telephones, washing machines, and microwave ovens use a huge
number of embedded microcomponents. In 1997, 100 million microprocessors
were sold, but this was eclipsed by the sale of 4.6 billion embedded microcom-
ponents. Associated with each microprocessor or microcomponent is memory,
a set of instructions, and a set of programs [Pollack, 1999].

5.1.1 Definition of Software Reliability

One can define software engineering as the body of engineering and manage-
ment technologies used to develop quality, cost-effective, schedule-meeting soft-
ware. Software reliability measurement and estimation is one such technology
that can be defined as the measurement and prediction of the probability that the
software will perform its intended function (according to specifications) without
error for a given period of time. Oftentimes, the design, programming, and test-
ing techniques that contribute to high software reliability are included; however,
we consider these techniques as part of the design process for the development
of reliable software. Software reliability complements reliable software; both, in
fact, are important topics within the discipline of software engineering. Software
recovery is a set of fail-safe design techniques for ensuring that if some serious
error should crash the program, the computer will automatically recover to reini-
tialize and restart its program. The software succeeds during software recovery
if no crucial data is lost, or if an operational calamity occurs, but the recovery
transforms a total failure into a benign or at most a troubling, nonfatal “hiccup.”

5.1.2 Probabilistic Nature of Software Reliability

On first consideration, it seems that the outcome of a computer program is
a deterministic rather than a probabilistic event. Thus one might say that the
output of a computer program is not a random result. In defining the concept
of a random variable, Cramer [Chapter 13, 1991] talks about spinning a coin as
an experiment and the outcome (heads or tails) as the event. If we can control
all aspects of the spinning and repeat it each time, the result will always be
the same; however, such control needs to be so precise that it is practically
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impossible to repeat the experiment in an identical manner. Thus the event
(heads or tails) is a random variable. The remainder of this section develops
a similar argument for software reliability where the random element in the
software is the changing set of inputs.

Our discussion of the probabilistic nature of software begins with an exam-
ple. Suppose that we write a computer program to solve the roots r1 and r2

of a quadratic equation, Ax2 + Bx + C = 0. If we enter the values 1, 5, and 6
for A, B, and C, respectively, the roots will be r1 = – 2 and r2 = –3. A sin-
gle test of the software with these inputs confirms the expected results. Exact
repetition of this experiment with the same values of A, B, and C will always
yield the same results, r1 = –2 and r2 = – 3, unless there is a hardware failure
or an operating system problem. Thus, in the case of this computer program,
we have defined a deterministic experiment. No matter how many times we
repeat the computation with the same values of A, B, and C, we obtain the same
result (assuming we exclude outside influences such as power failures, hard-
ware problems, or operating system crashes unrelated to the present program).
Of course, the real problem here is that after the first computation of r1 = –2
and r2 = –3 we do no useful work to repeat the same identical computation.
To do useful work, we must vary the values of A, B, and C and compute the
roots for other input values. Thus the probabilistic nature of the experiment,
that is, the correctness of the values obtained from the program for r1 and r2,
is dependent on the input values A, B, and C in addition to the correctness of
the computer program for this particular set of inputs.

The reader can readily appreciate that when we vary the values of A, B, and
C over the range of possible values, either during test or operation, we would
soon see if the software developer achieved an error-free program. For exam-
ple, was the developer wise enough to treat the problem of imaginary roots?
Did the developer use the quadratic formula to solve for the roots? How, then,
was the case of A =0 treated where there is only one root and the quadratic
formula “blows up” (i.e., leads to an exponential overflow error)? Clearly, we
should test for all these values during development to ensure that there are no
residual errors in the program, regardless of the input value. This leads to the
concept of exhaustive testing, which is always infeasible in a practical problem.
Suppose in the quadratic equation example that the values of A, B, and C were
restricted to integers between +1,000 and –1,000. Thus there would be 2,000
values of A and a like number of values of B and C. The possible input space
for A, B, and C would therefore be (2,000)3 = 8 billion values.2 Suppose that

2In a real-time system, each set of input values enters when the computer is in a different “initial
state,” and all the initial states must also be considered. Suppose that a program is designed to
sum the values of the inputs for a given period of time, print the sum, and reset. If there is a
high partial sum, and a set of inputs occurs with large values, overflow may be encountered. If
the partial sum were smaller, this same set of inputs would therefore cause no problems. Thus,
in the general case, one must consider the input space to include all the various combinations of
inputs and states of the system.
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we solve for each value of roots, substitute in the original equation to check,
and only print out a result if the roots when substituted do not yield a zero
of the equation. If we could process 1,000 values per minute, the exhaustive
test would require 8 million minutes, which is 5,556 days or 15.2 years. This
is hardly a feasible procedure: any such computation for a practical problem
involves a much larger test space and a more difficult checking procedure that
is impossible in any practical sense. In the quadratic equation example, there
was a ready means of checking the answers by substitution into the equation;
however, if the purpose of the program is to calculate satellite orbits, and if
1 million combinations of input parameters are possible, then a person(s) or
computer must independently obtain the 1 million right answers and check
them all! Thus the probabilistic nature of software reliability is based on the
varying values of the input, the huge number of input cases, the initial system
states, and the impossibility of exhaustive testing.

The basis for software reliability is quite different than the most common
causes of hardware reliability. Software development is quite different from
hardware development, and the source of software errors (random discovery
of latent design and coding defects) differs from the source of most hard-
ware errors (equipment failures). Of course, some complex hardware does have
latent design and assembly defects, but the dominant mode of hardware fail-
ures is equipment failures. Mechanical hardware can jam, break, and become
worn-out, and electrical hardware can burn out, leaving a short or open circuit
or some other mode of failure. Many who criticize probabilistic modeling of
software complain that instructions do not wear out. Although this is a true
statement, the random discovery of latent software defects is indeed just as
damaging as equipment failures, even though it constitutes a different mode
of failure.

The development of models for software reliability in this chapter begins
with a study of the software development process in Section 5.3 and continues
with the formulation of probabilistic models in Section 5.4.

5.2 THE MAGNITUDE OF THE PROBLEM

Modeling, predicting, and measuring software reliability is an important quan-
titative approach to achieving high-quality software and growth in reliabil-
ity as a project progresses. It is an important management and engineering
design metric; most software errors are at least troublesome—some are very
serious—so the major flaws, once detected, must be removed by localization,
redesign, and retest.

The seriousness and cost of fixing some software problems can be appreci-
ated if we examine the Year 2000 Problem (Y2K). The largely overrated fears
occurred because during the early days of the computer revolution in the 1960s
and 1970s, computer memory was so expensive that programmers used many
tricks and shortcuts to save a little here and there to make their programs oper-
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ate with smaller memory sizes. In 1965, the cost of magnetic-core computer
memory was expensive at about $1 per word and used a significant operating
current. (Presently, microelectronic memory sells for perhaps $1 per megabyte
and draws only a small amount of current; assuming a 16-bit word, this cost
has therefore been reduced by a factor of about 500,000!) To save memory,
programmers reserved only 2 digits to represent the last 2 digits of the year.
They did not anticipate that any of their programs would survive for more
than 5–10 years; moreover, they did not contemplate the problem that for the
year 2000, the digits “00” could instead represent the year 1900 in the soft-
ware. The simplest solution was to replace the 2-digit year field with a 4-digit
one. The problem was the vast amount of time required not only to search for
the numerous instances in which the year was used as input or output data or
used in intermediate calculations in existing software, but also to test that the
changes have been successful and have not introduced any new errors. This
problem was further exacerbated because many of these older software pro-
grams were poorly documented, and in many cases they were translated from
one version to another or from one language to another so they could be used
in modern computers without the need to be rewritten. Although only minor
problems occurred at the start of the new century, hundreds of millions of dol-
lars had been expended to make a few changes that would only have been triv-
ial if the software programs had been originally designed to prevent the Y2K
problem.

Sometimes, however, efforts to avert Y2K software problems created prob-
lems themselves. One such case was that of the 7-Eleven convenience store
chain. On January 1, 2001, the point-of-sale system used in the 7-Eleven stores
read the year “2001” as “1901,” which caused it to reject credit cards if they
were used for automatic purchases (manual credit card purchases, in addition
to cash and check purchases, were not affected). The problem was attributed
to the system’s software, even though it had been designed for the 5,200-store
chain to be Y2K-compliant, had been subjected to 10,000 tests, and worked fine
during 2000. (The chain spent 8.8 million dollars—0.1% of annual sales—for
Y2K preparation from 1999 to 2000.) Fortunately, the bug was fixed within 1
day [The Associated Press, January 4, 2001].

Another case was that of Norway’s national railway system. On the morning
of December 31, 2000, none of the new 16 airport-express trains and 13 high-
speed signature trains would start. Although the computer software had been
checked thoroughly before the start of 2000, it still failed to recognize the
correct date. The software was reset to read December 1, 2000, to give the
German maker of the new trains 30 days to correct the problem. None of the
older trains were affected by the problem [New York Times, January 3, 2001].

Before we leave the obvious aspects of the Y2K problem, we should con-
sider how deeply entrenched some of these problems were in legacy software:
old programs that are used in their original form or rejuvenated for extended
use. Analysts have found that some of the old IBM 9020 computers used
in outmoded components of air traffic control systems contain an algorithm
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in their microcode for switching between the two redundant cooling pumps
each month to even the wear. (For a discussion of cooling pumps in typi-
cal IBM computers, see Siewiorek [1992, pp. 493, 504].) Nobody seemed to
know how this calendar-sensitive algorithm would behave in the year 2000!
The engineers and programmers who wrote the microcode for the 9020s had
retired before 2000, and the obvious answer—replace the 9020s with modern
computers—proceeded slowly because of the cost. Although no major prob-
lems occurred, the scare did bring to the attention of many managers the poten-
tial problems associated with the use of legacy software.

Software development is a lengthy, complex process, and before the focus of
this chapter shifts to model building, the development process must be studied.

5.3 SOFTWARE DEVELOPMENT LIFE CYCLE

Our goal is to make a probabilistic model for software, and the first step in any
modeling is to understand the process [Boehm, 2000; Brooks, 1995; Pfleerer,
1998; Schach, 1999; and Shooman, 1983]. A good approach to the study of the
software development process is to define and discuss the various phases of
the software development life cycle. A common partitioning of these phases
is shown Table 5.1. The life cycle phases given in this table apply directly
to the technique of program design known as structured procedural program-
ming (SPP). In general, it also applies with some modification to the newer
approach known as object-oriented programming (OOP). The details of OOP,
including the popular design diagrams used for OOP that are called the uni-
versal modeling language (UMLs), are beyond the scope of this chapter; the
reader is referred to the following references for more information: [Booch,
1999; Fowler, 1999; Pfleerer, 1998; Pooley, 1999; Pressman, 1997; and Schach,
1999]. The remainder of this section focuses on the SPP design technique.

5.3.1 Beginning and End

The beginning and end of the software development life cycle are the start
of the project and the discard of the software. The start of a project is gen-
erally driven by some event; for example, the head of the Federal Aviation
Administration (FAA) or of some congressional committee decides that the
United States needs a new air traffic control system, or the director of mar-
keting in a company proposes to a management committee that to keep the
company’s competitive edge, it must develop a new database system. Some-
times, a project starts with a written needs document, which could be an inter-
nal memorandum, a long-range plan, or a study of needed improvements in a
particular field. The necessity is sometimes a business expansion or evolution;
for example, a company buys a new subsidiary business and finds that its old
payroll program will not support the new conglomeration, requiring an updated
payroll program. The needs document generally specifies why new software is
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TABLE 5.1 Project Phases for the Software Development Life Cycle

Phase Description

Start of project Initial decision or motivation for the project, including
overall system parameters.

Needs A study and statement of the need for the software and
what it should accomplish.

Requirements Algorithms or functions that must be performed, including
functional parameters.

Specifications Details of how the tasks and functions are to be
performed.

Design of prototype Construction of a prototype, including coding and testing.
Prototype: System Evaluation by both the developer and the customer of

test how well the prototype design meets the requirements.
Revision of Prototype system tests and other information may reveal

specifications needed changes.
Final design Design changes in the prototype software in response to

discovered deviations from the original specifications
or the revised specifications, and changes to improve
performance and reliability.

Code final design The final implementation of the design.
Unit test Each major unit (module) of the code is individually

tested.
Integration test Each module is successively inserted into the pretested

control structure, and the composite is tested.
System test Once all (or most) of the units have been integrated,

the system operation is tested.
Acceptance test The customer designs and witnesses a test of the system to

see if it meets the requirements.
Field deployment The software is placed into operational use.
Field maintenance Errors found during operation must be fixed.
Redesign of the A new contract is negotiated after a number of years of

system operation to include changes and additional features.
The aforementioned phases are repeated.

Software discard Eventually, the software is no longer updated or corrected
but discarded, perhaps to be replaced by new software.

needed. Generally, old software is discarded once new, improved software is
available. However, if one branch of an organization decides to buy new soft-
ware and another branch wishes to continue with its present version, it may
be difficult to define the end of the software’s usage. Oftentimes, the discard-
ing takes place many years beyond what was originally envisioned when the
software was developed or purchased. (In many ways, this is why there was
a Y2K problem: too few people ever thought that their software would last to
the year 2000.)
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5.3.2 Requirements

The project formally begins with the drafting of a requirements document for
the system in response to the needs document or equivalent document. Initially,
the requirements constitute high-level system requirements encompassing both
the hardware and software. In a large project, as the requirements document
“matures,” it is expanded into separate hardware and software requirements;
the requirements will specify what needs to be done. For an air traffic control
system (ATC), the requirements would deal with the ATC centers that they
must serve, the present and expected future volume of traffic, the mix of air-
craft, the types of radar and displays used, and the interfaces to other ATC
centers and the aircraft. Present travel patterns, expected growth, and expected
changes in aircraft, airport, and airline operational characteristics would also
be reflected in the requirements.

5.3.3 Specifications

The project specifications start with the requirements and the details of how
the software is to be designed to satisfy these requirements. Continuing with
our air traffic control system example, there would be a hardware specifica-
tions document dealing with (a) what type of radar is used; (b) the kinds of
displays and display computers that are used; (c) the distributed computers or
microprocessors and memory systems; (d) the communications equipment; (e)
the power supplies; and (f) any networks that are needed for the project. The
software specifications document will delineate (a) what tracking algorithm to
use; (b) how the display information for the aircraft will be handled; (c) how
the system will calculate any potential collisions; (d) how the information will
be displayed; and (e) how the air traffic controller will interact with both the
system and the pilots. Also, the exact nature of any required records of a tech-
nical, managerial, or legal nature will be specified in detail, including how
they will be computed and archived. Particular projects often use names dif-
ferent from requirements and specifications (e.g., system requirements versus
software specifications and high-level versus detailed specifications), but their
content is essentially the same. A combined hardware–software specification
might be used on a small project.

It is always a difficult task to define when requirements give way to specifi-
cations, and in the practical world, some specifications are mixed in the require-
ments document and some sections of the specifications document actually
seem like requirements. In any event, it is important that the why, the what,
and the how of the project be spelled out in a set of documents. The complete-
ness of the set of documents is more important than exactly how the various
ideas are partitioned between requirements and specifications.

Several researchers have outlined or developed experimental systems that
use a formal language to write the specifications. Doing so has introduced a for-
malism and precision that is often lacking in specifications. Furthermore, since
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the formal specification language would have a grammar, one could build an
automated specification checker. With some additional work, one could also
develop a simulator that would in some way synthetically execute the specifi-
cations. Doing so would be very helpful in many ways for uncovering missing
specifications, incomplete specifications, and conflicting specifications. More-
over, in a very simple way, it would serve as a preliminary execution of the
software. Unfortunately, however, such projects are only in the experimental
or prototype stages [Wing, 1990].

5.3.4 Prototypes

Most innovative projects now begin with a prototype or rapid prototype phase.
The purpose of the prototype is multifaceted: developers have an opportunity to
try out their design ideas, the difficult parts of the project become rapidly appar-
ent, and there is an early (imperfect) working model that can be shown to the cus-
tomer to help identify errors of omission and commission in the requirements and
specification documents. In constructing the prototype, an initial control struc-
ture (the main program coordinating all the parts) is written and tested along with
the interfaces to the various components (subroutines and modules). The various
components are further decomposed into smaller subcomponents until the mod-
ule level is reached, at which time programming or coding at the module level
begins. The nature of a module is described in the paragraphs that follow.

A module is a block of code that performs a well-described function or
procedure. The length of a module is a frequently debated issue. Initially, its
length was defined as perhaps 50–200 source lines of code (SLOC). The SLOC
length of a module is not absolute; it is based on the coder’s “intellectual span
of control.” Since a program listing contains about 50 lines, this means that a
module would be 1–4 pages long. The reasoning behind this is that it would
be difficult to read, analyze, and trace the control structures of a program that
extend beyond a few pages and keep all the logic of the program in mind;
hence the term intellectual span of control. The concept of a module, module
interface, and rough bounds on module size are more directly applicable to an
SPP approach than to that of an OOP; however, as with very large and complex
modules, very large and complex objects are undesirable.

Sometimes, the prototype progresses rapidly since old code from related
projects can be used for the subroutines and modules, or a “first draft” of the
software can be written even if some of the more complex features are left out.
If the old code actually survives to the final version of the program, we speak
of such code as reused code or legacy code, and if such reuse is significant,
the development life cycle will be shortened somewhat and the cost will be
reduced. Of course, the prototype code must be tested, and oftentimes when a
prototype is shown to the customer, the customer understands that some fea-
tures are not what he or she wanted. It is important to ascertain this as early
as possible in the project so that revisions can be made in the specifications
that will impact the final design. If these changes are delayed until late in
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the project, they can involve major changes in the code as well as significant
redesign and extensive retesting of the software, for which large cost overruns
and delays may be incurred. In some projects, the contracting is divided into
two phases: delivery and evaluation of the prototype, followed by revisions
in the requirements and specifications and a second contract for the delivered
version of the software. Some managers complain that designing a prototype
that is to be replaced by a final design is doing a job twice. Indeed it is; how-
ever, it is the best way to develop a large, complex project. (See Chapter 11,
“Plan to Throw One Away,” of Brooks [1995].) The cost of the prototype is
not so large if one considers that much of the prototype code (especially the
control structure) can be modified and reused for the final design and that the
prototype test cases can be reused in testing the final design. It is likely that
the same manager who objects to the use of prototype software would heartily
endorse the use of a prototype board (breadboard), a mechanical model, or
a computer simulation to “work out the bugs” of a hardware design without
realizing that the software prototype is the software analog of these well-tried
hardware development techniques.

Finally, we should remark that not all projects need a prototype phase. Con-
sider the design of a fourth payroll system for a customer. Assume that the
development organization specializes in payroll software and had developed
the last three payroll systems for the customer. It is unlikely that a prototype
would be required by either the customer or the developer. More likely, the
developer would have some experts with considerable experience study the
present system, study the new requirements, and ask many probing questions
of the knowledgeable personnel at the customer’s site, after which they could
write the specifications for the final software. However, this payroll example
is not the usual case; in most cases, prototype software is generally valuable
and should be considered.

5.3.5 Design

Design really begins with the needs, requirements, and specifications docu-
ments. Also, the design of a prototype system is a very important part of
the design process. For discussion purposes, however, we will refer to the
final design stage as program design. In the case of SPP, there are two basic
design approaches: top–down and bottom–up. The top–down process begins
with the complete system at level 0; then, it decomposes this into a num-
ber of subsystems at level 1. This process continues to levels 2 and 3, then
down to level n where individual modules are encountered and coded as
described in the following section. Such a decomposition can be modeled
by a hierarchy diagram (H-diagram) such as that shown in Fig. 5.1(a). The
diagram, which resembles an inverted tree, may be modeled as a mathe-
matical graph where each “box” in the diagram represents a node in the
graph and each line connecting the boxes represents a branch in the graph.
A node at level k (the predecessor) has several successor nodes at level
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(k + 1) (sometimes, the terms ancestor and descendant or parent and child
are used). The graph has no loops (cycles), all nodes are connected (you can
traverse a sequence of branches from any node to any other node), and the
graph is undirected (one can traverse all branches in either direction). Such a
graph is called a tree (free tree) and is shown in Fig. 5.1(b). For more details
on trees, see Cormen [p. 91ff.].

The example of the H-diagram given in Fig. 5.1 is for the top-level archi-
tecture of a program to be used in the hypothetical design of the suspension
system for a high-speed train. It is assumed that the dynamics of the suspen-
sion system can be approximated by a third-order differential equation and that
the stability of the suspension can be studied by plotting the variation in the
roots of the associated third-order characteristic polynomial (Ax3 + Bx2 + Cx
+ D = 0), which is a function of the various coefficients A, B, C, and D. It is
also assumed that the company already has a plotting program (4.1) that is to
be reused. The block (4.2) is to determine whether the roots have any positive
real parts, since this indicates instability. In a different design, one could move
the function 4.2 to 2.4. Thus the H-diagram can be used to discuss differences
in high-level design architecture of a program. Of course, as one decomposes
a problem, modules may appear at different levels in the structure, so the H-
diagram need not be as symmetrical as that shown in Fig. 5.1.

One feature of the top–down decomposition process is that the decision of
how to design lower-level elements is delayed until that level is reached in
the design decomposition and the final decision is delayed until coding of the
respective modules begins. This hiding process, called information hiding, is
beneficial, as it allows the designer to progress with his or her design while
more information is gathered and design alternatives are explored before a
commitment is made to a specific approach. If at each level k the project is
decomposed into very many subproblems, then that level becomes cluttered
with many concepts, at which point the tree becomes very wide. (The number
of successor nodes in a tree is called the degree of the predecessor node.) If the
decomposition only involves two or three subproblems (degree 2 or 3), the tree
becomes very deep before all the modules are reached, which is again cum-
bersome. A suitable value to pick for each decomposition is 5–9 subprograms
(each node should have degree 5–9). This is based on the work of the exper-
imental psychologist Miller [1956], who found that the classic human senses
(sight, smell, hearing, taste, and touch) could discriminate 5–9 logarithmic lev-
els. (See also Shooman [1983, pp. 194, 195].) Using the 5–9 decomposition
rule provides some bounds to the structure of the design process for an SPP.

Assume that the program size is N source lines of code (SLOC) in length.
If the graph is symmetrical and all the modules appear at the lowest level k,
as shown in Fig. 5.1(a), and there are 5–9 successors at each node, then:

1. All the levels above k represent program interfaces.

2. At level 0, there are between 50 = 1 and 90 = 1 interfaces. At level 1, the
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top level node has between 51 = 5 and 91 = 9 interfaces. Also at level 2
are between 52 = 25 and 92 = 81 interfaces. Thus, for k levels starting
with level 0, the sum of the geometric progression r0 + r1 + r2 + · · · + rk is
given by the equations that follow. (See Hall and Knight [1957, p. 39]
or a similar handbook for more details.)

Sum � (r k
− 1)/ (r − 1) (5.1a)

and for r = 5 to 9, we have

(5k
− 1)/ 4 ≤ number of interfaces ≤ (9k

− 1)/ 8 (5.1b)

3. The number of modules at the lowest level is given by

5k ≤ number of modules ≤ 9k (5.1c)

4. If each module is of size M, the number of lines of code is

M × 5k ≤ number of SLOC ≤ M × 9k (5.1d)

Since modules generally vary in size, Eq. (5.1d) is still approximately correct
if M is replaced by the average value M.

We can better appreciate the use of Eqs. (5.1a–d) if we explore the following
example. Suppose that a module consists of 100 lines of code, in which case
M = 100, and it is estimated that a program design will take about 10,000
SLOC. Using Eq. (5.1c, d), we know that the number of modules must be
about 100 and that the number of levels are bounded by 5k =100 and 9k =
100. Taking logarithms and solving the resulting equations yields 2.09 ≤ k ≤
2.86. Thus, starting with the top-level 0, we will have about 2 or 3 successor
levels. Similarly, we can bound the number of interfaces by Eq. (5.1b), and
substitution of k = 3 yields the number of interfaces between 31 and 91. Of
course, these computations are for a symmetric graph; however, they give us
a rough idea of the size of the H-diagram design and the number of modules
and interfaces that must be designed and tested.

5.3.6 Coding

Sometimes, a beginning undergraduate student feels that coding is the most
important part of developing software. Actually, it is only one of the six-
teen phases given in Table 5.1. Previous studies [Shooman, 1983, Table 5.1]
have shown that coding constitutes perhaps 20% of the total development
effort. The preceding phases of design—“start of project” through the “final
design”—entail about 40% of the development effort; the remaining phases,
starting with the unit (module) test, are another 40%. Thus coding is an impor-
tant part of the development process, but it does not represent a large fraction
of the cost of developing software. This is probably the first lesson that the
software engineering field teaches the beginning student.
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The phases of software development that follow coding are various types of
testing. The design is an SPP, and the coding is assumed to follow the struc-
tured programming approach where the minimal basic control structures are
as follows: IF THEN ELSE and DO WHILE. In addition, most languages also
provide DO UNTIL, DO CASE, BREAK, and PROCEDURE CALL AND
RETURN structures that are often called extended control structures. Prior to
the 1970s, the older, dangerous, and much-abused control structure GO TO
LABEL was often used indiscriminately and in a poorly thought-out manner.
One major thrust of structured programming was to outlaw the GO TO and
improve program structure. At the present, unless a programmer must correct,
modify, or adapt a very old (legacy) code, he or she should never or very sel-
dom encounter a GO TO. In a few specialized cases, however, an occasional
well-thought-out, carefully justified GO TO is warranted [Shooman, 1983].

Almost all modern languages support structured programming. Thus the
choice of a language is based on other considerations, such as how familiar
the programmers are with the language, whether there is legacy code available,
how well the operating system supports the language, whether the code mod-
ules are to be written so that they may be reused in the future, and so forth.
Typical choices are C, Ada, and Visual Basic. In the case of OOP, the most
common languages at the present are C++ and Ada.

5.3.7 Testing

Testing is a complex process, and the exact nature of it depends on the design
philosophy and the phase of the project. If the design has progressed under a
top–down structured approach, it will be much like that outlined in Table 5.1.
If the modern OOP techniques are employed, there may be more testing of
interfaces, objects, and other structures within the OOP philosophy. If proof of
program correctness is employed, there will be many additional layers added to
the design process involving the writing of proofs to ensure that the design will
satisfy a mathematical representation of the program logic. These additional
phases of design may replace some of the testing phases.

Assuming the top–down structured approach, the first step in testing the
code is to perform unit (module) testing. In general, the first module to be
written should be the main control structure of the program that contains the
highest interface levels. This main program structure is coded and tested first.
Since no additional code is generally present, sometimes “dummy” modules,
called test stubs, are used to test the interfaces. If legacy code modules are
available for use, clearly they can serve to test the interfaces. If a prototype
is to be constructed first, it is possible that the main control structure will be
designed well enough to be reused largely intact in the final version.

Each functional unit of code is subjected to a test, called unit or module
testing, to determine whether it works correctly by itself. For example, sup-
pose that company X pays an employee a base weekly salary determined by the
employee’s number of years of service, number of previous incentive awards,
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and number of hours worked in a week. The basic pay module in the payroll
program of the company would have as inputs the date of hire, the current
date, the number of hours worked in the previous week, and historical data
on the number of previous service awards, various deductions for withholding
tax, health insurance, and so on. The unit testing of this module would involve
formulating a number of hypothetical (or real) work records for a week plus a
number of hypothetical (or real) employees. The base pay would be computed
with pencil, paper, and calculator for these test cases. The data would serve
as inputs to the module, and the results (outputs) would be compared with the
precomputed results. Any discrepancies would be diagnosed, the internal cause
of the error (fault) would be located, and the code would be redesigned and
rewritten to correct the error. The tests would be repeated to verify that the error
had been eliminated. If the first code unit to be tested is the program control
structure, it would define the software interfaces to other modules. In addition,
it would allow the next phase of software testing—the integration test—to pro-
ceed as soon as a number of units had been coded and tested. During the inte-
gration test, one or more units of code would be added to the control structure
(and any previous units that had been integrated), and functional tests would be
performed along a path through the program involving the new unit(s) being
tested. Generally, only one unit would be integrated at a time to make localiz-
ing any errors easier, since they generally come from within the new module
of code; however, it is still possible for the error to be associated with the
other modules that had already completed the integration test. The integration
test would continue until all or most of the units have been integrated into the
maturing software system. Generally, module and many integration test cases
are constructed by examining the code. Such tests are often called white box
or clear box tests (the reason for these names will soon be explained).

The system test follows the integration test. During the system test, a sce-
nario is written encompassing an entire operational task that the software must
perform. For example, in the case of air traffic control software, one might
write a scenario that replicates aircraft arrivals and departures at Chicago’s
O’Hare Airport during a slow period—say, between 11 and 12 P.M. This would
involve radar signals as inputs, the main computer and software for the sys-
tem, and one or more display processors. In some cases, the radar would not
be present, but simulated signals would be fed to the computer. (Anyone who
has seen the physical size of a large, modern radar can well appreciate why
the radar is not physically present, unless the system test is performed at an
air traffic control center, which is unlikely.) The display system is a “desk-
size” console likely to be present during the system test. As the system test
progresses, the software gradually approaches the time of release when it can
be placed into operation. Because most system tests are written based on the
requirements and specifications, they do not depend on the nature of the code;
they are as if the code were hidden from view in an opaque or black box.
Hence such functional tests are often called black box tests.

On large projects (and sometimes on smaller ones), the last phase of testing
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is acceptance testing. This is generally written into the contract by the cus-
tomer. If the software is being written “in house,” an acceptance test would be
performed if the company software development procedures call for it. A typi-
cal acceptance test would contain a number of operational scenarios performed
by the software on the intended hardware, where the location would be chosen
from (a) the developer’s site, (b) the customer’s site, or (c) the site at which
the system is to be deployed. In the case of air traffic control (ATC), the ATC
center contains the present on-line system n and the previous system, n – 1, as
a backup. If we call the new system n + 1, it would be installed alongside n
and n – 1 and operate on the same data as the on-line system. Comparing the
outputs of system n+1 with system n for a number of months would constitute
a very good acceptance test. Generally, the criterion for acceptance is that the
software must operate on real or simulated system data for a specified number
of hours or be subjected to a certain number of test inputs. If the acceptance
test is passed, the software is accepted and the developer is paid; however, if
the test is failed, the developer resumes the testing and correcting of software
errors (including those found during the acceptance test), and a new acceptance
test date is scheduled.

Sometimes, “third party” testing is used, in which the customer hires an out-
side organization to make up and administer integration, system, or acceptance
tests. The theory is that the developer is too close to his or her own work and
cannot test and evaluate it in an unbiased manner. The third party test group
is sometimes an independent organization within the developer’s company. Of
course, one wonders how independent such an in-house group can be if it and
the developers both work for the same boss.

The term regression testing is often used, describing the need to retest the
software with the previous test cases after each new error is corrected. In the-
ory, one must repeat all the tests; however, a selected subset is generally used
in the retest. Each project requires a test plan to be written early in the develop-
ment cycle in parallel with or immediately following the completion of speci-
fications. The test plan documents the tests to be performed, organizes the test
cases by phase, and contains the expected outputs for the test cases. Generally,
testing costs and schedules are also included.

When a commercial software company is developing a product for sale to
the general business and home community, the later phases of testing are often
somewhat different, for which the terms alpha testing and beta testing are often
used. Alpha testing means that a test group within the company evaluates the
software before release, whereas beta testing means that a number of “selected
customers” with whom the developer works are given early releases of the
software to help test and debug it. Some people feel that beta testing is just a
way of reducing the cost of software development and that it is not a thorough
way of testing the software, whereas others feel that the company still does
adequate testing and that this is just a way of getting a lot of extra field testing
done in a short period of time at little additional cost.

During early field deployment, additional errors are found, since the actual
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operating environment has features or inputs that cannot be simulated. Gener-
ally, the developer is responsible for fixing the errors during early field deploy-
ment. This responsibility is an incentive for the developer to do a thorough
job of testing before the software is released because fixing errors after it is
released could cost 25–100 times as much as that during the unit test. Because
of the high cost of such testing, the contract often includes a warranty period
(of perhaps 1–2 years or longer) during which the developer agrees to fix any
errors for a fee.

If the software is successful, after a period of years the developer and others
will probably be asked to provide a proposal and estimate the cost of including
additional features in the software. The winner of the competition receives a
new contract for the added features. If during initial development the devel-
oper can determine something about possible future additions, the design can
include the means of easily implementing these features in the future, a process
for which the term “putting hooks” into the software is often used. Eventually,
once no further added features are feasible or if the customer’s needs change
significantly, the software is discarded.

5.3.8 Diagrams Depicting the Development Process

The preceding discussion assumed that the various phases of software develop-
ment proceed in a sequential fashion. Such a sequence is often called waterfall
development because of the appearance of the symbolic model as shown in
Fig. 5.2. This figure does not include a prototype phase; if this is added to the
development cycle, the diagram shown in Fig. 5.3 ensues. In actual practice,
portions of the system are sometimes developed and tested before the remain-
ing portions. The term software build is used to describe this process; thus
one speaks of build 4 being completed and integrated into the existing system
composed of builds 1–3. A diagram describing this build process, called the
incremental model of software development, is given in Fig. 5.4. Other related
models of software development are given in Schach [1999].

Now that the general features of the development process have been
described, we are ready to introduce software reliability models related to the
software development process.

5.4 RELIABILITY THEORY

5.4.1 Introduction

In Section 5.1, software reliability was defined as the probability that the soft-
ware will perform its intended function, that is, the probability of success,
which is also known as the reliability. Since we will be using the principles
of reliability developed in Appendix B, Section B3, we summarize the devel-
opment of reliability theory that is used as a basis for our software reliability
models.
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Figure 5.2 Diagram of the waterfall model of software development.

5.4.2 Reliability as a Probability of Success

The reliability of a system (hardware, software, human, or a combination
thereof) is the probability of success, Ps, which is unity minus the probability
of failure, Pf . If we assume that t is the time of operation, that the operation
starts at t = 0, and that the time to failure is given by tf , we can then express
the reliability as

R(t) � Ps � P(tf ≥ t) � 1 − Pf � 1 − P(0 ≤ tf ≤ t) (5.2)
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Figure 5.3 Diagram of the rapid prototype model of software development.

The notation, P(0 ≤ tf ≤ t), in Eq. (5.2) stands for the probability that the time
to failure is less than or equal to t. Of course, time is always a positive value,
so the time to failure is always equal to or greater than 0. Reliability can also
be expressed in terms of the cumulative probability distribution function for
the random variable time to failure, F(t), and the probability density function,
f (t) (see Appendix A, Section A6). The density function is the derivative of

/the distribution function, f (t) = dF(t) dt,  and the distribution function is the
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Figure 5.4 Diagram of the incremental model of software development.

integral of the density function, F(t) =  1 – ∫ f (t) dt. Since by definition F(t) =
P(0 ≤ tf ≤ t), Eq. (5.2) becomes

R(t) � 1 − F(t) � 1 − ∫ f (t) dt (5.3)

Thus reliability can be easily calculated if the probability density function for
the time to failure is known. Equation (5.3) states the simple relationships
among R(t), F(t), and f (t); given any one of the functions, the other two are
easy to calculate.
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5.4.3 Failure-Rate (Hazard) Function

Equation (5.3) expresses reliability in terms of the traditional mathematical
probability functions, F(t), and f (t); however, reliability engineers have found
these functions to be generally ill-suited for study if we want intuition, fail-
ure data interpretation, and mathematics to agree. Intuition suggests that we
study another function—a conditional probability function called the failure
rate (hazard), z(t). The following analysis develops an expression for the reli-
ability in terms of z(t) and relates z(t) to f (t) and F(t).

The probability density function can be interpreted from the following rela-
tionship:

P(t < tf < t + dt) � P(failure in interval t to t + dt) � f (t) dt (5.4)

One can relate the probability functions to failure data analysis if we begin with
N items placed on the life test at time t. The number of items surviving the
life test up to time t is denoted by n(t). At any point in time, the probability of
failure in interval dt is given by (number of failures)/ N. (To be mathematically
correct, we should say that this is only true in the limit as dt � 0.) Similarly,
the reliability can be expressed as R(t) = n(t) / N. The number of failures in
interval dt is given by [n(t) – n(t + dt)], and substitution in Eq. (5.4) yields

n(t) − n(t + dt)
N

� f (t) dt (5.5)

However, we can also write Eq. (5.4) as

f (t) dt =P(no failure in interval 0 to t)

× P(failure in interval dt | no failure in interval 0 to t) (5.6a)

The last expression in Eq. (5.6a) is a conditional failure probability, and the
symbol | is interpreted as “given that.” Thus P(failure in interval dt | no failure
in interval 0 to t) is the probability of failure in 0 to t given that there was no
failure up to t, that is, the item is working at time t. By definition, P(failure
in interval dt | no failure in interval 0 to t) is called the hazard function, z(t);
its more popular name is the failure-rate function. Since the probability of no
failure is just the reliability function, Eq. (5.6a) can be written as

f (t) dt � R(t) × z(t) dt (5.6b)

This equation relates f (t), R(t), and z(t); however, we will develop a more
convenient relationship shortly.

Substitution of Eq. (5.6b) into Eq. (5.5) along with the relationship R(t) =
n(t)/ N yields
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n(t) − n(t + dt)
N

� R(t)z(t) dt �
n(t)
N

z(t) dt (5.7)

Solving Eqs. (5.5) and (5.7) for f (t) and z(t), we obtain

f (t) �
n(t) − n(t + dt)

N dt
(5.8)

z(t) �
n(t) − n(t + dt)

n(t) dt
(5.9)

Comparing Eqs. (5.8) and (5.9), we see that f (t) reflects the rate of failure
based on the original number N placed on test, whereas z(t) gives the instan-
taneous rate of failure based on the number of survivors at the beginning of
the interval.

We can develop an equation for R(t) in terms of z(t) from Eq. (5.6b):

z(t) �
f (t)
R(t)

(5.10)

and from Eq. (5.3), differentiation of both sides yields

dR(t)
dt

� − f (t) (5.11)

Substituting Eq. (5.11) into (5.10) and solving for z(t) yields

z(t) � −

dR(t)
dt �R(t) (5.12)

This differential equation can be solved by integrating both sides, yielding

ln{R(t)} � − ∫ z(t) dt (5.13a)

Eliminating the natural logarithmic function in this equation by exponentiating
both sides yields

R(t) � e− ∫ z(t) dt (5.13b)

which is the form of the reliability function that is used in the following model
development.

If one substitutes limits for the integral, a dummy variable, x, is required
inside the integral, and a constant of integration must be added, yielding
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R(t) � e− ∫t0 z(x) dx + A
� Be− ∫t0 z(x) dx (5.13c)

As is normally the case in the solution of differential equations, the constant
B = e−A is evaluated from the initial conditions. At t = 0, the item is good and
R(t = 0) = 1. The integral from 0 to 0 is 0; thus B = 1 and Eq. (5.13c) becomes

R(t) � e− ∫t0 z(x) dx (5.13d)

5.4.4 Mean Time To Failure

Sometimes, the complete information on failure behavior, z(t) or f (t), is not
needed, and the reliability can be represented by the mean time to failure
(MTTF) rather than the more detailed reliability function. A point estimate
(MTTF) is given instead of the complete time function, R(t). A rough analogy
is to rank the strength of a hitter in baseball in terms of his or her batting aver-
age, rather than the complete statistics of how many times at bat, how many
first-base hits, how many second-base hits, and so on.

The mean value of a probability function is given by the expected value,
E(t), of the random variable, which is given by the integral of the product of
the random variable (time to failure) and its density function, which has the
following form:

MTTF � E(t) � ∫
∞

0
t f(t) dt (5.14)

Some mathematical manipulation of Eq. (5.14) involving integration by parts
[Shooman, 1990] yields a simpler expression:

MTTF � E(t) � ∫
∞

0
R(t) dt (5.15)

Sometimes, the mean time to failure is called mean time between failure
(MTBF), and although there is a minor difference in their definitions, we will
use the terms interchangeably.

5.4.5 Constant-Failure Rate

In general, a choice of the failure-rate function defines the reliability model.
Such a choice should be made based on past studies that include failure-rate
data or reasonable engineering assumptions. In several practical cases, the fail-
ure rate is constant in time, z(t) = l, and the mathematics becomes quite simple.
Substitution into Eqs. (5.13d) and (5.15) yields
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R(t) � e− ∫t0 l dx � e−lt (5.16)

MTTF � E(t) � ∫
∞

0
e−lt d t � 1

l
(5.17)

The result is particularly simple: the reliability function is a decreasing expo-
nential function where the exponent is the negative of the failure rate l. A
smaller failure rate means a slower exponential decay. Similarly, the MTTF is
just the reciprocal of the failure rate, and a small failure rate means a large
MTTF.

As an example, suppose that past life tests have shown that an item fails at
a constant-failure rate. If 100 items are tested for 1,000 hours and 4 of these
fail, then l = 4 / (100 × 1,000) = 4 × 10−5. Substitution into Eq. (5.17) yields

case, substitution into Eq. (5.16) yields R(5,000) = e− (4/ 100,000) × 5,000 = e−0.2 =
0.82. Thus, if the failure rate were constant at 4 × 10−5, the MTTF is 25,000
hours, and the reliability (probability of no failures) for 5,000 hours is 0.82.

More complex failure rates yield more complex results. If the failure rate
increases with time, as is often the case in mechanical components that even-
tually “wear out,” the hazard function could be modeled by z(t) � kt. The
reliability and MTTF then become the equations that follow [Shooman, 1990].

R(t) � e− ∫t0 kx dx � e−kt2/ 2 (5.18)

MTTF � E(t) � ∫
∞

0
e−kt2/ 2 dt �

�
p

2k
(5.19)

Other choices of hazard functions would give other results.
The reliability mathematics of this section applies to hardware failure and

human errors, and also to software errors if we can characterize the software
errors by a failure-rate function. The next section discusses how one can for-
mulate a failure-rate function for software based on a software error model.

5.5 SOFTWARE ERROR MODELS

5.5.1 Introduction

Many reliability models discussed in the remainder of this chapter are related
to the number of residual errors in the software; therefore, this section dis-
cusses software error models. Generally, one speaks of faults in the code that
cause errors in the software operation; it is these errors that lead to system
failure. Software engineers differentiate between a fault, a software error, and
a software-caused system failure only when necessary, and the slang expres-

MTTF =25,000 hours. Suppose we want the reliability for 5,000 hours; in that
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sion “software bug” is commonly used in normal conversation to describe a
software problem.3

Software errors occur at many stages in the software life cycle. Errors may
occur in the requirements-and-specifications phase. For example, the specifi-
cations might state that the time inputs to the system from a precise cesium
atomic clock are in hours, minutes, and seconds when actually the clock out-
put is in hours and decimal fractions of an hour. Such an erroneous specifica-
tion might be found early in the development cycle, especially if a hardware
designer familiar with the cesium clock is included in the specification review.
It is also possible that such an error will not be found until a system test, when
the clock output is connected to the system. Errors in requirements and speci-
fications are identified as separate entities; however, they will be added to the
code faults in this chapter. If the range safety officer has to destroy a satellite
booster because it is veering off course, it matters little to him or her whether
the problem lies in the specifiations or whether it is a coding error.

Errors occur in the program logic. For example, the THEN and ELSE
clauses in an IF THEN ELSE statement may be interchanged, creating an error,
or a loop is erroneously executed n – 1 times rather than the correct value, which
is n times. When a program is coded, syntax errors are always present and are
caught by the compiler. Such syntax errors are too frequent, embarrassing, and
universal to be considered errors.

Actually, design errors should be recorded once the program management
reviews and endorses a preliminary design expressed by a set of design repre-
sentations (H-diagrams, control graphs, and maybe other graphical or abbrevi-
ated high-level control-structure code outlines called pseudocodes) in addition
to requirements and specifications. Often, a formal record of such changes is
not kept. Furthermore, errors found by code reading and testing at the middle
(unit) code level (called module errors) are often not carefully kept. A change
in the preliminary design and the occurrence of module test errors should both
be carefully recorded.

Oftentimes, the standard practice is not to start counting software errors,

3The origin of the word “bug” is very interesting. In the early days of computers, many of the
machines were constructed of vacuum tubes and relays, used punched cards for input, and used
machine language or assembly language. Grace Hopper, one of the pioneers who developed
the language COBOL and who spent most of her career in the U.S. Navy (rising to the rank
of admiral), is generally credited with the expression. One hot day in the summer of 1945 at
Harvard, she was working on the Mark II computer (successor to the pioneering Mark I) when
the machine stopped. Because there was no air conditioning, the windows were opened, which
permitted the entry of a large moth that (subsequent investigation revealed) became stuck between
the contacts of one of the relays, thereby preventing the machine from functioning. Hopper and
the team removed the moth with tweezers; later, it was mounted in a logbook with tape (it is now
displayed in the Naval Museum at the Naval Surface Weapons Center in Dahlgren, Virginia).
The expression “bug in the system” soon became popular, as did the term “debugging” to denote
the fixing of program errors. It is probable that “bug” was used before this incident during World
War II to describe system or hardware problems, but this incident is clearly the origin of the term
“software bug” [Billings, 1989, p. 58].
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regardless of their cause, until the software comes under configuration con-
trol, generally at the start of integration testing. Configuration control occurs
when a technical manager or management board is put in charge of the official
version of the software and records any changes to the software. Such a change
(error fix) is submitted in writing to the configuration control manager by the
programmer who corrected the error and retested the code of the module with
the design change. The configuration control manager retests the present ver-
sion of the software system with the inserted change; if he or she agrees that it
corrects the error and does not seem to cause any problems, the error is added
to the official log of found and corrected errors. The code change is added
to the official version of the program at the next compilation and release of
a new, official version of the software. It is desirable to start recording errors
earlier in the program than in the configuration control stage, but better late
than never! The origin of configuration control was probably a reaction to the
early days of program patching, as explained in the following paragraph.

In the early days of programming, when the compilation of code for a large
program was a slow, laborious procedure, and configuration control was not
strongly enforced, programmers inserted their own changes into the compiled
version of the program. These additions were generally done by inserting a
machine language GO TO in the code immediately before the beginning of the
bad section, transferring program flow to an unused memory block. The correct
code in machine language was inserted into this block, and a GO TO at the end
of this correction block returned the program flow to an address in the compiled
code immediately after the old, erroneous code. Thus the error was bypassed;
such insertions were known as patches. Oftentimes, each programmer had his
or her own collection of patches, and when a new compilation of software
was begun, these confusing, sometimes overlapping and chaotic sets of patches
had to be analyzed, recoded in higher-level language, and officially inserted in
the code. No doubt configuration control was instituted to do away with this
terrible practice.

5.5.2 An Error-Removal Model

A software error-removal model can be formulated at the beginning of an inte-
gration test (system test). The variable t is used to represent the number of
months of development time, and one arbitrarily calls the start of configuration
control t = 0. At t = 0 , we assume that the software contains ET total errors.
As testing progresses, Ec(t) errors are corrected, and the remaining number of
errors, Er(t), is given by

Er(t) � ET − Ec(t) (5.20)

If some corrections made to discovered errors are imperfect, or if new errors
are caused by the corrections, we call this error generation. Equation (5.20) is
based on the assumption that there is no error generation—a situation that is
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Figure 5.5 Cumulative errors debugged versus months of debugging. (a) Approach-
ing equilibrium, horizontal asymptote, no generation of new errors; (b) approaching
equilibrium, generation rate of new errors equal to error-removal rate; and (c) diverg-
ing process, generation rate of new errors exceeding error-removal rate.

illustrated in Fig. 5.5(a). Note that in the figure a line drawn through any time
t parallel to the y-axis is divided into two line segments by the error-removal
curve. The segment below the curve represents the errors that have been cor-
rected, whereas the segment above the curve extending to ET represents the
remaining number of errors, and these line segments correspond to the terms in
Eq. (5.20). Suppose the software is released at time t1, in which case the figure
shows that not all the errors have been removed, and there is still a small resid-
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ual number remaining. If all the coding errors could be removed, there clearly
would be no code-related reasons for software failures (however, there would
still be requirements-and-specifications errors). By the time integration test-
ing is reached, we assume that the number of requirements-and-specifications
errors is very small and that the number of code errors gradually decreases as
the test process finds more errors to be subsequently corrected.

5.5.3 Error-Generation Models

In Fig. 5.5(b), we assume that there is some error generation and that the error
discovery and correction process must be more effective or must take longer
to leave the software with the same number of residual errors at release as in
Fig. 5.5(a). Figure 5.5(c) depicts an extraordinary situation in which the error
removal and correction initially exceeds the error generation; however, gen-
eration does eventually exceed correction, and the residual number of errors
increases. In this case, the most obvious choices are to release at time t1 and
suffer poor reliability from the number of residual errors, or else radically
change the test and correction process so that the situation of Fig. 5.5(a) or
(b) ensues and then continue testing. One could also return to an earlier saved
release of the software where error generation was modest, change the test and
correction process, and, starting with this baseline, return to testing. The last
and most unpleasant choice is to discard the software and start again. (Quan-
titative error-generation models are given in Shooman [1983, pp. 340–350].)

5.5.4 Error-Removal Models

Various models can be proposed for the error-correction function, Ec(t), given
in Eq. (5.20). The direct approach is to use the raw data. Error-removal data
collected over a period of several months can be plotted. Then, an empirical
curve can be fitted to the data, which can be extrapolated to forecast the future
error-removal behavior. A better procedure is to propose a model based on
past observations of error-removal curves and use the actual data to determine
the model parameters. This blends the past information on the general shape
of error-removal curves with the early data on the present project, and it also
makes the forecasting less vulnerable to a few atypical data values at the start
of the program (the statistical noise). Generally, the procedure takes a smaller
number of observations, and a useful model emerges early in the development
cycle—soon after t = 0. Of course, the estimate of the model parameters will
have an associated statistical variance that will be larger at the beginning, when
only a few data values are available, and smaller later in the project after more
data is collected. The parameter variance will of course affect the range of the
forecasts. If the project in question is somewhat like the previous projects, the
chosen model will in effect filter out some of the statistical noise and yield bet-
ter forecasts. However, what if for some reason the project is quite different
from the previous ones? The “inertia” of the model will temporarily mask these
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differences. Also, suppose that in the middle of testing some of the test per-
sonnel or strategies are changed and the error-removal curve is significantly
changed (for better or for worse). Again, the model inertia will temporarily
mask these changes. Thus it is important to plot the actual data and examine it
while one is using the model and making forecasts. There are many statistical
tests to help the observer determine if differences represent statistical noise or
different behavior; however, plotting, inspection, and thinking are all the initial
basic steps.

One must keep in mind that with modern computer facilities, complex mod-
eling and statistical parameter estimation techniques are easily accomplished;
the difficult part is collecting enough data for accurate, stable estimates of
model parameters and for interpretation of the results. Thus the focus of this
chapter is on understanding and interpretation, not on complexity. In many
cases, the error removal is too scant or inaccurate to support a sophisticated
model over a simple one, and the complex model shrouds our understanding.
Consider this example: Suppose we wish to estimate the math skills of 1,000
first-year high-school students by giving them a standardized test. It is too
expensive to test all the students. If we decide to test 10 students, it is unlikely
that the most sophisticated techniques for selecting the sample or processing
the data will give us more than a wide range of estimates. Similarly, if we find
the funds to test 250 students, then any elementary statistical techniques should
give us good results. Sophisticated statistical techniques may help us make a
better estimate if we are able to test, say, 50 students; however, the simpler
techniques should still be computed first, since they will be understood by a
wider range of readers.

Constant Error-Removal Rate. Our development starts with the simplest mod-
els. Assuming that the error-detection rate is constant leads to a single-param-
eter error-removal model. In actuality, even if the removal rate were constant,
it would fluctuate from week to week or month to month because of statistical
noise, but there are ample statistical techniques to deal with this. Another fac-
tor that must be considered is the delay of a few days or, occasionally, a few
weeks between the discovery of errors and their correction. For simplicity, we
will assume (as most models do) that such delays do not cause problems.

If one assumes a constant error-correction (removal) rate of r0 errors/ month
[Shooman, 1972, 1983], Eq. (5.20) becomes

Er(t) � ET − r0t (5.21)

We can also derive Eq. (5.21) in a more basic fashion by letting the error-
removal rate be given by the derivative of the number of errors remaining.
Thus, differentiation of Eq. (5.20) yields

error-correction rate �

dEr(t)
dt

� −

dEc(t)
dt

(5.22a)
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Since we assume that the error-correction rate is constant, Eq. (5.22a) becomes

error-correction rate �

dEr(t)
dt

� −

dEc(t)
dt

� −r0 (5.22b)

Integration of Eq. (5.22b) yields

Er(t) � C − r0t (5.22c)

The constant C is evaluated from the initial condition at t = 0, E r(t) = ET = C,
and Eq. (5.22c) becomes

Er(t) � ET − r0t (5.22d)

which is, of course, identical to Eq. (5.21). The cumulative number of errors
corrected is given by the second term in the equation, Ec(t) =r0t.

Although there is some data to support a constant error-removal rate
[Shooman and Bolsky, 1975], most practitioners observe that the error-removal
rate decreases with development time, t.

Note that in the foregoing discussion we always assumed that the same effort
is applied to testing and debugging over the interval in question. Either the
same number of programmers is working on the given phase of development,
the same number of worker hours is being expended, or the same number and
difficulty level of tests is being employed. Of course, this will vary from day
to day; we are really talking about the average over a week or a month. What
would really destroy such an assumption is if two people worked on testing
during the first two weeks in a month and six tested during the last two weeks
of the month. One could always deal with such a situation by substituting for
t the number of worker hours, WH; r0 would then become the number of
errors removed per worker hour. One would think that WH is always available
from the business records for the project. However, this is sometimes distorted
by the “big project phenomenon,” which means that sometimes the manager
of big project Z is told by his boss that there will be four programmers not
working on the project who will charge their salaries to project Z for the next
two weeks because they have no project support and Z is the only project that
has sufficient resources to cover their salaries. In analyzing data, one should
always be alert to the fact that such anomalies can occur, although the record
of WH is generally reliable.

As an example of how a constant error-removal rate can be used, consider a
10,000-line program that enters the integration test phase. For discussion pur-
poses, assume we are omniscient and know that there are 130 errors. Suppose
that the error removal proceeds at the rate of 15 per month and that the error-
removal curve will be as shown in Fig. 5.6. Suppose that the schedule calls for
release of the software after 8 months. There will be 130 – 120 =10 errors
left after 8 months of testing and debugging, but of course this information
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Figure 5.6 Illustration of a constant error-removal rate.

is unknown to the test team and managers. The error-removal rate in Fig. 5.6
remains constant up to 8 months, then drops to 0 when testing and debugging
is stopped. (Actually, there will be another phase of error correction when the
software is released to the field and the field errors are corrected; however, this
is ignored here.) The number of errors remaining is represented by the vertical
line between the cumulative errors removed and the number of errors at the
start.

How significant are the 10 residual errors? It depends on how often they
occur during operation and how they affect the program operation. A complete
discussion of these matters will have to wait until we develop the software
reliability models in subsequent sections. One observation that makes us a little
uneasy about this constant error-removal model is that the cumulative error-
removal curve given in Fig. 5.6 is linearly increasing and does not give us an
indication that most of the residual errors have been removed. In fact, if one
tested for about an additional two-thirds of a month, another 10 errors would be
found and removed, and all the errors would be gone. Philosophically, removal
of all errors is hard to believe; practical experience shows that this is rare, if
at all possible. Thus we must look for a more realistic error-removal model.

Linearly Decreasing Error-Removal Rate. Most practitioners have observed
that the error-removal rate decreases with development time, t. Thus the next
error-removal model we introduce is one that decreases with development time,
and the simplest choice for a decreasing model is a linear decrease. If we
assume that the error-removal rate decreases linearly as a function of time,
t [Musa, 1975, 1987], then instead of Eq. (5.22a) we have

dEr(t)
dt

� − (K1 − K2t) (5.23a)
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which represents a linearly decreasing error-removal rate. At some time t0, the
linearly decreasing failure rate should go to 0, and substitution into Eq. (5.23a)
yields K2 = K1/t0. Substitution into Eq. (5.23a) yields

dEr(t)
dt

� −K1 �1 −

t

t0
� � −K �1 −

t

t0
� (5.23b)

which clearly shows the linear decrease. For convenience, the subscript on K
was dropped since it was no longer needed. Integration of Eq. (5.23b) yields

Er(t) � C − Kt �1 −

t

2t0
� (5.23c)

The constant C is evaluated from the initial condition at t = 0, E r(t) = ET = C,
and Eq. (5.23c) becomes

Er(t) � ET − Kt �1 −

t

2t0
� (5.23d)

Inspection of Eq. (5.23b) shows that K is determined by the initial error-
removal rate at t = 0.

We now repeat the example introduced above to illustrate a linearly decreas-
ing error-removal rate. Since we wish the removal of 120 errors after 8 months
to compare with the previous example, we set ET r

the error-correction rate and number of remaining errors become

dEr(t)
dt

� −30 �1 −

t

8 � (5.24a)

Er(t) � 130 − 30t �1 −

t

16 � (5.24b)

The error-removal curve will be as shown in Fig. 5.7 and decreases to 0 at
8 months. Suppose that the schedule calls for release of the software after 8
months. There will be 130 – 120 =10 errors left after 8 months of testing
and debugging, but of course this information is unknown to the test team
and managers. The error-removal rate in Fig. 5.7 drops to 0 when testing and
debugging is stopped. The number of errors remaining is represented by the
vertical line between the cumulative errors removed and the number of errors
at the start. These results give an error-removal curve that seems to become
asymptotic as we approach 8 months of testing and debugging. Of course, the

is equal to 10. Solving for K, we obtain a value of 30, and the equations for
= 130, and at t =8, E (t =8)
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Figure 5.7 Illustration of a linearly decreasing error-removal rate.

decrease to 0 errors removed in 8 months was chosen to match the previous
constant error-removal example. In practice, however, the numerical values of
parameters K and t0 would be chosen to match experimental data taken during
the early part of the testing. The linear decrease of the error rate still seems
somewhat artificial, and a final model with an exponentially decreasing error
rate will now be developed.

Exponentially Decreasing Error-Removal Rate. The notion of an exponen-
tially decreasing error rate is attractive since it predicts a harder time in finding
errors as the program is perfected. Programmers often say they observe such
behavior as a program nears release. In fact, one can derive such an expo-
nential curve based on simple assumptions. Assume that the number of errors
corrected, Ec(t), is exactly equal to the number of errors detected, Ed(t), and
that the rate of error detection is proportional to the number of remaining errors
[Shooman, 1983, pp. 332–335].

dEd(t)
dt

� aEr(t) (5.25a)

Substituting for Er(t), from Eq. (5.20) and letting Ed(t) = Ec(t) yields

dEc(t)
dt

� a[ET − Ec(t)] (5.25b)

Rearranging the differential equation given in Eq. (5.25b) yields

dEc(t)
dt

+ aEc(t) � aET (5.25c)

To solve this differential equation, we obtain the homogeneous solution by
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setting the right-hand side equal to 0 and substituting the trial solution Ec(t) =
Aeat into Eq. (5.25c). The only solution is when a = a. Since the right-hand
side of the equation is a constant, the homogeneous solution is a constant.
Adding the homogeneous and particular solutions yields

Ec(t) � Ae−at + B (5.25d)

We can determine the constants A and B from initial conditions or by substi-
tution back into Eq. (5.25c). Substituting the initial condition into Eq. (5.25d)
when t = 0, E c = 0 yields A + B = 0 or A = –B. Similarly, when t � ∞,
Ec � ET , and substitution yields B =ET . Thus Eq. (5.25d) becomes

Ec(t) � ET (1 − e−at) (5.25e)

Substitution of Eq. (5.25e) into Eq. (5.20) yields

Er(t) � ETe−at (5.25f)

We continue with the example introduced above to illustrate a linearly
decreasing error-removal rate starting with ET =130 at t = 0. To match the
previous results, we assume that Er(t = 8) is equal to 10, and substitution into
Eq. (5.25f) gives 10 = 130e−8a. Solving for a by taking natural logarithms of
both sides yields the value a = 0.3206. Substitution of these values leads to
the following equations:

dEr(t)
dt

� −aETe−at
� −41.68e−0.3206t (5.26a)

Er(t) � 130e−0.3206t (5.26b)

The error-removal curve is shown in Fig. 5.8. The rate starts at 41.68 at t=
0 and decreases to 3.21 at t = 8. Theoretically, the error-removal rate continues
to decrease exponentially and only reaches 0 at infinity. We assume, however,
that testing stops after t = 8 and the removal rate falls to 0. The error-removal
curve climbs a little more steeply than that shown in Fig. 5.7, but they both
reach 120 errors removed after 8 months and stay constant thereafter.

Other Error-Removal-Rate Models. Clearly, one could continue to evolve
many other error-removal-rate models, and even though the ones discussed
in this section should suffice for most purposes, we should mention a few
other approaches in closing. All of these models assume a constant number
of worker hours expended throughout the integration test and error-removal
phase. On many projects, however, the process starts with a few testers, builds
to a peak, and then uses fewer personnel as the release of the software nears.
In such a case, an S-shaped error-removal curve ensues. Initially, the shape is
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Figure 5.8 Illustration of an exponentially decreasing error-removal rate.

concave upward until the main force is at work, at which time it is approxi-
mately linear; then, toward the end of the curve, it becomes concave downward.
One way to model such a curve is to use piecewise methods. Continuing with
our error-removal example, suppose that the error-removal rate starts at 2 per
month at t = 0 and increases to 5.4 and 14.77 after 1 and 2 months, respec-
tively. Between 2 and 6 months it stays constant at 15 per month; in months
7 and 8, it drops to 5.52 and 2 per month. The resultant curve is given in Fig.
5.9. Since fewer people are used during the first 2 and last 2 months, fewer
errors are removed (about 90 for the numerical values used for the purpose of
illustration). Clearly, to match the other error-removal models, a larger number
of personnel would be needed in months 3–6.

The next section relates the reliability of the software to the error-removal-
rate models that were introduced in this section.
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Figure 5.9 Illustration of an S-shaped error-removal rate.
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5.6 RELIABILITY MODELS

5.6.1 Introduction

In the preceding sections, we established the mathematical basis of the reli-
ability function and related it to the failure-rate function. Also, a number of
error-removal models were developed. Both of these efforts were preludes to
formulating a software reliability model. Before we become absorbed in the
details of reliability model development, we should review the purpose of soft-
ware reliability models.

Software reliability models are used to answer two main questions during
product development: When should we stop testing? and Will the product func-
tion well and be considered reliable? Both are technical management questions;
the former can be restated as follows: When are there few enough errors so
that the software can be released to the field (or at least to the last stage of
testing)? To continue testing is costly, but to release a product with too many
errors is more costly. The errors must be fixed in the field at high cost, and
the product develops a reputation for unreliability that will hurt its acceptance.
The software reliability models to be developed quantify the number of errors
remaining and especially provide a prediction of the field reliability, helping
technical and business management reach a decision regarding when to release
the product. The contract or marketing plan contains a release date, and penal-
ties may be assessed by a contract for late delivery. However, we wish to avoid
the dilemma of the on-time release of a product that is too “buggy” and thus
defective.

The other job of software reliability models is to give a prediction of field
reliability as early as possible. Two many software products are released and,
although they operate, errors occur too frequently; in retrospect, the projects
become failures because people do not trust the results or tire of dealing with
frequent system crashes. Most software products now have competitors, so
consequently an unreliable product loses out or must be fixed up after release
at great cost. Many software systems are developed for a single user for a spe-
cial purpose, for example, air traffic control, IRS tax programs, social services’
record systems, and control systems for radiation-treatment devices. Failures
of such systems can have dire consequences and huge impact. Thus, given
requirements and a quality goal, the types of reliability models we seek are
those that are easy to understand and use and also give reasonable results. The
relative accuracy of two models in which one predicts one crash per week and
another predicts two crashes per week may seem vastly different in a math-
ematical sense. However, suppose a good product should have less than one
crash a month or, preferably, a few crashes per year. In this case, both mod-
els tell the same story—the software is not nearly good enough! Furthermore,
suppose that these predictions are made early in the testing when only a little
failure data is available and the variance produces a range of estimates that
vary by more than two to one. The real challenge is to get practitioners to
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collect data, use simple models, and make predictions to guide the program.
One can always apply more sophisticated models to the same data set once the
basic ideas are understood. The biggest mistake is to avoid making a reliability
estimate because (a) it does not work, (b) it is too costly, and (c) we do not
have the data. None of these reasons is correct or valid, and this fact represents
poor management. The next biggest mistake is to make a model, obtain poor
reliability predictions, and ignore them because they are too depressing.

5.6.2 Reliability Model for Constant Error-Removal Rate

The basic simplicity and some of the drawbacks of the simple constant error-
removal model were discussed in the previous section on error-removal mod-
els. Even with these limitations, this is the simplest place to start for us to
develop most of the features of software reliability models based on this model
before we progress to more complex ones [Shooman, 1972].

The major assumption needed to relate an error-removal model to a software
reliability model is how the failure rate is related to the remaining number of
errors. For the remainder of this chapter, we assume that the failure rate is
proportional to the remaining number of errors:

z(t) � kEr(t) (5.27)

The bases of this assumption are as follows:

1. It seems reasonable to assume that more residual errors in the software
result in higher software failure rates.

2. Musa [1987] has experimental data supporting this assumption.
3. If the rate of error discovery is a random process dependent on input and

initial conditions, then the discovery rate is proportional to the number
of residual errors.

If one combines Eq. (5.27) with one of the software error-removal models of
the previous section, then a software reliability model is defined. Substitution
of the failure rate into Eqs. (5.13d) and (5.15) yields a reliability model R(t)
and an expression for the MTTFs.

As an example, we begin with the constant error-removal model, Eq.
(5.22d),

Er(t) � ET − r0t (5.28a)

Using the assumption of Eq. (5.27), one obtains

z(t) � kEr(t) � k(ET − r0t) (5.29)

and the reliability and MTTF expressions become
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Figure 5.10 Variation of reliability function R(t) with operating time t for fixed val-
ues of debugging time t. Note the time axis, t, is normalized.

R(t) � e− ∫ k(Et − r0t) dt
� e−k(ET − r0t)t (5.30a)

MTTF �

1
k(ET − r0t)

(5.30b)

The two preceding equations mathematically define the constant error-
removal rate software reliability model; however, there is still much to be said
in an engineering sense about how we apply this model. We must have a proce-
dure for estimating the model parameters, ET , k, and r0, and we must interpret
the results. For discussion purposes, we will reverse the order: we assume that
the parameters are known and discuss the reliability and MTTF functions first.
Since the parameters are assumed to be known, the exponent in Eq. (5.30a) is
just a function of t; for convenience, we can define k(ET –  r0t) =g(t). Thus,
as t increases, g decreases. Equation (5.30a) therefore becomes

R(t) � e−g t (5.31)

Equation (5.31) is plotted in Fig. 5.10 in terms of the normalized time scale
gt.

Let us assume that the project receives a minimum amount of testing and
debugging during t0 months. There would still be quite a few errors left, and
the reliability would be mediocre. In fact, Fig. 5.10 shows (see vertical dotted
line) that when t = 1 / g, the reliability is 0.35, meaning that there is a 65%
chance that a failure occurs in the interval 0 ≤ t ≤ 1/ g and a 35% chance that
no errors occurs in this interval. This is rather poor and would not be satisfac-
tory in any normal project. If predicted early in the integration test process,
changes would be made. One can envision more vigorous testing that would
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Figure 5.11 Plot of MTTF versus debugging time t, given by Eq. (5.32). Note the
time axis, t, and the MTTF axis are both normalized.

increase the parameter r0 and remove errors faster or, as we will discuss now,
just test longer. Assume that the integration test period is lengthened to t1 > t0

months. More errors will be removed, g will be smaller, and the exponential
curve will decrease more slowly as shown by the middle curve in the figure.
There would be a 50% chance that a failure occurs in the interval 0 ≤ t ≤ 1/ g
and a 50% chance that no error occurs in this interval—better, but still not
good enough. Suppose the test is lengthened further to t2 > t1 months, yield-
ing a success probability of 75%. This might be satisfactory in some projects
but would still not be good enough for really high reliability projects, so one
should explore major changes. A different error-removal model would yield a
different reliability function, predicting either higher or lower reliability, but
the overall interpretation of the curves would be substantially the same. The
important point is that one would be able to predict (as early as possible in test-
ing) an operational reliability and compare this with the project specifications
or observed reliabilities for existing software that serves a similar function.

Similar results, but from a slightly different viewpoint, are obtained by
studying the MTTF function. Normalization will again be used to simplify the
plotting of the MTTF function. Note how a and b are defined in Eq. (5.32)
and that t = 1 represents the point where all the errors have been removed and
the MTTF approaches infinity. Note that the MTTF function initially increases
almost linearly and slowly as shown in Fig. 5.11. Later, when the number of
errors remaining is small, the function increases rapidly. The behavior of the
MTTF function is the same as the function 1/ x, as x � 0. The importance
of this effect is that the majority of the improvement comes at the end of the
testing cycle; thus, without a model, a manager may say that based on data
before the “knee” of the curve, there is only slow progress in improving the
MTTF, so why not release the software and fix additional bugs in the field?



RELIABILITY MODELS 241

Given this model, one can see that with a little more effort, rapid progress is
expected once the knee of the curve is passed, and a little more testing should
yield substantial improvement. The fact that the MTTF approaches infinity as
the number of errors approaches 0 is somewhat disturbing, but this will be
remedied when other error-removal models are introduced.

MTTF �

1
k(ET − r0t)

�

1
kET (1 − r0t/ ET )

�

1
b(1 − at)

(5.32)

One can better appreciate this model if we use the numerical data from the
example plotted in Fig. 5.6. The parameters ET and r0 given in the example
are 130 and 15, but the parameter k must still be determined. Suppose that k
=0.000132, in which case Eq. (5.30a) becomes

R(t) � e−0.000132(130 − 15t)t (5.33)

At t = 8, the equation becomes

R(t) � e−0.00132t (5.34a)

The preceding is plotted as the middle curve in Fig. 5.12. Suppose that
the software operates for 300 hours; then the reliability function predicts that
there is a 67% chance of no software failures in the interval 0 ≤ t ≤ 300. If
we assume that these software reliability estimates are being made early in the
testing process (say, after 2 months), one could predict the effects—good and
bad—of debugging for more or less than t = 8 months. (Again, we ask the
reader to be patient about where all these values for ET , r0, and k are coming
from. They would be derived from data collected on the program during the
first 2 months of testing. The discussion of the parameter estimation process
has purposely been separated from the interpretation of the models to avoid
confusion.)

Frequently, management wants the technical staff to consider shortening the
test period, since doing so would save project-development money and help
keep the project on time. We can use the software reliability model to illustrate
the effect (often disastrous) of such a change. If testing and debugging are
shortened to only 6 months, Eq. (5.33) would become

R(t) � e−0.00528t (5.34b)

Equation (5.34b) is plotted as the lower curve in Fig. 5.12. At 300 hours,
there is only a 20.5% chance of no errors, which is clearly unacceptable. One
might also show management the beneficial effects of slightly longer testing
and debugging time. If we debugged for 8.5 months, then Eq. (5.34) would
become
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Figure 5.12 Reliability functions for constant error-removal rate and 6, 8, and 8.5
months of debugging. See Eqs. (5.34a–c).

R(t) � e−0.00033t (5.34c)

Equation (5.34c) is plotted as the upper curve in Fig. 5.12, and the reliability
at 300 hours is 90.6%—a very significant improvement. Thus the technical
people on the project should lobby for a slightly longer integration test period.

The overall interpretation of Fig. 5.12 leads to sensible conclusions; how-
ever, the constant error-removal model breaks down when t is allowed to
approach 8.67 months of testing. We see that Eq. (5.33) predicts that all the
errors have been removed and that the reliability becomes unity. This effect
becomes even clearer when we examine the MTTF function, and it is a good
reason to progress shortly to the reliability models related to both the linearly
decreasing and exponentially decreasing error-removal models.

The MTTF function is given by Eq. (5.32), and substituting the numerical
values ET = 130, r0 = 15, and k = 0.000132 (corresponding to 8 months of
debugging) yields

MTTF �

1
k(ET − r0t)

�

1
0.000132(130 − 15t)

�

7575.75
(130 − 15t)

(5.35)

The MTTF function given in Eq. (5.35) is plotted in Fig. 5.13 and listed in
Table 5.2. The dramatic differences in the MTTF predicted by this model as
the number of remaining errors rapidly approaches 0 seem difficult to believe
and represent another reason to question constant error-removal-rate models.

5.6.3 Reliability Model for a Linearly Decreasing Error-Removal Rate

We now develop a reliability model for the linearly decreasing error-removal
rate as we did with the constant error-removal-rate model. The linearly decreas-
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Figure 5.13 MTTF function for a constant error-removal-rate model. See Eq. (5.35).

ing error-removal-rate model is given by Eq. (5.23d). Continuing with the
example in use, we let ET = 130, K = 30, and t0 = 8, which led to Eq. (5.24b),
and substitution yields the failure-rate function Eq. (5.29):

z(t) � kEr(t) � kEr(t) � k[130 − 30t(1 − t/ 16)] (5.36)

and also yields the reliability function:

TABLE 5.2 MTTF for Constant
Error-Removal Model

Total months of
debugging 8

Formula for MTTF
7,575.76

130 − 15t
Elapsed months of

debugging, t: MTTF
0 58.28
2 75.76
4 108.23
6 189.39
8 757.58
8.5 3,030.30
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Figure 5.14 Reliability functions for the linearly decreasing error-removal-rate model
and 6 and 8 months of debugging. See Eqs. (5.37c, d).

R(t) � e− ∫t0 z(x) dx
� e−k[130 − 30t(1 − t/ 16)]t (5.37a)

If we use the same value for k as in the constant error-removal-rate reliability
model, k = 0.000132, then Eq. (5.37a) becomes

R(t) � e−0.000132[130 − 30t(1 − t/ 16)]t (5.37b)

If we debug for 8 months, substitution of t =8 into Eq. (5.37b) yields

R(t) � e−0.00132t (5.37c)

Similarly, if t = 6, substitution into Eq. (5.37b) yields

R(t) � e−0.00231t (5.37d)

Note that since we have chosen a linearly decreasing error model that goes
to 0 at t = 8 months, there is no additional error removal between 8 and 8.5
months. (Again, this may seem a little strange, but this effect will disappear
when we consider the exponentially decreasing error-rate model in the next
section.) The reliability functions given in Eqs. (5.37c, d) are plotted in Fig.
5.14. Note that the reliability curve for 8 months of debugging is identical to
the curve for the constant error-removal model given in Fig. 5.12. This occurs
because we have purposely chosen the linearly decreasing error model to have
the same area (cumulative errors removed) over 8 months as the constant error-
removal-rate model (the area of the triangle is the same as the area of the rect-
angle). In the case of 6 months of debugging, the reliability function associated
with the linearly decreasing error-removal model is better than that of the con-
stant error-removal model. This is because the linearly decreasing model starts
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TABLE 5.3 MTTF for Linearly Decreasing
Error-Removal Model

Total months of
debugging 8

Formula for MTTF
7,575.76

[130 − 30t(1 − t/ 16)]
Elapsed months of

debugging, t: MTTF
0 58.28
2 97.75
4 189.39
6 432.9
8 757.58

out at a higher removal rate and decreases; thus, over 6 months of debugging
we take advantage of the higher error-removal rates at the beginning, whereas
over 8 months the lower error-removal rates at the end balance the larger error-
removal rates at the beginning. We will now develop the MTTF function for
the linear error-removal case.

The MTTF function is derived by substitution of Eq. (5.37a) into Eq. (5.15).
Note that the integration in Eq. (5.15) is done with respect to t and the function
z in Eq. (5.36), which multiplies t in the exponent of Eq. (5.37a) is a function
of t (not t), so it is a constant in the integration used to determine MTTF. The
result is

MTTF �

1
k[130 − 30t(1 − t/ 16)]

(5.38a)

We substitute the value chosen for k, k = 0.000132, and t = 8 into Eq. (5.38a),
yielding

MTTF �

7575.76
[130 − 30t(1 − t/ 16)]

(5.38b)

The results of Eq. (5.38b) are given in Table 5.3 and Fig. 5.15. By com-
paring Figs. 5.13 and 5.15 or, better, Tables 5.2 and 5.3, one observes that
because of the way in which the constants were picked, the MTTF curves for
the linearly decreasing error-removal and the constant error-removal models
agree when t = 0 and 8. For intermediate values of t = 2, 4, 6, and so on,
the MTTF for the linearly decreasing error-removal model is higher because
of the initially higher error-removal rate. Since the linearly decreasing error-
removal model was chosen to go to 0 at t = 8, the values of MTTF for t > 8
really stay at 757.58. The model presented in the next section will remedy this
counterintuitive result.
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Figure 5.15 MTTF function for a linearly decreasing error-removal-rate model. See
Eq. (5.38b).

5.6.4 Reliability Model for an Exponentially Decreasing
Error-Removal Rate

An exponentially decreasing error-removal-rate model was introduced in Sec-
tion 5.5.4, and the general shape of this function removed some of the anoma-
lies of the constant and the linearly decreasing models. Also, it was shown
in Eqs. (5.25a–e) that this exponential model was the result of assuming that
error detection was proportional to the number of errors present. In addi-
tion, many practitioners as well as theoretical modelers have observed that
the error-removal rate decreases at a declining rate as testing increases (i.e.,
as t increases), which fits in with the hypothesis—one that is not too difficult
to conceive—that early errors removed in a computer program are uncovered
by tests. Later errors are more subtle and more “deeply embedded,” requir-
ing more time and effort to formulate tests to uncover them. An exponential
error-removal model has been proposed to represent these phenomena.

Using the same techniques as those of the preceding sections, we will
now develop a reliability model based on the exponentially decreasing error-
removal model. The number of remaining errors is given in Eq. (5.25f):

Er(t) � ETe−at (5.39a)

z(t) � kETe−at (5.39b)
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and substitution into Eq. (5.13d) yields the reliability function.

R(t) � e− ∫ kET e−at dt
� e− (kET e−at )t (5.40)

The preceding equation seems a little peculiar since it is an exponential func-
tion raised to a power that in turn is an exponential function. However, it is
really not that complicated, and this is where the mathematical assumptions
that seem to be reasonable lead. To better understand the result, we will con-
tinue with the running example that was introduced previously.

To make our comparison between models, we have chosen constants that
cause the error-removal function to begin with 130 errors at t = 0 and decrease
to 10 errors at t = 8 months. Thus Eq. (5.39a) becomes

Er(t � 8) � 10 � 130e−a8 (5.41a)

Solving this equation for a yields a = 0.3206. If we require the reliability
function to yield a reliability of 0.673 at 300 hours of operation after t = 8
months of debugging, substitution into Eq. (5.40) yields an equation allowing
us to solve for k.

R(300) � 0.673 � e− (k130e−0.3206 × 8)300 (5.41b)

The value of k = 0.000132 is the same as that determined previously for the
other models. Thus Eq. (5.40) becomes

R(t) � e− (0.01716e−0.3206t )t (5.42a)

The reliability function for t = 8 months is

R(t) � e− (0.00132)t (t � 8) (5.42b)

Similarly, for t = 6 and 8.5 months, substitution into Eq. (5.42a) yields the
reliability functions:

R(t) � e− (0.002507)t (t � 6) (5.42c)

R(t) � e− (0.001125)t (t � 8.5) (5.42d)

Equations (5.42b–d) are plotted in Fig. 5.16. The reliability function for
8 months of debugging is, of course, identical to the previous two models
because of the way we have chosen the parameters. The reliability function
for t = 6 months of debugging yields a reliability of 0.47 at 300 hours of
operation, which is considerably better than the 0.21 reliability in the constant
error-removal-rate model. This occurs because the exponentially decreasing
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Figure 5.16 Reliability functions for exponentially decreasing error-removal rate and
6, 8, and 8.5 months of debugging. See Eqs. (5.42b–d).

error-removal model eliminates more errors early and fewer errors later than
the constant error-removal model; thus the loss of debugging between 6 < t < 8
months is less damaging. This is the same reason why for t = 8.5 months of
debugging the constant error-removal-rate model does better [R(t =300) =  0.91]
than [R(t = 300) = 0.71] for the exponential model. If we compare the expo-
nential model with the linearly decreasing one, we find identical results at t = 8
months and very similar results at t = 6 months, where the linearly decreasing
model yields [R(t = 300) = 0.50] and the exponential model yields [R(t = 300)
= 0.47]. This is reasonable since the initial portion of an exponential function
is approximately linear. As was discussed previously, the linearly decreasing
model is assumed to make no debugging progress after t = 8 months; thus no
comparisons at t  = 8.5 months are relevant.

The MTTF function for the exponentially decreasing model is computed by
substituting Eq. (5.40) into Eq. (5.15) or more simply by observing that it is
the reciprocal of the exponent given in Eq. (5.40):

MTTF �

1
kETe−at

(5.43a)

Substitution of the parameters k = 0.000132, ET =130, and a = 0.3206 into
Eq. (5.43a) yields

MTTF �

58.28
e−0.3206t

� 58.28e0.3206t (5.43b)

The MTTF curve given in Eq. (5.43b) is compared with those of Figs. 5.13
and 5.15 in Fig. 5.17. Note that it is easier to compare the behavior of the three
models introduced so far by inspecting the MTTF functions, than by comparing
the reliability functions. For the purpose of comparison, we have constrained
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Figure 5.17 MTTF function for constant, linearly decreasing, and exponentially
decreasing error-removal-rate models.

all the reliability functions to have the same reliability at t = 300 hours (0.67);
of course, all the reliability curves start at unity at t = 0. Thus, the only com-
parison we can make is how fast the reliability curves decay between t = 0
and t = 300 hours. Comparison of the MTTF curves yields a bit more infor-
mation since the curves are plotted versus t, which is the resource variable.
All three curves in Fig. 5.17 start at 58 hours and increase to 758 hours after
8 months of testing and debugging; however, the difference in the concave
upward curvature between t = 2 and 8 months is quite apparent. The linearly
decreasing and exponentially decreasing curves are about the same because
at t = 6 months, the linear curve achieves an MTTF of 433 hours and the
exponential curve is 399 hours, whereas the constant model only reaches 139
errors. Thus, if we had data for the first 2 months of debugging and wished to
predict the progress as we approached the release time t = 8 months, any of
the three models would yield approximately the same results. In applying the
models, one would plot the actual error-removal rate and choose a model that
best matches the actual data (experience would lead us to guess that this would
be the exponential model). The real differences among the models are obvi-
ous in the region between t = 8 and 10 months. The constant error-removal
model climbs to ∞ when the debugging time approaches 8.66 months, which
is anomalous. The linearly decreasing model ceases to make progress after
8 months, which is again counterintuitive. Only the exponentially decreasing
model continues to display progress after 8 months at a reasonable rate. Clearly,
other more advanced reliability models can be (and have been) developed.
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However, the purpose of this development is to introduce simple models that
can easily be applied and interpreted, and a worthwhile working model appears
to be the exponentially decreasing error-removal-rate model. The next section
deals with the very important issue of how we estimate the constants of the
model.

5.7 ESTIMATING THE MODEL CONSTANTS

5.7.1 Introduction

The previous sections assumed values for the various model constants; for
example, k, ET , and a in Eq. (5.40). In this section, we discuss the way to esti-
mate values for these constants based on current project data (measurements)
or past data. One can view this parameter estimation procedure as curve fit-
ting to experimental data or as statistical parameter estimation. Essentially, this
is the same idea from a slightly different viewpoint and using different meth-
ods; however, the end result is the same: to determine parameters of the model
based on early measurements of the project (or past data) that allow predic-
tion of the future of the project. Before we begin our discussion of parameter
estimation, it is useful to consider other phases of the project.

In the previous section, we focused on the integration test phase. Software
reliability models, however, can be applied to other phases of the project. Reli-
ability predictions are most useful when they are made in the very early stages
of the project, but during these phases so little detailed information is known
that any predictions have a wide range of uncertainty (nevertheless, they are
still useful guides). Toward the end of the project, during early field deploy-
ment, a rash of software crashes indicates that more expensive (at this late date)
debugging must be done. The use of a software reliability model can predict
quantitatively how much more work must be done. If conditions are going
well during deployment, the model can quantify how well, which is especially
important if the contract contains a cost incentive. The same models already
discussed can be used during the deployment phase. To apply software reli-
ability to the earlier module (unit) test phase, another type of reliability model
must be employed (this is discussed in Section 5.8 on other models). Perhaps
the most challenging and potentially most useful phase for software reliability
modeling is during the contracting and early design phases. Because no code
has been written and none can be tested, any estimates that can be made depend
on past project data. In fact, we will treat reliability model constant estimation
based on past data as a general technique and call it handbook estimation.

5.7.2 Handbook Estimation

The simplest use of past data in reliability estimation may be illustrated as
follows. Suppose your company specializes in writing payroll programs for
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large organizations, and in the last 10 years you have written 78 systems of
various sizes and complexities. In the last 5 years, reliability data has been
kept and analyzed for 27 different systems. The data has been compiled along
with explanations and analyses in a report that is called the company’s Reli-
ability Handbook. The most significant events recorded in this handbook are
system crashes that occur between one and four times per year for the 27 dif-
ferent projects. In addition, data is recorded on minor errors that occur more
frequently. A new client, company X, wants to have its antiquated, inadequate
payroll program updated, and this new project is being called system b. Com-
pany X wants a quote for the development of system b, and the reliability
of the system is to be included in the quote along with performance details,
development of system b, and the reliability of the system is to be included
in the quote along with performance details, and development schedule, the
price, and so on. A study of the handbook reveals that the less complex sys-
tems have an MTTF of one-half to one year. System b looks like a project
of simple to medium complexity. It seems that the company could safely say
that the MTTF for the system should be about one-half year but might vary
from one-quarter to one year. This is a very comfortable situation, but sup-
pose that the only recorded reliability data is on two systems. One data set
represents in-house data; the other is a copy of a reliability report written by
a conscientious customer during the first two years of operation who shared
the report with you. Such data is better than nothing, but it is too weak to
draw very detailed conclusions. The best action to take is to search for other
data sources for system b and make it a company decision to improve your
future position by beginning the collection of data on all new projects as well
as those currently under development, and query past customers to see if they
have any data to be shared. You could even propose that the “business data
processing professional organization” to which you belong sponsors a reliabil-
ity data collection process to be run by an industry committee. This committee
could start the process by collecting papers reporting on relevant systems that
have appeared in the literature. An anonymous questionnaire could be circu-
lated to various knowledgeable people, encouraging them to contribute data
with sufficient technical details to make listing these projects in a composite
handbook useful, but not enough information so that the company or project
can be identified. Clearly, the largest software development companies have
such handbooks and the smaller companies do not. The subject of hardware
reliability started in the late 1940s with the collection of component and some
system reliability data spearheaded by Department of Defense funds. Unfortu-
nately, no similar efforts have been sponsored to date in the software reliability
field by Department of Defense funds or professional organizations. For a mod-
est initial collection of such data, see Shooman [1983, p. 368, Table 5.10] and
Musa [1987, p. 116, Table 5.2].

From the data that does exist, we are able to compute a rough estimate for
the parameter ET first introduced in Eq. (5.20) and present in all the models
developed to this point. It seems unreasonable to report the same value for ET
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for both large and small programs; thus Shooman and Musa both normalize
the value by dividing by the total number of source instructions IT . For the
data from Shooman, we exclude the values for the end-of-integration testing,
acceptance testing, and simulation testing. This results in a mean value for
ET / IT of 5.14 × 10−3 and a standard deviation of 4.23 × 10−3 for seven data
points. Similarly, we make the same computation for the data in Table 5.2 of
Musa [1987] for the 25 system test values and obtain a mean value for ET / IT

of 7.85 × 10−3 and a standard deviation of 5.27 × 10−3. These values are in
rough agreement, considering the diverse data sources and the imperfection in
defining what constitutes not only an error but the phases of development as
well. Thus we can state that based on these two data sets we would expect a
mean value of about 5–9 ×10−3 for E T / IT and a range from m – j (lowest for
Shooman data) of about 1 × 10−3 to m + j (highest for Musa data) of about 13
× 10−3. Of course, to obtain the value of ET for any of the models, we would
multiply these values by the value of IT for the project in question.

What about handbook data for the initial estimation of any of the other
model parameters? Unfortunately, little such data exists in collected form. For
typical values, see Shooman [1983, p. 368, Table 5.10] and Musa [1987].

5.7.3 Moment Estimates

The best way to proceed with parameter estimation for a reliability model is to
plot the error-removal rate versus t on a simple graph with whatever intervals
are used in recording the data (generally, daily or weekly). One could employ
various statistical means to test which model best fits the data: a constant, a lin-
ear, an exponential, or another model, but inspection of the graph is generally
sufficient to make such a determination.

Constant Error-Removal-Rate Data. Suppose that the error-removal data
looks approximately constant and that the time axis is divided into regular
or irregular intervals, Dti, corresponding to the data, and that in each interval
there are Ec(Dti) corrected errors. Thus the data for the error-correction rate
is a sequence of values Ec(Dti)/ Dti. The simplest way to estimate the value
of r0 is to take the mean value of the error-correction rates:

r0 �
1
i

���
i

Ec(Dti)
Dti

(5.44)

Thus, by examining Eqs. (5.30a, b), we see that there are two additional param-
eters to estimate: k and ET .

The estimate given in Eq. (5.44) utilizes the mean value that is the first
moment and belongs to a general class of statistical estimates called moment
estimates. The general idea of applying moment estimation to the evaluation of
parameters for probability distributions (models) is to first compute a number
of moments of the probability distribution equal to the number of parameters
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to be estimated. The moments are then computed from the numerical data; the
first moment formula is equated to the first moment of the data, the second
moment formula is equated to the second moment of the data, and so on until
enough equations are formulated to solve for the parameters. Since we wish
to estimate k and ET in Eqs. (5.30a, b), two moment equations are needed.
Rather than compute the first and second moments, we use a slight variation
in the method and compute the first moment at two different values of ti, t1,
and t2. Since the random variable is time to failure, the first moment (mean)
is given by Eq. (5.30b). To compute the mean of the data, we require a set
of test data from which we can calculate mean time to failure. The best data
would of course be operational data, but since the software is being integrated,
it would be difficult to place it into operation. The next best data is simulated
operational data, generally obtained by testing the software in a simulated oper-
ational mode by using specially prepared software. Such software is generally
written for use at the end of the test cycle when comprehensive system tests are
performed. It is best that such software be developed early in the test cycle so
that it is available for “reliability testing” during integration. Such simulation
testing is time-consuming, it can be employed during off hours (e.g., second
and third shift) so that it does not interrupt the normal development schedule.
(Musa [1987] has written extensively on the use of ordinary integration test
results when simulation testing is not available. This subject will be discussed
later.) Simulation testing is based on a number of scenarios representing dif-
ferent types of operation and results in n total runs, with r failures and n – r
successes. The n – r successful runs represent T1, T2, . . . , Tn − r hours of suc-
cessful operation and the r unsuccessful runs represent t1, t2, . . . , tr hours of
successful operation before the failures occur. Thus the testing produces H total
hours of successful operation.

H �

n − r

���
i � 1

Ti +
r

���
i � 1

ti (5.45)

Assuming that the failure rate is constant over the test interval (no debugging
occurs while we are testing), the failure rate is given by z = l:

l �

r
H

(5.46a)

and since the MTTF is the reciprocal,

MTTF �

1
l

�

H
r

(5.46b)

Thus, applying the moment method reduces to matching Eqs. (5.30b) and
(5.46b) at times ta and tb in the development cycle, yielding
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MTTFa �

Ha

ra
�

1
k(ET − r0ta)

(5.47a)

MTTFb �

Hb

rb
�

1
k(ET − r0tb)

(5.47b)

Because r0 is already known, the two preceding equations can be solved for
the parameters k and ET , and our model is complete. [One could have skipped
the evaluation of r0 using Eq. (5.44) and generated a third MTTF equation
similar to Eqs. (5.47a, b) at a third development time t3. The three equations
could then have been solved for the three parameters. The author feels that
fitting as many parameters as possible from the error-removal data followed
by using the test data to estimate the remaining data is a superior procedure.]
If we apply this model as integration continues, a sequence of test data will be
accumulated and the question arises: Which two sets of test data will be used
in Eqs. (5.47a, b)—the last two or the first and the last? This issue is settled
if we use least-squares or maximum-likelihood methods of estimation (which
will soon be discussed) since they both use all available sets of test data. In any
event, the use of the moment estimates described in this section is always a
good starting point in building a model, even if more advanced methods will be
used later. The reader must realize that the significant costs and waiting periods
for applying such models are associated with the test results. The analysis takes
at most one-half of a day, and if calculation programs are used, even less time
than that. Thus it is suggested that several models be calculated and compared
as the project progresses whenever new test data is available.

Linearly Decreasing Error-Removal-Rate Data. Suppose that inspection of
the error-removal data reveals that the error-removal rate decreases in an
approximately linear manner. Examination of Eq. (5.23b) shows that there are
two parameters in the error-removal-rate model: K and t0. In addition, there
is the parameter ET and, from Eq. (5.27), the additional parameter k. We have
several choices regarding the evaluation of these four constants. One can use
the error-removal-rate curve to evaluate two of these parameters, K and t0, and
use the test data to evaluate k and ET as was done in the previous section in
Eqs. (5.47a, b).

The simplest procedure is to evaluate K and t0 using the error-removal rates
during the first two test intervals. The error-removal rate is found by differen-
tiating [cf. Eqs. (5.23d) and (5.24a)].

dEr(t)
dt

� K �1 −

t

2t0
� (5.48a)

If we adopt the same notation as used in Eq. (5.44), the error-removal rate
becomes Ec(Dti)/ Dti. If we match Eq. (5.48a) at the midpoints of the first two
intervals, ta/ 2 and ta + tb/ 2, the following two equations result:
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Ec(Dta)
Dta

� K �1 −

ta

4t0
� (5.48b)

Ec(Dtb)
Dtb

� K �1 −

ta + tb/ 2
2t0

� (5.48c)

and they can be solved for K and t0. This leaves the two parameters k and ET ,
which can be evaluated from test data in much the same way as Eqs. (5.47a,
b). The two equations are

MTTFa �

Ha

ra
�

1

k [ ET − K �1 −

ta

2t0
� ] (5.49a)

MTTFb �

Hb

rb
�

1

k [ ET − K �1 −

tb

2t0
� ] (5.49b)

Exponentially Decreasing Error-Removal-Rate Data. Suppose that inspec-
tion of the error-removal data reveals that the error-removal rate decreases in
an approximately exponential manner. One good way of testing this assump-
tion is to plot the error-removal-rate data on a log–log graph by computer or on
graph paper. An exponential curve rectifies on log–log axes. (There are more
sophisticated statistical tests to check how well a set of data fits an exponential
curve. See Shooman [1983, p. 28, problem 1.3] or Hoel [1971].) If Eq. (5.40)
is examined, we see that there are three parameters to estimate k, ET , and a.
As before, we can estimate some of these parameters from the error-removal-
rate data and some from simulation test data. One can probably investigate
which parameters should be estimated from one set of data and which from the
other sets should be estimated via theoretical arguments; however, the practical
approach is to use the better data to estimate as many parameters as possible.
Error-removal data is universally collected whenever the software comes under
configuration control, but simulation test data requires more effort and expense.
Error-removal data is therefore more plentiful, allowing the estimation of as
many model parameters as possible. Examination of Eq. (5.25e) reveals that
ET and a can be estimated from the error data. Estimation equations for ET

and a begin with Eq. (5.25e). Taking the natural logarithm of both sides of
the equation yields

ln{Er(t)} � ln{ET} − at (5.50a)

If we have two sets of error-removal data at ta and tb, Eq. (5.50a) can be used
to solve for the two parameters. Substitution yields
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ln{Er(ta)} � ln{ET} − ata (5.50b)

ln{Er(tb)} � ln{ET} − atb (5.50c)

Subtracting the second equation from the first and solving for a yields

a �

ln{Ec(ta)} − ln{Ec(tb)}
tb − ta

(5.51)

Knowing the value of a, one could substitute into either Eq. (5.50b) or (5.50c)
to solve for ET . However, there is a simple way to use information from both
equations (which should be a better estimate) by adding the two equations and
solving for ET .

ln{ET} �

ln{Ec(ta)} + ln{Ec(tb)} + a(ta + tb)
2

(5.52)

Once we know ET and a, one set of integration test data can be used to deter-
mine k. From Eq. (5.43a), we proceed in the same manner as Eq. (5.47a);
however, only one test time is needed.

MTTFa �

Ha

ra
�

1
kETe−ata

(5.53)

5.7.4 Least-Squares Estimates

The moment estimates of the preceding sections have a number of good
attributes:

1. They require the least amount of data.
2. They are computationally simple.
3. They serve as a good starting point for more complex estimates.

The computational simplicity is not too significant in this era of cheap, fast
computers. Nevertheless, it is still a good idea to use a calculator, pencil, and
paper to get a feeling for data values before a more complex, less transparent,
more accurate computer algorithm is used.

The main drawback of moment estimates is the lack of clear direction for
how to proceed when several data sets are available. The simplest procedure
in such a case is to use least-squares estimation. A complete development of
least-squares estimation appears in Shooman [1990] and is applied to soft-
ware reliability modeling in Shooman [1983, pp. 372–374]. However, com-
puter mathematics packages such as Mathematica, Mathcad, Macsyma, and
Maple all have least-squares programs that are simple to use; any increased
complexity is buried within the program, and computational time is not signif-
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icant with modern computers. We will briefly discuss the use of least-squares
estimation for the case of an exponentially decreasing error-removal rate.

Examination of Eq. (5.50a) shows that on log–log paper, the equation
becomes a straight line. It is recommended that the data be initially plotted
and a straight line be fitted by inspection through the data. When t = 0, the
y-axis intercept, Ec(t = 0) is equal to ET , and the slope of the straight line is
– a. Once these initial estimates have been determined, one can use a least-
squares program to find the mean values of the parameters and their variances.

In a similar manner, one can determine the value of k by substitution in Eq.
(5.53) for one set of simulation data. Assuming that we have several sets of
simulation data at tj = a, b, . . . , we can write the equation as

ln{MTTFj} �

Hj

rj
� − [ln{k} + ln{ET} − atj] (5.54)

The preceding equation is used as the basis of a least-squares estimation
to determine the mean value and variance of k. Again, it is useful to plot Eq.
(5.54) and fit a straight line to the data as a precursor to program estimation.

5.7.5 Maximum-Likelihood Estimates

In England in the 1930s, Fisher developed the elegant theory called maximum-
likelihood estimation (MLE) for estimating the values of parameters of proba-
bility distributions from data [Shooman, 1983, pp. 537–540; Shooman, 1990,
pp. 80–96]. We can explain some of the ideas underlying MLE in a simple
fashion. If R(t) is the reliability function, then f (t) is the associated density
function for the time to failure, and the parameters are v1, v2, and so forth,
and we have f (v1, v2, . . . , v i, t). The data are the several values of time to fail-
ure t1, t2, . . . , ti, and the task is to estimate the best values for v1, v2, . . . , v i

from the data. Suppose there are two parameters, v1 and v2, and three val-
ues of time data: t1 = 50, t2 = 200, and t3 = 490. If we know the values of
v1 and v2, then the probability of obtaining the test values is related to the
joint likelihood function (assuming independence), L(v1, v2) = f (v1, v2, 50) .
f (v1, v2, 200) . f (v1, v2, 490). Fisher’s brilliant procedure was to compute val-
ues of v1 and v2, which maximized L. To find the maximum of L, one computes
the partial derivatives of L with respect to v1 and v2 and sets these values to
zero. The resultant equations are solved for the MLE values of v1 and v2.
If there are more than two parameters, more partial derivative equations are
needed. The application of MLE to software reliability models is discussed in
Shooman [1983, pp. 370–372, 544–548].

The advantages of MLE estimates are as follows:

1. They automatically handle multiple data sets.

2. They provide variance estimates.



258 SOFTWARE RELIABILITY AND RECOVERY TECHNIQUES

3. They have some sophisticated statistical evaluation properties.

Note that least-squares estimation also possesses the first two properties.
Some of the disadvantages of MLE estimates are as follows:

1. They are more complex and more difficult to understand than moment
or least-squares estimates.

2. MLE estimates involve the solution of a set of complex equations that
often requires numerical solution. (Moment or least-squares estimates
can be used as starting values to expedite the numerical solution.)

The way of overcoming the first problem in the preceding list is to start
with moment or least-squares estimates to develop insight, whereas the second
problem requires development of a computer estimation program, which takes
some development effort. Fortunately, however, such programs are available;
among them are SMERFS [Farr, 1991; Lyu, 1996, pp. 733–735]; SoRel [Lyu,
1996, pp. 737–739]; CASRE [Lyu, 1996, pp. 739–745]; and others [Strark,
Appendix A in Lyu, 1996, pp. 729–745].

5.8 OTHER SOFTWARE RELIABILITY MODELS

5.8.1 Introduction

Since the first software reliability models were introduced [Jelinski and
Moranda, 1972; Shooman, 1972], there have been many software reliability
models developed. The ones introduced in the preceding section are simple
to understand and apply. In fact, depending on how one counts, the 4 models
(constant, linearly decreasing, exponentially decreasing, and S-shaped) along
with the 3 parameter estimation methods (moment, least-squares, and MLE)
actually form a group of 12 models. Some of the other models developed in
the literature are said to have better “mathematical properties” than these sim-
ple models. However, the real test of a model is how well it performs, that
is, if data is taken between months 1 and 2 of an 8-month project, how well
does it predict at the end of month 2 the growth in MTTF or the decreasing
failure rate between months 3 and 8. Also, how does the prediction improve
after data for months 3 and 4 is added, and so forth.

5.8.2 Recommended Software Reliability Models

Software reliability models are not used as universally in software development
as they should be. Some reasons that project managers give for this are the
following:

1. It costs too much to do such modeling and I can’t afford it within my
project budget.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



OTHER SOFTWARE RELIABILITY MODELS 259

2. There are so many software reliability models to use that I don’t know
which is best; therefore, I choose not to use any.

3. We are using the most advanced software development strategies and
tools and produce high-quality software; thus we don’t need reliability
measurements.

4. Even if a model told me that the reliability will be poor, I would just test
some more and remove more errors.

5. If I release a product with too many errors, I can always fix those that
get discovered during early field deployment.

Almost all of these responses are invalid. Regarding response (1), it does not
cost that much to employ software reliability models. During integration test-
ing, error collection is universally done, and the analysis is relatively inexpen-
sive. The only real cost is the scheduling of the simulation/ system test early in
integration testing, and since this can be done during off hours (second and third
shift), it is not that expensive and does not delay development. (Why do managers
always state that there is not enough money to do the job right, yet always find
lots of money to fix residual errors that should have been eliminated much earlier
in the development process?) Response (3) has been the universal cry of software
development managers since the dawn of software, and we know how often this
leads to grief. Responses (4) and (5) are true and have some merit; however, the
cost of fixing a lot of errors at these late stages is prohibitive, and the delivery
schedule and early reputation of a product are imperiled by such an approach.
This leaves us with response (2), which is true and for which some of the models
are mathematically sophisticated. This is one of the reasons why the preceding
section’s treatment of software reliability models focused on the simplest mod-
els and methods of parameter estimation in the hope that the reader would follow
the development and absorb the principles.

As a direct rebuttal to response (2), a group of experienced reliability
modelers (including this author) began work in the early 1990s to produce
a document called Recommended Practice for Software Reliability (a soft-
ware reliability standard) [AIAA/ ANSI, 1993]. This standard recommends
four software reliability models: the Schneidewind model, the generalized
exponential model [Shooman, April 1990], the Musa/ Okumoto model, and the
Littlewood/ Verrall model. A brief study of the models shows that the general-
ized exponential model is identical with the three models discussed previously
in this chapter. The basic development described in the previous section corre-
sponds to the earliest software reliability models [Jelinski and Moranda, 1972;
Shooman, 1972], and the constant error-removal-rate model [Shooman, 1972].
The linearly decreasing error-removal-rate model is essentially Musa’s basic
model [1975], and the exponentially decreasing error-removal-rate model is
Musa’s logarithmic model [1987]. Comprehensive parameter estimation equa-
tions appear in the AIAA/ ANSI standard [1993] and in Shooman [1990]. The
reader is referred to these references for further details.
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5.8.3 Use of Development Test Data

Several authors, notably Musa, have observed that it would be easiest to use
development test data where the tests are performed and the system operates
for T hours rather than simulating real operation where the software runs for t
hours of operation. We assume that development tests stress the system more
“rapidly” than simulated testing—that T = Ct and that C > 1. In practice, Musa
found that values of 10–15 are typical for C. If we introduce the parameter C
into the exponentially decreasing error-rate model (Musa’s logarithmic model),
we have an additional parameter to estimate. Parameters ET and a can be esti-
mated from the error-removal data; k and C, from the development test data.
This author feels that the use of simulation data not requiring the introduction
of C is superior; however, the use of development data and the necessary intro-
duction of the fourth parameter C is certainly convenient. If such a method is
to be used, a handbook with data listing previous values of C and judicious
choices from the previous results would be necessary for accurate prediction.

5.8.4 Software Reliability Models for Other Development Stages

The software reliability models introduced so far are immediately applicable
to integration testing or early field deployment stages. (Later field deployment,
too, is applicable, but by then it is often too late to improve a bad product; a
good product is apparent to everybody and needs little further debugging.) The
earlier one can employ software reliability, the more useful the models are in
predicting the future. However, during unit (module testing), other models are
required [Shooman, 1983, 1990].

Software reliability estimation is of great use in the specification and early
design phases as a means of estimating how good the product can be made.
Such estimates depend on the availability of field data on other similar past
projects. Previous project data would be tabulated in a “handbook” of previ-
ous projects, and such data can be used to obtain initial values of parameters
for the various models by matching the present project with similar historical
projects. Such handbook data does exist within the databases of large software
development organizations, but this data is considered proprietary and is only
available to workers within the company. The existence of a “software reliabil-
ity handbook” in the public domain would require the support of a professional
or government organization to serve as a sponsor.

Assuming that we are working within a company where such data is avail-
able early in the project (perhaps even during the proposal phase), early esti-
mates can be made based on the use of historical data to estimate the model
parameters. Accuracy of the parameters depends on the closeness of the match
between handbook projects and the current one in question. If a few projects
are acceptable matches, one can estimate the parameter range.

If one is fortunate enough to possess previous data and, later, to obtain
system test data, one is faced with the decision regarding when the previous
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project data is to be discarded and when the system test data can be used to
estimate model parameters. The initial impulse is to discard neither data set
but to average them. Indeed, the statistical approach would be to use Bayesian
estimation procedures (see Mood and Graybill [1963, p. 187]), which may be
viewed as an elaborate statistical-weighting scheme. A more direct approach is
to use a linear-weighting scheme. Assume that the historical project data leads
to a reliability estimate for the software given by R0(t), and the reliability esti-
mate from system test data is given by R1(t). The composite estimate is given
by

R(t) � a0R0(t) + a1R1(t) (5.55)

It is not difficult to establish that a0 +a1 should be set equal to unity. Before
test data is available, a0 will be equal to unity and a1 will be 0; as test data
becomes available, a0 will approach 0 and a1 will approach unity. The weight-
ing procedure is derived by minimizing the variance of R(t), assuming that the
variance of R0(t) is given by j2

0 and that of R1(t) by j2
1. The end result is a

set of weighting formulas given by the equations that follow. (For details, see
Shooman [1971].)

a0 �

1

j2
0

1

j2
0

+
1

j2
1

(5.56a)

a1 �

1

j2
1

1

j2
0

+
1

j2
1

(5.56b)

The reader who has studied electric-circuit theory can remember the form
of these equations by observing that they are analogous to how resistors com-
bine in parallel. To employ these equations, the analyst must estimate a value
of j2

0 based on the variability of the previous project data and use the value of
j2

1 given by applying the least-squares (or another) method to the system test
data.

The problems at the end of this chapter provide further exploration of other
models, the parameter estimation, the numerical differences among the meth-
ods, and the effect on the reliability and MTTF functions. For further details
on software reliability models, the reader is referred to AIAA/ ANSI standard
[1993], Musa [1987], and Lyu [1996].
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5.8.5 Macro Software Reliability Models

Most of the software reliability models in the literature are black box models.
There is one clear box model that relates the software reliability to some fea-
tures of the program structure [Shooman, 1983, pp. 377–384; Shooman, 1991].
This model decomposes the software into major execution paths of the control
structure. The software failure rate is developed in terms of the frequency of
path execution, the probability of error along a path, and the traversal time for
the path. For more details, see Shooman [1983, 1991].

5.9 SOFTWARE REDUNDANCY

5.9.1 Introduction

Chapters 3 and 4 discussed in detail the various ways one can employ redundancy
to enhance the reliability of the hardware. After a little thought, we raise the ques-
tion: Can we employ software redundancy? The answer is yes; however, there are
several issues that must be explored. A good way to introduce these considera-
tions is to assume that one has a TMR system composed of three identical digital
computers and a voter. The preceding chapter detailed the hardware reliability
for such a system, but what about the software? If each computer contains a copy
of the same program, then when one computer experiences a software error, the
other two should as well. Thus the three copies of the software provide no redun-
dancy. The system model would be a hardware TMR system in series with the
software reliability, and the system reliability, Rsys, would be given by the prod-
uct of the hardware voting system, RTMR, and the software reliability, Rsoftware,
assuming independence between the hardware and software errors. We should
actually speak of two types of software errors. The first type is the most common
one due to a scenario with a set of inputs that uncovers a latent fault in the soft-
ware. Clearly, all copies of the same software will have that same fault and should
process the scenario identically; thus there is no software redundancy. However,
some software errors are due to the interaction of the inputs, the state of the hard-
ware, and any residual faults. By the state of the hardware we mean the storage
values in registers (maybe other storage devices) at the time the scenario is begun.
Since these storage values are dependent on when the computer is powered up
and cleared as well as the past data processed, the states of the three processors
may differ. There may be a small amount of redundancy due to these effects, but
we will ignore state-dependent errors.

Based on the foregoing discussion, the only way one can provide software
reliability is to write different independent versions of the software. The cost
is higher, of course, and there is always the chance that even independent pro-
gramming groups will incorporate the same (common mode) software errors,
degrading the amount of redundancy provided. A complete discussion appears
in Shooman [1990, pp. 582–587]. A summary of the relevant analysis appears
in the following paragraphs, as well as an example of how modular hardware



SOFTWARE REDUNDANCY 263

and software redundancy is employed in the Space Shuttle orbital flight control
system.

5.9.2 N-Version Programming

The official term for separately developed but functionally identical versions of
software is N-version software. We provide only a brief summary of these tech-
niques here; the reader is referred to the following references for details: Lala
[1985, pp. 103–107]; Pradhan [1986, pp. 664–667]; and Siewiorek [1982, pp.
119–121, 169–175]. The term N-version programming was probably coined by
Chen and Avizienis [1978] to liken the use of redundant software to N-modu-
lar redundancy in hardware. To employ this technique, one writes two or more
independent versions of the program and uses them in a voting-type arrange-
ment. The heart of the matter is to discuss what we mean by independent soft-
ware. Suppose we have three processors in a TMR arrangement, all running
the same program. We assume that hardware and software failures are indepen-
dent except for natural or manmade disasters that can affect all three computers
(earthquake, fire, power failure, sabotage, etc.). In the case of software error,
we would expect all three processors to err in the same manner and the voter to
dutifully pass on the same erroneous output without detection of an error. (As
was discussed previously, the only possible differences lie in the rare case in
which the processors have different states.) To design independent programs to
achieve software reliability, we need independent development groups (prob-
ably in different companies), different design approaches, and perhaps even
different languages. A simplistic example would be the writing of a program
to find the roots of a quadratic equation, f (x), which has only real roots. The
obvious approach would be to use the quadratic formula. A different design
would be to use the theorem from the theory of equations, which states that if
f (a) > 0 and if f (b) < 0, then at least one root lies between a and b. One could
bisect the interval (a, b), check the sign of f ([a + b]/ 2), and choose a new,
smaller interval. Once iteration determines the first root, polynomial division
can be used to determine the second root. We could ensure further diversity
of the two approaches by coding one in C++ and the other in Ada. There are
some difficulties in ensuring independent versions and in synchronizing differ-
ent versions, as well as possible problems in comparing the outputs of different
versions.

It has been suggested that the following procedures be followed to ensure
that we develop independent versions:

1. Each programmer works from the same requirements.

2. Each programmer or programming group works independently of the
others, and communication between groups is not permitted except by
passing messages (which can be edited or blocked) through the contract-
ing organization.
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3. Each version of the software is subjected to the same comprehensive
acceptance tests.

Dependence among errors in various versions can occur for a variety of
reasons, such as the following:

1. Identical misinterpretation of the requirements.
2. Identical, incorrect treatment of boundary problems.
3. Identical (or equivalent), incorrect designs for difficult portions of the

problem.

The technique of N-version programming has been used or proposed for a
variety of situations, such as the following:

1. For Space Shuttle flight control software (discussed in Section 5.9.3).
2. For the slat-and-flap control system of A310 Airbus Industry aircraft.
3. For point switching, signal control, and traffic control in the Göteborg

area of the Swedish State Railway.
4. For nuclear reactor control systems (proposed by several authors).

If the software versions are independent, we can use the same mathematical
models as were introduced in Chapter 4. Consider the triple-modular redundant
(TMR) system as an example. If we assume that there are three independent
versions of the software and that the voting is perfect, then the reliability of
the TMR system is given by

R � p2
i (3 − 2pi) (5.57)

where pi is the identical reliability of each of the three versions of the software.
We assume that all of the software faults are independent and affect only one
of the three versions.

Now, we consider a simple model of dependence. If we assume that there
are two different ways in which common-mode dependencies exist, that is,
requirements and program, then we can make the model given in Fig. 5.18.
The reliability expression for this model is given by Shooman [1988].

R � pcmrpcms[p2
i (3 − 2pi)] (5.58)

This expression is the same mathematical formula as that of a TMR system
with an imperfect voter (i.e., the common-mode errors play an analogous role
to voter failures).

The results of the above analysis will be more meaningful if we evalu-
ate the effects of common-mode failures for a set of data. Although common
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Figure 5.18 Reliability model of a triple-modular program including common-mode
failures.

mode data is hard to obtain, Chen and Avizienis [1978] and Pradhan [1986, p.
665] report some practical data for 12 different sets of 3 independent programs
written for solving a differential equation for temperature over a two-dimen-
sional region. From these results, we deduce that the individual program reli-
abilities were pi = 0.851, and substitution into Eq. (5.58) yields R = 0.94 for the
TMR system. Thus the unreliability of the single program, (1 - 0 .851) = 0.149,
has been reduced to (1 - 0.94) = 0.06; the decrease in unreliability (0.149 / 0.06)
is a factor of 2.48 (the details of the computation are in Shooman [1990, pp.
583–587]). This data did not include any common-mode failure information;
however, the second example to be discussed does include this information.

Some data gathered by Knight and Leveson [1986] discussed 27 different
versions of a program, all of which were subjected to 200 acceptance tests.
Upon acceptance, the program was subjected to one million test runs (see also
McAllister and Vouk [1996]).

Five of the programs tested without error, and the number of errors in
the others ranged up to 9,656 for program number 22, which had a demon-
strated pi = (1 – 9,656/ 1,000,000) = 0.990344. If there were no common-mode
errors, substitution of this value for pi into Eq. (5.57) yields R = 0.99972. The
improvement in unreliability, 1 –  R, is 0.009656/ 0.00028, or a factor of 34.5.

The number of common occurrences was also recorded for each error, allow-
ing one to estimate the common-mode probability. By treating all the common
mode situations as if they affected all the programs (a worst-case assump-
tion), we have as the estimate of common mode (sum of the number of multi-
ple failure occurrences)/ (number of tests) = 1,255/ 1,000,000 = 0.001255. The
probability of common-mode error is given by pcmrpcms = 1 – 0.001255 =
0.998745. Substitution into Eq. (5.58) yields R = 0.99846. The improvement
in 1 – R would now be from 0.009656 to 0.00154, and the improvement fac-
tor is 6.27—still substantial, but a significant decrease from the 34.5 that was
achieved without common-mode failures. (The details are given in Shooman
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[1990, pp. 582–587].) Another case is computed in which the initial value of
pi = (1 – 1,368/ 1,000,000) = 0.998632 is much higher. In this case, TMR
produces a reliability of 0.99999433 for an improvement in unreliability by a
factor of 241. However, the same estimate of common-mode failures reduces
this factor to only 1.1! Clearly, such a small improvement factor would not be
worth the effort, and either the common-mode failures must be reduced or other
methods of improving the software reliability should be pursued. Although this
data varies from program to program, it does show the importance of common-
mode failures. When one wishes to employ redundant software, clearly one
must exercise all possible cautions to minimize common-mode failures. Also,
it is suggested that modeling be done at the outset of the project using the best
estimates of independent and common-mode failure probabilities and that this
continue throughout the project based on the test results.

5.9.3 Space Shuttle Example

One of the best known examples of hardware and software reliability is the
Space Shuttle Orbiter flight control system. Once in orbit, the flight control
system must maintain the vehicle’s altitude (rotations about 3 axes fixed in
inertial space). Typically, one would use such rotations to lock onto a view of
the earth below, travel along a line of sight to an object that the Space Shuttle
is approaching, and so forth. The Space Shuttle uses a combination of vari-
ous large and small gas jets oriented about the 3 axes to produce the necessary
rotations. Orbit-change maneuvers, including the crucial reentry phase, are also
carried out by the flight control system using somewhat larger orbit-maneuver-
ing system (OMS) engines. There is much hardware redundancy in terms of
sensors, various groupings of the small gas jets, and even the use of a com-
bination of small gas jets for sustained firing should the OMS engines fail. In
this section, we focus on the computer hardware and software in this system,
which is shown in Fig. 5.19.

There are five identical computers in the system, denoted as Hardware A,
B, C, D, and E, and two different software systems, denoted by Software A
and B. Computers A–D are connected in a voting arrangement with lockout
switches at the inputs to the voter as shown. Each of these computers uses the
complete software system—Software A. The four computers and associated
software comprise the primary avionics software system (PASS), which is a
two-out-of-four system. If a failure in one computer occurs and is confirmed
by subsequent analysis and by disagreement with the other three computers as
well as by other tests and telemetered data to Ground Control, this computer
is then disconnected by the crew from the arrangement, and the remaining
system becomes a TMR system. Thus this system will sustain two failures
and still be functional rather than tolerating only a single failure, as is the case
with an ordinary TMR system. Because of all the monitoring and test programs
available in space and on the ground, it is likely that even after two failures, if a
third malfunction occurred, it would still be possible to determine and switch
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Figure 5.19 Hardware and software redundancy in the Space Shuttle’s avionics con-
trol system.

to the one remaining good computer. Thus the PASS has a very high level
of hardware redundancy, although it is vulnerable to common-mode software
failures in Software A. To guard against this, a backup flight control system
(BFS) is included with a fifth computer and independent Software B. Clearly,
Hardware E also supplies additional computer redundancy. In addition to the
components described, there are many replicated sensors, actuators, controls,
data buses, and power supplies.

The computer self-test features detect 96% of the faults that could occur.
Some of the built-in test and self-test features include the following:

• Bus time-out tests: If the computer does not perform a periodic operation
on the bus, and the timer has expired, the computer is labeled as failed.

• Comparisons: Check sum is computed, and the computer is labeled as
failed if there are two successive miscompares.

• Watchdog timers: Processors set a timer, and if the timer completes its
count before it is reset, the computer is labeled as failed and is locked
out.

To provide as much independence as possible, the two versions of the
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software were developed by different organizations. The programs were both
written in the HAL/ S language developed by Intermetrics. The primary sys-
tem was written by IBM Federal Systems Division, and the backup software
was written by Rockwell and Draper Labs. Both Software A and Software B
perform all the critical functions, such as ascent to orbit, descent from orbit,
and reentry, but Software A also includes various noncritical functions, such
as data logging, that are not included in the backup software.

In addition to the redundant features of Software A and B, great emphasis
has been applied to the life-cycle management of the Space Shuttle software.
Although the software for each mission is unique, many of its components
are reused from previous missions. Thus, if an error is found in the software
for flight number 76, all previous mission software (all of which is stored)
containing the same code is repaired and retested. Also, the reason why such
an error occurred is analyzed, and any possibilities for similar mechanisms to
cause errors in the rest of the code for this mission and previous missions are
investigated. This great care, along with other features, resulted in the Space
Shuttle software team being one of the first organizations to earn the highest
rating of “level 5” when it was examined by the Software Engineering Institute
of Carnegie Mellon University and judged with respect to the capability matu-
rity model (CMM) levels. The reduction in error rate for the first 11 flights
indicates the progress made and is shown in Fig. 5.20. An early reliability
study of ground-based Space Shuttle software appears in Shooman [1984]; the
model predicted the observed software error rate on flight number 1.

The more advanced voting techniques discussed in Section 4.11 also apply
to N-version software. For a comprehensive discussion of voting techniques,
see McAllister and Vouk [1996].

5.10 ROLLBACK AND RECOVERY

5.10.1 Introduction

The term recovery technique includes a class of approaches that attempts to
detect a software error and, in various ways, retry the computation. Suppose, for
example, that the track of an aircraft on the display in an air traffic control system
becomes corrupted. If the previous points on the path and the current input data
are stored, then the computation of the corrupted points can be retried based on
the stored values of the current input data. Assuming that no critical situation is in
progress (e.g., a potential air collision), the slight delay in recomputing and filling
in these points causes no harm. At the very worst, these few points may be lost,
but the software replaces them by a projected flight path based on the past path
data, and soon new actual points are available. This is also a highly acceptable
solution. The worst outcomes that must be strenuously avoided are from those
cases in which the errors terminate the track or cause the entire display to crash.
Some designers would call such recovery techniques rollback because the com-
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Figure 5.20 Errors found in the Space Shuttle’s software for the first 11 flights. The
IBM Federal Systems Division (now United Space Alliance), wrote and maintained
the onboard Space Shuttle control software, twice receiving the George M. Low Tro-
phy, NASA’s excellence award for quality and productivity. This graph was part of the
displays at various trade shows celebrating the awards. See Keller [1991] and Schnei-
dewind [1992] for more details.

putation backs up to the last set of previous valid data and attempts to reestab-
lish computations in the problem interval and resume computations from there
on. Another example that fits into this category is the familiar case in which one
uses a personal computer with a word processing program. Suppose one issues a
print command and discovers that the printer is turned off or the printer cable is
disconnected. Most (but not all) modern software will give an error message and
return control to the user, whereas some older programs lock the keyboard and
will not recover once the cable is connected or the printer is turned on. The only
recourse is to reboot the computer or to power down and then up again. Some-
times, though, the last lines of code since the last manual or autosave operation
are lost in either process.

All of these techniques attempt to detect a software error and, in various ways,
retry the computation. The basic assumption is that the problem is not a hard error
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but a transient error. A transient software error is one due to a software fault that
results only in a system error for particular system states. Thus, if we repeat the
computation again and the system state has changed, there is a good probability
that the error will not be repeated on the second trial.

Recovery techniques are generally classified as forward or backward error-
recovery techniques. The general philosophy of forward error recovery is to
continue operation while knowing that there is an error in computation and
correct for this error a little later. Techniques such as this work only in certain
circumstances; for example, in the case of a tracking algorithm for an air traffic
control system. In the case of backward error recovery, we wish to restart or
roll back the computation process to some point before the occurrence of the
error and restart the computation. In this section, we discuss four types of
backward error recovery:

1. Reboot/ restart techniques
2. Journaling techniques
3. Retry techniques
4. Checkpoint techniques

For a more complete discussion of the topics introduced in this section, see
Sieworek [1982] and Section 3.10.

5.10.2 Rebooting

The simplest—but weakest—recovery technique from the implementation
standpoint is to reboot or restart the system. The process of rebooting is well
known to users of PCs who, without thinking too much about it, employ it one
or more times a week to recover from errors. Actually, this raises a philosophi-
cal point: Is it better to have software that is well debugged and has very few
errors that occur infrequently, or is having software with more residual errors
that can be cleared by frequent rebooting also acceptable? The author remem-
bers having a conversation with Ed Yourdon about an old computer when he
was preparing a paper on reliability measurements [Yourdon, 1972]. Yourdon
stated that a lot of computer crashes during operation were not recorded for
the Burroughs B5500 computer (popular during the mid-1960s) because it was
easy to reboot; the operator merely pushed the HALT button to stop the sys-
tem and pushed the LOAD button to load a fresh version of the operating
system. Furthermore, Yourdon stated, “The restart procedure requires two to
five minutes. This can be contrasted with most IBM System/ 360s, where a
restart usually required fifteen to thirty minutes.” As a means of comparison,
the author collected some data on reboot times that appears in Table 5.4.

It would seem that a restarting time of under one minute is now considered
acceptable for a PC. It is more difficult to quantify the amount of information
that is lost when a crash occurs and a reboot is required. We consider three
typical applications: (a) word processing, (b) reading and writing e-mail, and
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TABLE 5.4 Typical Computer Reboot Times

Computer Operating System Reboot Time

IBM System/ 360a “OS-360” 15–30 min
Burroughs 5500a “Burroughs OS” 2–5 min
Digital PC 360/ 20 Windows 3.1 41 sec
IBM Compatible Pentium ’90 Windows ’95 54 sec
IBM Notebook Celeron 300 Windows ’98 80 sec

+ Office

a From Yourdon [1972].

(c) a Web search. We assume that word processing is being done on a PC and
that applications (b) and (c) are being conducted from home via modem con-
nections and a high-speed line to a server at work (a more demanding situation
than connection from a PC to a server via a local area network where all three
facilities are in a work environment). As stated before, the loss during word
processing due to a “lockup and reboot” depends on the text lost since the
last manual or autosave operation. In addition, there is the lost time to reload
the word processing software. These losses become significant when the crash
frequency becomes greater than, say, one or two per month. Choosing small
intervals between autosaves, keeping backup documents, and frequently print-
ing out drafts of new additions to a long document are really necessities. A
friend of the author’s who was president of a company that wrote and pub-
lished technical documents for clients had a disastrous fire that destroyed all of
his computer hardware, paper databases, and computer databases. Fortunately,
he had about 70% of the material stored on tape and disks in another location
that was unaffected, and it took almost a year to restore his business to full
operation. The process of reading and writing e-mail is even more involved.
A crash often severs the communication connection between the PC and the
server, which must then be reestablished. Also, the e-mail program must be
reentered. If a write operation was in progress, many e-mail programs do not
save the text already entered. A Web search that locks up may require only
the reissuing of the search, or it may require reacquisition of the server pro-
viding the connection. Different programs provide a wide variety of behaviors
in response to such crashes. Not only is time lost, but any products that were
being read, saved, or printed during the crash are lost as well.

5.10.3 Recovery Techniques

A reboot operation is similar to recovery. However, reboot generally involves
the action of a human operator who observes that something is wrong with
the system and attempts to correct the problem. If this attempt is unsuccessful,
the operator issues a manual reboot command. The term recovery generally
means that the system itself senses operational problems and issues a reboot
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command. In some cases, the software problem is more severe and a simple
reboot is insufficient. Recovery may involve the reloading of some or all of
the operating system. If this is necessary on a PC, the BIOS stored in ROM
provides a basic means of communication to enable such a reloading. The most
serious problems could necessitate a lower-level fix of the disk that stores the
operating system. If we wish such a process to be autonomous, a special soft-
ware program must be included that performs these operations in response to
an “initiate recovery command.” Some of the clearest examples of such recov-
ery techniques are associated with robotic space-research vehicles.

Consider a robotic deep-space mission that loses control and begins to spin
or tumble in space. The solar cells lose generating capacity, and the antennae no
longer point toward Earth. The system must be designed from the start to recover
from such a situation, as battery power provides a limited amount of time for
such recovery to take place. Once the spacecraft is stabilized, the solar cells must
be realigned with the Sun and the antennae must be realigned with Earth. This
is generally provided by a small, highly secure kernel in the operating system
that takes over in such a situation. In addition to hardware redundancy for all
critical equipment, the software is generally subjected to a proof-of-correctness
and an unusually high level of testing to ensure that it will perform its intended
task. Many of NASA’s spacecraft have recovered from such situations, but some
have not. The main point of this discussion is that reboot or recovery for all these
examples must be contained in the requirements and planned for during the entire
design, not added later in the process as almost an afterthought.

5.10.4 Journaling Techniques

Journaling techniques are slightly more complex and somewhat better than
reboot or restart techniques. Such techniques are also somewhat quicker to
employ than reboot or restart techniques since only a subset of the inputs must
be saved. To employ these techniques requires that

1. a copy of the original database, disk, and filename be stored,
2. all transactions (inputs) that affect the data must be stored during exe-

cution, and
3. the process be backed up to the beginning and the computation be retried.

Clearly, items (2) and (3) require a lot of storage; in practice, journaling
can only be executed for a given time period, after which the inputs and the
process must be erased and a new journaling time period created. The choice
of the time period between journaling refreshes is an important design param-
eter. Storage of inputs and processes is continuous during operation regardless
of the time period. The commands to refresh the journaling process should
not absorb too much of the operating time budget for the system. The main
trade-off will be between the amount of storage and the amount of processing
time for computational retry, which increases with the length of the journaling
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period versus the impact of system overhead for journaling, which decreases as
the interval between journaling refresh increases. It is possible that the storage
requirements dominate and the optimum solution is to refresh when storage is
filled up.

These techniques of journaling are illustrated by an example. The Xerox
Alto personal computer used an editor called Bravo. Journaling was used to
recover if a computer crash occurred during an editing session. Most modern
PC-based word processing systems use a different technique to avoid loss of
data during a session. A timer is set, and every few minutes the data in the input
buffer (representing new input data since the last manual or automatic save
operation) is stored. The addition of journaling to the periodic storage process
would ensure no data loss. (Perhaps the keystrokes that occurred immediately
preceding a crash would be lost, but this at most would constitute the last word
or the last command.)

5.10.5 Retry Techniques

Retry techniques are quicker than those discussed previously, but they are more
complex since more redundant process-state information must be stored. Retry
is begun immediately after the error is detected. In the case of transient errors,
one waits for the transient to die out and then initiates retry, whereas in the
case of hard errors, the approach is to reconfigure the system. In either case, the
operation affected by the error is then retried, which requires a complete knowl-
edge of the system state (kept in storage) before the operation was attempted.
If the interrupted operation or the error has irrevocably modified some data,
the retry fails. Several examples of retry operation are as follows:

1. Disk controllers generally use disk-read reentry to minimize the number
of disk-read errors. Consider the case of an MS-DOS personal computer
system executing a disk-read command when an error is encountered.
The disk-read operation is terminated, and the operator is asked whether
he or she wishes to retry or abort. If the retry command is issued and
the transient error has cleared, recovery is successful. However, if there
is a hard error (e.g., a damaged floppy), retry will not clear the problem,
and other processes must be employed.

2. The Univac 1100/ 60 computer provided retry for macroinstructions after
a failure.

3. The IBM System/ 360 provided extensive retry capabilities, performing
retries for both CPU and I/ O operations.

Sometimes, the cause of errors is more complex and the retry may not work.
Consider the following example that puzzled and plagued the author for a few
months. A personal computer with a bad hard-disk sector worked fine with all
programs except with a particular word processor. During ordinary save oper-
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ations, the operating system must have avoided the bad sector in storing disk
files. However, the word processor automatically saved the workspace every
few minutes. Small text segments in the workspace were fine, but medium-
sized text segments were sometimes subjected to disk-read errors during the
autosave operation but not during a normal (manually issued) save command.
In response to the error message “abort or retry,” a simple retry response gen-
erally worked the first time or, at worst, required an abort followed by a save
command. With large text segments in the workspace, real trouble occurred:
When a disk-read error was encountered during automatic saving, one or more
paragraphs of text from previous word processing sessions that were stored in
the buffer were often randomly inserted into the present workspace, thereby
corrupting the document. This is a graphic example of a retry failure. The
author was about to attempt to lock out the bad disk sectors so they would
not be used; however, the problem disappeared with the arrival of the second
release of the word processor. Most likely, the new software used a slightly
different buffer autosave mechanism.

5.10.6 Checkpointing

One advantage of checkpoint techniques is that they can generally be imple-
mented using only software, as contrasted with retry techniques that may
require additional dedicated hardware in addition to the necessary software
routines. Also in the case of retry, the entire time history of the system state
during the relevant period is saved, whereas in checkpointing the time history
of the system state is saved only at specific points (checkpoints); thus less
storage is required. A major disadvantage of checkpointing is the amount and
difficulty of the programming that is required to employ checkpoints. The steps
in the checkpointing process are as follows:

1. After the error is detected, recovery is initiated as soon as transient errors
die out or, in the case of hard errors, the system is reconfigured.

2. The system is rolled back to the most recent checkpoint, and the system
state is set to the stored checkpoint state and the process is restarted. If the
operation is successfully restored, the process continues, and only some
time and any new input data during the recovery process are lost. If oper-
ation is not restored, rollback to an earlier checkpoint can be attempted.

3. If the interrupted operation or the error has irrevocably modified some
data, the checkpoint technique fails.

One better-developed example of checkpointing is within the Guardian oper-
ating system used for the Tandem computer system. The system consists of a
primary process that does all the work and a backup process that operates on
the same inputs and is ready to take over if the primary process fails. At critical
points, the primary process sends checkpoint messages to the backup process.
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For further details on the Guardian operating system, the reader is referred to
Siewiorek [1992, pp. 635–648]. Also, see the discussion in Section 3.10.

Some comments are necessary with respect to the way customers generally
use Tandem computer systems and the Guardian operating system:

1. The initial interest in the Tandem computer system was probably due to
the marketing value of the term “NonStop architecture” that was used
to describe the system. Although proprietary studies probably exist, the
author does not know of any reliability or availability studies in the open
literature that compared the Tandem architecture with a competitive sys-
tem such as a Digital Equipment VAX Cluster or an IBM system config-
ured for high reliability. Thus it is not clear how these systems compared
to the competition, although most users are happy.

2. Once the system was studied by potential customers, one of the most
important selling points was its modular structure. If the capacity of an
existing Tandem system was soon to be exceeded, the user could simply
buy additional Tandem machines, connect them in parallel, and easily
integrate the expanded capacity with the existing system, which some-
times could be accomplished without shutting down system operation.
This was a clear advantage over competitors, so it was built into the
basic design.

3. The use of the Guardian operating system’s checkpointing features could
easily be turned on or off in configuring the system. Many users turned
this feature off because it slowed down the system somewhat, but more
importantly because to use it required some complex system program-
ming to be added to the application programs. Newer Tandem systems
have made such programming easier to use, as discussed in Section
3.10.1.

5.10.7 Distributed Storage and Processing

Many modern computer systems have a client–server architecture—typically,
PCs or workstations are the clients, and the server is a more powerful pro-
cessor with large disk storage attached. The clients and server are generally
connected by local area networks (LANs). In fact, processing and data storage
both tend to be decentralized, and several servers with their sets of clients are
often connected by another network. In such systems, there is considerable the-
oretical and practical interest in devising algorithms to synchronize the various
servers and to prevent two or more users from colliding when they attempt to
access data from the same file. Even more important is the prevention of sys-
tem lockup when one user is writing to a device and another user tries to read
the device. For more information, the reader is referred to Bhargava [1987]
and to the literature.
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PROBLEMS

5.1. Consider a software project with which you are familiar (past, in-
progress, or planned). Write a few sentences or a paragraph describing
the phases given in Table 5.1 for this project. Make sure you start by
describing the project in succinct form.

5.2. Draw an H-diagram similar to that shown in Fig. 5.1 for the software
of problem 5.1.

5.3. How well does the diagram of problem 5.2 agree with Eqs. (5.1 a–d)?
Explain.

5.4. Write a short version of a test plan for the project of problem 5.1. Include
the number and types of tests for the various phases. (Note: A complete
test plan will include test data and expected answers.)

5.5. Would (or did) the development follow the approach of Figs. 5.2, 5.3,
or 5.4? Explain.

5.6. We wish to develop software for a server on the Internet that keeps a
database of locations for new cars that an auto manufacturer is tracking.
Assume that as soon as a car is assembled, a reusable electronic box is
installed in the vehicle that remains there until the car is delivered to a
purchaser. The box contains a global positioning system (GPS) receiver
that determines accurate location coordinates from the GPS satellites and
a transponder that transmits a serial number and these coordinates via
another satellite to the server. The server receives these transponder sig-
nals and stores them in a file. The server has a geographical database
so that it can tell from the coordinates if each car is (a) in the manufac-
turer’s storage lot, (b) in transit, or (c) in a dealer’s showroom or lot.
The database is accessed by an Internet-capable cellular phone or any
computer with Internet access [Stork, 2000, p. 18].
(a) How would you design the server software for this system? (Figs.

5.2, 5.3, or 5.4?)
(b) Draw an H-diagram for the software.

5.7. Repeat problem 5.3 for the software in problem 5.6.

5.8. Repeat problem 5.4 for the software in problem 5.6.
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5.9. Repeat problem 5.5 for the software in problem 5.6.

5.10. A component with a constant-failure rate of 4 × 10−5 is discussed in
Section 5.4.5.
(a) Plot the failure rate as a function of time.
(b) Plot the density function as a function of time.
(c) Plot the cumulative distribution function as a function of time.
(d) Plot the reliability as a function of time.

5.11. It is estimated that about 100 errors will be removed from a program dur-
ing the integration test phase, which is scheduled for 12 months duration.
(a) Plot the error-removal curve assuming that the errors will follow a

constant-removal rate.
(b) Plot the error-removal curve assuming that the errors will follow a

linearly decreasing removal rate.
(c) Plot the error-removal curve assuming that the errors will follow an

exponentially decreasing removal rate.

5.12. Assume that a reliability model is to be fitted to problem 5.11. The num-
ber of errors remaining in the program at the beginning of integration
testing is estimated to be 120. From experience with similar programs,
analysts believe that the program will start integration testing with an
MTTF of 150 hours.
(a) Assuming a constant error-removal rate during integration, formulate

a software reliability model.
(b) Plot the reliability function versus time at the beginning of integra-

tion testing—after 4, 8, and 12 months of debugging.
(c) Plot the MTTF as a function of the integration test time, t.

5.13. Repeat problem 5.12 for a linearly decreasing error-removal rate.

5.14. Repeat problem 5.12 for an exponentially decreasing error-removal rate.

5.15. Compare the reliability functions derived in problems 5.12, 5.13, and
5.14 by plotting them on the same time axis for t = 0, t = 4, t = 8, and
t = 12 months.

5.16. Compare the MTTF functions derived in problems 5.12, 5.13, and 5.14
by plotting them on the same time axis versus t.

5.17. After 1 month of integration testing of a program, the MTTF = 10 hours,
and 15 errors have been removed. After 2 months, the MTTF = 15 hours,
and 25 total errors have been removed.
(a) Assuming a constant error-removal rate, fit a model to this data

set. Estimate the parameters by using moment-estimation techniques
[Eqs. (5.47a, b)].

(b) Sketch MTTF versus development time t.
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(c) How much integration test time will be required to achieve a 100-
hour MTTF? How many errors will have been removed by this time
and how many will remain?

5.18. Repeat problem 5.17 assuming a linearly decreasing error-rate model
and using Eqs. (5.49a, b).

5.19. Repeat problem 5.17 assuming an exponentially decreasing error-rate
model and using Eqs. (5.51) and (5.52).

5.20. After 1 month of integration testing, 20 errors have been removed, the
MTTF of the software is measured by testing it with the use of simulated
operational data, and the MTTF = 10 hours. After 2 months, the MTTF
= 20 hours, and 50 total errors have been removed.
(a) Assuming a constant error-removal rate, fit a model to this data

set. Estimate the parameters by using moment-estimation techniques
[Eqs. (5.47a, b)].

(b) Sketch the MTTF versus development time t.
(c) How much integration test time will be required to achieve a 60-hour

MTTF? How many errors will have been removed by this time and
how many will remain?

(d) If we release the software when it achieves a 60-hour MTTF, sketch
the reliability function versus time.

(e) How long can the software operate, if released as in part (d) above,
before the reliability drops to 0.90?

5.21. Repeat problem 5.20 assuming a linearly decreasing error-rate model
and using Eqs. (5.49a, b).

5.22. Repeat problem 5.20 assuming an exponentially decreasing error-rate
model and using Eqs. (5.51) and (5.52).

5.23. Assume that the company developing the software discussed in problem
5.17 has historical data for similar systems that show an average MTTF
of 50 hours with a variance j2 of 30 hours. The variance of the reliability
modeling is assumed to be 20 hours. Using Eqs. (5.55) and (5.56a, b),
compute the reliability function.

5.24. Assume that the model of Fig. 5.18 holds for three independent ver-
sions of reliable software. The probability of error for 10,000 hours of
operation of each version is 0.01. Compute the reliability of the TMR
configuration assuming that there are no common-mode failures. Recom-
pute the reliability of the TMR configuration if 1% of the errors are due
to common-mode requirement errors and 1% are due to common-mode
software faults.
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6.1 INTRODUCTION

Many physical problems (e.g., computer networks, piping systems, and power
grids) can be modeled by a network. In the context of this chapter, the word
network means a physical problem that can be modeled as a mathematical
graph composed of nodes and links (directed or undirected) where the branches
have associated physical parameters such as flow per minute, bandwidth, or
megawatts. In many such systems, the physical problem has sources and sinks
or inputs and outputs, and the proper operation is based on connection between
inputs and outputs. Systems such as computer or communication networks have
many nodes representing the users or resources that desire to communicate and
also have several links providing a number of interconnected pathways. These
many interconnections make for high reliability and considerable complexity.
Because many users are connected to such a network, a failure affects many
people; thus the reliability goals must be set at a high level.

This chapter focuses on computer networks. It begins by discussing the sev-
eral techniques that allow one to analyze the reliability of a given network, after
which the more difficult problem of optimum network design is introduced.
The chapter concludes with a brief introduction to one of the most difficult
cases to analyze—where links can be disabled because of two factors: (a) link
congestion (a situation in which flow demand exceeds flow capacity and a link
is blocked or an excessive queue builds up at a node), and (b) failures from
broken links.

A new approach to reliability in interconnected networks is called surviv-
ability analysis [Jia and Wing, 2001]. The concept is based on the design of
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a network so it is robust in the face of abnormal events—the system must
survive and not crash. Recent research in this area is listed on Jeannette M.
Wing’s Web site [Wing, 2001].

The mathematical techniques used in this chapter are properties of mathe-
matical graphs, tie sets, and cut sets. A summary of the relevant concepts is
given in Section B2.7, and there is a brief discussion of some aspects of graph
theory in Section 5.3.5; other concepts will be developed in the body of the
chapter. The reader should be familiar with these concepts before continuing
with this chapter. For more details on graph theory, the reader is referred to
Shooman [1983, Appendix C]. There are of course other approaches to net-
work reliability; for these, the reader is referred to the following references:
Frank [1971], Van Slyke [1972, 1975], and Colbourn [1987, 1993, 1995]. It
should be mentioned that the cut-set and tie-set methods used in this chapter
apply to reliability analyses in general and are employed throughout reliabil-
ity engineering; they are essentially a theoretical generalization of the block
diagram methods discussed in Section B2. Another major approach is the
use of fault trees, introduced in Section B5 and covered in detail in Dugan
[1996].

In the development of network reliability and availability we will repeat for
clarity some of the concepts that are developed in other chapters of this book,
and we ask for the reader’s patience.

6.2 GRAPH MODELS

We focus our analytical techniques on the reliability of a communication net-
work, although such techniques also hold for other network models. Suppose
that the network is composed of computers and communication links. We rep-
resent the system by a mathematical graph composed of nodes representing the
computers and edges representing the communications links. The terms used to
describe graphs are not unique; oftentimes, notations used in the mathematical
theory of graphs and those common in the application fields are interchange-
able. Thus a mathematics textbook may talk of vertices and arcs; an electrical-
engineering book, of nodes and branches; and a communications book, of sites
and interconnections or links. In general, these terms are synonymous and used
interchangeably.

In the most general model, both the nodes and the links can fail, but here
we will deal with a simplified model in which only the links can fail and the
nodes are considered perfect. In some situations, communication can go only
in one direction between a node pair; the link is represented by a directed edge
(an arrowhead is added to the edge), and one or more directed edges in a graph
result in a directed graph (digraph). If communication can occur in both direc-
tions between two nodes, the edge is nondirected, and a graph without any
directed nodes is an ordinary graph (i.e., nondirected, not a digraph). We will
consider both directed and nondirected graphs. (Sometimes, it is useful to view
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Figure 6.1 A four-node graph representing a computer or communication network.

a nondirected graph as a special case of a directed graph in which each link
is represented by two identical parallel links, with opposite link directions.)

When we deal with nondirected graphs composed of E edges and N nodes,
the notation G(N, E) will be used. A particular node will be denoted as ni and
a particular edge denoted as ej . We can also identify an edge by naming the
nodes that it connects; thus, if edge j is between nodes s and t, we may write
ej = (ns, nt) = e(s, t). One also can say that edge j is incident on nodes s and
t. As an example, consider the graph of Fig. 6.1, where G(N = 4, E = 6). The
nodes n1, n2, n3, and n4 are a, b, c, and d. Edge 1 is denoted by e1 = e(n1, n2) =s
(a, b), edge 2 by e2 = e(n2, n3) = (b, c), and so forth. The example of a network
graph shown in Fig. 6.1 has four nodes (a, b, c, d) and six edges (1, 2, 3, 4,
5, 6). The edges are undirected (directed edges have arrowheads to show the
direction), and since in this particular example all possible edges between the
four nodes are shown, it is called a complete graph. The total number of edges
in a graph with n nodes is the number of combinations of n things taken two
at a time = n! / [(2!)(n – 2)!]. In the example of Fig. 6.1, the total number of
edges in 4!/ [(2!)(4 – 2)!] = 6.

In formulating the network model, we will assume that each link is either
good or bad and that there are no intermediate states. Also, independence of
link failures is assumed, and no repair or replacement of failed links is con-
sidered. In general, the links have a high reliability, and because of all the
multiple (redundant) paths, the network has a very high reliability. This large
number of parallel paths makes for high complexity; the efficient calculation
of network reliability is a major problem in the analysis, design, or synthesis
of a computer communication network.

6.3 DEFINITION OF NETWORK RELIABILITY

In general, the definition of reliability is the probability that the system oper-
ates successfully for a given period of time under environmental conditions
(see Appendix B). We assume that the systems being modeled operate con-
tinuously and that the time in question is the clock time since the last failure
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or restart of the system. The environmental conditions include not only tem-
perature, atmosphere, and weather, but also system load or traffic. The term
successful operation can have many interpretations. The two primary ones are
related to how many of the n nodes can communicate with each other. We
assume that as time increases, a number of the m links fail. If we focus on
communication between a pair of nodes where s is the source node and t is
the target node, then successful operation is defined as the presence of one or
more operating paths between s and t. This is called the two-terminal problem,
and the probability of successful communication between s and t is called two-
terminal reliability. If successful operation is defined as all nodes being able
to communicate, we have the all-terminal problem, for which it can be stated
that node s must be able to communicate with all the other n – 1 nodes, since
communication between any one node s and all others nodes, t1, t2, . . . , tn − 1,
is equivalent to communication between all nodes. The probability of success-
ful communication between node s and nodes t1, t2, . . . , tn − 1 is called the all-
terminal reliability.

In more formal terms, we can state that the all-terminal reliability is the
probability that node ni can communicate with node nj for all pairs ninj (where
i � j ). We wish to show that this is equivalent to the proposition that node s
can communicate with all other nodes t1 = n2, t2 = n3, . . . , tn − 1 = nn. Choose
any other node nx (where x � 1). By assumption, nx can communicate with s
because s can communicate with all nodes and communication is in both direc-
tions. However, once nx reaches s, it can then reach all other nodes because
s is connected to all nodes. Thus all-terminal connectivity for x = 1 results in
all-terminal connectivity for x � 1, and the proposition is proved.

In general, reliability, R, is the probability of successful operation. In the
case of networks, we are interested in all-terminal reliability, Rall:

Rall � P(that all n nodes are connected) (6.1)

or the two-terminal reliability:

Rst � P(that nodes s and t are connected) (6.2)

Similarly, k-terminal reliability is the probability that a subset of k nodes 2 ≤
k ≤ n) are connected. Thus we must specify what type of reliability we are
discussing when we begin a problem.

We stated previously that repairs were not included in the analysis of net-
work reliability. This is not strictly true; for simplicity, no repair was assumed.
In actuality, when a node-switching computer or a telephone communications
line goes down, each is promptly repaired. The metric used to describe a
repairable system is availability, which is defined as the probabilty that at any
instant of time t, the system is up and available. Remember that in the case
of reliability, there were no failures in the interval 0 to t. The notation is A(t),
and availability and reliability are related as follows by the union of events:
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A(t) = P(no failure in interval 0 to t + 1 failure and

1 repair in interval 0 to t + 2 failures and

2 repairs in interval 0 to t + · · ·) (6.3)

The events in Eq. (6.3) are all mutually exclusive; thus Eq. (6.3) can be
expanded as a sum of probabilities:

A(t) = P(no failure in interval 0 to t)

+ P(1 failure and 1 repair in interval 0 to t)

+ P(2 failures and 2 repairs in interval 0 to t) + · · · (6.4)

Clearly,

• The first term in Eq. (6.4) is the reliability, R(t)
• A(t) = R(t) = 1 at t = 0
• For t > 0, A(t) > R(t)
• R(t) � 0 as t � ∞
• It is shown in Appendix B that A(t) � Ass as t � ∞ and, as long as repair

is present, Ass > 0

Availability is generally derived using Markov probability models (see
Appendix B and Shooman [1990]). The result of availability derivations for
a single element with various failure and repair probability distributions can
become quite complex. In general, the derivations are simplified by assuming
exponential probability distributions for the failure and repair times (equiv-
alent to constant-failure rate, l, and constant-repair rate, m). Sometimes, the
mean time to failure (MTTF) and the mean time to repair (MTTR) are used
to describe the repair process and availability. In many cases, the terms mean
time between failure (MTBF) and mean time between repair (MTBR) are used
instead of MTTF and MTTR. For constant-failure and -repair rates, the mean
times become MTBF = 1 / l and MTBR = 1 /m. The solution for A(t) has an
exponentially decaying transient term and a constant steady-state term. After a
few failure repair cycles, the transient term dies out and the availability can be
represented by the simpler steady-state term. For the case of constant-failure
and -repair rates for a single item, the steady-state availability is given by the
equation that follows (see Appendix B).

Ass � m/ (l + m) � MTBF/ (MTBF + MTBR) (6.5)

Since the MTBF >> MTBR in any well-designed system, Ass is close to
unity. Also, alternate definitions for MTTF and MTTR lead to slightly different
but equivalent forms for Eq. (6.5) (see Kershenbaum [1993].)

Another derivation of availability can be done in terms of system uptime,
U(t), and system downtime, D(t), resulting in the following different formula
for availability:
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Ass � U(t)/ [U(t) + D(t)] (6.6)

The formulation given in Eq. (6.6) is more convenient than that of Eq. (6.5)
if we wish to estimate Ass based on collected field data. In the case of a com-
puter network, the availability computations can become quite complex if the
repairs of the various elements are coupled, in which case a single repairman
might be responsible for maintaining, say, two nodes and five lines. If sev-
eral failures occur in a short period of time, a queue of failed items wait-
ing for repairs might build up and the downtime is lengthened, and the term
“repairman-coupled” is used. In the ideal case, if we assume that each element
in the system has its own dedicated repairman, we can guarantee that the ele-
ments are decoupled and that the steady-state availabilities can be substituted
into probability expressions in the same way as reliabilities are. In a practi-
cal case, we do not have individual repairmen, but if the repair rate is much
larger than the failure rate of the several components for which the repairman
supports, then approximate decoupling is a good assumption. Thus, in most
network reliability analyses there will be no distinction made between reli-
ability and availability; the two terms are used interchangeably in the network
field in a loose sense. Thus a reliability analyst would make a combinatorial
model of a network and insert reliability values for the components to calculate
system reliability. Because decoupling holds, he or she would substitute com-
ponent availabilities in the same model and calculate the system availability;
however, a network analyst would perform the same availability computation
and refer to it colloquially as “system reliability.” For a complete discussion
of availability, see Shooman [1990].

6.4 TWO-TERMINAL RELIABILITY

The evaluation of network reliability is a difficult problem, but there are several
approaches. For any practical problem of significant size, one must use a com-
putational program. Thus all the techniques we discuss that use a “pencil-paper-
and-calculator” analysis are preludes to understanding how to write algorithms
and programs for network reliability computation. Also, it is always valuable to
have an analytical solution of simpler problems for use to test reliability com-
putation programs until the user becomes comfortable with such a program.
Since two-terminal reliability is a bit simpler than all-terminal reliability, we
will discuss it first and treat all-terminal reliability in the following section.

6.4.1 State-Space Enumeration

Conceptually, the simplest means of evaluating the two-terminal reliability of
a network is to enumerate all possible combinations where each of the e edges
can be good or bad, resulting in 2e combinations. Each of these combinations of
good and bad edges can be treated as an event Ei. These events are all mutually
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exclusive (disjoint), and the reliability expression is simply the probability of
the union of the subset of these events that contain a path between s and t.

Rst � P(E1 + E2 + E3 · · ·) (6.7)

Since each of these events is mutually exclusive, the probability of the union
becomes the sum of the individual event probabilities.

Rst � P(E1) + P(E2) + P(E3) + · · · (6.8)

[Note that in Eq. (6.7) the symbol + stands for union (U), whereas in Eq. (6.8),
the + represents addition. Also throughout this chapter, the intersection of x and
y (x

U
y) is denoted by x . y, or just xy.]

As an example, consider the graph of a complete four-node communication
network that is shown in Fig. 6.1. We are interested in the two-terminal reli-
ability for node pair a and b; thus s = a and t = b. Since there are six edges,
there are 26 = 64 events associated with this graph, all of which are presented
in Table 6.1. The following definitions are used in constructing Table 6.1:

Ei � the event i
j � the success of edge j

j ′ � the failure of edge j

The term good means that there is at least one path from a to b for the given
combination of good and failed edges. The term bad, on the other hand, means
that there are no paths from a to b for the given combination of good and failed
edges. The result—good or bad—is determined by inspection of the graph.

Note that in constructing Table 6.1, the following observations prove help-
ful: Any combination where edge 1 is good represents a connection, and at
least three edges must fail (edge 1 plus two others) for any event to be bad.

Substitution of the good events from Table 6.1 into Eq. (6.8) yields the
two-terminal reliability from a to b:

Rab � [P(E1)] + [P(E2) + · · · + P(E7)] + [P(E8) + P(E9) + · · · + P(E22)]

+ [P(E23) + P(E24) + · · · + P(E34) + P(E37) + · · · + P(E42)]

+ [P(E43) + P(E44) + · · · + P(E47) + P(E50) + P(E56)] + [P(E58)] (6.9)

The first bracket in Eq. (6.9) has one term where all the edges must be good,
and if all edges are identical and independent, and they have a probability of
success of p, then the probability of event E1 is p6. Similarly, for the second
bracket, there are six events of probability qp5 where the probability of failure
q = 1 – p, etc. Substitution in Eq. (6.9) yields a polynomial in p and q:

Rab � p6 + 6qp5 + 15q2p4 + 18q3p3 + 7q4p2 + q5p (6.10)
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TABLE 6.1 The Event-Space for the Graph of
Fig. 6.1 (s � a, t � b)

No failures: � 6
0 � �

6!
0!6!

� 1

E1 � 123456 Good

One failure: � 6
1 � �

6!
1!5!

� 6

E2 � 1′23456 Good
E3 � 12′3456 Good
E4 � 123′456 Good
E5 � 1234′56 Good
E6 � 12345′6 Good
E7 � 123456′ Good

Two failures: � 6
2 � �

6!
2!4!

� 15

E8 � 1′2′3456 Good
E9 � 1′23′456 Good

E10 � 1′234′56 Good
E11 � 1′2345′6 Good
E12 � 1′23456′ Good
E13 � 12′3′456 Good
E14 � 12′34′56 Good
E15 � 12′345′6 Good
E16 � 12′3456′ Good
E17 � 123′4′56 Good
E18 � 123′45′6 Good
E19 � 123′456′ Good
E20 � 1234′5′6 Good
E21 � 1234′56′ Good
E22 � 12345′6′ Good

Continued . . .

Three failures: � 6
3 � �

6!
3!3!

� 20

E23 � 1234′5′6′ Good
E24 � 123′45′6′ Good
E25 � 123′4′56′ Good
E26 � 123′4′5′6 Good
E27 � 12′345′6′ Good
E28 � 12′34′56′ Good
E29 � 12′34′5′6 Good
E30 � 12′3′456′ Good
E31 � 12′3′45′6 Good
E32 � 12′3′4′56 Good
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TABLE 6.1 (Continued)

E33 � 1′2345′6′ Good
E34 � 1′234′56′ Good
E35 � 1′234′5′6′ Bad
E36 � 1′2′3456′ Bad
E37 � 1′2′345′6 Good
E38 � 1′2′34′56 Good
E39 � 1′23′456′ Good
E40 � 1′23′45′6 Good
E41 � 1′23′4′56 Good
E42 � 1′2′3′456 Good

Four failures: � 6
4 � �

6!
4!2!

� 15

E43 � 123′4′5′6′ Good
E44 � 12′34′5′6′ Good
E45 � 12′3′45′6′ Good
E46 � 12′3′4′56′ Good
E47 � 12′3′4′5′6 Good
E48 � 1′234′5′6′ Bad
E49 � 1′23′45′6′ Bad
E50 � 1′23′4′56′ Good
E51 � 1′23′4′5′6 Bad
E52 � 1′2′345′6′ Bad
E53 � 1′2′34′56′ Bad
E54 � 1′2′34′5′6 Bad
E55 � 1′2′3′456′ Bad
E56 � 1′2′3′45′6 Good
E57 � 1′2′3′4′56 Bad

Continued . . .

Five failures: � 6
5 � �

6!
5!1!

� 6

E58 � 12′3′4′5′6′ Good
E59 � 1′23′4′5′6′ Bad
E60 � 1′2′34′5′6′ Bad
E61 � 1′2′3′45′6′ Bad
E62 � 1′2′3′4′56′ Bad
E63 � 1′2′3′4′5′6 Bad

Six failures: � 6
6 � �

6!
6!0!

� 1

E64 � 1′2′3′4′5′6′ Bad

Substitutions such as those in Eq. (6.10) are prone to algebraic mistakes; as
a necessary (but not sufficient) check, we evaluate the polynomial for p = 1
and q = 0, which should yield a reliability of unity. Similarly, evaluating the
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polynomial for p = 0 and q = 1 should yield a reliability of 0. (Any network
has a reliability of unity regardless of its topology if all edges are perfect; it
has a reliability of 0 if all its edges have failed.)

Numerical evaluation of the polynomial for p = 0.9 and q = 0.1 yields

Rab � 0.96 + 6(0.1)(0.9)5 + 15(0.1)2(0.9)4 + 18(0.1)3(0.9)3

+ 7(0.1)4(0.9)2 + (0.1)5(0.9) (6.11a)

Rab � 0.5314 + 0.35427 + 0.0984 + 0.0131 + 5.67 × 10−4 + 9 × 10−6 (6.11b)

Rab � 0.997848 (6.11c)

Usually, event-space-reliability calculations require much effort and time even
though the procedure is clear. The number of events builds up exponentially
as 2e. For e = 10, we have 1,024 terms, and if we double the e, there are over
a million terms. However, we seek easier methods.

6.4.2 Cut-Set and Tie-Set Methods

One can reduce the amount of work in a network reliability analysis below the
2e complexity required for the event-space method if one focuses on the min-
imal cut sets and minimal tie sets of the graph (see Appendix B and Shooman
[1990, Section 3.6.5]). The tie sets are the groups of edges that form a path
between s and t. The term minimal implies that no node or edge is traversed
more than once, but another way of defining this is that minimal tie sets have
no subsets of edges that are a tie set. If there are i tie sets between s and t,
then the reliability expression is given by the expansion of

Rst � P(T1 + T2 + · · · + Ti) (6.12)

Similarly, one can focus on the minimal cut sets of a graph. A cut set is a
group of edges that break all paths between s and t when they are removed
from the graph. If a cut set is minimal, no subset is also a cut set. The reliability
expression in terms of the j cut sets is given by the expansion of

Rst � 1 − P(C1 + C2 + · · · + Cj) (6.13)

We now apply the above theory to the example given in Fig. 6.1. The min-
imal cut sets and tie sets are found by inspection for s = a and t = b and are
given in Table 6.2.

Since there are fewer cut sets, it is easier to use Eq. (6.13) rather than Eq.
(6.12); however, there is no general rule for when j < i or vice versa.



TWO-TERMINAL RELIABILITY 293

TABLE 6.2 Minimal Tie Sets and Cut Sets for the
Example of Fig. 6.1 (s � a, t � b)

Tie Sets Cut Sets

T1 � 1 C1 � 1′4′5′
T2 � 52 C2 � 1′6′2′
T3 � 46 C3 � 1′5′6′3′
T4 � 234 C4 � 1′2′3′4′
T5 � 536 —

Rab � 1 − P(C1 + C2 + C3 + C4) (6.14a)

Rab � 1 − P(1′4′5′ + 1′6′2′ + 1′5′3′6′ + 1′2′3′4′) (6.14b)

Rab � 1 − [P(1′4′5′) + P(1′6′2′) + P(1′5′3′6′) + P(1′2′3′4′)]
+ [P(1′2′4′5′6′) + P(1′3′4′5′6′) + P(1′2′3′4′5′)
+ P(1′2′3′5′6′) + P(1′2′3′4′6′) + P(1′2′3′4′5′6′)]
− [P(1′2′3′4′5′6′) + P(1′2′3′4′5′6′) + P(1′2′3′4′5′6′)
+ P(1′2′3′4′5′6′)] + [P(1′2′3′4′5′6′)] (6.14c)

The expansion of the probability of a union of events that occurs in Eq. (6.14)
is often called the inclusion–exclusion formula. [See Eq. (A11).]

Note that in the expansions in Eqs. (6.12) or (6.13), ample use is made of
the theorems x . x = x and x +x = x (see Appendix A). For example, the second
bracket in Eq. (6.14c) has as its second term P(c1c3) = P([1′4′5′] [1′5′6′3′]) =
P(1′3′4′5′6′), since 1′ . 1′ = 1′ and 5′ . 5′ = 5′. The reader should note that
this point is often overlooked (see Appendix D, Section D3), and it may or
may not make a numerical difference.

If all the edges have equal probabilities of failure = q and are independent,
Eq. (6.14c) becomes

Rab � 1 − [2q3 + 2q4] + [5q5 + q6] − [4q6] + [q6]

Rab � 1 − 2q3
− 2q4 + 5q5

− 2q6 (6.15)

The necessary checks, Rab = 1 for q = 0 and Rab = 0 for q = 1, are valid.
For q = 0.1, Eq. (6.15) yields

Rab =1 − 2 × 0.13
− 2 × 0.14 + 5 × 0.15

− 2 × 0.16 = 0.997848 (6.16)

Of course, the result of Eq. (6.16) is identical to Eq. (6.11c). If we substitute
tie sets into Eq. (6.12), we would get a different though equivalent expression.

The expansion of Eq. (6.13) has a complexity of 2 j and is more complex
than Eq. (6.12) if there are more cut sets than tie sets. At this point, it would
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seem that we should analyze the network and see how many tie sets and cut
sets exist between s and t, and assuming that i and j are manageable numbers
(as is the case in the example to follow), then either Eq. (6.12) or Eq. (6.13)
is feasible. In a very large problem (assume i < j < e), even 2i is too large
to deal with, and the approximations of Section 6.4.3 are required. Of course,
large problems will utilize a network reliability computation program, but an
approximation can be used to check the program results or to speed up the
computation in a truly large problem [Colbourn, 1987, 1993; Shooman, 1990].

The complexity of the cut-set and tie-set methods depends on two factors:
the order of complexity involved in finding the tie sets (or cut sets) and the
order of complexity for the inclusion–exclusion expansion. The algorithms for
finding the number of cut sets are of polynomial complexity; one discussed in
Shier [1991, p. 63] is of complexity order O(n + e + ie). In the case of cut sets,
the finding algorithms are also of polynomial complexity, and Shier [1991, p.
69] discusses one that is of order O([n + e] j). Observe that the notation O( f )
is called the order of f or “big O of f.” For example, if f = 5x3 + 10x2 + 12, the
order of f would be the dominating term in f as x becomes large, which is 5x3.
Since the constant 5 is a multiplier independent of the size of x, it is ignored,
so O(5x3 + 10x2 + 12) = x3 (see Rosen [1999, p. 105]).

In both cases, the dominating complexity is that of expansion for the
inclusion–exclusion algorithm for Eqs. (6.12) and (6.13), where the orders of
complexity are exponential, O(2i) or O(2 j) [Colbourn, 1987, 1993]. This is
the reason why approximate methods are discussed in the next two sections.
In addition, some of these algorithms are explored in the problems at the end
of this chapter.

If we examine Eqs. (6.12) and (6.13), we see that the complexity of
these expressions is a function of the cut sets or tie sets, the number of
edges in the cut sets or tie sets, and the number of “brackets” that must be
expanded (the number of terms in the union of cut sets or tie sets—i.e., in
the inclusion–exclusion formula). We can approximate the cut-set or tie-set
expression by dropping some of the less-significant brackets of the expansion,
by dropping some of the less-significant cut sets or tie sets, or by both.

6.4.3 Truncation Approximations

The inclusion–exclusion expansions of Eqs. (6.12) and (6.13) sometimes yield
a sequence of probabilities that decrease in size so that many of the higher-
order terms in the sequence can be neglected, resulting in a simpler approxi-
mate formula. These terms are products of probabilities, so if these probabil-
ities are small, the higher-order product terms can be neglected. In the case
of tie-set probabilities, this is when the probabilities of success are small—the
so-called low-reliability region, which is not the region of practical interest.
Cut-set analysis is preferred since this is when the probabilities of failure are
small—the so-called high-reliability region, which is really the region of prac-
tical interest. Thus cut-set approximations are the ones most frequently used
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in practice. If only the first bracket in Eq. (6.14c) is retained in addition to the
unity term, one obtains the same expression that would have ensued had the
cuts been disjoint (but they are not). Thus we will call the retention of only
the first two terms the disjoint approximation.

In Shooman [1990, Section 3.6.5], it is shown that a disjoint cut-set approx-
imation is a lower bound. For the example of Fig. 6.1, we obtain Eq. (6.17)
for the disjoint approximation, and assuming q = 0.1:

Rab ≥ 1 − [2q3 + 2q4] � 1 − 0.002 − 0.0002 � 0.9978 (6.17)

which is quite close to the exact value given in Eq. (6.16). If we include the
next bracket in Eq. (6.14c), we get a closer approximation at the expense of
computing [ j + ( j

2)] = [ j( j – 1)/ 2] terms.

Rab ≤ 1 − [2q3 + 2q4] + [5q5 + q6]

� 0.9978 + 5 × 0.15 + 0.16
� 0.997851 (6.18)

Equation (6.18) is not only an approximation but an upper bound. In fact, as
more terms are included in the inclusion–exclusion formula, we obtain a set of
alternating bounds (see Shooman [1990, Section 3.6.5]). Note that Eq. (6.17)
is a sharp lower bound and that Eq. (6.18) is ever sharper, but both equa-
tions effectively bracket the exact result. Clearly, the sharpness of these bounds
increases as qi = 1 – pi decreases for the i edges of the graph.

0.997800 ≤ Rab ≤ 0.997851 (6.19)

We can approximate Rab by the midpoint of the two bounds.

Rab �
0.997800 + 0.997851

2
� 0.9978255 (6.20)

The accuracy of the preceding approximation can be evaluated by examining
the deviation in the computed probability of failure Fab = 1 – Rab. In the region
of high reliability, all the values of Rab are very close to unity, and differences
are misleadingly small. Thus, as our error criterion, we will use

% error � |Fab(estimate) − Fab(exact)|
Fab(exact)

× 100 (6.21)

Of course, the numerator of Eq. (6.21) would be the same if we took the dif-
ferences in the reliabilities. Evaluation of Eq. (6.21) for the results given in
Eqs. (6.16) and (6.20) yields

% error � |0.0021745 − 0.002152|
0.002152

× 100% � 1.05 (6.22)
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Clearly, this approximation is good for this example and will be good in most
cases. Of course, in approximate evaluations of a large network, we do not
know the exact reliability, but we can still approximate Eq. (6.21) by using
the difference between the two-term and three-term approximations. For the
numerator and the average of the denominator:

% error ≈ |0.002200 − 0.002149|
0.0021745

× 100% � 2.35 (6.23)

A moment’s reflection leads to the conclusion that the highest-order approx-
imation will always be the closest and should be used in the denominator of
an error bound. The numerator, on the other hand, should be the difference
between the two highest-order terms. Thus, for our example,

% error ≈ |0.002200 − 0.002149|
0.0021749

× 100% � 2.37 (6.24)

Therefore, a practical approach in designing a computer analysis program is
to ask the analyst to input the accuracy he or she desires, then to compute a
succession of bounds involving more and more terms in the expansion of Eq.
(6.13) at each stage. An equation similar to Eq. (6.24) would be used for the
last two terms in the computation to determine when to stop computing alter-
nating bounds. The process truncates when the error approximation yields an
estimated value that has a smaller error bound that that of the required error.
We should take note that the complexity of the “one-at-a-time” approximation
is of order j (number of cut sets) and that of the “two-at-a-time” approxima-
tion is of order j2. Thus, even if the error approximation indicates that more
terms are needed, the complexity will only be of order j3 or perhaps j 4. The
inclusion–exclusion complexity is therefore reduced from order 2 j to a poly-
nomial in j (perhaps j2 or j3).

6.4.4 Subset Approximations

In the last section, we discussed approximation by truncating the inclusion–
exclusion expression. Now we discuss approximation by exclusion of low-
probability cut sets or tie sets. Clearly, the occurrence probability of the lower-
order (fewer edges) cut sets is higher than the higher-order (more edges) ones.
Thus, we can approximate Eq. (6.14a) dropping C3 and C4 fourth-order cut
sets and retaining the third-order cut set to yield an upper bound (since we
have dropped cut sets, we are making an optimistic approximation).

Rab ≤ 1 − P(C1 + C2) � 1 − P(C1) − P(C2) + P(C1)P(C2)

� 1 − P(1′4′5′) − P(1′6′2′) + P(1′2′4′5′6′) (6.25a)

For q � 0.1,
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Rab ≤ 1 − 2 × 0.13 + 0.15
� 0.99801 (6.25b)

We can use similar reasoning to develop a lower bound (we drop tie sets,
thereby making a pessimistic approximation) by dropping all but the “one-
hop” tie sets (T1) and the “two-hop” tie sets (T2, T3)—compare Eq. (6.12) and
Table 6.2.

Rab ≥ P(T1 + T2 + T3) � P(1 + 25 + 46) � P(1) + P(25) + P(46)

− [P(125) + P(146) + P(2456)] + [P(12456)] (6.26a)

For p =T 0.9,

Rab ≥ p + 2p2
− 2p3

− p4 + p5
� 0.9 + 2 × 0.92

− 2 × 0.93
− 0.94 + 0.95

� 0.99639 (6.26b)

Given Eq. (6.25b) and (6.26b), we can bound Rab by

0.99639 ≤ Rab ≤ 0.99801 (6.27)

and approximate Rab by the midpoint of the two bounds:

Rab �
0.99639 + 0.99801

2
� 0.9971955 (6.28)

The error bound for this approximation is computed in the same manner as
Eq. (6.23).

% error ≈ |0.00361 − 0.00199|
0.0028045

× 100% � 57.8 (6.29)

The percentage error is larger than in the case of the truncation approxima-
tions, but it remains small enough for the approximation to be valid. The com-
plexity is still exponential—of order 2x; however, x is now a small integer and
2x is of modest size. Furthermore, the tie-set and cut-set algorithms take less
time since we now do not need to find all cut sets and tie sets—only those of
order ≤ x. Of course, one can always combine both approximation methods by
dropping out higher-order cut sets and then also truncating the expansion. For
more details on network reliability approximations, see Murray [1992, 1993].

6.4.5 Graph Transformations

Anyone who has studied electric-circuit theory in a physics or engineering
class knows that complex networks of resistors can be reduced to an equiva-
lent single resistance through various combinations of series, parallel, and Y–D
transformations. Such knowledge has obviously stimulated the development
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Figure 6.2 Illustration of series, parallel, and decomposition transformations for two-
terminal pair networks.

of equivalent network transformations: some that are remarkably similar, and
some that are quite different, especially in the case of all-terminal reliability (to
be discussed later). We must remember that these are not flow transformations
but probability transformations.

This method of calculating network reliability is based on transforming the
network into a simpler network (or set of networks) by successively applying
transformations. Such transformations are simpler for two-terminal reliability
than for all-terminal reliability. For example, for two-terminal reliability, we
can use the transformations given in Fig. 6.2. In this figure, the series transfor-
mation indicates that we replace two branches in series with a single branch
that is denoted by the intersection of the two original branches (1 . 2). In the
parallel transformation, we replace the two parallel branches with a single-
series branch that is denoted by the union of the two parallel branches (1 + 2).
The edge-factoring case is more complex; the obvious branch to factor about is
edge 5, which complicates the graph. Edge 5 is considered good and has a prob-
ability of 1 (shorted), and the graph decomposes to G1. If edge 5 is bad, how-
ever, it is assumed that no transmission can occur and that it has a probability
of 0 (open circuit), and the graph decomposes to G2. Note that both G1 and G2

can now be evaluated by using combinations of series and parallel transforma-
tions. These three transformations—series, parallel, and decomposition—are
all that is needed to perform the reliability analysis for many networks.
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Now we discuss a more difficult network configuration. In the first transfor-
mation in Fig. 6.2(a) series, we readily observe that both (intersection) edges
1 and 2 must be up for a connection between a and b to occur. However, this
transformation only works if there is no third edge connected to node b; if
a third edge exists, a more elaborate transformation is needed (which will be
discussed in Section 6.6 on all-terminal reliability). Similarly, in the case of
the parallel transformation, nodes a and b are connected if either (union) a or
b is up.

Assume that any failures of edge 1 and edge 2 are independent and the
probabilities of success for edges 1 and 2 are p1 and p2 (probabilities of failure
are q1 = 1 – p1, q2 = 1 –  p2). Then for the series subnetwork of Fig. 6.2(a),
pac = p1p2, and for the parallel subnetwork in Fig. 6.2(b), pab = p1 +p2 – p1p2 =
1 – q1q2.

The case of decomposition (called the keystone component method in sys-
tem reliability [Shooman, 1990] or the edge-factoring method in network reli-
ability) is a little more subtle; it is used to eliminate an edge x from a graph.
Since all edges must either be up or down, we reduce the original network to
two other networks G1 (given that edge x is up) and G2 (given that edge x is
down). In general, one uses series and parallel transformations first, resorting
to edge-factoring only when no more series or parallel transformations can be
made. In the subnetwork of Fig. 6.2(c), we see that neither series nor parallel
transformation is immediately possible because of edge 5, for which reason
decomposition should be used.

The mathematical basis of the decomposition transformation lies in the laws
of conditional probability and Bayesian probability [Mendenhall, 1990, pp.
64–65]. These laws lead to the following probability equation for terminal pair
st and edge x.

P(there is a path between s and t)

= P(x is good) × P(there is a path between s and t |x is good)

+ P(x is bad) × P(there is a path between s and t |x is bad) (6.30)

The preceding equation can be rewritten in a more compact notation as follows:

Pst � P(x)P(G1) + P(x′)P(G2) (6.31)

The term P(G1) is the probability of a connection between s and t for the
modified network where x is good, that is, the terminals at either end of edge
x are connected to the graph [see Fig. 6.2(c)]. Similarly, the term P(G2) is the
probability that there is a connection between s and t for the modified network
G2 where x is bad, that is, the edge x is removed from the graph [again, see
Fig. 6.2(c)]. Thus Eq. (6.31) becomes for st = ad:

Pst � p5(1 − q1q3)(1 − q2q4) + q5(p1p2 + p3p4 − p1p2p3p4) (6.32)
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G1: Edge 6 good (short) G2: Edge 6 bad (open)

Figure 6.3 Decomposition subnetworks for the graph of Fig. 6.1 expanded about
edge 6.

Of course, in most examples, networks G1 and G2 are a bit more complex, and
sometimes transformations are recursively computed. More examples of trans-
formations appear in the problems at the end of this chapter; for a complete
discussion of transformations, see Satyanarayana [1985] and A. M. Shooman
[1992].

We can illustrate the use of the three transformations of Fig. 6.2 on the
network given in Fig. 6.1, where we begin by decomposing about edge 6.

Rab � P(6) . P[G1] + P(6′) . P[G2] (6.33)

The networks G1 and G2 are shown in Fig. 6.3. Note that for edge 6 good
(up), nodes b and d merge in G1, whereas for edge 6 bad (down), edge 6 is
simply removed from the network.

We now calculate P(G1) and P(G2) for a connection between nodes a and
b with the aid of the series and parallel transformations of Fig. 6.2:

P(G1) � P(1 + 4 + 52 + 53) � [P(1) + P(4) + P(52) + P(53)]

− [P(14) + P(152) + P(153) + P(452) + P(453) + P(523)]

+ [P(4534) + P(1523) + P(1453) + P(1452)] − [P(14523)] (6.34)

P(G2) � P(1 + 25 + 243) � [P(1) + P(25) + P(243)]

− [P(125) + P(1243) + P(2543)] + [P(12543)] (6.35)

Assuming that all edges are identical and independent with probabilities of
success and failure of p and q, substitution into Eqs. (6.33), (6.34), and (6.35)
yields

Rab � p[2p + p2
− 5p3 + 4p4

− p5] + q[p + p2
− 2p4 + p5] (6.36)
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Substitution of p = 0.9 and q = 0.1 into Eq. (6.36) yields

Rab � 0.9[0.99891] + 0.1[0.98829] � 0.997848 (6.37)

Of course, this result agrees with the previous computation given in Eq. (6.16).

6.5 NODE PAIR RESILIENCE

All-terminal reliability, in which all the node pairs can communicate, is dis-
cussed in the next section. Also, k-terminal reliability will be treated as a speci-
fied subset (2 ≤ k ≤ all-terminal pairs) of all-terminal reliability. In this section,
another metric, essentially one between two-terminal and all-terminal, is dis-
cussed.

Van Slyke and Frank [1972] proposed a measure they called resilience for
the expected number of node pairs that can communicate (i.e., they are con-
nected by one or more tie sets). Let s and t represent a node pair. The number
of node pairs in a network with N nodes is the number of combinations of N
choose 2, that is, the number of combinations of 2 out of N.

Number of node pairs � �N
2 � �

N!
2!(N − 2)!

�

N(N − 1)
2

(6.38)

Our notation for the set of s, t node pairs contained in an N node network is
{s, t} ⊂ N, and the expected number of node pairs that can communicate is
denoted as resilience, res(G):

res(G ) � ���
{s, t} ⊂ N

Rst (6.39)

We can illustrate a resilience calculation by applying Eq. (6.39) to the net-
work of Fig. 6.1. We begin by observing that if p = 0.9 for each edge, symmetry
simplifies the computation. The node pairs divide into two categories: the edge
pairs (ab, ad, bc, and cd) and the diagonal pairs (ac and bd). The edge-pair
reliabilities were already computed in Eqs. (6.36) and (6.37). For the diago-
nals, we can use the decomposition given in Fig. 6.3 (where s = a and t = c)
and compute Rac as shown in the following equations:
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P(G1) � P[5 + (1 + 4)(2 + 5)]

� P(5) + P(1 + 4)P(2 + 5) − P(5)P(1 + 4)P(2 + 5)

� [p + (1 − p)(2p − p2)2] (6.40a)

P(6)P(G1) � p[p + (1 − p)(2p − p2)2] � 0.898209 (6.40b)

P(G2) � P[5 + 12 + 43] � P(5) + P(12) + P(43)

− [P(512) + P(543) + P(1243)]

+ [P(51243)] � p + 2p2
− 2p3

− p4 + p5 (6.41a)

P(6′)P(G2) � q[p + 2p2
− 2p3

− p4 + p5] � 0.099639 (6.41b)

Rac � 0.98209 + 0.099639 � 0.997848 (6.42)

Substitution of Eqs. (6.37) and (6.42) into (6.39) yields

res(G ) � 4 × 0.997848 + 2 × 0.997848 � 5.987 (6.43)

Note for this particular example that because all edge reliabilities are equal
and because it is a complete graph, symmetry would have predicted that Rst

values were the same for node pairs ab, ad, bc, and cd, and similarly for node
pairs ac and bd. Clearly, for a very reliable network, the resilience will be
close to the maximum N(N – 1 )/2, which for this example is 6. In fact, it may
be useful to normalize the resilience by dividing it by N(N – 1) / 2 to yield a
“normalized” resilience metric. In our example, res(G)/ 6 = 0.997848. In gen-
eral, if we divide Eq. (6.39) by Eq. (6.38), we obtain the average reliability for
all the two-terminal pairs in the network. Although this requires considerable
computation, the metric may be useful when the pi are unequal.

6.6 ALL-TERMINAL RELIABILITY

The all-terminal reliability problem is somewhat more difficult than the two-
terminal reliability problem. Essentially, we must modify the two-terminal
problem to account for all-terminal pairs. Each of the methods of Section 6.4
is discussed in this section for the case of all-terminal reliability.

6.6.1 Event-Space Enumeration

We may proceed as we did in Section 6.4.1 except that now we examine all
the good events for two-terminal reliability and strike out (i.e., classify as bad)
those that do not connect all the terminal pairs. By applying these restrictions
to Table 6.1, we obtain Table 6.3. From this table, we can formulate an all-
terminal reliability expression similar to the two-terminal case.
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TABLE 6.3 Modification of Table 6.1 for the All-Terminal Reliability Problem

Connection Connection Connection
Event ab ac ad Term

E1 √ √ √ p6

E2, E3, . . . , E7 √ √ √ qp5

E8, E9, . . . , E22 √ √ √ q2p4

E23, E24, E26, E27
E28, E29, E30
E32, E33, E34, E37
E38, E39, E40, E41
E42 √ √ √ q3p3

Other 26 fail for — — — q3p3, q4p2,
at least 1 q3p1, q6

terminal pair

Rall-terminal � Rall �

42

���
i � 1

i � 25, 31, 35, 36

P(Ei) (6.44)

Note that events 25, 31, 35, and 36 represent the only failure events with three
edge failures. These four cases involve isolation of each of the four vertices.
All other failure events involve four or more failures.

Substituting the terms from Table 6.3 into Eq. (6.44) yields

Rall � p6 + 6qp5 + 15q2p4 + 16q3p3
� 0.96 + 6 × 0.1 × 0.95 + 15

× 0.12 × 0.94 + 16 × 0.13 × 0.99
� 0.531441

+ 0.354294 + 0.098415 + 0.011664 (6.45a)

Rall � 0.995814 (6.45b)

Of course, the all-terminal reliability is lower than the two-terminal reliability
computed previously.

6.6.2 Cut-Set and Tie-Set Methods

One can also compute all-terminal reliability using cut- and tie-set methods
either via exact computations or via the various approximations. The compu-
tations become laborious even for the modest-size problem of Fig. 6.1. Thus
we will set up the exact calculations and discuss the solution rather than carry
out the computations. Exact calculations for a practical network would be per-
formed via a network modeling program; therefore, the purpose of this section
is to establish the understanding of how computations are performed and also
to serve as a background for the approximate methods that follow.
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TABLE 6.4 Cut Sets and Tie Sets for All-Terminal
Reliability Computations

Pair ab Pair ad Pair ac

Tie Sets

T1 � 1 T6 � 5 T11 � 4
T2 � 25 T7 � 12 T12 � 53
T3 � 46 T8 � 43 T13 � 16
T4 � 234 T9 � 163 T14 � 123
T5 � 356 T10 � 462 T15 � 526

Cut Sets

C1 � 1′5′4′ C5 � 5′4′1′ C9 � 4′6′3′
C2 � 1′2′6′ C6 � 5′3′2′ C10 � 4′5′1′
C3 � 1′3′5′6′ C7 � 5′6′4′2′ C11 � 4′1′2′3′
C4 � 1′2′3′4′ C8 � 5′6′1′3′ C12 � 4′2′5′6′

We begin by finding the tie sets and cut sets for the terminal pairs ab, ac,
and ad (see Fig. 6.1 and Table 6.4). Note that if node a is connected to all
other nodes, there is a connection between all nodes.

In terms of tie sets, we can write

Pall � P([path ab] . [path ad] . [path ac]) (6.46)

Pall � P([T1 + T2 + · · · + T5] . [T6 + T7 + · · · + T10]
. [T11 + T12 + · · · + T15]) (6.47)

The expansion of Eq. (6.47) involves 125 intersections followed by com-
plex calculations involving expansion of the union of the resulting events
(inclusion–exclusion); clearly, hand computations are starting to become
intractable. A similar set of equations can be written in terms of cut sets. In
this case, interrupting path ab, ad, or ac is sufficient to generate all-terminal
cut sets.

Pall � 1 − P([no path ab] + [no path ad] + [no path ac]) (6.48)

Pall � 1 − P([C1 + C2 + C3 + C4] + [C5 + C6 + C7 + C8]

+ [C9 + C10 + C11 + C12]) (6.49)

The expansion of Eq. (6.49) involves the expansion of the union for 12 events
(there are 212 terms; see Section A4.2) and the disjoint or reduced approxima-
tion or computer solution are the only practical approaches.
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6.6.3 Cut-Set and Tie-Set Approximations

The difficulty in expanding Eqs. (6.47) and (6.48) makes approximations
almost imperative in any pencil-paper-and-calculator analysis. We can begin
by simplifying Eq. (6.49) by observing that cut sets C1= C5 = C10, C4 t = C11,
C7 = C12, and C3 = C8; then, C5, C10, C11, C12, and C8 can be dropped, thereby
reducing Eq. (6.49) to seven cut sets. Since all edges are assumed to have equal
reliabilities, p = 1 – q, and the disjoint approximation for Eq. (6.49) yields

Pall ≥ 1 − P(C1 + C2 + C3 + C4 + C6 + C7 + C9) (6.50a)

and substituting q = 0.1 yields

Pall ≥ 1 − 4q3
− 3q4

� 1 − 4(0.1)3
− 3(0.1)4

� 0.9957 (6.50b)

To obtain an upper bound, we add the 21 terms in the second bracket in the
expansion of Eq. (6.49) to yield

Pall ≤ 0.9957 + 17q5 + 4q6
� 0.99600 (6.51)

If we average Eqs. (6.50b) and (6.51), we obtain Pall ≈ 0.995759, which is
(0.000174 × 100/ 0.0004) = 4.21% in error [cf. Eq. (6.24)]. In this case, the
approximation yields excellent results.

6.6.4 Graph Transformations

In the case of all-terminal reliability, the transformation schemes must be
defined in a more careful manner than was done for the two-terminal case
in Fig. 6.2. The problem arises in the case in which a series transformation
is to be performed. As noted in part (a) of Fig. 6.2, the series transformation
eliminates node b, causing no trouble in the two-terminal reliability computa-
tion where node b is not an initial or terminal vertex (for Rst where neither s
nor t is b). This is the crux of the matter, since we must still include node b in
the all-terminal computation. Of course, eliminating node b does not invalidate
the transmission between nodes a and c. If we continue to use Eq. (6.46) to
define all-terminal reliability, the transformations given in Table 6.2 are cor-
rect; however, we must evaluate all the events in the brackets of Eq. (6.46)
and their intersections. Essentially, this reduces the transformation procedure
to an equivalent tree with one node with incidence N – 1 (called a root or cen-
tral node) and the remainder of incidence 1 (called pendant nodes). The tree
is then evaluated.

The more common procedure for all-terminal transformation is to reduce
the network to two nodes, s and t, where the reliability of the equivalent s–t
edge is the network all-terminal reliability. [A. M. Shooman, 1992]. A simple
example (Fig. 6.4) clarifies the differences in these two approaches.
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a
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c

3

P P P p(1) = (2) = (3) =    = 0.9

Figure 6.4 An example illustrating all-terminal reliability transformations.

We begin our discussion of Fig. 6.4 by using event-space methods to calcu-
late the all-terminal reliability. The events are E1 = 123, E2 = 1′23, E3 = 12′3 ,
E4 = 123′, E5 = 1′2′3, E6 = 1′23′, E7 = 12′3′, and E8  = 1′2′3′. By inspection,
we see that the good events (which connect a to b and a to c) are, namely, E1,
E2, E3, and E4. Note that any event with two or more edge failures isolates
the vertex connected to these two edges and is a cut set.

Rall � P(E1 + E2 + E3 + E4) � P(E1) + P(E2) + P(E3) + (E4)

� P(123) + P(1′23) + P(12′3) + P(123′)
� p3 + 3qp2

� 0.93 + 3 × 0.1(0.9)2
� 0.972 (6.52)

To perform all-terminal reliability transformations in the conventional man-
ner, we choose two modes, s and t, and reduce the network to an equivalent st
edge. We can reduce any network using a combination of the three transforma-
tions shown in Fig. 6.5. Note that the series transformation has a denominator
term [1– p(1′)p(2′)], which is the probability that the node that disappears (node
b) is still connected. The other transformations are the same as the two-terminal
case. Also, once the transformation process is over, the resulting probability
pst must be multiplied by the connection probability of all nodes that have
disappeared via the series transformation (for a proof of these procedures, see
A. M. Shooman [1992]). We will illustrate the process by solving the network
given in Fig. 6.4.

We begin to transform Fig. 6.4 by choosing the st nodes to be c and b;
thus we wish to use the series transformation to eliminate node a. The trans-
formation yields an edge that is in parallel with edge 2 and has a probability
of

Pcab �
P(3)P(2)

1 − P(3′)P(2′)
�

0.9 × 0.9
1 − 0.1 × 0.1

� 0.8181818 (6.53)

Combining the two branches (cab and cb) in parallel yields



ALL-TERMINAL RELIABILITY 307
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Figure 6.5 All-terminal graph-reduction techniques.

Pst � P(cb + cab) � p(cb) + p(cab) − p(cb)p(cab)

� 0.9 + 0.8181818 − 0.9 × 0.8181818 � 0.981811 (6.54)

The Pst value must be multiplied by the probability that a is connected P(2 +
3) = P(2) + P(3) –  P(23) = 0.9 + 0.9 – 0.9 × 0.9 = 0.99.

Rall � 0.99 × 0.9818118 � 0.971993682 (6.55)
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Figure 6.6 A second all-terminal reliability example.

Of course, Eq. (6.55) yields the same result as Eq. (6.52). As a second exam-
ple, suppose that you have the same three nodes as acb of Fig. 6.4 followed
by a second identical triangle labeled c′a′b′, and that nodes b and c′ are the
same node (see Fig. 6.6). The reliability is given by the square of the value in
Eq. (6.45), that is,

Rall � 0.9719936822
� 0.9447717178 (6.56)

If we use transformations, we have for Pst = Pcb′ = 0.98181182 = 0.9639544.
This must be multiplied by 0.99 to correct for node a that has disappeared and
0.99 for missing node a′, yielding 0.992 × 0.9639544 = 0.9447717. A com-
prehensive reliability computation program for two-terminal and all-terminal
reliability using the three transformations in Figs. 6.2 or 6.5, as well as more
advanced transformations, is given in A. M. Shooman [1992].

6.6.5 k-Terminal Reliability

Up until now we have discussed two-terminal and all-terminal reliability. One
can define a more general concept of k-terminal reliability, where k terminals
must be connected. When k = 2, we have two-terminal reliability; when k = n,
we have all-terminal reliability. Thus k-terminal reliability can be viewed as a
more general concept. See A. M. Shooman [1991] for a detailed development
of this concept.

6.6.6 Computer Solutions

The foregoing sections introduced the concepts of network reliability compu-
tations. Clearly, the example of Fig. 6.1 is much simpler than most practical
networks of interest, and, in general, a computer solution is required. Cur-
rent research focuses on efficient computer algorithms for network reliability
computation. For instance, Murray [1992] has developed a computer program
that finds network cut sets and tie sets using different algorithms and various
reduced cut-set and tie-set methods to compute reliability. A. M. Shooman
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[1991, 1992] has developed a computer program for network reliability that is
based on the transformations of Section 6.5 and is modified for the k-termi-
nal problem, in addition to other more advanced transformations. His model
includes the possibility of node failure.

6.7 DESIGN APPROACHES

The previous sections treated the problem of network analysis. This section,
however, treats the problem of design. We assume that there is a group of N
cities or sites represented by nodes that are to be connected by E edges to form
the network and that the various links have different costs and reliabilities. Our
job is to develop design procedures that yield a good network—that is, at low
cost with high reliability. (The reader is referred to the books by Colbourn
[1987] and Shier [1991] for a comprehensive introduction to the literature in
this field.)

The problem stated in the previous paragraph is actually called the topo-
logical design problem and is an abstraction of the complete design problem.
The complete design problem includes many other considerations, such as the
following:

1. The capacity in bits per second of each line is an important consideration,
and connections between nodes can fail if the number of messages per
minute is too large for the capacity of the line, if congestion ensues, and
if a queue of waiting messages forms that causes unacceptable delays in
transmission.

2. If messages do not go through because of interrupted transmission paths
or excessive delays, information is fed back to various nodes. An algo-
rithm, called the routing algorithm, is stored at one or more nodes, and
alternate routes are generally invoked to send such messages via alternate
paths.

3. When edge or node failures occur, messages are rerouted, which may
cause additional network congestion.

4. Edges between nodes are based on communication lines (twisted-copper
and fiber-optic lines as well as coaxial cables, satellite links, etc.) and
represent a discrete (rather than continuous) choice of capacities.

5. Sometimes, the entire network design problem is divided into a backbone
network design (discussed previously) and a terminal concentrator design
(for the connections within a building).

6. Political considerations sometimes govern node placement. For example,
suppose that we wish to connect the cities New York and Baltimore and
that engineering considerations point to a route via Atlantic City. For
political considerations, however, it is likely that the route would instead
go through Philadelphia.
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For more information on this subject, the reader is referred to Kirshenbaum
[1993]. The remainder of this chapter considers the topological design of a
backbone network.

6.7.1 Introduction

The general problem of network design is quite complex. If we start with n
nodes to connect, we have the problem of determining which set of edges
(arcs) is optimum. Optimality encompasses parameters such as best reliability,
lowest cost, shortest delay, maximum bandwidth, and most flexibility for future
expansion. The problem is too complex for direct optimization of any practical
network, so subsets and/ or approximate optimizations are used to reduce the
general problem to a tractable one.

At the present, most network design focuses on minimizing cost with con-
straints on time delay and/ or throughput. Semiquantitative reliability con-
straints are often included, such as that contained in the statement “the network
should be at least two-connected,” that is, there should be no fewer than two
paths between each node pair. This may not produce the best design when reli-
ability is of great importance, and furthermore, a two-connected criterion may
not yield a minimum cost design. This section approaches network design as a
problem in maximization of network reliability within a specified cost budget.

High-capacity fiber-optic networks make it possible to satisfy network
throughput constraints with significantly fewer lines than required with older
technology. Thus such designs have less inherent redundancy and generally
lower reliability. (A detailed study requires a comparison of the link reliabili-
ties of conventional media versus fiber optics.) In such cases, reliability there-
fore must be the focus of the design process from the outset to ensure that
adequate reliability goals are met at a reasonable cost.

Assume that network design is composed of three phases: (a) a backbone
design, (b) a local access design, and (c) a local area network within the build-
ing (however, here we focus our attention on backbone design). Assume also
that backbone design can be broken into two phases: A1 and A2. Phase A1 is the
choice of an initial connected configuration, whereas phase A2 is augmentation
with additional arcs to improve performance under constraint(s). Each new arc in
general increases the reliability, cost, and throughput and may decrease the delay.

6.7.2 Design of a Backbone Network Spanning-Tree Phase

We begin our discussion of design by focusing on phase A1. A connected graph
is one where all nodes are connected by branches. A connected graph with the
smallest number of arcs is a spanning tree. In general, a complete network
(all edges possible) with n nodes will have n(n − 2) spanning trees, each with
es = (n – 1) edges (arcs). For example, for the four-node network of Fig. 6.1,
there are 4(4 − 2) = 16 spanning trees with (4 – 1) = 3 arcs; these are shown in
Fig. 6.7.
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Figure 6.7 The 16 spanning trees for the network of Fig. 6.1.

The all-terminal reliability of a spanning tree is easy to compute since
removal of any one edge disconnects at least one terminal pair. Thus, each
edge is one of the (n – 1) cut sets of the spanning tree, and all the (n – 1)
edges are the single tie set. All edges of the spanning tree must work for all
the terminals to be connected, and the all-terminal reliability of a spanning
tree with n nodes and (n –1 ) independent branches with probabilities pi is the
probability that all branches are good.

Rall �

n − 1

∏
i � 1

pi (6.57)

If all the branch reliabilities are independent and identical, pi = p, and Eq.
(6.57) becomes
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Figure 6.8 A graph of an early version of the ARPA network model (circa 1979).

Rall � p(n − 1) (6.58)

Thus, for identical branches, all the spanning trees have the same reliability.
If the branch reliabilities, pi, differ, then we can use the spanning tree with
the highest reliability for the first-stage design of phase A1. In the case of
the spanning trees of Fig. 6.7, we can compute each of the reliabilities using
Eq. (6.57) and select the most reliable one as the starting point. If there are
a large number of nodes, then an exhaustive search for the most reliable tree
is no longer feasible. For example, a graph of an early version of the Military
Advanced Research Planning Agency (ARPA) network shown in Fig. 6.8 has
59 nodes. If we were to start over and ask what network we would obtain by
using the design techniques under discussion, we would need to consider 5957

= 8.68 × 10100 designs. Fortunately, Kruskal’s and Prim’s algorithms can be
used for finding the spanning tree of a graph with the minimum weights. The
use of these algorithms is discussed in the next section.

For most small and medium networks, the graph model shown in Fig. 6.1 is
adequate; for large networks, however, the use of a computer is mandated, and
for storing network topology in a computer program, matrix (array) techniques
are most commonly used. Two types of matrices are commonly employed:
adjacency matrices and incidence matrices [Dierker, 1986; Rosen, 1999]. In a
network with n nodes and e edges, an adjacency matrix is an n × n matrix
where the rows and columns are labeled with the node numbers. The entries
are either a zero, indicating no connection between the nodes, or a one, indi-
cating an arc between the nodes. An adjacency matrix for the graph of Fig.
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a b c a b

a 0 1 1 0 0
b 1 0 1 1 1
c 1 1 0 0 0
a 0 1 0 0 1
b 0 1 0 1 0

′ ′

′
′

Nodes

Nodes

(a) Adjacency Matrix

1 2 3 4 5 6

a 0 1 1 0 0 0
b 1 1 0 1 1 0
c 1 0 1 0 0 0
a 0 0 0 0 1 1
b 0 0 0 1 0 1
′
′

Nodes

Edges

(b) Incidence Matrix

Figure 6.9 Adjacency and incidence matrices for the example of Fig. 6.6.

6.6 is shown in Fig. 6.9(a). Note that the main diagonal is composed of all
zeroes since self-loops are generally not present in communications applica-
tions, but they may be common in other applications of graphs. Also, the adja-
cency matrix is applicable to simple graphs that do not have multiple edges
between nodes. (An adjacency matrix can be adopted to represent a graph with
multiple edges between nodes if each entry represents a list of all the connect-
ing edges. Also, if the adjacency matrix can be made nonsymmetrical and if
entries of +1 and – 1 for branches leaving and entering nodes can be intro-
duced, then the incidence matrix can represent a directed graph.) The sum of
all the entries in a row of an adjacency matrix is the degree of the node asso-
ciated with the row. This degree is the number of edges that are incident on
the node.

One can also represent a graph by an incidence matrix that has n rows and
e columns. A zero in any location indicates that the edge is not incident on the
associated node, whereas a one indicates that the edge is incident on the node.
(Multiple edges and self-loops can be represented by adding columns for these
additional edges, and directed edges can be represented by +1 and – 1 entries.)
An incidence matrix for the graph of Fig. 6.6 is shown in Fig. 6.9(b).



314 NETWORKED SYSTEMS RELIABILITY

6.7.3 Use of Prim’s and Kruskal’s Algorithms

A weighted graph is one in which one or more parameters are associated with
each edge of the graph. In a network, the associated parameters are commonly
cost, reliability, length, capacity, and delay. A common problem is to find a
minimum spanning tree—a spanning tree with the smallest possible sum of
the weights of the edges. Either Prim’s or Kruskal’s algorithms can be used to
find a minimum spanning tree [Cormen, 1992; Dierker, 1986; Kershenbaum,
1993; and Rosen, 1999]. Both are “greedy” algorithms—an optimum choice
is made at each step of the procedure.

In Section 6.7.2, we discussed the use of a spanning tree as the first phase
of design. An obvious choice is the use of a minimum-cost spanning tree for
phase A1, but in most cases an exhaustive search of the possible spanning trees
is impractical and either Kruskal’s or Prim’s algorithm can be used. Similarly,
if the highest-reliability spanning tree is desired for phase A1, these same algo-
rithms can be used. Examination of Eq. (6.57) shows that the highest reliability
is obtained if we select the set of pis that has a maximum sum, since this will
also result in a maximum product. [This is true because the log of Eq. (6.57)
is the sum of the logs of the individual probabilties, and the maximum of the
log of a function is the same as the maximum of the function.] Prim’s and
Kruskal’s algorithms can also be used to find a maximum spanning tree—a
spanning tree with the largest possible sum of the weights of the edges. Thus
it will find the highest-reliability spanning tree. Another approach is to find the
spanning tree with the minimum probabilities of failure, which also maximizes
the reliability.

A simple statement of Prim’s algorithm is to select an initial edge of mini-
mum (maximum) weight, by search or by first ordering all edges by weight, and
to use this edge to begin the tree. Subsequent edges are selected as minimum
(maximum) weight edges from the set of edges that is connected to a node
of the tree but does not form a circuit (loop). The process is continued until
(n – 1) edges have been selected. For a description of Kruskal’s algorithm (a
similar procedure), and the choice between Kruskal’s and Prim’s algorithms,
the reader is directed to the references [Cormen, 1992; Dierker, 1986; Ker-
shenbaum, 1993; and Rosen, 1999]. The use of Prim’s algorithm in design is
illustrated by the following problem.

We wish to design a network that connects six cities represented by the
graph nodes of Fig. 6.10(a). The edge reliabilities and edge costs are given
in Fig. 6.10(b) and (c), which are essentially weighted incidence matrices in
which the entries to the left of the diagonal are deleted for clarity because they
are symmetrical about the main diagonal.

We begin our design by finding the lowest-cost spanning tree using Prim’s
algorithm. To start, we order the edge costs as shown in the first column of
Table 6.5. The algorithm proceeds as follows until 5 edges forming a tree
are selected from the 15 possible edges to form the lowest-cost spanning tree:
select 1–2; select 1–4; select 2–3; we cannot select 2–4 since it forms a loop
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1 2 3 4 5 6

1 10 25 10 20 30
2 10 10 25 20
3 20 40 10
4 20 10
5 30

(c) Edge Costs

1 2 3 4 5 6

1 0.94 0.91 0.96 0.93 0.92
2 0.94 0.97 0.91 0.92
3 0.94 0.90 0.94
4 0.93 0.96
5 0.91

(b) Edge Reliabilities

(a) Network Nodes

1 3

2

4

5 6

Figure 6.10 A network design example.

(delete selection); select 3–6; we cannot select 4–6 since it forms a loop (delete
selection); and, finally, select 1–5 to complete the spanning tree. The sequence
of selections is shown in the second and third columns of Table 6.5. Note that
the remaining 8 edges 2–6 through 3–5 are not considered. One could have
chosen edge 4–5 instead of 1–5 for the last step and achieved a different tree
with the same cost. The total cost of this minimum-cost tree is 10 + 10 + 10
+ 10 + 20 = 60 units. The reliability of this network can be easily calculated
as the product of the edge reliabilities: 0.94 × 0.96 × 0.94 × 0.94 × 0.93 =
0.71415. The resulting network is shown in Fig. 6.11(a).

Now, we repeat the design procedure by calculating a maximum-reliability
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TABLE 6.5 Prim’s Algorithm for Minimum Costa

Selected Deleted
Edge Cost Step No. Step No.

1–2 10 1 —
1–4 10 2 —
2–3 10 3 —
2–4 10 — 4
3–6 10 5 —
4–6 10 — 6
1–5 20 7 —
2–6 20
3–4 20
4–5 20
1–3 25
2–5 25
1–6 30
5–6 30
3–5 40

a See Fig. 6.10.

(a) Minimum Cost Spanning Tree

1 3

2

4

5 6

20

10

10

10

10

Cost = 60, Reliability = 0.7415

(b) Maximum Reliability Spanning Tree

Cost = 60, Reliability = 0.7814

1
3

2

4

5 6

0.93
0.96

0.94

0.96

0.97

Figure 6.11 Two spanning tree designs for the example of Fig. 6.10.
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TABLE 6.6 Prim’s Algorithm for Maximum Reliabilitya

Selected Deleted
Edge Reliability Step No. Step No.

2–4 0.97 1 —
1–4 0.96 2 —
4–6 0.96 3 —
1–2 0.94 — 4
2–3 0.94 5 —
3–4 0.94 — 6
3–6 0.94 — 7
1–5 0.93 8 —
4–5 0.93
1–6 0.92
2–6 0.92
1–3 0.91
2–5 0.91
5–6 0.91
3–5 0.90

a See Fig. 6.10.

tree using Prim’s algorithm. The result is shown in Table 6.6 and the resul-
tant tree is in Fig. 6.11(b). The reliability optimization has produced a superior
design with the same cost but a higher reliability. In general, the two proce-
dures will produce designs having lower costs and lower reliabilities along
with higher reliabilities and higher costs. In such cases, engineering trade-offs
must be performed for design selection. Perhaps a different solution with less-
than-optimum cost and reliability would be the best solution. Since the design
procedure for the spanning tree phase is not too difficult, a group of spanning
trees can be computed and carried forward to the enhancement phase, and a
design trade-off can be performed on the final designs.

Since both cost and reliability matter in the optimization, and also since
there are many ties, we can return to Table 6.5 and re-sort the edges by cost
and wherever ties occur by reliability. The result is Table 6.7, which in this
case yields the same design as Table 6.6.

The decision to use a spanning tree for the first stage of design is primarily
based on the existence of a simple algorithm (Prim’s or Kruskal’s) to obtain
phase A1 of the design. Other procedures, however, could be used. For exam-
ple, one could begin with a Hamiltonian circuit (tour), a network containing N
edges and one circuit that passes through each node only once. A Hamiltonian
circuit has one more edge than a spanning tree. (The reader is referred to the
problems at the end of this chapter for a consideration of Hamiltonian tours
for phase A1 of the design.) Hamiltonian tours do not exist for all networks
[Dierker, 1986; Rosen, 1999], but if we consider that all edges are potentially
possible, that is, a complete graph, Hamiltonian tours will exist [Frank, 1971].



318 NETWORKED SYSTEMS RELIABILITY

TABLE 6.7 Prim’s Algorithm for Minimum Cost Edges First Sorted by Cost
and Then by Reliabilitya

Selected Deleted
Edge Cost Reliability Step No. Step No.

2–4 10 0.97 1 —
1–4 10 0.96 2 —
4–6 10 0.96 3 —
1–2 10 0.94 — 4
2–3 10 0.94 5 —
3–6 10 0.94 — 6
3–4 20 0.94 — 7
1–5 20 0.93 8 —
4–5 20 0.93
2–6 20 0.92
1–3 25 0.91
2–5 25 0.91
1–6 30 0.92
5–6 30 0.91
3–5 40 0.90

a See Fig. 6.10.

6.7.4 Design of a Backbone Network: The Enhancement Phase

The first phase of design, A1, will probably produce a connected network with
a smaller all-terminal reliability than required. To improve the reliability, new
branches are added. Unfortunately, the effect on the network all-terminal relia-
bility is now a function of not only the reliability of the added branch but also
of its location in the network. Thus we must evaluate the network reliability
for each of the proposed choices and pick the most cost-effective solution. The
use of network reliability calculation programs greatly aids such a trial-and-
error procedure [Murray, 1992; A. M. Shooman, 1992]. There are also various
network design programs that incorporate reliability and other calculations to
arrive at a network design [Kershenbaum, 1993].

In general, one designs a network with only a fraction of all the edges that
would be available in a complete graph, which is given by

ec � � n
2 � �

n(n − 1)
2

(6.59)

If phase A1 of the design is a spanning tree with n – 1 edges, there are er

remaining edges given by

er � ec − et �
n(n − 1)

2
− (n − 1) �

(n − 1)(n − 2)
2

(6.60)

For the example given in Fig. 6.10, we have 6 nodes, 15 possible edges in
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the complete graph, 5 edges in the spanning tree, and 10 possible additional
arcs that can be assigned during the enhancement phase. We shall experiment
with a few examples of enhancement and leave further discussion for the exam-
ples at the end of this chapter. Three attractive choices for enhancement are the
additional cost (=10 edges not used in Table 6.7), edge 1–2, and edge 3–6. A
simplifying technique will be used to evaluate the reliability of the enhanced
network. We let RA1 be the reliability of the network created by phase A1 and
let X represent the success of the added branch (X′ is the event failure of the
added branch). Using the decomposition (edge-factoring) theorem given in Fig.
6.5(c), we can write the reliability of the enhanced network RA2 as

RA2 � P(X )P(Network|X ) + P(X′)P(Network|X′) (6.61)

The term P(Network|X′) is the reliability of the network with added edge X
failed (open-circuited) = RA1 , that is, what it was before we added the enhance-
ment edge. If P(X ) is denoted by px , then P(X′) = 1– px . Lastly, P(Network|X )
is the reliability of the network with X good, that is, with both nodes for edge
X merged (one could say that edge X was “shorted,” which simplifies the com-
putation). Thus Eq. (6.61) becomes

RA2 � pxP(Network|x shorted) + (1 − px)RA1 (6.62)

Evaluation of the X shorted term for the addition of edge 1–1 or 3–6 is given
in Fig. 6.12. Note that in Fig. 6.12(a), there are parallel branches between (1
= 2) and 4, which are reduced in parallel. Similarly, in Fig. 6.12(b), edges 4–2
and (2 = 6) and 3 are reduced in series and then in parallel with 4 – (6 = 3).
Note that in the computations given in Fig. 6.12(b), the series transformation
and the overall computation must be “conditioned” by the terms shown in { }
[see Fig. 6.5(a) and Eqs. (6.53)–(6.55)]. Substitution into Eq. (6.62) yields

RA2 � (0.94)[0.838224922] + (0.6)[0.7814]

� 0.8348 (for addition of edge 1–2) (6.63)

RA2 � (0.94)[0.8881] + (0.6)[0.7814]

� 0.8817 (for addition of edge 3–6) (6.64)

The addition of edge 3–6 seems to be more cost-effective than if edge 1–2 were
added. In general, the objective of the various design methods is to choose
branches that optimize the various parameters of the computer network. The
reader should consult the references for further details.

6.7.5 Other Design Approaches

Although network design is a complex, difficult problem, substantial work has
been done in this field over the years. A number of algorithms in addition to
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(a) Addition of edges 1–2

(b) Addition of edges 3–6

3

1,2

4

5 6

0.93 0.96

0.96

0.94

0.97 R
R
R

= (0.93)(0.94)(0.96)[1 – 0.04 × 0.03]
= (0.93)(0.94)(0.96)[0.9988]
= 0.838224922

6,3

5

0.93
0.96

0.96

0.94

0.97

R
R
P X

426–3 = (0.97)(0.94)/{1 – 0.03 × 0.06} = 0.9134
|| = 1 – [(1 – 0.9134) × (1 – 0.96)] = 0.9965

(Network | short) = (0.93)(0.96)(0.9965)
× {0.97 + 0.94 – 0.97 × 0.94} = 0.8881

426–3 46–3R

2

4

1

Figure 6.12 Evaluation of the X shorted term.

Prim’s and Kruskal’s are used for design approaches (some of these algorithms
are listed in Table 6.8). The reader may consult the following references for
further details: Ahuja [1982]; Colbourn [1987, 1993, 1995]; Corman [1992];
Frank [1971]; Kershenbaum [1993]; and Tenenbaum [1981, 1996].

The various design approaches presently in use are described in Ahuja
[1982] and Kershenbaum [1993]. A topological design algorithm usually con-
sists of two parts: the first initializes the topology and the second iteratively
improves it (we have used the terms connected toplogy and augmentation to
improve performance to refer to the first and second parts). Design algorithms
begin by obtaining a feasible network topology. Augmentation adds further
edges to the design to improve such various design parameters as network
delay, cost, reliability, and capacity. The optimizing step is repeated until one
of the constraints is exceeded. A number of algorithms and heuristics can be
applied. Most procedures start with a minimum spanning tree, but because the
spanning tree algorithms do not account for link-capacity constraints, they are
often called unconstrained solutions. The algorithms then modify the starting
topology until it satisfies the constraints.

The algorithms described by Ahuja’s book [1982] include Kruskal’s,
Chandy–Russell’s, and Esau–Williams’s, in addition to Kershenbaum–Chou’s
generalized heuristic. Kershenbaum’s book [1993] discusses these same algo-
rithms, but, in addition, it describes Sharma’s algorithm, commenting that
this algorithm is widely used in practice. The basic procedure for the
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TABLE 6.8 Various Network Design Algorithms

Tree-Traversal Algorithms

(1) Breath first search (BFS)
(2) Depth first search (DFS)
(3) Connected-components algorithm
(4) Minimum spanning tree:

(a) “greedy” algorithm
(b) Kruskal’s algorithm
(c) Prim’s algorithm

Shortest-Path Algorithms

(1) Dijkstra’s algorithm
(2) Bellman’s algorithm
(3) Floyd’s algorithm
(4) Incremental-shortest-path algorithms

Single-Commodity-Network Flows

(1) Ford–Fulkerson algorithm
(2) Minimum-cost flows

Esau–Williams’s algorithm is to use a “greedy” type of algorithm to construct a
minimum spanning tree. One problem that arises is that nodes may connect to
the center of one component (group) of nodes and leave nodes that are stranded
far from a center (a costly connection). The Esau–Williams’s algorithm aids in
eliminating this problem by implementing a trade-off between the connection
to a center and the interconnection between two components.

Kershenbaum [1993] discusses other algorithms (Gerla’s, Frank’s, Chou’s,
Eckl’s, and Maruyama’s) that he calls branch-exchange algorithms. The design
starts with a feasible topology and then locally modifies it by adding or drop-
ping links; alternatively, however, the design may start with a complete graph
and identify links to drop. One can decide which links to drop by finding the
flow in each link, computing the cost-to-flow ratio, and removing the link with
the largest ratio. If an improvement is obtained, the exchange is accepted; if
not, another is tried. Kershenbaum speaks of evaluation in terms of cost and/ or
delay but not reliability. Thus the explicit addition of reliability to the design
procedure results in different solutions. In all cases, these will emphasize reli-
ability, but some cases will produce an improved solution.
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PROBLEMS

6.1. Consider a computer network connecting the cities of Boston, Hartford,
New York, Philadelphia, Pittsburgh, Baltimore, and Washington. (See
Fig. P1.)

Boston

Hartford

New York

PhiladelphiaPittsburgh

Baltimore

Washington

Figure P1

(a) What is the minimum number of lines to connect all the cities?
(b) What is the best tree to pick?
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6.2.

A
B

1
C

2

3 4

D E
5

Figure P2

You are to evaluate the reliability of the network shown in Fig. P2. Edge
reliabilities are all 0.9 and independent.

(a) Find the two-terminal reliability, RAC:

(1) using state-space techniques,

(2) using tie-set techniques,

(3) using transformations.

(b) Find the all-terminal reliability, Rall:

(1) using state-space techniques,

(2) using cut-set approximations,

(3) using transformations.

6.3. The four-node network shown in Fig. P3 is assumed to be a complete
graph (all possible edges are present). Assume that all edge reliabilities
are 0.9.

A

C

B

D

Figure P3

(a) By enumeration, find all the trees you can define for this network.

(b) By enumeration, find all the Hamiltonian tours you can find for this
network.

(c) Compute the all-terminal reliabilities for the tree networks.

(d) Compute the all-terminal reliabilities for the Hamiltonian networks.

(e) Compute the two-terminal reliabilities RAB for the trees.
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(f) Compute the two-terminal reliabilities RAB for the Hamiltonian tours.

6.4. Assume that the edge reliabilities for the network given in problem 6.3
are R(AB) = 0.95; R(AC) = 0.92; R(AD)  = 0.90; R(BC) = 0.90; R(BD) =
0.80; and R(CD) = 0.80.

(a) Repeat problem 6.3(c) for the preceding edge reliabilities.

(b) Repeat problem 6.3(d) for the preceding edge reliabilities.

(c) Repeat problem 6.3(e) for the preceding edge reliabilities.

(d) Repeat problem 6.3(f) for the preceding edge reliabilities.

(e) If the edge costs are C(AB) = C(AC) = 10; C(AD) = C(BC) = 8; and
C(BD) = C(CD) = 7, which of the networks is most cost-effective?

6.5. Prove that the number of edges in a complete, simple N node graph is
given by N(N – 1)/2. (Hint: Use induction or another approach.)

6.6.

A D

B

C

1 2

3 4

5

Figure P4

For the network shown in Fig. P4, find

(a) the adjacency matrix,

(b) the incidence matrix.

6.7. A simple algorithm for finding the one-link and two-link (one-hop and
two-hop) paths between any two nodes is based on the properties of the
incidence matrix.

(a) If a one-hop path (one-link tie set) exists between any two nodes,
n1 and n2, there will be ones in the n1 and n2 rows for the column
corresponding to the one-link tie set.

(b) If a two-hop tie set exists between any two nodes, it can be found
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by taking the sum of the matrix entries for the two columns. The
numeral 1 appears in the column for the connected nodes and 2 for
the intermediate node.

(c) Write a “pseudocode” algorithm for this approach to finding one-
and two-hop tie sets.

(d) Does this generalize to n hops? Explain the difficulties.

6.8. Can the algorithm of problem 6.7 be adapted to a directed graph? (See
Shooman [1990, p. 609].)

6.9. What is the order of the algorithm of problem 6.7?

6.10. Write a simple program in any language to implement the algorithm of
problem 6.9 for up to six nodes.

6.11. Compute the two-terminal reliability Rad for the network of problem 6.6
by using the program of problem 6.10.

(a) Assume that all links have a success probability of 0.9.

(b) Assume that links 1, 2, and 3 have a success probability of 0.95 and
that links 4 and 5 have a success probability of 0.85.

6.12. Check the reliability of problem 6.11 by using any analytical technique.

6.13. This homework problem refers to the network described in Fig. 6.10 in
the text. All links are potentially possible, and the matrices define the
link costs and reliabilities. Assume the network in question is composed
of links 1–2; 2–3; 3–6; 6–5; 5–1; 1–4; and 4–6. Compute the two-ter-
minal reliabilities R26 and R23 by using the following methods:

(a) state-space,

(b) tie-set,

(c) cut-set,

(d) keystone-component,

(e) edge-transformation.

6.14. Assume that you are doing a system design for a reliable, low-cost net-
work with the same geometry, potential arc costs, and reliabilities as
those given in problem 6.13. Compare the different designs obtained by
plotting reliability versus cost, where we assume that the maximum cost
budget is 100. Use the following approaches to network design:

(a) Start with a minimum-cost tree and add new minimum-cost edges.

(b) Start with a minimum-cost tree and add new highest-reliability
edges.

(c) Start with a highest-reliability tree and add new highest-reliability
edges.
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(d) Start with a highest-reliability Hamiltonian tour and add new
highest-reliability edges.

(e) Start with a minimum-cost Hamiltonian tour and add new highest-
reliability edges.

6.15. For a Hamiltonian tour in which the n branch probabilities are inde-
pendent and equal, show that the all-terminal reliability is given by the
binomial distribution:

Rall � P(no branch failure + one branch failure)

� pn + np(n − 1)(1 – p)

6.16. Repeat problem 6.15 for a Hamiltonian tour in which the branch prob-
abilities are all different. Instead of the binomial distribution, you will
have to write out a series of terms that yields a formula different from
that of problem 6.15, but one that also reduces to the same formula for
equal probabilities.

6.17. Clearly, a Hamiltonian network of n identical elements has a higher reli-
ability than that of a spanning tree for n nodes. Show that the improve-
ment ratio is [p + n(1 – p)].

6.18. In this problem, we make a rough analysis to explore how the capacity
of communication lines affects a communication network.

(a) Consider the nodes of problem 6.1 and connect them in a
Hamiltonian tour network in Table P1: Boston–Hartford–New
York–Philadelphia–Pittsburgh–Baltimore–Washington–Boston. As-
sume that the Hartford–Baltimore–Pittsburgh traffic is small (2 units
each way) compared to the Boston–New York–Philadelphia–Wash-
ington traffic (10 units each way). Fill in Table P1 with total traffic
units, assuming that messages are always sent (routed) via the short-
est possible way. Assume full duplex (simultaneous communication
in both directions).

(b) Assume a break on the Philadelphia–Pittsburgh line. Some messages
must now be rerouted over different, longer paths because of this
break. For example, the Washington–Boston line must handle all of
the traffic between Philadelphia, New York, Boston, and Washing-
ton. Recompute the traffic table (Table P2).

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



329

T
A

B
L

E
 P

1
T

ra
ffi

c 
T

ab
le

 B
ef

or
e 

B
re

ak

B
os

to
n

H
ar

tf
or

d
N

ew
 Y

or
k

Ph
ila

de
lp

hi
a

Pi
tts

bu
rg

h
B

al
tim

or
e

W
as

hi
ng

to
n

B
os

to
n

H
ar

tf
or

d

N
ew

 Y
or

k

Ph
ila

de
lp

hi
a

Pi
tts

bu
rg

h

B
al

tim
or

e

W
as

hi
ng

to
n



330

T
A

B
L

E
 P

2
T

ra
ffi

c 
T

ab
le

 A
ft

er
 B

re
ak

B
os

to
n

H
ar

tf
or

d
N

ew
 Y

or
k

Ph
ila

de
lp

hi
a

Pi
tts

bu
rg

h
B

al
tim

or
e

W
as

hi
ng

to
n

B
os

to
n

H
ar

tf
or

d

N
ew

 Y
or

k

Ph
ila

de
lp

hi
a

Pi
tts

bu
rg

h

B
al

tim
or

e

W
as

hi
ng

to
n



7
RELIABILITY OPTIMIZATION

331

7.1 INTRODUCTION

The preceding chapters of this book discussed a wide range of different tech-
niques for enhancing system or device fault tolerance. In some applications,
only one of these techniques is practical, and there is little choice among the
methods. However, in a fair number of applications, two or more techniques
are feasible, and the question arises regarding which technique is the most
cost-effective. To address this problem, if one is given two alternatives, one
can always use one technique for design A and use the other technique for
design B. One can then analyze both designs A and B to study the trade-offs.
In the case of a standby or repairable system, if redundancy is employed at a
component level, there are many choices based on the number of spares and
which component will be spared. At the top level, many systems appear as a
series string of elements, and the question arises of how we are to distribute
the redundancy in a cost-effective manner among the series string. Specifically,
we assume that the number of redundant elements that can be added is limited
by cost, weight, volume, or some similar constraint. The object is to determine
the set of redundant components that still meets the constraint and raises the
reliability by the largest amount. Some authors refer to this as redundancy opti-
mization [Barlow, 1965]. Two practical works—Fragola [1973] and Mancino
[1986]—are given in the references that illustrate the design of a system with
a high degree of parallel components. The reader should consult these papers
after studying the material in this chapter.

In some ways, this chapter can be considered an extension of the material
in Chapter 4. However, in this chapter we discuss the optimization approach,



332 RELIABILITY OPTIMIZATION

where rather than having the redundancy apply to a single element, it is dis-
tributed over the entire system in such a way that it optimizes reliability. The
optimization approach has been studied in the past, but is infrequently used in
practice for many reasons, such as (a) the system designer does not understand
the older techniques and the resulting mathematical formulation; (b) the solu-
tion takes too long; (c) the parameters are not well known; and (d) constraints
change rapidly and invalidate the previous solution. We propose a technique
that is clear, simple to explain, and results in the rapid calculation of a family
of good suboptimal solutions along with the optimal solution. The designer is
then free to choose among this family of solutions, and if the design features
or parameters change, the calculations can be repeated with modest effort.

We now postulate that the design of fault-tolerant systems can be divided
into three classes. In the first class, only one design approach (e.g., parallel,
standby, voting) is possible, or intuition and experience points only to a sin-
gle approach. Thus it is simple to decide on the level of redundancy required
to meet the design goal or the level allowed by the constraint. To simplify
our discussion, we will refer to cost, but we must keep in mind that all the
techniques to be discussed can be adapted to any other single constraint or,
in many cases, multiple constraints. Typical multiple constraints are cost, reli-
ability, volume, and weight. Sometimes, the optimum solution will not satisfy
the reliability goal; then, either the cost constraint must be increased or the
reliability goal must be lowered. In the second class, if there are two or three
alternative designs, we would merely repeat the optimization for each class
as discussed previously and choose the best result. The second class is one
in which there are many alternatives within the design approach because we
can apply redundancy at the subsystem level to many subsystems. The third
class, where a mixed strategy is being considered, also has many combinations.
To deal with the complexity of the third-class designs, we will use computer
computations and an optimization approach to guide us in choosing the best
alternative or set of alternatives.

7.2 OPTIMUM VERSUS GOOD SOLUTIONS

Because of practical considerations, an approximate optimization yielding a
good system is favored over an exact one yielding the best solution. The param-
eters of the solution, as well as the failure rates, weight, volume, and cost, are
generally only known approximately at the beginning of a design; moreover, in
some cases, we only know the function that the component must perform, not
how that function will be implemented. Thus the range of possible parameters
is often very broad, and to look for an exact optimization when the parameters
are known only over a broad range may be an elegant mathematical formula-
tion but is not a practical engineering solution. In fact, sometimes choosing the
exact optimum can involve considerable risk if the solution is very sensitive
to small changes in parameters.
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To illustrate, let us assume that there are two design parameters, x and y,
and the resulting reliability is z. We can visualize the solution as a surface in
x, y, z space, where the reliability is plotted along the vertical z-axis as the two
design parameters vary in the horizontal xy plane. Thus our solution is a surface
lying above the xy plane and the height (z) of the surface is our reliability that
ranges between 0 and unity. Suppose our surface has two maxima: one where
the surface is a tall, thin spire with the reliability zs = 0.98 at the peak, which
occurs at xs, ys, and the other where the surface is a broad one and where the
reliability reaches zb = 0.96 at a small peak located at xb, yb in the center of
a broad plateau having a height of 0.94. Clearly, if we choose the spire as our
design and if parameters x or y are a little different than xs, ys, the reliability
may be much lower—below 0.96 and even below 0.94—because of the steep
slopes on the flanks of the spire. Thus the maximum of 0.96 is probably a better
design and has less risk, since even if the parameters differ somewhat from xb,
yb, we still have the broad plateau where the reliability is 0.94. Most of the
exact optimization techniques would choose the spire and not even reveal the
broad peak and plateau as other possibilities, especially if the points xs, ys and
xb, yb were well-separated. Thus it is important to find a means of calculating
the sensitivity of the solution to parameter variations or calculating a range of
good solutions close to the optimum.

There has been much emphasis in the theoretical literature on how to find
an exact optimization. The brute force approach is to enumerate all possible
combinations and calculate the resulting reliability; however, except for small
problems, this approach requires long or intractable computations. An alter-
nate approach uses dynamic programming to reduce the number of possible
combinations that must be evaluated by breaking the main optimization into
a sequence of carefully formulated suboptimizations [Bierman, 1969; Hiller,
1974; Messinger, 1970]. The approach that this chapter recommends is the
use of a two-step procedure. We assume that the problem in question is a
large system. Generally, at the top level of a large system, the problem can
be modeled as a series connection of a number of subsystems. The process of
apportionment (see Lloyd [1977, Appendix 9A]) is used to allocate the sys-
tem reliability (or availability) goal among the various subsystems and is the
first step of the procedure. This process should reduce a large problem into a
number of smaller subproblems, the optimization of which we can approach by
using a bounded enumeration procedure. One can greatly reduce the size of the
solution space by establishing a sequence of bounds; the resulting subsystem
optimization is well within the power of a modern PC, and solution times are
reasonable. Of course, the first step in the process—that of apportionment—is
generally a good one, but it is not necessarily an optimum one. It does, how-
ever, fit in well with the philosophy alluded to in the previous section that a
broad, easy-to-achieve, easy-to-understand suboptimum is preferred in a prac-
tical case. As described later in this chapter, allocation tends to divert more
resources to the “weakest link in the chain.”

There are other important practical arguments for simplified semioptimum
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techniques instead of exact mathematical optimization. In practice, optimiz-
ing a design is a difficult problem for many reasons. Designers, often harried
by schedule and costs, look for a feasible solution to meet the performance
parameters; thus reliability may be treated as an afterthought. This approach
seldom leads to a design with optimum reliability—much less a good sub-
optimal design. The opposite extreme is the classic optimization approach, in
which a mathematical model of the system is formulated along with constraints
on cost, volume, weight, and so forth, where all the allowable combinations
of redundant parallel and standby components are permitted and where the
underlying integer programming problem is solved. The latter approach is sel-
dom taken for the previously stated reasons: (a) the system designer does not
understand the mathematical formulation or the solution process; (b) the solu-
tion takes too long; (c) the parameters are not well known; and (d) the con-
straints rapidly change and invalidate the previous solution. Therefore, clear,
simple, and rapid calculation of a family of good suboptimal solutions is a
sensible approach. The study of this family should reveal which solutions, if
any, are very sensitive to changes in the model parameters. Furthermore, the
computations are simple enough that they can be repeated should significant
changes occur during the design process. Establishing such a range of solutions
is an ideal way to ensure that reliability receives adequate consideration among
the various conflicting constraints and system objectives during the trade-off
process—the preferred approach to choosing a good, well-balanced design.

7.3 A MATHEMATICAL STATEMENT OF THE OPTIMIZATION
PROBLEM

One can easily define the classic optimization approach as a mathematical
model of the system that is formulated along with constraints on cost, vol-
ume, weight, and so forth, in which all the allowable combinations of redun-
dant parallel and standby components are permitted and the underlying integer
programming problem must be solved.

We begin with a series model for the system with k components where x1

is the event success of element one, x1 is the event failure of element one,
and P(x1) = 1 – P (x1) is the probability of success of element one, which
is the reliability, r1 (see Fig. 7.1). Clearly, the components in the foregoing
mathematical model can be subsystems if we wish.

The system reliability is given by the probability of the event in which all
the components succeed (the intersection of their successes):

Rs � P(x1
U

x2
U

· · ·
U

xk) (7.1a)

If we assume that all the elements are independent, Eq. (7.1a) becomes
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r1

x1

r2

x2

rk

xk

Figure 7.1 A series system of k components.

Rs �

k

∏
i � 1

Ri (7.1b)

We will let the single constraint on our design be the cost for illustrative
purposes, and the total cost, c, is given by the sum of the individual component
costs, ci:

c �

k

���
i � 1

ci (7.2)

We assume that the system reliability given by Eq. (7.1b) is below the sys-
tem specifications or goals, Rg, and that the designer must improve the reli-
ability of the system to meet these specifications. (In the highly unusual case
where the initial design exceeds the reliability specifications, the initial design
can be used with a built-in safety factor, or else the designer can consider using
cheaper shorter-lifetime parts to save money; the latter is sometimes a risky
procedure.) We further assume that the maximum allowable system cost, c0, is
in general sufficiently greater than c so that the funds can be expended (e.g.,
redundant components added) to meet the reliability goal. If the goal cannot
be reached, the best solution is the one with the highest reliability within the
allowable cost constraint.

In the case where more than one solution exceeds the reliability goal within
the cost constraint, it is useful to display a number of “good” solutions. Since
we wish the mathematical optimization to serve a practical engineering design
process, we should be aware that the designer may choose to just meet the
reliability goal with one of the suboptimal solutions and save some money.
Alternatively, there may be secondary factors that favor a good suboptimal
solution (e.g., the sensitivity and risk factors discussed in the preceding sec-
tion).

There are three conventional approaches to improving the reliability of the
system posed in the preceding paragraph:

1. Improve the reliability of the basic elements, ri, by allocating some or
all of the cost budget, c0, to fund redesign for higher reliability.

2. Place components in parallel with the subsystems that operate contin-
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R ,1 1n R ,2 2n R ,k kn

... ... ...

Figure 7.2 The choice of redundant components to optimize the reliability of the
series system of Fig. 7.1.

uously (see Fig. 7.2). This is ordinary parallel redundancy (hot redun-
dancy).

3. Place components in parallel (standby) with the k subsystems and switch
them in when an on-line failure is detected (cold redundancy).

There are also strategies that combine these three approaches. Such com-
bined approaches, as well as reliability improvement by redesign, are discussed
later in this chapter and also in the problems. Most of the chapter focuses on the
second and third approaches of the preceding list—hot and cold redundancy.

7.4 PARALLEL AND STANDBY REDUNDANCY

7.4.1 Parallel Redundancy

Assuming that we employ parallel redundancy (ordinary redundancy, hot
redundancy) to optimize the system reliability, Rs, we employ nk elements in
parallel to raise the reliability of each subsystem that we denote by Rk (see
Fig. 7.2).

The reliability of a parallel system of nk independent components is most
easily formulated in terms of the probability of failure (1 – ri)ni . For the struc-
ture of Fig. 7.2 where all failures are independent, Eq. (7.1b) becomes

Rs �

k

∏
i � 1

(1 − [1 − ri]
ni ) (7.3)

and Eq. (7.2) becomes

c �

k

���
i � 1

nici (7.4)

We can develop a similar formulation for standby redundancy.

7.4.2 Standby Redundancy

In the case of standby systems, it is well known that the probability of failure
is governed by the Poisson distribution (see Section A5.4).
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P(x; m) �
mxe−m

x!
(7.5)

where

x = the number of failures
m = the expected number of failures

A standby subsystem succeeds if there are fewer failures than the number
of available components, xk < nk; thus, for a system that is to be improved by
standby redundancy, Eqs. (7.3) and (7.4) becomes

Rs �

k

∏
i � 1

xk � nk − 1

���
xk � 0

P(xk; mk) (7.6)

and, of course, the system cost is still computed from Eq. (7.4).

7.5 HIERARCHICAL DECOMPOSITION

This section examines the way a designer deals with a complex problem and
attempts to extract the engineering principles that should be employed. This
leads to a number of viewpoints, from which some simple approaches emerge.
The objective is to develop an approach that allows the designer to decompose
a complex system into a manageable architecture.

7.5.1 Decomposition

Systems engineering generally deals with large, complex structures that, when
taken as a whole (in the gestalt), are often beyond the “intellectual span of
control.” Thus the first principle in approaching such a design is to decompose
the problem into a hierarchy of subproblems. This initial decomposition stops
when the complexity of the resulting components is reduced to a level that puts
it within the “intellectual span of control” of one manager or senior designer.
This approach is generally called divide and conquer and is presented for use
on complex problems in books on algorithms [Aho, 1974, p. 60; Cormen, 1992,
p. 12]. The term probably comes from the ancient political maxim divide et
impera (“divide and rule”) cited by Machiavelli [Bartlett, 1968, p. 150b], or
possibly early principles of military strategy.

7.5.2 Graph Model

Although the decomposition of a large system is generally guided by expe-
rience and intuition, there are some guidelines that can be used to guide the
process. We begin by examining the structure of the decomposition. One can
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Leaves
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Depth 0

Depth 1

Depth 2

Depth 3

Root Node

Figure 7.3 A tree model of a hierarchical decomposition illustrating some graph
nomenclature.

describe a hierarchical block diagram of a system in more precise terms if
we view it as a mathematical graph [Cormen, 1992, pp. 93–94]. We replace
each box in the block diagram by a vertex (node) and leaving the connecting
lines that form the edges (branches) of the graph. Since information can flow in
both directions, this is an undirected graph; if information can flow in only one
direction, however, the graph is a directed graph, and an arrowhead is drawn on
the edge to indicate the direction. A path in the graph is a continuous sequence
of vertices from the start vertex to the end vertex. If the end vertex is the same
as the start vertex, then this (closed) path is called a cycle (loop). A graph
without cycles where all the nodes are connected is called a tree (the graph
corresponding to a hierarchical block diagram is a tree). The top vertex of a
tree is called the root (root node). In general, a node in the tree that corresponds
to a component with subcomponents is called a parent of the subcomponents,
which are called children. The root node is considered to be at depth 0 (level
0); its children are at depth 1 (level 1). In general, if a parent node is at level n,
then its children are at level n + 1. The largest depth of any vertex is called the
depth of the tree. The number of children that a parent has is the out-degree,
and the number of parents connected to a child is the in-degree. A node that
has no children is the end node (terminal node) of a path from the root node
and is called a leaf node (external node). Nonleaf nodes are called internal
nodes. An example illustrating some of this nomenclature is given in Fig. 7.3.

7.5.3 Decomposition and Span of Control

If we wish our decomposition to be modeled by a tree, then the in-degree must
always be one to prevent cycles or inputs to a stage entering from more than
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one stage. Sometimes, however, it is necessary to have more than one input
to a node, in which case one must worry about synchronization and coupling
between the various nodes. Thus, if node x has inputs from nodes p and q,
then any change in either p or q will affect node x. Imposing this restriction
on our hierarchical decomposition leads to simplicity in the interfacing of the
various system elements.

We now discuss the appropriate size of the out-degree. If we wish to decom-
pose the system, then the minimum size of the out-degree at each node must
be two, although this will result in a tree of great height. Of course, if any node
has a great number of children (a large out-degree), we begin to strain the intel-
lectual span of control. The experimental psychologist Miller [1956] studied a
large number of experiments related to sensory perception and concluded that
humans can process about 5–9 levels of “complexity.” (A discussion of how
Miller’s numbers relate to the number of mental discriminations that one can
make appears in Shooman [1983, pp. 194, 195].) If we specify the out-degree
to be seven for each node and all the leaves (terminal nodes) to be at level
(depth) h, then the number of leaves at level h (NLh) is given by

NLh � 7h (7.7)

In practice, each leaf is the lowest level of replaceable unit, which is gen-
erally called a line replaceable unit (LRU). In the case of software, we would
probably call the analog of an LRU a module or an object. The total number
of nodes, N, in the graph can be computed if we assume that all the leaves
appear at level h.

N � NL0 + NL1 + NL2 + · · · + NLh (7.8a)

If each parent node has seven children, Eq. (7.8a) becomes

N � 1 + 7 + 72 + · · · + 7h (7.8b)

Using the formula for the sum of the terms in a geometric progression,

N � a(rn
− 1)/ (r − 1) (7.9a)

where

r =
n =
a =

the common ratio (in our case, 7)
the number of terms (in our case, h + 1)
the first term (in our case, 1)

Substitution in Eq. (7.9a) yields

N � (7h + 1
− 1)/ 6 (7.9b)

If h =2, we have N = (73 –  1) / 6 = 57. We can check this by substitution in
Eq. (7.8b), yielding 1 + 7 + 49 =57.
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7.5.4 Interface and Computation Structures

Another way of viewing a decomposition structure is to think in terms of two
classes of structures, interfaces, and computational elements—a breakdown
that applies to either hardware or software. In the case of hardware, the com-
putational elements are LRUs; for software, they are modules or classes. In
the case of hardware, the interfaces are analog or digital signals (electrical,
light, sound) passed from one element (depth, level) to another; the joining of
mechanical surfaces, hydraulics or pneumatic fluids; or similar physical phe-
nomena. In the case of software, the interfaces are generally messages, vari-
ables, or parameters passed between procedures or objects. Both hardware and
software have errors (failure rates, reliability) associated with either the com-
putational elements or the interfaces. If we again assume that leaves appear
only at the lowest level of the tree, the number of computational elements
is given by the last term in Eq. (7.8a), NLh. In counting interfaces, there is
the interface out of an element at level i and the interface to the correspond-
ing element at level i + 1. In electrical terms, we might call this the output
impedance and the corresponding input impedance. In the case of software,
we would probably be talking about the passing of parameters and their scope
between a procedure call and the procedure that is called, or else the passing
of messages between classes and objects. For both hardware and software, we
count the interface (information-out–information-in) pair as a single interface.
Thus all modules except level 0 have a single associated interface pair. There
is no structural interface at level 0; however, let us consider the system specifi-
cations as a single interface at level 0. Thus, we can use Eqs. (7.8) and (7.9) to
count the number of interfaces, which is equivalent to the number of elements.
Continuing the foregoing example where h = 2, we have 72 = 49 computational
elements and (73 – 1)/ 6 = 57 interfaces. Of course, in a practical example, not
all the leaves will appear at depth (level) h, since some of the paths will ter-
minate before level h; thus the preceding computations and formulas can only
be considered upper bounds on an actual (less-idealized) problem.

One can use these formulas for many interfaces and computational units to
conjecture models for complexity, errors, reliability, and cost.

7.5.5 System and Subsystem Reliabilities

The structure of the system at level 1 in the graph model of the hierarchical
decomposition is a group of subsystems equal in number to the out-degree of
the root node. Based on Miller’s work, we have decided to let the out-degree
be 7 (or 5 to 9). As an example, let us consider an overview of an air traffic
control (ATC) system for an airport [Gilbert, 1973, p. 39, Fig. 61]. Level 0 in
our decomposition is the “air traffic control system.” At level 1, we have the
major subsystems that are given in Table 7.1.

An expert designer of a new ATC system might view things a little dif-
ferently (in fact, two expert designers working for different companies might
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TABLE 7.1 A Typical Air Traffic Control System at Level 1

• Tracking radar and associated computer.
• Air traffic control (ATC) displays and display computers.
• Voice communications with pilot.
• Transponders on the aircraft (devices that broadcast a digital

identification code and position information).
• Communications from other ATC centers.
• Weather information.
• The main computer.

each come up with a slightly different model even at level 1), but the list in
Table 7.1 is sufficient for our discussions. We let X1 represent the success of
the tracking radar, X2 represent the success of the controller displays, and so
on up to X7, which represents the success of the main computer. We can now
express the reliability of the system in terms of events X1-X7. At this high
a level, the system will only succeed if all the subsystems succeed; thus the
system reliability, Rs, can be expressed as

Rs � P(X1
U

X2
U

· · ·
U

X7) (7.10)

If the seven aforementioned subsystems are statistically independent, then
Eq. (7.10) becomes

Rs � P(X1)P(X2) · · · P(X7) (7.11)

In all likelihood, the independent assumption at this high level is valid; it is
unlikely that one could postulate mechanisms whereby the failure of the track-
ing radar would cause failure of the controller displays. The common mode
failure mechanisms that would lead to dependence (such as a common power
system or a hurricane) are quite unlikely. System designers would be aware
that a common power system is a vulnerable point and therefore would not
design the system with this feature. In all likelihood, the systems will have
independent computer systems. Similarly, it is unlikely that a hurricane would
damage both the tracking radar and the controller displays; the radar should
be designed for storm resistance, and the controller displays should be housed
in a stormproof building; moreover, the occurrence of a hurricane should be
much less frequent than that of other possible forms of failure modes. Thus
it is a reasonable engineering assumption that statistical independence exists,
and Eq. (7.11) is a valid simplification of Eq. (7.10).

Because of the nature of the probabilities, that is, they are bounded by 0 and
1, and also because of the product nature of Eq. (7.11), we can bound each
of the terms. There is an infinite number of values of P(X1), P(X2), . . . , P(X7)
that satisfies Eq. (7.11); however, the smallest value of P(X1) occurs when
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P(X2), . . . , P(X7) assume their largest values—that is, unity. We can repeat this
solution for each of the subsystems to yield a set of minimum values.

P(X1) ≥ Rs (7.12a)

P(X2) ≥ Rs (7.12b)

and so on up to

P(X7) ≥ Rs (7.12c)

These minimum bounds are true in general for any subsystem if the system
structure is series; thus we can write

P(Xi) ≥ Rs (7.13)

The equality only holds in Eqs. (7.12) and (7.13) if all the other subsystems
have a reliability equal to unity (i.e., they never fail); thus, in the real world, the
equality conditions can be deleted. These minimum bounds will play a large
role in the optimization technique developed later in this chapter.

7.6 APPORTIONMENT

As was discussed in the previous section, one of the first tasks in approaching
the design of a large, complex system is to decompose it. Another early task
is to establish reliability allocations or budgets for the various subsystems that
emerge during the decomposition, a process often referred to as apportionment
or allocation. At this point, we must discuss the difference between a math-
ematician’s and an engineer’s approach to optimization. The mathematician
would ask for a precise system model down to the LRU level, the failure rate,
and cost, weight, volume, etc., of each LRU; then, the mathematician invokes
an optimization procedure to achieve the exact optimization. The engineer, on
the other hand, knows that this is too complex to calculate and understand in
most cases and therefore seeks an alternate approach. Furthermore, the engi-
neer knows that many of the details of lower-level LRUs will not be known
until much later and that estimates of their failure rates at that point would be
rather vague, so he or she adopts a much simpler design approach: beginning a
top–down process to apportion the reliability goal among the major subsystems
at depth 1.

Apportionment has historically been recognized as an important reliability
system goal [AGREE Report, 1957, pp. 52–57; Henney, 1956, Chapter 1; Von
Alven, 1964, Chapter 6]; many of the methods discussed in this section are
an outgrowth of this early work. We continue to assume that there are about
7 subsystems at depth 1. Our problem is how to allocate the reliability goal
among the subsystems, for which several procedures exist on which to base
such an allocation early in the design process; these are listed in Table 7.2.
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TABLE 7.2 Approaches to Apportionment

Approach Basis Comments

Equal weighting All subsystems should have Easy first attempt.
the same reliability.

Relative difficulty Some knowledge of relative Heuristic method requiring
cost or difficulty to only approximate
improve subsystem ordering of cost
reliability. of difficulty.

Relative failure Requires some knowledge of Easier to use than the
rates the relative subsystem relative difficulty

failure rates. method.
Albert’s method Requires an initial estimate of A well-defined algorithm

the subsystem reliabilities. is used that is based
on assumptions about
the improvment-effort
function.

Stratified Requires detailed model of Discussed in Section 7.6.5.
optimization the subsystem.

7.6.1 Equal Weighting

The simplest approach to apportionment is to assume equal subsystem reli-
ability, r. In such a case, Eq. (7.11) becomes

Rs � P(X1)P(X2) · · · P(X7) � r7 (7.14a)

For the general case of n independent subsystems in series,

Rs � rn (7.14b)

Solving Eq. (7.14a) for r yields

r � (Rs)
1/ 7 (7.15a)

r � (Rs)
1/ n (7.15b)

This equal weighting apportionment is so simple that it is probably one of the
first computations made in a project. System engineers typically “whip out”
their calculators and record such a calculation on the back of an envelope or
a piece of scrap paper during early discussions of system design.

As an example, suppose that we have a system reliability goal of 0.95, in
which case Eq. (7.15a) would yield an apportioned goal of r = 0.9927. Of
course, it is unlikely that it would be equally easy or costly to achieve the
apportioned goal of 0.9927 for each of the subsystems. Thus this method gives
a ballpark estimate, but not a lot of time should be spent using it in the design
before a better method replaces it.
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7.6.2 Relative Difficulty

Suppose that we have some knowledge of the subsystems and can use it in
the apportionment process. Assume that we are at level 1, that we have seven
subsystems to deal with, and that we know for three of the subsystems achiev-
ing a high level of reliability (e.g., the level required for equal apportionment)
will be difficult. We envision that these three systems could meet their goals if
they can be realized by two parallel elements. We then would have reliability
expressions similar to those of Eq. (7.14b) for the four “easier” systems and
a reliability expression 2r – r2 for the three “harder systems.” The resultant
expression is

Rs � r4(2r − r2)3 (7.16)

Solving Eq. (7.16) numerically for a system goal of 0.95 yields r =0.9874.
Thus the four “easier” subsystems would have a single system with a reliabil-
ity of 0.9874, and the three harder systems would have two parallel systems
with the same reliability. Another solution is to keep the goal of r = 0.9927,
calculated previously for the easier subsystems. Then, the three harder systems
would have to meet the goal of 0.95/ 0.99274 =0.9783. The three harder sys-
tems would have to meet a somewhat lower goal: (2r –  r2)3 = 0.9783, or r =
0.953. Other similar solutions can easily be obtained.

The previous paragraph dealt with unequal apportionments by considering
a parallel system for the three harder systems. If we assume that parallel sys-
tems are not possible at this level, we must choose a solution where the easier
systems exceed a reliability of 0.9927 so that the harder systems can have a
smaller reliability. For convenience, we could rewrite Eq. (7.11) in terms of
unreliabilities, ri =1 – ui, obtaining

Rs � (1 − u1)(1 − u2) · · · (1 − u7) (7.17a)

Again, suppose there are four easier systems with a failure probability of
u1 = u2  = u3  = u4  = u. The harder systems will have twice the failure proba-
bility u5 = u6 =2u, and Eq. (7.17a) becomes

Rs � (1 − u)4(1 − 2u)3

that yields a 7th-order polynomial.
The easiest way to solve the polynomial is through trial and error with a

calculator or by writing a simple program loop to calculate a range of values.
The equal reliability solution was r = 0.9927 = 1 – 0.0073. If we try r easy =
0.995 = 1 – 0.005, rhard = 0.99 = 1 – 0.01, and substitute in Eq. (7.17a), the
result is

0.951038 � (0.995)4(0.99)3 (7.17b)
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Trying some slightly larger values of u results in a solution of

0.950079 � (0.9949)4(0.9898)3 (7.17c)

The accuracy of this method depends largely on how realistic the guesses are
regarding the hard and easy systems. The method of the next section is similar,
but the calculations are easier.

7.6.3 Relative Failure Rates

It is simpler to use knowledge about easier and harder systems during appor-
tionment if we work with failure rates. We assume that each subsystem has a
constant-failure rate li and that the reliability for each subsystem is given by

ri � e−li (7.18a)

and substitution of Eq. (7.18a) into Eq. (7.11) yields

Rs � P(X1)P(X2) · · · P(X7) � e−l1 e−l2 · · · e−l7 (7.18b)

and Eq. (7.18b) can be written as

Rs � e−ls (7.19)

where

ls � l1 + l2 + · · · + l7

Continuing with our example of the previous section, in which the goal is
0.95, the four “easier” systems have a failure rate of l, and the three harder
ones have a failure rate of 5l, Eq. (7.19) becomes

Rs � 0.95 � e−19l t (7.20)

Solving for l t, we obtain l t = 0.0026996, and the reliabilities are e−0.0026996

= 0.9973, and e−5 × 0.0026996 = 0.9865. Thus our apportioned goals for the four
easier systems are 0.9973; for the three harder systems, 0.9865. As a check,
we see that 0.99734 × 0.98653 × 0.9497. Clearly, one can use this procedure
to achieve other allocations based on some relative knowledge of the nomi-
nal failure rates of the various subsystems or on how difficult it is to achieve
various failure rates.

7.6.4 Albert’s Method

A very interesting method that results in an algorithm rather than a design
procedure is known as Albert’s method and is based on some analytical prin-
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ciples [Albert, 1958; Lloyd, 1977, pp. 267–271]. The procedure assumes that
initially there are some estimates of what reliabilities can be achieved for the
subsystems to be apportioned. In terms of our notation, we will say that P(X1),
P(X2), . . . , P(X7) are given by some nominal values: R1, R2, . . . , R7. Note that
we continue to speak of seven subsystems at level 1; however, this clearly can
be applied to any number of subsystems. The fact that we assume nominal
values for the Ri implies that we have a preliminary design. However, in any
large system there are many iterations in system design, and this method is
quite useful even if it is not the first one attempted. Adopting the terminology
of government contracting (which generally has parallels in the commercial
world), we might say that the methods of Sections 7.6.1–7.6.3 are useful in for-
mulating the request for proposal (RFQ) (the requirements) and that Albert’s
method is useful during the proposal preparation phase (specifications and pro-
posed design) and during the early design phases after the contract award. A
properly prepared proposal will have some early estimates of the subsystem
reliabilities. Furthermore, we assume that the system specification or goal is
denoted by Rg, and the preliminary estimates of the subsystem reliabilities yield
a system reliability estimate given by

Rs � R1R2 · · · R7 (7.21)

If the design team is lucky, Rs > Rg, and the first concerns about reliability
are thus satisfied. In fact, one might even think about trading off some reli-
ability for reduced cost. An experienced designer would tell us that this almost
never happens and that we are dealing with the situation where Rs < Rg. This
means that one or more of the Ri values must be increased. Albert’s method
deals with finding which of the subsystem reliability goals must be increased
and by how much so that Rs is increased to the point where Rs = Rg.

Based on the bounds developed in Eq. (7.13), we can comment that any sub-
system reliability that is less than the system goal, Ri < Rg, must be increased
(others may also need to be increased). For convenience in developing our
algorithm, we assume that the subsystems have been renumbered so that the
reliabilities are in ascending order: R1 < R2 < · · · < R7. Thus, in the special
case where R7 < Rg, all the subsystem goals must be increased. In this case,
Albert’s method reduces to equal apportionment and Eqs. (7.14) and (7.15)
hold. In the more general case, j of the i subsystems must have the reliability
increased. Albert’s method requires that all the j subsystems have their reli-
ability increased to the same value, r, and that the reliabilities of the (i – j )
subsystems remain unchanged. Thus, Eq. (7.21) becomes

Rg � R1R2 · · · RjRj + 1 · · · R7 (7.22)

where

R1 � R2 � · · · � Rj � r (7.23)
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Substitution of Eq. (7.23) into Eq. (7.22) yields

Rg � (r j)(Rj + 1 · · · R7) (7.24)

We solve Eq. (7.24) for the value of r (or, more generally, ri):

r j
� Rg/ (Rj + 1 · · · R7) (7.25a)

r � (Rg/ [Rj + 1 · · · R7])1/ j (7.25b)

Equations (7.22)–(7.25) describe Albert’s method, but an important step
must still be discussed: how to determine the value of j. Again, we turn to
Eq. (7.13) to shed some light on this question. We can place a lower bound
on j and say that all the subsystems having reliabilities smaller than or equal
to the goal, Ri < Rg, must be increased. It is possible that if we choose j equal
to this lower bound and substitute into Eq. (7.25b), the computed value of
r will be >1, which is clearly impossible; thus we must increase j by 1 and
try again. This process is repeated until the values of r obtained are <1. We
now have a feasible value for j, but we may be requiring too much “effort” to
raise all the 1 through j subsystems to the resulting high value of r. It may be
better to increment j by 1 (or more), reducing the value of r and “spreading”
this value over more subsystems. Albert showed that based on certain effort
assumptions, the optimum value of j is bounded from above when the value
for r first decreases to the point where r < Rj . The optimum value of j is the
previous value of j, where r > Rj . More succinctly, the optimum value for j is
the largest value for j, where r > Rj . Clearly it is not too hard to formulate a
computer program for this algorithm; however, since we are assuming about
seven systems and have bounded j from below and above, the most efficient
solution is probably done with paper, pencil, and a scientific calculator.

The reader may wonder why we have spent quite a bit of time explain-
ing Albert’s method rather than just stating it. The original exposition of the
method is somewhat terse, and the notation may be confusing to some; thus the
enhanced development is warranted. The remainder of this section is devoted
to an example and a discussion of when this method is “optimum.” The reader
will note that some of the underlying philosophy behind the method can be
summarized by the following principle: “The most efficient way to improve
the reliability of a series structure (sometimes called a chain) is by improving
the weakest links in the chain.” This principle will surface a few more times
in later portions of this chapter.

A simple example should clarify the procedure. Suppose that we have four
subsystems with initial reliabilities R1 = 0.7, R2 = 0.8, R3 = 0.9, and R4 = 0.95,
and the system reliability goal is Rg = 0.8. The existing estimates predict a
system reliability of Rs = 0.7 × 0.8 × 0.9 × 0.95 = 0.4788. Clearly, some or all
of the subsystem goals must be raised for us to meet the system goal. Based on
Eq. (7.13), we know that we must improve subsystems 1 and 2, so we begin
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our calculations at this point. The system reliability goal, Rg = 0.8, and Eq.
(7.25b) yields

r � (Rg/ [Rj + 1 · · · R7])1/ j
� (0.8/ 0.9 × 0.95)1/ 2

� (0.93567)0.5
� 0.96730 (7.26)

Since 0.96730 > 0.9, we continue our calculation. We now recompute for
subsystems 1, 2, and 3, and Eq. (7.25b) yields

r � (0.8/ 0.95)1/ 3
� 0.9443 (7.27)

Now, 0.9443 < 0.95, and we choose the previous value of j = 2 as our optimum.
As a check, we now compute the system reliability.

0.96730 × 0.96730 × 0.9 × 0.95 � 0.7999972 � Rg

which equals our goal of 0.8 when rounded to one place. Thus, the conclusion
from the use of Albert’s method is that the apportionment goals for the four
systems are R1 = R2 = 0.96730; R3 = 0.90; and R4 = 0.95. This solution assumes
equal effort for improving the reliability of all subsystems.

The use of Albert’s method produces an optimum allocation policy if the
following assumptions hold [Albert, 1958; Lloyd, 1977, pp. 267–271]:

1. Each subsystem has the same effort function that governs the amount of
effort required to raise the reliability of the i th subsystem from Ri to ri.
This effort function is denoted by G(Ri, ri), and increased effort always
increases the reliability: G(Ri, ri) ≥ 0.

2. The effort function G(x, y) is nondecreasing in y for fixed x, that is, given
an initial value of Ri, it will always require more effort to increase ri to
a higher value. For example,

G(0.35, 0.65) ≤ G(0.35, 0.75)

The effort function G(x, y) is nonincreasing in x for fixed y, that is, given
an increase to ri, it will always require less effort if we start from a larger
value of Ri. For example,

G(0.25, 0.65) ≥ G(0.35, 0.65)

3. If x ≤ y ≤ z, then G(x, y) + G(y, z) = G(x, z). This is a superposition
(linearity) assumption that states that if we increase the reliability in two
steps, the sum of the efforts for each step is the same as if we did the
increase in a single step.

4. G(0, x) has a derivative h(x) such that xh(x) is strictly increasing in (0 <
x < 1).
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The proof of the algorithm is given in Albert [1958]. If the assumptions
of Albert’s method are not met, the equal effort rule is probably violated, for
which the methods of Sections 7.6.2 and 7.6.3 are suggested.

7.6.5 Stratified Optimization

In a very large system, we might consider continuing the optimization to level
2 by applying apportionment again to each of the subsystem goals. In fact,
we can continue this process until we reach the LRU level and then utilize
Eqs. (7.3) or (7.6) (or else improve the LRU reliability) to achieve our system
design. Such decisions require some intuition and design experience on the
part of the system engineers; however, the foregoing methods provide some
engineering calculations to help guide intuition.

7.6.6 Availability Apportionment

Up until now, the discussion of apportionment has dealt entirely with system
and subsystem reliabilities. Now, we discuss the question of how to proceed
if system availabilities are to be apportioned. Under certain circumstances, the
subsystem availabilities are essentially independent, and the system availabil-
ity is given by the same formula as for the reliabilities, with the availabili-
ties replacing the reliabilties. A discussion of availability modeling in general,
and a detailed discussion of the circumstances under which such substitutions
are valid appears in Shooman [1990, Appendices F]. One situation in which
the availabilities are independent is where each subsystem has its own repair-
man (or repaircrew). This is called repairman decoupling in Shooman [1990,
Appendices F-4 and F-5]. In the decoupled case, one can use the same sys-
tem structural model that is constructed for reliability analysis to compute sys-
tem availability. The steady-state availability probabilities are substituted in the
model just as the reliability probabilities would be. Clearly, this is a convenient
situation and is often, but not always, approximately valid.

Suppose, however, that the same repairman or repaircrew serves one or more
subsystems. In such a case, there is the possibility that a failure will occur in
subsystem y while the repairman is still busy working on a repair for subsystem
x. In such a case, a queue of repair requests develops. The queuing phenomena
result in dependent coupled subsystems that can be denoted as being repair-
man coupling. When repairman coupling is significant, one should formulate a
Markov model to solve for the resulting availability. Since Markov modeling
for a large subsystem can be complicated, as the reader can appreciate from
the analytical solutions of Chapter 3, a practical designer would be happy to
use a decoupled solution even if the results were only a good approximation.

Intuition tells us that the possibility of a queue forming is a function of the
ratio of repair rate to failure rate (l/m). If the repair rate is much larger than the
failure rate, the approximation should be quite satisfactory. These approxima-
tions were explored extensively in Section 4.9.3, and the reader should review
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the results. We can explore the decoupled approximation again by considering
a slightly different problem than that in Chapter 4: two series subsystems that
are served by the same repairman. Returning to the results derived in Chapter
3, we can compute the exact availability using the model given in Fig. 3.16
and Eqs. (3.71a–c). This model holds for two identical elements (series, paral-
lel, and standby). If we want the model to hold for two series subsystems, we
must compute the probability that both elements are good, which is Ps0 . We
can compute the steady-state solution by letting s � 0 in Eqs. (3.71a–c), as
was discussed in Chapter 3, and solving the resulting equations. The result is

A∞ � Ps0 �
m′m′′

ll′ + l′m′′ + m′m′′
(7.28a)

This result is derived in Shooman [1990, pp. 344–346]. For ordinary (not
standby) two-element systems, l′ = 2l and m′ =m′′ =m. Substitution yields

A∞ �
m2

2l2 + 2lm + m2
(7.28b)

The approximate result is given by the probability that both elements are up,
which is the product of the steady-state availability for a single element m/ (l
+ m):

A∞ ≈
m

m + l
. m

m + l
(7.29)

We can compare the two expressions for various values of (m/ l) in Table
7.3, where we have assumed that the values of m and l for the two elements
are identical. From the third column in Table 7.3, we see that the ratio of
the approximate unavailability (1 – A≈) to the exact unavailability (1 – A=)
approaches unity and is quite acceptable in all the cases shown. Of course,
one might check the validity of the approximation for more complex cases;
however, the results are quite encouraging, and we anticipate that the approx-
imation will be applicable in many cases.

TABLE 7.3 Comparison of Exact and Approximate Availability Formulas

Approximate Exact Ratio of
Formula: Formula: Unavailability:

Ratio m/l Eq. (7.30), A ≈ Eq. (29b), A � (1 − A ≈)/ (1 − A �)

1 0.25 0.20 0.94
10 0.826496 0.819672 0.96

100 0.9802962 0.980199961 0.995
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7.6.7 Nonconstant-Failure Rates

In many cases, the apportionment approaches discussed previously depend on
constant-failure rates (see especially Table 7.2, third row). If the failure rates
vary with time, it is possible that the optimization results will hold only over
a certain time range and therefore must be recomputed for other ranges. The
analyst should consider this approach if nonconstant-failure rates are signifi-
cant. In most cases, detailed information on nonconstant-failure rates will not
be available until late in design, and approximate methods using upper and
lower bounds on failure rates or computations for different ranges assuming
linear variation will be adequate.

7.7 OPTIMIZATION AT THE SUBSYSTEM LEVEL VIA
ENUMERATION

7.7.1 Introduction

In the previous section, we introduced apportionment as an approximate opti-
mization procedure at the system level. Now, we assume that we are at the
subsystem level. At this point, we assume that each subsystem is at a level
where we can speak of subsystem redundancy and where we can now con-
sider exact optimization. (It is possible that in some smaller problems, the use
of apportionment at the system level as a precursor is not necessary and we can
begin exact optimization at this level. Also, it is possible that we are dealing
with a system that is so complex that we have to apportion the subsystems into
sub-subsystems—or even lower—before we can speak of redundant elements.)
In all cases, we view apportionment as an approximate optimization process,
which may or may not come first.

The subject of system optimization has been extensively discussed in the reli-
ability literature [Barlow, 1965, 1975; Bellman, 1958; Messinger, 1970; Myers,
1964; Tillman, 1980] and also in more general terms [Aho, 1974; Bellman, 1957;
Bierman, 1969; Cormen, 1992; Hiller, 1974]. The approach used was gener-
ally dynamic programming or greedy methods; these approaches will be briefly
reviewed later in this chapter. This section will discuss a bounded enumeration
approach [Shooman and Marshall, 1993] that the author proposes as the simplest
and most practical method for redundancy optimization. We begin our develop-
ment by defining the brute force approach of exhaustive enumeration.

7.7.2 Exhaustive Enumeration

This approach is straightforward, but it represents a brute force approach to
the problem. Suppose we have subsystem i that has five elements and we wish
to improve the subsystem reliabiity to meet the apportioned subsystem goal
Rg. If practical considerations of cost, weight, or volume limit us to choosing
at most a single parallel subsystem for each of the five elements, each of the
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five subsystems has zero or one element in parallel, and the total number of
possibilities is 25 = 32. Given the powerful computational power of a modern
personal computer, one could certainly write a computer program and evaluate
all 32 possibilities in a short period of time. The designer would then choose
the combination with the highest reliability or some other combination of good
properties and use the complete set of possibilities as the basis of design. As
previously stated, sometimes a close suboptimum solution is preferred because
of risk, uncertainty, sensitivity, or other factors. Suppose we could consider at
most two parallel subsystems for each of the five elements, in which case the
total number of possibilities is 35 = 243. This begins to approach an unwieldy
number for computation and interpretation.

The actual number of computations involved in exhaustive enumeration is
much larger if we do not impose a restriction such as “considering at most two
parallel subsystems for each of the five elements.” To illustrate, we consider
the following two examples [Shooman, 1994]:

Example 1: The initial design of a system yields 3 subsystems at the first level
of decomposition. The system reliability goal, Rg, is 0.9 for a given number
of operating hours. The initial estimates of the subsystem reliabilities are R1 =
0.85, R2 = 0.5, and R3 = 0.3. Parallel redundancy is to be used to improve the
initial design so that it meets the reliability goal. The constraint is cost; each
subsystem is assumed to cost 1 unit, and the total cost budget is 16 units.

The existing estimates predict an initial system reliability of Rs0 = 0.85 × 0.5
× 0.3 = 0.1275. Clearly, some or all of the subsystem reliabilities must be raised
for us to meet the system goal. Lacking further analysis, we can state that the
initial system costs 3 units and that 13 units are left for redundancy. Thus we
can allocate 0 or 1 or 2 or any number up to 13 parallel units to subsystem 1, a
similar number to subsystem 2, and a similar number to subsystem 3. An upper
bound on the number of states that must be considered would therefore be 143

= 2,744. Not all of these states are possible because some of them violate the
weight constraint; for example, the combination of 13 parallel units for each
of the 3 subsystems costs 39 units, which is clearly in excess of the 13-unit
budget. However, even the actual number will be too cumbersome if not too
costly in computer time to deal with. In the next section, we will show that by
using the bounded enumeration technique, only 10 cases must be considered!

Example 2: The initial design of a system yields 5 subsystems at the first level
of decomposition. The system reliability goal, Rg, is 0.95 for a given number
of operating hours. The initial estimates of the subsystem reliabilities are R1

= 0.8, R 2 = 0.8, R3 = 0.8, R4 = 0.9, and R5 = 0.9. Parallel redundancy is to
be used to improve the initial design so that it meets the reliability goal. The
constraint is cost; the subsystems are assumed to cost 2, 2, 2, 3, and 3 units,
respectively, and the total cost budget is 36 units.

The existing estimates predict an initial system reliability of Rs0 = 0.83× 0.92

= 0.41472. Clearly, some or all of the subsystem reliabilities must be raised
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for us to meet the system goal. Lacking further analysis, we can state that the
initial system costs 12 units; thus we can allocate up to 24 cost units to each of
the subsystems. For subsystems 1, 2, and 3, we can allocate 0 or 1 or 2 or any
number up to 12 parallel units. For subsystems 4 and 5, we can allocate 0 or 1
or 2 or any number up to 8 parallel units. Thus an upper bound on the number
of states that must be considered would be 133 × 92 = 177,957. Not all of these
states are possible because some of them violate the cost constraint. In the next
section, we will show that by using the bounded enumeration technique, only
31 cases must be considered!

Now, we begin our discussion of the significant and simple method of opti-
mization that results when we apply bounds to constrain the enumeration pro-
cess.

7.8 BOUNDED ENUMERATION APPROACH

7.8.1 Introduction

An analyst is often so charmed by the neatness and beauty of a closed-form
synthesis process that they overlook the utility of an enumeration procedure.
Engineering design is inherently a trial-and-error iterative procedure, and sel-
dom are the parameters known so well that an analyst can stand behind a design
and defend it as the true optimum solution to the problem. In fact, presenting
a designer with a group of good designs rather than a single one is generally
preferable since there may be many ancillary issues to consider in making a
choice. Some of these issues are the following:

• Sensitivity to variations in the parameters that are only approximately
known.

• Risk of success for certain state-of-the-art components presently under
design or contemplated.

• Preferences on the part of the customer. (The old cliché about the “Golden
Rule”—he who has the gold makes the rules—really does apply.)

• Conflicts between designs that yield high reliability but only moderate
availability (because of repairability problems), and the converse.

• Effect of maintenance costs on the chosen solution.
• Difficulty in mathematically including multiple prioritized constraints

(some independent multiple constraints are easy to deal with; these are
discussed below).

Of course, the main argument against generating a family of designs and
choosing among them is the effort and confusion involved in obtaining such a
family. The prediction of the number of cases needed for direct enumeration in
the two simple examples discussed previously are not encouraging. However,
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we will now show that the adoption of some simple lower- and upper-bound
procedures greatly reduces the number of cases that need to be considered and
results in a very practical and useful approach.

7.8.2 Lower Bounds

The discussion following Eqs. (7.1) and (7.2) pointed out that there is an infi-
nite number of solutions that satisfy these equations. However, once we impose
the constraint that the individual subsystems are made up of a finite number of
parallel (hot or cold) systems, the problem becomes integer rather than contin-
uous in nature, and a finite but still large number of solutions exists. Our task
is to eliminate as many of the infeasible combinations as we can in a manner
as simple as possible. The lower bounds on the system reliability developed in
Eqs. (7.11), (7.12) and (7.13) allow us to eliminate a large number of combina-
tions that constitute infeasible solutions. These bounds, powerful though they
may be, merely state the obvious—that the reliability of a series of independent
subsystems yields a product of probabilities and, since each probability has an
upper bound of unity, that each subsystem reliability must equal or exceed the
system goal. To be practical, it is impossible to achieve a reliability of 1 for
any subsystem; thus each subsystem reliability must exceed the system goal.
One can easily apply these bounds by enumeration or by solving a logarithmic
equation.

The reliability expression for a chain of k subsystems, where each subsystem
is composed of ni parallel elements, is given in Eq. (7.3). If we allow all the
subsystems other than subsystem i to have a reliability of unity and we compare
them with Eq. (7.13), we obtain

(1 − [1 − ri]
ni ) > Rg (7.30)

We can easily solve this equation by choosing ni = 1, 2, . . . , substituting and
solving for the smallest value of ni that satisfies Eq. (7.30). A slightly more
direct method is to solve Eq. (7.30) in closed form as an equality:

(1 − ri)
ni
� 1 − Rg (7.31a)

Taking the log of both sides of Eq. (7.31a) and solving yields

ni � log(1 − Rg)/ log(1 − ri) (7.31b)

The solution is the smallest integer that exceeds the value of ni computed in
Eq. (7.31b).

We now show how these bounds apply to Example 1 of the last section.
Solving Eq. (7.31b) for Example 1 yields
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n1 � log(1 − Rg)/ log(1 − r1)

� log(1 − 0.9)/ log(1 − 0.85)

� 1.21 (7.32a)

n2 � log(1 − Rg)/ log(1 − r2)

� log(1 − 0.9)/ log(1 − 0.5)

� 3.32 (7.32b)

n3 � log(1 − Rg)/ log(1 − r3)

� log(1 − 0.9)/ log(1 − 0.3)

� 6.46 (7.32c)

Clearly, the minimum values for n1, n2, and n3 from the preceding computa-
tions are 2, 4, and 7, respectively. Thus, these three simple computations have
advanced our design from the original statement of the problem given in Fig.
7.4(a) to the minimum system design given in Fig. 7.4(b). The subsystem reli-
abilities are given by Eq. (7.33):

Ri � 1 − (1 − ri)
ni (7.33)

Substitution yields

R1 � 1 − (1 − 0.85)2
� 0.9775 (7.34a)

R2 � 1 − (1 − 0.5)4
� 0.9375 (7.34b)

R3 � 1 − (1 − 0.3)7
� 0.9176 (7.34c)

Rs � R1R2R3 � 0.9775 × 0.9375 × 0.9176 � 0.84089 (7.34d)

The minimum system design represents the first step toward achieving an
optimized system design. The reliability has been raised from 0.1275 to 0.8409,
a large step toward achieving the goal of 0.9. Furthermore, only 3 cost units
are left, so 0, 1, 2, and 3 are the number of units that can be added to the
minimum design. An upper bound on the number of cases to be considered is
4 × 4 × 4 = 64 cases, a huge decrease from the initial estimate of 2,744 cases.
(This number, 64, will be further reduced once we add the upper bounds of
Section 7.8.3.) In fact, because this problem is now reduced, we can easily
enumerate exactly how many cases remain. If we allocate the remaining 3
units to subsystem 1, no additional units can be allocated to subsystems 2 and
3 because of the cost constraint. We could label this policy n1 = 5, n2 = 4,
and n3 = 7. However, the minimum design represents such an important initial
step that we will now assume that it is always the first step in optimization and
only deal with increments (deltas) added to the initial design. Thus, instead of
labeling this policy (case) n1= 5, n2 = 4, and n3 = 7, we will call it Dn1 = 3,
Dn2 = 0, and Dn3 = 0, or incremental policy (3, 0, 0).
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n1 = 1

R1 = 0.85

Rs0
= 0.1275

R2 = 0.5 R3 = 0.3

n2 = 1 n3 = 1

c2 = 1

cs = 3

c1 = 1 c3 = 1

(a) Initial Problem Statement

(b) Minimum System Design

R1 = 0.9975 R2 = 0.9375 R3 = 0.9176

Rsm = 0.8409

cs = 13

c1 = 2 c2 = 4 c3 = 7

n1 = 2

n2 = 4
n3 = 7

.

.

.

.

Figure 7.4 Initial statement of Example 1 and minimum system design.

We can now apply the same minimum design approach to Example 2. Solv-
ing Eq. (7.31b) for Example 2 yields

n1 � log(1 − Rg)/ log(1 − r1)

� log(1 − 0.95)/ log(1 − 0.8)

� 1.86 (7.35a)

n3 � n2 � n1 (7.35b)

n4 � log(1 − Rg)/ log(1 − r4)

� log(1 − 0.95)/ log(1 − 0.9)

� 1.3 (7.35c)

n5 � n4 (7.35d)

Clearly, the minimum values for n1, n2, n3, n4, and n5 are all 2. The original
statement of the problem and the minimum system design are given in Fig. 7.5.
The subsystem reliabilities are given by substitution in Eq. (7.33):
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Rs0
= 0.41472

cs = 12

n1 = 1

R1 = 0.8 R2 = 0.8 R3 = 0.8 R4 = 0.9 R5 = 0.9

n2 = 1 n3 = 1 n4 = 1 n5 = 1

c2 = 2c1 = 2 c3 = 2 c4 = 3 c5 = 3

(a) Initial Problem Statement

(b) Minimum System Design

Rsm = 0.8671

cs = 24

R1 = 0.96 R2 = 0.96 R3 = 0.96 R4 = 0.99 R5 = 0.99

c1 = 4 c2 = 4 c3 = 4 c4 = 6 c5 = 6

n1 = 2 n2 = 2 n3 = 2 n4 = 2 n5 = 2

Figure 7.5 Initial statement of Example 2 and minimum system design.

R1 � 1 − (1 − 0.8)2
� 0.96 (7.36a)

R3 � R2 � R1 (7.36b)

R4 � 1 − (1 − 0.9)2
� 0.99 (7.36c)

R5 � R4 (7.36d)

Again, the minimum system design is a significant step toward an optimized
system design. The product of the 5 parallel subsystems yields a system reli-
ability of 0.8671. The reliability has been raised from 0.41472 to 0.8671. Since
24 cost units are consumed by the minimum design, 12 are left; these will buy
up to 6 redundant elements for the first 3 elements or up to 4 for the last 2.
An upper bound on the number of cases to be considered is 7 × 7 × 7 × 5
× 5 = 8,575 cases—a great reduction from the initial estimate of 177,957, but
much larger than the 31 cases that really must be calculated once upper bounds
are added. The next section discusses how we may rapidly find the remaining
cases that need to be enumerated.
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7.8.3 Upper Bounds

In the previous section, we showed that the lower-bound procedure greatly
decreased the number of cases that must be evaluated if enumeration is to be
used. In this section, we show that this number is further reduced by the impo-
sition of upper bounds that are related to the resource constraint, which has
been modeled as cost. However, the procedure would be the same for another
if a single constraint (such as volume or weight) were involved. The case of
multiple constraints is discussed later.

We begin by discussing the rare case in which the lower bound that yields
the minimum design meets or exceeds the system goal. For example, suppose
that a system reliability Rs > Rg, can be achieved by expending 90% of the cost,
co. In such a case, we wish to ask how much better can we make the system
if we spend a bit more and how much we save if we are content to accept
a slightly smaller Rs that does not exceed Rg. The easiest way to formulate
such a set of policies is to compute the resultant system reliabilities and costs
for adding or deleting one parallel element for subsystem X1, repeating the
procedure for subsystem X2, and so on. The design team and customer then
examine this family of policies to determine which policy is to be pursued.

In the more familiar case, Rs < Rg, and we wish to expend all or some of
the remaining resource co to improve the system reliability to meet the desired
goal. We seek a more efficient procedure for achieving an optimum system than
blind enumeration. We can use the minimum solution as a lower bound and
add in the resource constraint to achieve an upper bound on the solution. The
resource constraint forms upper bounds on the number of additional elements
that can be allocated. For Example 1, the minimum system leaves 3 cost units,
which allow up to 3 additional parallel elements for each subsystem. However,
each time we allocate a unit to a subsystem, we expend 1 resource unit, and
the number of units available to other subsystems is also reduced by 1. We
call the allocation of these additional resources the augmentation policy; it is
the addition of the best of the augmentation policies to the minimum design
that results in the optimization policy.

The use of a branching search tree (policy tree) is one way to illustrate
how the upper bounds are computed and how they constrain the solution to
a small number of cases. We start with the minimum system design that is
the result of the lower bounds and use the remaining constraint to generate
a set of augmentation policies from which we select the optimum policy or,
as discussed previously, one of the suboptima close to the true optimum. We
use Example 1 to illustrate the procedure. The minimum design absorbs 13
cost units, leaving 3 additional units. Thus the number of redundant elements
is bounded from below by the minimum system design and from above by at
most 3 additional units, yielding 2 ≤ n1 ≤ 5; 4 ≤ n2 ≤ 7; and 7 ≤ n3 ≤ 10. One
can improve on these bounds by applying the upper bounds as computation
of the cases proceeds. The easist way to accomplish this is to compute the
minimum design and allocate the remaining resource in an incremental manner.
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0.8602

1 1 2 1 2 3

Figure 7.6 A search tree for Example 1.

The incremental policy is implemented in the following manner. Consider
the alternatives; one could expend all the 3 incremental units on element 1, for
instance, resulting in an augmentation policy Dn1 = 3, Dn2 = 0, and Dn3 = 0, or
one could use incremental notation, resulting in an incremental policy (3, 0, 0),
with c = 16. Computation of this policy’s reliability yields Rs = 0.8602. Another
alternative for element 1 is (2, –, –), with c = 15. One cost unit would be left to
spend on element 2 or element 3. These two policies would be denoted as (2, 1,
0) and (2, 0, 1) using the incremental notation and yield reliabilities of 0.8885
and 0.8830. These three policies discussed above, as well as the seven other pos-
sible ones, are shown in the search tree of Fig. 7.6. Branches radiating from the
start node at the top of the tree represent the number of additional components
(in addition to the minimum solution) assigned to element 1. The second level
displays the incremental choices for element 2, and the third level displays the
incremental choices for element 3. Inspection of Fig. 7.6 shows that the maxi-
mum reliability occurs for augmentation policy (1, 1, 1), the center path in the
diagram, which corresponds to a total solution of n1 = 2 +1, n2 =  4 + 1, and n3

= 7 + 1 at a cost of 16 and a reliability of 0.9098. Of course, the other solutions
denoted by augmentation policies (0, 2, 1) and (0, 1, 2) with reliabilities 0.9068
and 0.9087 are very close; one of these could be chosen as the policy of choice
based on other factors. Other possibilities are to use standby reliability for some
of the systems, especially in the case of element 3, which has a large number of
parallel units. In some cases, we may not be able to reach the system goal, and
either the goal must be relaxed or the cost budget must be increased.

7.8.4 An Algorithm for Generating Augmentation Policies

The basic approach is simple: the lower-bound solution for the minimum sys-
tem design is the starting point. The resources for the minimum system design
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TABLE 7.4 An Algorithm that Solves for the Minimum System Design and the
Augmentation Policies for Example 1

procedure (optimum reliability policy computation)
{Three subsystems: 1, 2, 3}
{Reliability of subsystems R1, R2, R3}
{Cost Constraint, C}
{Reliability Goal, RG}
input (R1, R2, R3, C, RG)

begin {Minimum System Design}
M1 :� ceiling [log(1 − RG)/ log(1 − R1)]
M2 :� ceiling [log(1 − RG)/ log(1 − R2)]
M3 :� ceiling [log(1 − RG)/ log(1 − R3)]
RS :� [(1 − (1 − R1)**M1)] ∗ [(1 − (1 − R2)**M2)] ∗ [(1 − (1 − R3)**M3)]
PRINT (M1, M2, M3, RS)

end {Minimum System}
begin {Augmentation Policy}

CA :� C − M1 − M2 − M3
for I :� 0 to CA

for J :� 0 to CA − I
for K :� 0 to CA − I − J

N1 :� M1 + I
N2 :� M2 + J
N3 :� M3 + K
RS :� [(1 − (1 − R1)**N1)] ∗ [(1 − (1 − R2)**N2)]

∗ [(1 − (1 − R3)**N3)]
PRINT (N1, N2, N3, RS)

end K
end J

end I
end {Augmentation}

end {Procedure}

Note: The control statements have their usual meanings: The assignment operator is denoted by
: =and the ceiling (x) function is the smallest integer that is greater than or equal to x. The symbol
** means “raise to the power of” and ∗ means “multiplied by.”

are subtracted from the resource budget to obtain the resources available for
augmentation. All possible augmentation policies are generated for element 1,
along with the concomitant reduction in augmentation resources. For each of
the policies for element 1, the remaining augmentation resources are used for
element 2 to form the second step of the policies. This process is continued
for the rest of the elements. Since the augmentation resources quickly decrease
to 0 for many of the policies, the number of combinations to be considered is
greatly reduced as the process continues. Once an augmentation policy is com-
pleted, the reliability is calculated and the information is listed in a table (or on
a search tree for smaller problems). A choice is then made among the policies
yielding high reliabilities.

A simple algorithm is given in Table 7.4 that solves for the minimum sys-
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TABLE 7.5 Results of the Algorithm for Computing the
Augmentation Policies for Example 1 (Optimum Solutions)

Minimum System Design

M1 M2 M3 RS

2 4 7 0.8409362

Optimum Policies � Minimum Design + Augmentation Policies

N1 N2 N3 RS

2 4 10 0.8905201
2 5 9 0.9087401
2 6 8 0.9067561
2 7 7 0.8899909
3 4 9 0.896632
3 5 8 0.9098224
3 6 7 0.9002588
4 4 8 0.8830077
4 5 7 0.8885192
5 4 7 0.860227

tem design and the augmentation policies for Example 1 of Section 7.7.2. The
algorithm is written in a pseudocode form similar to that given in Appendix 2
of Rosen [1999]. It generates the minimum system design (2, 4, 7) and the 10
augmentation policies. In the augmentation policies, the I-loop allocates 0 to
3 resource units to subsystem 1 and the J-loop allocates the (3 – I) remaining
units to subsystem 2. Once resources are allocated to subsystems 1 and 2, the
amount of resources left for subsystem 3, K, is (3 – I – J). Thus, the I-loop
takes on the values [I = (0), (1), (2), (3)]. The J-loop takes on the values J = (3
– I), which generates the pairs [I, J = (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (3, 0)]. Lastly, the K-loop assigns the remaining variable
K = [3 – (I + J)], which completes the 10 triplets [I, J, K = (0, 0, 3), (0, 1, 2),
(0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)].

Execution of a program based on the algorithm in Table 7.4 enumerates the
10 augmentation policies discussed previously. The results, given in Table 7.5,
agree with the search tree in Fig. 7.6.

The concept of an optimum is clearly defined mathematically, but in terms
of an engineering design, a family of near-optimum solutions is preferred along
with the optimum one. Since we have a simple algorithm (program), it is easy
for the designer to explore such a family of solutions. Suppose we ask what
reliability could be achieved if one decided to shave the cost from 16 units to 15
units. Substituting an augmentation budget of 2 instead of 3 in the loops given
in Table 7.4 yields the solutions in Table 7.6. Now our comparison begins:
Is the solution of (2, 5, 8), with a reliability of 0.8923632 and a cost of 15, a
good substitute for the solution of (3, 5, 8), with a reliability of 0.9098224 and
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TABLE 7.6 Reliability of Various Designs for Example 1 (Optimum
Solutions) In Which the Maximum Cost Is Reduced to 15 Units

Minimum System Design

M1 M2 M3 RS

2 4 7 0.8409362

Optimum Policies � Minimum Design + Augmentation Policies

N1 N2 N3 RS

2 4 9 0.8794260
2 5 8 0.8923632
2 6 7 0.8829831
3 4 8 0.8804733
3 5 7 0.8859690
4 4 7 0.8598573

a cost of 16? Suppose we can afford a budget of 17 units. The optimum, with
an increased budget of 17, achieves a reliability of 0.9265198 by using policy
(3, 5, 9). Is it worth the extra cost unit to raise the reliability? Only a design
review that includes the system designer, the customer, and possibly various
practical considerations can be used to decide such issues.

We repeat the procedure in Table 7.6 for Example 2. An algorithm for the
solution of Example 2 is given in Table 7.7. Note in the table that the loop-
control end point is adjusted for the resources allocated in outer loops (e.g.,
for L :=  0 to (CA – I – J – K)/ C4), and note that the end point is divided by
the item weight, C4, so that L is incremented in multiples of C4.

The results of executing a program corresponding to the algorithm of Table
7.7 are given in Table 7.8. (The running time of the program was one or two
seconds on a Pentium 400 MHz personal computer.) The minimum system
design requires 2 elements for each subsystem, expends 24 units of resources,
and achieves a reliability of 0.8671. The 31 policies generated by the algorithm
are listed in Table 7.8 in descending order of reliability.

Note that some of the policies are dominated by other policies; for example,
policy 14, which is (4, 5, 3, 2, 2) and requires 36 resource units, is dominated
by policy 1, which is (4, 4, 4, 2, 2) and also uses the entire 36 resource units to
achieve a higher reliability. A study of the table shows that policy 1 dominates
policies 2, 9, 10, 11, 12, 13, 14, 18, 19, 22, 23, and 24. Similarly, policy 15
dominates policies 25, 26, and 27. Thus out of the 31 policies, a total of 15 are
dominated, leaving 16 to represent “good solutions” that should be considered.

Further inspection of Table 7.8 shows that there are many good policies that
yield suboptima. For example, policy 31 satisfies the minimum requirement RS
> 0.95 with fewer resources—30 rather than the 36 budgeted. Such calculations
should result in a conference between the design leader, the management, and
the customer to answer such questions as the following:
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TABLE 7.7 An Algorithm That Solves for the Minimum System Design and the
Augmentation Policies for Example 2

procedure (optimum reliability policy computation)
{Five subsystems: 1, 2, 3, 4, 5}
{Reliability of subsystems R1, R2, R3, R4, R5}
{Cost Constraint, C; individual costs, C1, C2, C3, C4, C5}
{Reliability Goal, RG}
input (R1, R2, R3, R4, R5, C, RG, C1, C2, C3, C4, C5)

begin {Minimum System Design}
M1 :� ceiling [log(1 − RG)/ log(1 − R1)]
M2 :� ceiling [log(1 − RG)/ log(1 − R2)]
M3 :� ceiling [log(1 − RG)/ log(1 − R3)]
M4 :� ceiling [log(1 − RG)/ log(1 − R4)]
M5 :� ceiling [log(1 − RG)/ log(1 − R5)]
RS :� [(1 − (1 − R1)**M1)] ∗ [(1 − (1 − R2)**M2)] ∗ [(1 − (1 − R3)**M3)]

∗ [(1 − (1 − R4)**M4)] ∗ [(1 − (1 − R5)**M5)]
CS :� M1 ∗ C1 + M2 ∗ C2 + M3 ∗ C3 + M4 ∗ C4 + M5 ∗ C5

PRINT (M1, M2, M3, M4, M5, CS, RS)
end {Minimum System}
begin {Augmentation Policy}

CA :� C − M1 − M2 − M3 − M4 − M5
for I :� 0 to CA/ C1

for J :� 0 to (CA − I)/ C2
for K :� 0 to (CA − I − J)/ C3

for L :� 0 to (CA − I − J − K)/ C4
for M :� 0 to (CA − I − J − K − L)/ C5

N1 :� M1 + I
N2 :� M2 + J
N3 :� M3 + K
N4 :� M4 + L
N5 :� M5 + M
RS :� [(1 − (1 − R1)**N1)] ∗ [(1 − (1 − R2)**N2)]

∗ [(1 − (1 − R3)**N3)] ∗ [(1 − (1 − R4)**N4)]
∗ [(1 − (1 − R5)**N5)]

CS :� 2 ∗ N1 + 2 ∗ N2 + 2 ∗ N3 + 3 ∗ N4 + 3 ∗ N5
PRINT (N1, N2, N3, N4, N5, CS, RS)

end M
end L

end K
end J

end I
end {Augmentation}

end {Procedure}

1. Is a reliability of 0.9754 that uses resources of 36 units significantly better
than one of 0.95677 that uses resources of 30 units?

2. What would be the cost reduction for a system that uses 30 resource
units?
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TABLE 7.8 Parallel Redundancy Optimum and Suboptimum Solutions for
Example 2

Rank n1 n2 n3 n4 n5 Cost Reliability

1 4 4 4 2 2 36 0.97540
2 3 3 3 3 3 36 0.97424
3 3 3 4 2 3 35 0.97169
4 3 3 4 3 2 35 0.97169
5 3 4 3 2 3 35 0.97169

6 3 4 3 3 2 35 0.97169
7 4 3 3 2 3 35 0.97169
8 4 3 3 3 2 35 0.97169
9 3 4 5 2 2 36 0.97039

10 3 5 4 2 2 36 0.97039

11 4 3 5 2 2 36 0.97039
12 5 3 4 2 2 36 0.97039
13 5 4 3 2 2 36 0.97039
14 4 5 3 2 2 36 0.97039
15 4 3 4 2 2 34 0.96915

16 3 4 4 2 2 34 0.96915
17 4 4 3 2 2 34 0.96915
18 3 3 3 4 2 36 0.96633
19 3 3 3 2 4 36 0.96633
20 3 3 3 3 2 33 0.96546

21 3 3 3 2 3 33 0.96546
22 3 3 6 2 2 36 0.96442
23 6 3 3 2 2 36 0.96442
24 3 6 3 2 2 36 0.96442
25 5 3 3 2 2 34 0.96417

26 3 3 5 2 2 34 0.96417
27 3 5 3 2 2 34 0.96417
28 4 3 3 2 2 32 0.96294
29 3 3 4 2 2 32 0.96294
30 3 4 3 2 2 32 0.96294
31 3 3 3 2 2 30 0.95677

3. If 30 resource units are used for reliability purposes, can the additional
budgeted 6 resource units be used for something else of value in the
system design?

To further answer these questions, additional studies should be attempted with
perhaps 32 or 34 resource units, the results of which should be used in the
study. The major result demonstrated in this section is that the use of upper and
lower bounds and modern, relatively fast personal computers allows a designer
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the luxury of computing a range of design solutions and comparing them; in
general, the more complex methods discussed later in this chapter are seldom
needed. Using the results of the discussion of availability in Section 7.4.6, it
is easy to adapt any of the foregoing algorithms to availability apportionment
by substituting probabilities in the algorithms that represent unit availabilities
rather than reliabilities.

7.8.5 Optimization with Multiple Constraints

The preceding material in this chapter has dealt with a single constraint and has
used cost to illustrate the constraint. Sometimes, however, there are multiple
constraints—cost, volume, and weight, for instance. Of obvious importance is
the use of these three constraints in satellites, spacecraft, and aircraft. Without
loss of generality, we can assume that there are three constraints: cost, volume,
and weight (c, v, and w) and that the constraints (given in the forthcoming
equations) are similar to those of Eq. (7.4). Clearly, these constraints as well
as the following equations can represent other variables and/ or can be extended
to more than three constraints.

c �

k

���
i � 1

nici (7.37a)

v �

k

���
i � 1

nivi (7.37b)

w �

k

���
i � 1

niwi (7.37c)

Generally, optimization techniques such as dynamic programming become
much more difficult when more than one variable is involved. Since we are
dealing with discrete optimization and enumeration, however, the extra work
of multiple constraints is modest. First of all, the computation of the minimum
system design is not affected by the constraints; thus lower bounds are com-
puted as in the case of a single constraint (cf. Section 7.6.2). Once the minimum
design (lower bound) is obtained, the values are substituted in Eqs. (7.37a–c)
and the remaining values of the constraints are computed for the augmenta-
tion phase. In some cases, the minimum system design exceeds one or more
of the constraints and the reliabilty goal and constraints are incompatible (one
can call such a situation an ill-formulated problem). The only recourse in the
case of an ill-formulated problem is to have a high-level design review with
all members of the designer’s and the customer’s senior management present
to change the requirements so that the problem is solvable.

Assume that the minimum system design still leaves some values of all the
constraints for the augmentation phase. The constraints are still used to com-
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pute the upper bounds; however, we now have more than one upper bound. For
the case under discussion, we have three upper bounds—one governed by cost,
one by weight, and one by volume—that result in three values of n: (ni, n′i , n′′i ).
The bound we choose is the minimum value of the three bounds, that is, the
minimum value of (ni, n′i , n′′i ) [Rice, 1999]. Computation of the augmentation
policy proceeds in the same manner as discussed in Section 7.6.3; however,
at each stage, three upper bounds are computed, and the minimum is used in
each case. Once the augmentation policy is obtained, the system reliability is
computed. If the reliability goal cannot be obtained, a high-level design review
is enacted. The designer should compute beforehand some alternative designs
for presentation that violate one or more of the constraints but still achieve the
goals.

7.9 APPORTIONMENT AS AN APPROXIMATE OPTIMIZATION
TECHNIQUE

The bounded solutions of the previous section led to a family of solutions that
included the maximum reliability combination. The apportionment techniques
discussed in Section 7.6 can be viewed as an approximate solution. In this
section, we explore how these solutions compare with the optimum solutions
of the previous section.

We begin by considering Example 1 given in Section 7.7.2. The system goal
Rg = 0.9, and by using Eq. (7.15b) we obtain a goal of 0.9655 for each of the
three subsystems. We can determine how many parallel components are needed
for each subsystem if we use the reliability goal of 0.9655 and each subsystem
reliability (0.85, 0.5, 0.3) and substitute into Eq. (7.31b). The results for the
subsystem are

n1 � log(1 − Rg)/ log(1 − r1) (7.38a)

n1 � log(1 − 0.9655)/ log(1 − 0.85) � 1.77 (7.38b)

n2 � log(1 − 0.9655)/ log(1 − 0.5) � 4.86 (7.38c)

n3 � log(1 − 0.9655)/ log(1 − 0.3) � 9.44 (7.38d)

This represents a solution of n1, n2, n3 = 2, 5, 10, using 17 cost units and
exceeding both the reliability goal and the cost budget. One could then try
removing one unit from each of the subsystems to arrive at approximate solu-
tions. If we remove one unit from subsystem 2 or 3, we obtain the 16-unit
solutions n1, n2, n3 =  2, 4, 10 and n1, n2, n3 = 2, 5, 9, which correspond to the
optimum designs given in Table 7.5 (rows 1 and 2). If we remove one unit
from subsystem 1, we obtain solution n1, n2, n3 = 1, 5, 10, corresponding to a
reliability of 0.8002 that is clearly inferior to all the 10 solutions in Table 7.5.

We now consider the apportionment solutions for Example 2 given in Sec-
tion 7.7.2. The system goal is Rg = 0.95, and by using Eq. (7.15b), we obtain
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a goal of 0.9898 for each of the five subsystems. We can determine how many
parallel components are needed for each subsystem to meet the reliability goal
of 0.9898 with each subsystem reliability (0.8, 0.8, 0.8, 0.9, 0.9). Substitution
into Eq. (7.31b) yields the desired results that need to be calculated only for
the subsystem values of 0.8 and 0.9; these are

n1 � log(1 − Rg)/ log(1 − r1) (7.39a)

n1, 2, 3 � log(1 − 0.9898)/ log(1 − 0.8) � 2.85 (7.39b)

n4, 5 � log(1 − 0.9898)/ log(1 − 0.9) � 1.99 (7.39c)

Thus rounding up represents a solution of n1, n2, n3, n4, n5 = 3, 3, 3, 2, 2.
Since the costs are 2, 2, 2, 3, 3 units per subsystem, respectively, this appor-
tioned solution expends 30 cost units and yields a reliability of 0.9568. This
is the last policy in Table 7.8. We conclude that the simplest equal apportion-
ment method is a good approximation, and since it only takes a few minutes
with paper, pencil, and calculator, it is a valuable check on the results of the
previous section.

7.10 STANDBY SYSTEM OPTIMIZATION

In principle, the optimization of a standby system is the same procedure as
that of a parallel system, but instead of the reliability expression for n items in
parallel given in Eq. (7.3), the expression given in Eqs. (7.5) and (7.6) is used.
Because Eq. (7.6) is a series, the simple solution for the number of elements in
the minimum system design given in Eqs. (7.30) and (7.31) is not applicable.
A slightly more complicated solution for a standby system involves the evalua-
tion of Eq. (7.6) for increasing values of k until the right-hand side exceeds the
reliability goal Rg. This is a little more complicated for paper-pencil-and-cal-
culator computation, but the complexity increase is insignificant when a com-
puter program is used. Another approach is to use cumulative Poisson tables
or graphs to solve Eq. (7.6), the Chebyschev bound, or the normal approxi-
mation to the Poisson (these later techniques are explained and compared in
Messinger [1970]). The reader should note that the techniques for a standby
system also apply to a system with spares. We assume that a standby system
switches in the standby component quickly enough for the system performance
to not be affected. In other systems, a set of spare components is kept near an
operating system that has self-diagnostics to rapidly signal the failure. If the
replacement of a spare is rapid (e.g., opening a panel and putting in a printed
circuit board spare), the system would not be down for a significant interval
(this is essentially a standby system). If the time to switch a standby system is
long enough to interrupt system performance or if the downtime in replacing
a spare is significant, we must treat the system as an availability problem and
formulate a Markov model.
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One can use Example 1 of Section 7.7.2 to illustrate a standby system reli-
ability optimization [Shooman, 1994]. Since standby systems are generally
more complex than parallel ones because of the failure detection and switching
involved, we assume that each element costs 1.5 units rather than 1 unit. Fur-
thermore, we equate the probability of no failures (x = 0) for the Poisson, e−m ,
to the reliabilities of each unit and solve for the expected number of failures,
m: m1 = ln(0.85) = 0.1625189; m2 = ln(0.5) = 0.6931471; and m3 = ln(0.3) =
1.2039728. Substitution into Eqs. (7.5) and (7.6) yields

e−m1 (1 + m1 + m2
1/ 2! + · · · +)

≥ 0.90 for two terms 0.85(1 + 0.1625189)

� 0.9881 ≥ 0.9 (7.40a)

e−m2 (1 + m2 + m2
2/ 2! + · · · +)

≥ 0.90 for three terms 0.5(1 + 0.6931471 + 0.2402264)

� 0.9667 ≥ 0.9 (7.40b)

e−m3 (1 + m3 + m2
3/ 2! + · · · +)

≥ 0.90 for four terms 0.3(1 + 0.12039728 + 0.7247752 + 0.2908735)

� 0.9659 ≥ 0.9 (7.40c)

Thus, the minimum values for standby system reliability are n1 = 2, n2 =
3, n3 = 4. The minimum system cost is 9 × 1.5 = 13.5 and the reliability is
0.9881 × 0.9667 × 0.9659 = 0.9226. Since this exceeds the reliability goal,
this is the optimum solution, and the augmentation policy phase is not needed.
If augmentation had been required, we could use an algorithm similar to that
of Table 7.4; however, instead of equations for M1, M2, and M3, do while
R ≤ Rg loops that increment n are used. Similarly, the RS:= equation becomes a
product of the series expansions for the Poisson that are computed by for loops
in a manner similar to that of Eqs. (7.40a–c). If the assumed cost of 1.5 for
a standby element is accurate, and if there are no other overriding factors, the
standby system would be preferred to that of any of the parallel system policies
of Table 7.5 since the resource cost is less and the reliability is higher.

It is also possible to adapt the foregoing optimization techniques to an r-
out-of-n system design; see Shooman [1994, p. 946].

One should not forget that reliability can be improved by component
improvement as an alternative to parallel or standby system redundancy. In
general, there are extra costs involved (development and production), and typi-
cally such an improved design begins by listing all the ways in which the
element can fail in the order of frequency. Design engineers then propose
schemes to eliminate, mitigate, or reduce the frequency of occurrence. The
design changes are made, sometimes one at a time or a few at a time, and the
prototype is tested to confirm the success of the redesign. Sometimes overstress
(accelerated) testing is used in such a process to demonstrate unknown failure
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modes that must be fixed. A model comparing the costs of improved design
with the costs of parallel redundancy is given in Shooman and Marshall [1993
and 1994, p. 947].

7.11 OPTIMIZATION USING A GREEDY ALGORITHM

7.11.1 Introduction

If one studies the optimum solutions of various optimization procedures, we
find that the allocation of parallel subsystems tends to raise all the subsystems
to nearly the same reliability. For example, consider the optimum solutions
given in Table 7.5. The subsystem reliabilities start out (0.85, 0.5, 0.3) and the
minimal system design (with 2, 4, and 7 parallel systems) yields upon substitu-
tion into Eq. (7.3), giving (0.9775, 0.9375, 0.9176), and the optimum solution
of 3, 5, 8 results in reliabilities of (0.9966, 0.9688, 0.9424). This is one of
the reasons that the equal apportionment approximation gave reasonably good
results, leading one to a heuristic procedure for optimization. If one starts with
the initial design or, better, with the minimal system design, one can allocate
additional parallel systems to the subsystems by computing which allocation to
subsystem 1, 2, or 3 will produce the largest increase in reliability. Such an allo-
cation is made and the computations are repeated with the new parallel system
added. Based on these new computations, a second parallel system is added,
and the procedure is repeated until the entire resource has been expended. This
procedure generates an augmentation policy that, when added to the minimal
system design, generates a good policy.

7.11.2 Greedy Algorithm

The foregoing algorithm that makes an optimal choice at each step is often
referred to as a “greedy” algorithm [Cormen, Chapter 17]. Starting with the
minimum system design, we compute the increase in reliability obtained by
adding a single element to each subsystem. In the case of Example 1, Fig.
7.4(b) shows that the minimum system design requires n1 = 2, n2 = 4, and n3 =
7, yielding a reliability Rsm = 0.9775 × 0.9375 × 0.9176 = 0.8409. The addition
of one element to n1 raises the reliability of this subsystem to 0.996625 and Rsm

to 0.8573, which represents a reliability increment DR of 0.0164. Repeating
this process for an increase in n2 from 4 to 5 results in raising subsystem 2
to a reliability of 0.96875 and Rsm to 0.8689, which represents a reliability
increment DR of 0.0280. Increasing n3 to 8 yields a subsystem reliability of
0.9424, and Rsm increases to 0.8636, which represents a reliability increment
DR of 0.0227. Raising subsystem 2 from 4 to 5 parallel elements produces the
largest DR; thus the first stage of the greedy algorithm yields the following:

1. Stage 0, minimum system design:
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n1 = 2, n2 = 4, n3 = 7,
Rsm � 0.9775 × 0.9375 × 0.9176 � 0.8409

2. Stage 1, add one to n2:

n1 = 2, n2 = 5, n3 = 7,
Rsm � 0.9775 × 0.96875 × 0.9176 � 0.86875

Continuing the greedy process yields the following:

1. Stage 2, add one to n3:

n1 = 2, n2 = 5, n3 = 8,
Rsm � 0.9775 × 0.96875 × 0.9424 � 0.8924

2. Stage 3, add one to n1:

n1 = 3, n2 = 5, n3 = 8,
Rsm � 0.996625 × 0.96875 × 0.95424 � 0.909868

When we compare the solution of stage 3 with Table 7.5, we see that they
both have reached the same policy and the same optimum reliability (within
round-off errors). The greedy algorithm always yields a good solution, but it
is not always the optimum (cf. Section 7.11.4).

7.11.3 Unequal Weights and Multiple Constraints

There is something special about Example 1—it is that all the weights are
equal. If we consider Example 2, where there are unequal weights, it may not
be fair to compare the reliability increase, DR, achieved through the adding of
one additional parallel component. For example, a component with a cost of 2
should be compared to adding two components with costs of 1 each. Thus, a
better procedure in implementing the greedy algorithm is to compare values of
DR/ DC as the single constraint of cost. When there are multiple constraints,
say, c, w, and v, then the comparison should be made based on some function
of c, w, and v; f (c, w, v), that is, use DR/ Df (c, w, v) as the comparison factor.
One possible function to use is a linear combination of the fraction of the
constraints expended. If m represents the stage of the augmentation policy, then
we would view the ratio Cm/ Ca as the fraction of the augmentation cost that has
been allocated. Thus, if at the first stage we allocate 20% of the augmentation
cost, then Cm/ Ca = 0.2 and the inverse ratio Ca/ Cm = 5. If we let f (c, w, v) =
k1(Cm/ Ca) + k2(Wm/ Wa) + k3(Vm/ Va), and also let k1 = k2 = k3 = 1, then the
constraint with the most available capacity has a stronger influence. Obviously,
there are many other good choices for f (c, w, v).
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7.11.4 When Is the Greedy Algorithm an Optimum?

The greedy algorithm seems like a fine approach to generating a sequence of
good policies that lead to an optimum or a good semioptimum policy. The main
question is when the greedy solution is an optimum and when it is a semiop-
timum, a question that has been studied by many [Barlow, 1965, 1975]. The
geometrical model discussed in Section 7.2 can be used to explain optimization
techniques. Suppose that the reliability surface has two spires: one at x1y1 that
reaches a reliability peak of 0.98 and another at x2y2 that reaches a reliability
peak of 0.99. If we start the greedy algorithm at the base of spire one, it is
possible that it will reach a reliability maximum of 0.98 rather than 0.99. There
are similarities between the greedy algorithm and the gradient algorithm for
continuous functions [Hiller, 1974, p. 729]. Recent work has focused on devel-
oping a theory (called the matroid theory) that provides the basis for greedy
algorithms [Cormen, p. 345]. However, as long as the upper and lower bounds
discussed previously provide a family of solutions that includes the optimum
as well as a group of good suboptimum policies, and if the computer time is
modest, the use of the greedy algorithm is probably unnecessary.

7.11.5 Greedy Algorithm Versus Apportionment Techniques

We can understand how the apportionment algorithm reaches an approximate
solution if we compare it with a greedy approximation to exact optimization.
The greedy approximation adds a new redundant component at each step,
which yields the highest gain in reliability on each iteration. The result is
to “spread the redundancy around the system” in a bottom–up fashion. The
apportionment process also spreads the redundancy about the system, but in a
top–down fashion. In general, the two techniques will yield a different set of
suboptima; most of the time, both will yield good solutions. The apportion-
ment approach has a number of advantages, including the following: (a) it fits
in well with the philosophy of system design, which is generally adopted by
designers of large systems; (b) its computations will in general be simpler; and
(c) it may provide more insight into when the suboptimal solutions it generates
are good.

7.12 DYNAMIC PROGRAMMING

7.12.1 Introduction

Dynamic programming provides a different approach to optimization that
requires fewer steps than exhaustive enumeration and always leads to an opti-
mal policy. The discussion of this section is included for completeness, since
the author believes that the application of lower bounds to obtain a minimum
system design and the subsequent use of upper bounds to obtain an augmenta-
tion policy both require less effort but still yield the optimum. The incremental
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reliability method is a competitor to the bounding techniques, but unless one
makes a careful study, it is not possible to be sure that this method does indeed
yield an optimum.

Dynamic programming is based on an optimality principle established by
Bellman [1957, 1958], who states, “An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first
decision.” Clearly, this is a high-level principle that can apply to a large vari-
ety of situations. A large number of examples that describe how dynamic pro-
gramming can be applied to various situations appear in Hiller [1974, Chapter
6]. The best way to understand its application to reliability optimization is to
apply it to a problem.

7.12.2 Dynamic Programming Example

The following example used to illustrate dynamic programming is a modifica-
tion of Example 1 of Section 7.7.2.

Example 3 (Modification of Example 1): The initial design of a system yields
3 subsystems at the first level of decomposition. The system reliability goal,
Rg, is 0.8 for a given number of operating hours. The initial estimates of the
subsystem reliabilities are R1 = 0.85, R2 t = 0.5, and R3 = 0.3. Parallel redundancy
is to be used to improve the initial design so that it meets the reliability goal.
The constraint is cost; subsystem 1 is assumed to cost 2 units and subsystems
2 and 3 to cost 1 unit each. The total cost budget is 16 units.

7.12.3 Minimum System Design

Dynamic programming can deal with the optimization problem as stated. How-
ever, one should take advantage of the minimum system design procedures
(lower bounds) to reduce the size of the problem. Thus the minimum design
is computed and dynamic programming is used to solve for the augmentation
policy. The minimum system design is computed in a manner similar to that
of Eqs. (7.35a–d).

n1 � log(1 − 0.8)/ (1 − 0.85) � 0.848 (7.41a)

n2 � log(1 − 0.8)/ (1 − 0.5) � 2.322 (7.41b)

n3 � log(1 − 0.8)/ (1 − 0.3) � 4.512 (7.41c)

Thus the minimum system design consists of one subsystem 1, three subsystem
2, and five subsystem 3. The cost of the minimum design is C = 1 × 2 + 3 ×
1 + 5 × 1 = 10, and the cost available for the augmentation policy is DC = 16
– 10 = 6. The reliability of the minimum system design is
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Rsm � [1 − (1 − 0.85)] × [1 − (1 − 0.5)3] × [1 − (1 − 0.3)5]

� (0.85) × (0.875) × (0.83193) � 0.6187 (7.42)

7.12.4 Use of Dynamic Programming to Compute the Augmentation
Policy

Thus we now wish to use dynamic programming to determine what is the
best augmentation policy from which to raise the reliability 0.6187 to 0.8 by
expending the remaining six cost units. Dynamic programming for this prob-
lem consists of two phases: I and II. Phase I is used to construct a series of
tables that correspond to the best solution for cost allocation for various com-
binations of the subsystems. The first table considers the first subsystem only.
The second table corresponds to the best cost allocation for the first and second
subsystem; its construction uses information from the first table. A third table
is constructed that gives the best allocation for the third system based on the
second table, which depicts the best allocation for the first and second subsys-
tems. For phase II, certain features of the three tables of phase I are combined
to construct a new table that displays cost allocation per subsystem and also
the resulting reliability optimization. A “backtracking” solution-procedure is
used to compute the optimal policy for the cost constraint. The solution proce-
dure automatically allows backtracking to compute optimization solutions for
smaller cost constraints. The description of these procedures will be clearer
when they are applied to Example 3.

We begin our discussion by constructing the first table of phase I of the
solution, which is found in Table 7.9 and labeled as “Table 1.” The first col-
umn in Table 1 is the amount of cost constraint allocated to subsystem 1. The
maximum allocation is 6 cost units; the minimum, 0 cost units. The increments
between 0 and 6 are sized to be equal to the greatest common divisor of all the
subsystem costs, gcd (C1, C2, C3). In the case of Example 3, this is the gcd(2,
1, 1) = 1. Thus the first column in Table 1 comprises the cost allocations 0, 1,
2, 3, 4, 5, and 6.

The details of constructing Table 1 are as follows:

1. Consider the bottom line of Table 1. This table considers only the allo-
cation of cost to buy additional parallel units for subsystem 1. If 0 cost is
allocated to subsystem 1 for the augmentation policy, then no additional
components can be allocated above the single subsystem of the minimal
system design, and the optimal reliability is the same as the minimum
system design—that is, 0.6187.

2. Because subsystem 1 costs 2 units, no additional units can be purchased
with 1 cost unit, and the solution is the same as the 0 cost allocation.

3. If we increase the cost allocation to 2 units, we can allocate 1 addi-
tional unit to subsystem 1 for a total cost of 2, from which the reliability
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TABLE 7.9 Phase I Constraint Allocation Tables

Table 1: Allocation Table for Subsystem 1

DCost Constraint Dn1 Allocation Optimum Reliability

6 3 0.7276
5 2 0.7255
4 2 0.7255
3 1 0.7116
2 1 0.7116
1 0 0.6187
0 0 0.6187

Table 2: Allocation Table for Subsystems 1 and 2

DCost Constraint Dn2 Allocation Optimum Reliability

6 4 0.8068
5 3 0.8063
4 2 0.7878
3 1 0.7624
2 0 0.7116
1 1 0.6629
0 0 0.6187

Table 3: Allocation Table for Subsystems 1, 2, and 3

DCost Constraint Dn3 Allocation Optimum Reliability

6 2 0.8689
5 2 0.8409
4 1 0.8086
3 0 0.7624
2 0 0.7116
1 0 0.6629
0 0 0.6187

becomes Rs =  [1 – (1 –  0.85)2] × (0.875) × (0.83193) = (0.9775) ×
(0.875) × (0.83193) = 0.7116. This solution also holds for 3 cost units.

4. For 4 and 5 cost units, there can be an allocation of two subsystem 1
units, from which the reliability becomes Rs =�[1 –  (1 –  0.85)3] × (0.875)
× (0.83193) = (0.996625) × (0.875) × (0.83193) = 0.7255.

5. Lastly, for an allocation of 6 units, the total number of subsystem 1 units
is 1 + 3, from which the reliability becomes Rs = [1 –  (1 –  0.85)4] ×
(0.875) × (0.83193) ×  (0.999493) × (0.875) × (0.83193) = 0.7276.

The details of constructing Table 2 are as follows:
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1. Consider the bottom line of Table 2. If there are 0 cost units allocated,
then there can be no additional parallel elements for subsystem 2 and
none for subsystem 1. Thus the reliability is the same as the bottom line
in Table 1—that is, 0.6187.

2. If there is 1 cost unit allocated in Table 2, we can allocate 1 additional
unit to subsystem 2 or we can consult Table 1 to see the result of allocat-
ing 1 cost unit to subsystem 1 instead. Since subsystem 1 is 2 cost units,
there is no gain obtained by the allocation of 1 cost unit to subsystem 1.
Therefore, the optimum is to allocate 1 additional element to subsystem
2 (for a total of 4), from which the reliability is Rs = (0.85) × [1 – (1
– 0.5)4] × (0.83193) × (0.85) × (0.9375) × (0.83193) = 0.6629. Note
that this is actually the optimum for subsystems 1 and 2, which is the
meaning of Table 2.

3. For a cost allocation of 2, we have three choices: (a) 1 additional element
for Dn2 and 0 for Dn1; (b) two additional elements for Dn2 and 0 for Dn1;
and (c) 0 additional elements for Dn2 and 1 for Dn1. Clearly, choice (b)
is superior to choice (a), so for the optimum policy we need to compare
choices (b) and (c). Note that for choice (c), we can obtain the achieved
reliability by reading the appropriate row in Table 1, which indicates Rs

= 0.7116. For choice (2), we obtain R s = (0.85) × [1 – (1 –  0.5)5] ×
(0.83193) = (0.85) × (0.96875) × (0.83193) = 0.6850. Thus choice (b)
is superior, and we allocate 0 elements to Dn2.

4. In the case of a cost constraint of 3, there are again three choices: (a)
1 additional element for Dn2 and 1 for Dn1; (b) 2 additional elements
for Dn2 and 0 for Dn1; and (c) 3 additional elements for Dn2 and 0 for
Dn1. Clearly, choice (c) is superior to choice (b). To compare choice (c)
with choice (a), we say that it is a comparison of 1 additional element
fosr n2 and 1 for n1 versus 1 additional element for n2 along with 2 more
additional elements for n2. However, we already showed that 1 for n1

is better that 2 for n2; therefore, choice (a) is superior, from which the
reliability is Rs = [1 – (1 – 0.85)2] × [1 –  (1 – 0.5)4] × [1 – (1 –  0.3)5

= (0.9775) × (0.9375) × (0.83193) = 0.7624.
5. For the case of 4 units of incremental cost, there are again three choices:

(a) 0 additional elements for Dn2 and 2 for Dn1; (b) 2 additional elements
for Dn2 and 1 for Dn1; and (c) 4 additional elements for Dn2 and 0 for
Dn1. From Table 1, we see that choice (a) yields a reliability of 0.7255,
which is smaller than the previous allocation in Table 2; thus we should
consider choice (b) or choice (c). The reliability for these two choices is
given by Rs = [1 – (1 – 0.85)2] × [1 – (1 – 0.5)5] × [1 – (1 – 0.3)5] =
(0.9775) × (0.96875) × (0.83193) = 0.7878, and R s = [1 – (1 – 0.85) 1]
× [1 – (1 – 0.5)6] × [1 – (1 – 0.3)5] = (0.85) × (0.9844) × (0.83193)
= 0.6961]. Thus choice (b) is superior.

6. For the case of 5 cost units, one choice is 2 units for n1 and 1 for n2,
which gives a reliability of Rs = [1 – (1 – 0.85)3] × [1 – (1 – 0.5)5] × [1
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– (1 – 0.3)5] = (0.996625) × (0.96875) × (0.83193) = 0.8032. Another
choice is 1 unit of n1 and 3 units of n2, with a reliability of Rs = [1 – (1
– 0.85)2] × [1 – (1 – 0.5)6] × [1 – (1 – 0.3)5] = (0.9775) × (0.9844)
× (0.83193) = 0.8063. The remaining choice is 0 units of n 1 and 5 units
of n2, with a reliability of Rs = [1 – (1 – 0.85)1] × [1 – (1 – 0.5)8] ×
[1 – (1 – 0.3)5] = (0.85) × (0.9961) × (0.83193) = 0.7044. The second
choice is the best.

7. Lastly, a cost increment of 6 units allows a policy of 3 units for n1 and
0 units for n2, which gives a reliability of Rs = [1 – (1 – 0.85)4] × [1
– (1 – 0.5)3] × [1 = (1 – 0.3)5] = (0.99949) × (0.875) × (0.83193) =
0.72757, which is not an improvement from the previous policy. Another
choice is 2 units for n1 and 2 units for n2, which gives a reliability of Rs

= [1 – (1 – 0.85)3] × [1 – (1 – 0.5)5] × [1 – (1 – 0.3)5] = (0.996625)
× (0.96875) × (0.83193) = 0.8032; because this is less than the previous
policy, it is not optimum. The remaining choice is 1 unit for n1 and 4
units for n2, which gives a reliability of Rs = [1 – (1 – 0.85)2] × [1 –
(1 – 0.5)7] × [1 – (1 – 0.3)5] = (0.9775) × (0.99219) × (0.83193) =
0.80686.

The details of constructing Table 3 are as follows:

1. If there is 0 weight allocation for the incremental policy, the minimum
system prevails as is shown in the last row of Table 3. If 1 unit of cost is
available, it could be added to element 3 to give a reliability of Rs = [1
– (1 – 0.85)1] × [1 – (1 – 0.5)3] × [1 – (1 – 0.3)6] = (0.85) × (0.875)
× (0.8824) = 0.6562. Inspection of Table 2 shows that this is inferior
to allocating the single cost unit to subsystems 1 and 2. Thus the entry
from Table 2 is inserted in Table 3.

2. If 2 cost units are available, they can be used for two additional subsys-
tem 3 units to give a reliability of Rs = [1 – (1 – 0.85)1] × [1 – (1 –
0.5)3] × [1 – (1 – 0.3)7] = (0.85) × (0.875)× (0.9176) =  0.6825. Another
choice is 1 unit for subsystem 3 and the optimum 1-unit cost from Table
2, which is one additional subsystem 2 that gives a reliability of Rs = [1
– (1 – 0.85)1] × [1 – (1 – 0.5)4] × [1 – (1 – 0.3)6] = (0.85) × (0.9375)
× (0.8824) = 0.7032. The last possible choice is 0 cost for subsystem
3. Table 2 shows that all the weight is allocated to subsystem 1, which
achieves a reliability of 0.7116. This solution is entered in Table 3.

3. For the cost increment of 3 units, one choice is to allocate all of this to
subsystem 3 to give a reliability of Rs =[1 – (1 – 0.85)1] × [1 – (1 –
0.5)3] × [1 – (1 – 0.3)8] =(0.85) × (0.875) × (0.9424) = 0.70091. If
2 cost units are allocated to subsystem 2, then Table 2 shows that we
should allocate the remaining cost to purchase an additional subsystem
1, from which the reliability becomes Rs =[1 – (1 – 0.85)2] × [1 – (1 –
0.5)3] × [1 – (1 – 0.3)6] =  (0.9775) × (0.875) × (0.8824) =  0.7547. The
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remaining choice is to allocate 0 cost to subsystem 3 and use the solution
for 3 cost units from Table 2, which uses one additional subsystem 1 and
one additional subsystem 2 and gives the best reliability of 0.7624. For
the case of 4 cost units, all can be allocated to subsystem 3 to give a
reliability of Rs =  [1 – (1 – 0.85)1] × [1 – (1 – 0.5)3] × [1 – (1 –
0.3)9] = (0.85) × (0.9375) × (0.99974) = 0.7967. Allocating 3 cost units
to subsystem 3 plus the remaining unit to subsystem 2 gives a reliability
of Rs =  [1 – (1 –  0.85)1] × [1 – (1 –  0.5)4] × [1 – (1 – 0.3)8] =(0.85)
× (0.9375) × (0.9424) = 0.7509. By allocating 2 cost units to subsystem
3, Table 2 reveals that the remaining 2 cost units should be allocated to
subsystem 1 to give a reliability of Rs = [1 – (1 – 0.85)2] × [1 – (1
– 0.5)3] × [1 – (1 – 0.3)7] =  (0.9775) × (0.875) × (0.9176) =0.7848.
Allocating 1 cost unit to subsystem 3 and, from Table 2, 1 additional unit
for subsystems 1 and 2 gives a reliability of Rs =[1 – (1 – 0.85)2] × [1 –
(1 – 0.5)4] × [1 – (1 – 0.3)6] =(0.9775)  (0.9375) × (0.8824) =  0.8086.
Allocating 0 cost units to subsystem 3 and, from Table 2, 1 additional
unit for subsystem 1 as well as 2 additional units for subsystem 2 gives
a reliability of Rs =[1 – (1 – 0.85)2] × [1 – (1 – 0.5)5] × [1 – (1 –
0.3)5] = (0.9775) × (0.96875) × (0.8319) = 0.7878.

4. Similar computations yield the allocations for the 5 and 6 cost units
shown in Table 3.

We now describe Phase II of dynamic programming: the backtracking proce-
dure. This procedure is merely a reorganization of the information contained in
the phase I tables so that an optimum policy can be easily chosen. In a “short-
hand” way, the cost allocated to each subsystem defines the policy because
dividing the cost by the cost per element yields the number of elements.

The optimum policy for a cost constraint of 6 units is found by starting
at the point in the optimum reliability column of Table 7.10 that corresponds
to a cost constraint of 6 (c = 6). The optimum reliability is 0.8689; to the
immediate left, we see that for this policy, 2 cost units (Dn3 = 2) have been
allocated to ss3 (subsystem 3)—leaving 4 units available. If we look in the
allocation to ss2 for a 4-unit cost constraint, we see that 2 cost units are used;
thus (Dn2 = 2). This leaves 2 cost units for the first subsystem, which means
(Dn1 = 1). The augmentation policy is therefore (1, 2, 2); when added to the
minimum system design (1, 3, 5), it yields the optimal policy (2, 5, 7). The
circles and lines in Table 7.10 connect the backtracking steps. A feature of
the dynamic programming solution is that it gives the optimal solution for all
constraint values below the maximum. For example, suppose that we wanted
the solution for 4 cost units. By backtracking, we have 1 unit for n3, 1 unit
for n2, and 1 unit for n1. The policy, together with the minimal system design,
is (2, 4, 6), which achieves a reliability of 0.8086. For additional examples of
dynamic programming, see Messinger [1970].
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TABLE 7.10 Phase II: Backtracking Table for Reliability Augmentation

6

5

4

3

2

1

0

6

4

4

2

2

0

0

4

3

2

1

0

1

0

2

2

1

0

0

0

0

0.8689

0.8409

0.8086

0.7624

0.7116

0.6629

0.6187

Cost
Constraint

Allocation to
Costss1

Allocation to
Costss2

Allocation to
Costss3

Optimum
Reliability

Note: Solid line is the policy for a cost constraint of 6; dashed line is the policy for a cost
constraint of 4.

7.12.5 Use of a Bounded Approach to Check Dynamic Programming
Solution

To check the results of the dynamic programming solution to Example 3, a
slightly revised version of the algorithm in Table 7.4 is written for Example
3 and an associated program was run for reliability values that exceed 0.8.
The program generated 14 solutions with costs of 14, 15, and 16 units. The
optimum reliabilities for each of these cost constraints are given in Table 7.11.
The results given in Table 7.11 are, of course, identical with those obtained
by backtracking in Table 7.10.

TABLE 7.11 Computation of Optimum Reliability for Example 3
Using the Minimum System Design and Augmentation Policy

Minimum System Design

n1 n2 n3

1 3 5

Augmentation Policy

n1 n2 n3 C Rs

2 5 7 16 0.8689674
2 4 7 15 0.8409362
2 4 6 14 0.808592
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7.13 CONCLUSION

The methods of this chapter provide a means of implementing component reli-
ability at the lowest level possible in most systems: the line-replaceable unit
(LRU) level. However, in some cases the designer may not wish to implement
strict component redundancy. For example, if a major portion of a system is
already available because it was used in a previous design, then it may be most
cost-effective to use this as a fixed subsystem. If the reliability is too low, we
merely place additional copies of this subsystem in parallel rather than delve
within the design to provide a lower-level redundancy. A similar case occurs
when portions of a design are being implemented by using existing very high
level integrated circuits.

Optimizing a design is a difficult problem for many reasons. Designers often
rush to meet schedule and costs and look for feasible solutions that meet the
performance requirements; thus reliability may be treated as an afterthought.
This approach seldom leads to a design with optimum reliability—much less
a good suboptimal design. The methods outlined in this chapter provide the
designer with many tools to rapidly generate a family of good optimum and
suboptimum system designs. This provides guidance when choices must be
made rapidly and conflicting design constraints must be satisfied.
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PROBLEMS

7.1. Why was Eq. (7.3) written in terms of probability of failure rather than
probability of success?

7.2. There have been many studies of software errors that relate the number
of errors to the number of interfaces. Suppose that many of the hardware
design errors are also related to the number of interfaces. What can you
say about the complexity of the design and the number of errors based
on the results of Sections 7.5.2 and 7.5.3?

7.3. Repeat the apportionment example of Section 7.6.1 for reliability goals
of 0.90 and 0.99.

7.4. Repeat the apportionment example of Section 7.6.2 for reliability goals
of 0.90 and 0.99.

7.5. Repeat the apportionment example of Section 7.6.3 for reliability goals
of 0.90 and 0.99.

7.6. Repeat the apportionment example of Section 7.6.4 for reliability goals
of 0.90 and 0.99.

7.7. Comment on the results of problems 7.3–7.6 with respect to the difficulty
of the computations, how close the results agree, and which results you
think are the most realistic.

7.8. Derive Eqs. (7.28a, b) by formulating a Markov model and solving the
associated equations.

7.9. Suppose the reliability goal for Example 1 of Section 7.7.2 is 0.95 and
compute the minimum system design. Repeat for a reliability goal of
0.99.
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7.10. Repeat problem 7.9 for Example 2.

7.11. Write a computer program corresponding to the algorithm of Table 7.4
and verify the results of Tables 7.5 and 7.6.

7.12. Change the program of problem 7.11 so that it prints out the results in
descending order of reliability.

7.13. Repeat problem 7.11 for the algorithm of Table 7.7.

7.14. Repeat problem 7.12 for Example 2.

7.15. Rewrite the algorithm of Table 7.4 to include volume and weight con-
straints as discussed in Section 7.8.5.

7.16. Repeat problem 7.15 for the algorithm of Table 7.7.

7.17. Compare the results of apportionment with the optimum system design
for Example 1 where the reliability goals are 0.95 and 0.99, as was done
in Section 7.9.

7.18. Compare the results of apportionment with the optimum system design
for Example 2 where the reliability goals are 0.95 and 0.99, as was done
in Section 7.9.

7.19. Repeat problem 7.9 for Example 3 given in Section 7.12.2, with reli-
ability goals of 0.85, 0.90, and 0.95.

7.20. Write a computer program to solve for the minimum system design and
the augmentation policy of Example 3 of Section 7.12.2.

7.21. Modify the algorithm of Table 7.4 for the case of standby systems as
discussed in Section 7.10.

7.22. Repeat problem 7.21 for Example 2.

7.23. Repeat problem 7.21 for Example 3.

7.24. Write a general program for bounded optimization that includes the fol-
lowing features: (a) the input of the number of series subsystems and
their reliability, cost, weight, and volume; and (b) the input of the sys-
tem reliability goals and the cost, weight, and volume constraints. Then,
specify which subsystems will use parallel and which will use standby
redundancy. Policies are to be printed in descending reliability order.

7.25. Write a program to solve the greedy algorithm of Section 7.11.2.

7.26. Use the greedy algorithm of Section 7.11.2 to solve for the optimum for
Example 1.

7.27. Repeat problem 7.26 for Example 2.

7.28. Repeat problem 7.26 for Example 3.
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7.29. Repeat problem 7.26 for the multiple constraints discussed in Section
7.11.3.

7.30. Write a program to solve for the dynamic programming algorithm of
Section 7.12 and verify Tables 7.9 and 7.10.

7.31. A satellite communication system design is discussed in the article by
Mancino [1986]. The structure is essentially a series system with many
components paralleled to increase the reliability. Practical failure rates
are given for the system. Use the article to redesign the system by incor-
porating optimum design principles, making any reasonable assump-
tions. How does your design compare with that in the article? How was
the design in the article achieved?

7.32. Starting with a component that has a failure rate of l, compare two dif-
ferent ways of improving reliability: (a) by placing a second component
in parallel and (b) by improving the reliability of a single component
by high-quality design. What is the reduced equivalent failure rate of
(a)? Comment on what you think the cost would be to achieve the same
reductions if (b) is used.

7.33. Starting with a component that has a failure rate of l, compare two dif-
ferent ways of improving reliability: (a) by placing a second component
in parallel and (b) by placing a second component in standby. What is
the reduced equivalent failure rate of (a)? Of (b)? Comment on what you
think the comparative cost would be to achieve the same reductions if
(b) is used.

7.34. Choose a project with which you are familiar. Decompose the structure
as was done in Fig. 7.3; then discuss.
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A1 INTRODUCTION

Several of the analytical techniques discussed in this text are based on prob-
ability theory. Many readers have an adequate background in probability and
need only refer to this appendix for notation and brief review. However, some
readers may not have studied probability, and this appendix should serve as a
brief and concise introduction for them. If additional explanation is required,
an introductory probability text should be consulted [Meeker, 1998; Menden-
hall, 1990; Stone, 1996; Wadsworth and Bryan, 1960].

A2 PROBABILITY THEORY

“Probability had its beginnings in the 17th century when the Chevalier de Méré,
supposedly an ardent gambler, became puzzled over how to divide the win-
nings in a game of chance. He consulted the French mathematician Blaise
Pascal (1623–1662), who in turn wrote about this matter to Pierre Fermat
(1601–1665); it is this correspondence which is generally considered the ori-
gin of modern probability theory” [Freund, 1962]. In the 18th century Karl
Gauss (1777–1855) and Pierre Laplace (1749–1827) further developed proba-
bility theory and applied it to fields other than games of chance.

Today, probability theory is viewed in three different ways: the a pri-

*This appendix is largely extracted from Appendix A of Software Engineering: Design,
Reliability, and Management, by M. L. Shooman, McGraw-Hill, New York, 1983.
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ori (equally-likely-events) approach, the relative-frequency approach, and the
axiomatic definition [Papoulis, 1965]. Intuitively we state that the probabil-
ity of obtaining the number 2 on a single roll of a die is 1

6 . Assuming each
of the six faces is equally likely and that there is one favorable outcome, we
merely take the ratio. This is a convenient approach; however, it fails in the
case of a loaded die, where all events are not equally likely, and also in the
case of compound events, where the definition of “equally likely” is not at
all obvious. The relative-frequency approach begins with a discussion of an
experiment such as the rolling of a die. The experiment is repeated n times
(or n identical dice are all rolled at the same time in identical fashion). If n2

represents the number of times that two dots face up, then the ratio n2/ n is
said to approach the probability of rolling a 2 as n approaches infinity. The
requirement that the experiment be repeated an infinite number of times and
that the probability be defined as the limit of the frequency ratio can cause
theoretical problems in some situations unless stated with care. The newest
and most generally accepted approach is to base probability theory on three
fundamental axioms. The entire theory is built in a deductive manner on these
axioms in much the same way plane geometry is developed in an axiomatic
manner. This approach has the advantage that if it is followed carefully, there
are no loopholes, and all properties are well defined. As with any other the-
ory or abstract model, the engineering usefulness of the technique is measured
by how well it describes problems in the physical world. In order to evaluate
the parameters in the axiomatic model one may perform an experiment and
utilize the relative-frequency interpretation or evoke a hypothesis on the basis
of equally likely events. In fact a good portion of mathematical statistics is
devoted to sophisticated techniques for determining probability values from
an experiment.

The axiomatic approach begins with a statement of the three fundamental
axioms of probability:

1. The probability that an event A occurs is a number between zero and
unity:

0 ≤ P(A) ≤ 1 (A1)

2. The probability of a certain event (also called the entire sample space or
the universal set) is unity:

P(S ) � 1 (A2)

3. The probability of the union (also called sum) of two disjoint (also called
mutually exclusive) events is the sum of the probabilities:

P(A1 + A2) � P(A1) + P(A2) (A3)
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A1 A2A1 A2

C1 C2 C3

S

(a) (b)

Figure A1 Venn diagram illustrating the union of sets A1 and A2: (a) ordinary sets;
(b) disjoint sets.

A3 SET THEORY

A3.1 Definitions

Since axiomatic probability is based on set theory, we shall discuss briefly a few
concepts of sets. The same concept often appears in set theory and in probability
theory, with different notation and nomenclature being used for the same ideas.
A set is simply a collection or enumeration of objects. The order in which the
objects of the set are enumerated is not significant. Typical sets are the numbers
1, 2, 3, all 100 cars in a parking lot, and the 52 cards in a deck. Each item in the
collection is an element of the set. Thus, in the examples given there are 3, 100,
and 52 elements, respectively. Each set (except the trivial one composed of only
one element) contains a number of subsets. The subsets are defined by a smaller
number of elements selected from the original set. To be more specific one first
defines the largest set of any interest in the problem and calls this the universal
set U. The universal set contains all possible elements in the problem. Thus, a
universal set of n elements has a maximum of 2n distinct subsets. The univer-
sal set might be all cars in the United States, all red convertibles in New York,
or all cars in the parking lot. This is a chosen collection which is fixed through-
out a problem. In probability theory, the type of sets one is interested in consists
of those which can, at least in theory, be viewed as outcomes of an experiment.
These sets are generally called events. When the concept of universal set is used
in probability theory, the term sample space S is generally applied. It is often con-
venient to associate a geometric picture, called a Venn diagram, with these ideas
of sample space and event (or set and subset), and the sample space is represented
by a rectangle (see Fig. A1).

A3.2 Axiomatic Probability

With the above background one can discuss intelligently the meaning of prob-
ability axioms 1 and 2 given in Eqs. (A1) and (A2). Equation (A1) implies
that the probability of an event A is a positive number between zero and one.
From the relative-frequency interpretation we know that the probability of a
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certain event is unity and the probability of an impossible event is zero. All
other events have probabilities between zero and unity. In Eq. (A2) we let the
event A be the entire sample space S, and not too surprisingly we find that
this is a certain event. This is true because we say that S occurs if at least one
element of S occurs.

A3.3 Union and Intersection

The union of sets A1 and A2 is a third set B. Set B contains all the elements
which are in set A1 or in set A2 or in both sets A1 and A2. Symbolically,

B � A1 U A2 or B � A1 + A2 (A4)

The U notation is more common in mathematical work, whereas the + nota-
tion is commonly used in applied work. The union operation is most easily
explained in terms of the Venn diagram of Fig. A1(a). Set A1 is composed of
disjoint subsets C1 and C2 and set A2 of disjoint subsets C2 and C3. Subset
C2 represents points common to A1 and A2, whereas C1 represents points in
A1 but not in A2, and C3 represents points that are in A2 but not A1. When the
two sets have no common elements, the areas do not overlap [Fig. A1(b)], and
they are said to be disjoint or mutually exclusive.

The intersection of events A1 and A2 is defined as a third set D which is
composed of all elements which are contained in both A1 and A2. The notation
is:

D � A1
U

A2 or D � A1A2 or D � A1 . A2 (A5)

As before, the former is more common in mathematical literature and the latter
more common in applied work. In Fig. A1(a), A1A2 = C2, and in Fig. A1(b),
A1A2 = f. If two sets are disjoint, they contain no common elements, and their
intersection is a set with no elements called a null set, f. P(f) = 0.

A3.4 Probability of a Disjoint Union

We can now interpret the third probability axiom given in Eq. (A3) in terms of
a card-deck example. The events in the sample space are disjoint and (using
the notation S3 = three of spades, etc.),

P(spades) � P(S1 + S2 + · · · + SQ + SK)

Since all events are disjoint,

P(spades) � P(S1) + P(S2) + · · · + P(SQ) + P(SK) (A6)

From the equally-likely-events hypothesis one would expect that for a fair deck
(without nicks, spots, bumps, torn corners, or other marking) the probability
of drawing a spade is given by:
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P(spades) � 1
52 + 1

52 + · · · + 1
52 + 1

52 �

13
52 �

1
4

A4 COMBINATORIAL PROPERTIES

A4.1 Complement

The complement of set A, written as A, is another set B. The notation A′ is
sometimes used for complement, and both notations will be used interchange-
ably in this book. Set B = A is composed of all the elements of the universal
set which are not in set A. (The term A not is often used in engineering circles
instead of A complement.) By definition the union of A and A is the universal
set.

A + A � U (A7)

Applying axioms 2 and 3 from Eqs. (A3) and (A2) to Eq. (A7) yields

P(A + A) � P(A) + P(A) � P(S ) � 1

This is valid since A and A are obviously disjoint events (we have substituted
the notation S for U, since the former is more common in probability work).
Because probabilities are merely numbers, the above algebraic equation can
be written in three ways:

P(A) + P(A) � 1

P(A) � 1 − P(A)

P(A) � 1 − P(A) (A8)

There is considerable similarity between the logic operations presented above
and the digital logic of Section C1.

A4.2 Probability of a Union

Perhaps the first basic relationship to be deduced is the probability of a union
of two events which are not mutually exclusive. We begin by extending the
axiom of Eq. (A3) to three or more events. Assuming that event A2 is the union
of two other disjoint events B1 + B2, we obtain

A2 � B1 + B2

P(A2 + A2) � P(A1) + P(B1 + B2) � P(A1) + P(B1) + P(B2)

By successive application of this stratagem of splitting events into unions of
other mutually exclusive events, we obtain the general result by induction
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P(A1 + A2 + · · · + An) � P(A1) + P(A2) + · · · + P(An) for disjoint A’s

(A9)

If we consider the case of two events A1 and A2 which are not disjoint,
we can divide each event into the union of two subevents. This is most easily
discussed with reference to the Venn diagram shown in Fig. A1(a). The event
(set) A1 is divided into those elements (1) which are contained in A1 and not
in A2, C1 and (2) which are common to A1 and A2, C2. Then A1 = C1 + C2.
Similarly we define A2 = C3 +C2. We have now broken A1 and A2 into disjoint
events and can apply Eq. (A9):

P(A1 + A2) � P(C1 + C2 + C2 + C3) � P[C1 + C3 + (C2 + C2)]

By definition, the union of C2 with itself is C2; therefore

P(A1 + A2) � P(C1 + C2 + C3) � P(C1) + P(C2) + P(C3)

We can manipulate this result into a more useful form if we add and subtract
the number P(C2) and apply Eq. (A3) in reverse

P(A1 + A2) � [P(C1) + P(C2)] + [P(C2) + P(C3)] − P(C2)

� P(A1) + P(A2) − P(A1A2) (A10)

Thus, when events A1 and A2 are not disjoint, we must subtract the probability
of the union of A1 and A2 from the sum of the probabilities. Note that Eq.
(A10) reduces to Eq. (A3) if events A1 and A2 are disjoint since P(A1A2) =0
for disjoint events.

Equation (A10) can be extended to apply to three or more events:

P(A1 + A2 + · · · + An)

� [P(A1) + P(A2) + · · · + P(An)] � � n
1 � � n terms

− [ P(A1A2) + P(A1A3) + · · · + P � Ai
i � j

Aj� ] � � n
2 � terms

+ [P(A1A2A3) + P(A1A2A4) + · · · + P�Ai Aj
i � j � k

Ak�] � � n
3 � terms

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)n − 1[P(A1A2 · · · An)] � � n
n � � 1 term

(A11)
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The complete expansion of Eq. (A11) involves (2n
− 1) terms.

A4.3 Conditional Probabilities and Independence

It is important to study in more detail the probability of an intersection of two
events, that is, P(A1A2). We are especially interested in how P(A1A2) is related
to P(A1) and P(A2).

Before proceeding further we must define conditional probability and intro-
duce a new notation. Suppose we want the probability of obtaining the four of
clubs on one draw from a deck of cards. The answer is of course 1/ 52, which
can be written: P(C4) = 1/ 52. Let us change the problem so it reads: What is
the probability of drawing the four of clubs given that a club is drawn? The
answer is 1/ 13.

In such a situation we call the probability statement a conditional probabil-
ity. The notation P(C4 |C) = 1/ 13 is used to represent the conditional proba-
bility of drawing a four of clubs given that a club is drawn. We read P(A2 |A1)
as the probability of A2 occurring conditioned on the previous occurrence of
A1, or more simply as the probability of A2 given A1.

P(A1A2) � P(A1)P(A2 |A1) (A12a)

P(A1A2) � P(A2)P(A1 |A2) (A12b)

Intuition tells us that there must be many cases in which

P(A2 |A1) � P(A2)

In other words, the probability of occurrence of event A2 is independent of the
occurrence of event A1. From Eq. (A12a) we see that this implies P(A1A2) =
P(A1)P(A2), and this latter result in turn implies

P(A1 |A2) � P(A1)

Thus we define independence by any one of the three equivalent relations

P(A1A2) � P(A1)P(A2) (A13a)

or

P(A1 |A2) � P(A1) (A13b)

or

P(A2 |A1) � P(A2) (A13c)

Conditional probabilities are sometimes called dependent probabilities.
One can define conditional probabilities for three events by splitting event
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B into the intersection of events A2 and A3. Then letting A = A1 and B = A2A3,
we have

P(AB) � P(A)P(B |A) � P(A1)P(A2A3 |A1)

� P(A1)P(A2 |A1)P(A3 |A1A2)

Successive application of this technique leads to the general result

P(A1A2 · · · An) � P(A1)P(A2 |A1)P(A3 |A1A2) · · ·

P(An |A1A2 · · · An − 1) (A14)

Thus, the probability of the union of n terms is expressed as the joint product
of one independent probability and n – 1 dependent probabilities.

A5 DISCRETE RANDOM VARIABLES

A5.1 Density Function

We can define x as a random variable if we associate each value of x with
an element in event A defined on sample space S. If the random variable x
assumes a finite number of values, then x is called a discrete random variable.
In the case of a discrete random variable, we associate with each value of
x a number xi and a probability of occurrence P(xi). We could describe the
probabilities associated with the random variable by a table of values, but it is
easier to write a formula that permits calculation of P(xi) by substitution of the
appropriate value of xi. Such a formula is called a probability function for the
random variable x. More exactly, we use the notation f (x) to mean a discrete
probability density function associated with the discrete random variable x.
(The reason for the inclusion of the word “density” will be clear once the
parallel development for continuous random variables is completed.) Thus,

P(x � xi) � P(xi) � f (xi) (A15)

In general we use the sequence of positive integers 0, 1, 2, . . . , n to represent
the subscripts of the n + 1 discrete values of x. Thus, the random variable is
denoted by x and particular values of the random variable by x1, x2, . . . , xn. If
the random variable under consideration is a nonnumerical quantity, e.g., the
colors of the spectrum (red, orange, yellow, green, blue, indigo, violet), then
the colors (or other quantity) would first be coded by associating a number 1
to 7 with each. If the random variable x is defined over the entire sample space
S, P(A) is given by

P(A) � ��� P(xi)
for all xi

values which
are elements of A

� ��� f (xi)
for all xi

in A

(A16)
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6

Random variable x Random variable x

(a) (b)

Figure A2 (a) Line diagram depicting the discrete density function for the throw of
one die; (b) step diagram depicting the discrete distribution function for the density
function given in (a).

The probability of the sample space is

P(S ) � ��� f (xi)
over all

i

� 1 (A17)

As an example of the above concepts we shall consider the throw of one
die. The random variable x is the number of spots which face up on any throw.
The domain of the random variable is x = 1, 2, 3, 4, 5, 6. Using the equally-
likely-events hypothesis, we conclude that

P(x � 1) � P(x � 2) � · · · � 1
6

Thus, f (x) � 1/ 6, a constant density function. This can also be depicted graphi-
cally as in Fig. A2(a). The probability of an even roll is

P(even) � ���
i � 2,4,6

f (xi) � 1
6 + 1

6 + 1
6 �

1
2

A5.2 Distribution Function

It is often convenient to deal with another, related function rather than the den-
sity function itself. The distribution function is defined in terms of the proba-
bility that x ≤ x:

P(x ≤ x) ≡ F(x) � ���
x ≤ x

f (x) (A18)

The distribution function is a cumulative probability and is often called the
cumulative distribution function. The analytical form of F(x) for the example
in Fig. A2 is
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F(x) �
x
6

for 1 ≤ x ≤ 6 (A19)

Equation (A19) related F(x) to f (x) by a process of summation. One can
write an inverse relation1 defining f (x) in terms of the difference between two
values of F(x)

f (x) � F(x+) − F(x− ) (A20)

In other words, f (x) is equal to the value of the discontinuity at x in the step
diagram of F(x). There are a few basic properties of density and distribution
functions which are of importance: (1) since f (x) is a probability, 0 ≤ f (x) ≤ 1;
(2) because P(S ) =1,

���
all
x

f (x) � 1

A5.3 Binomial Distribution

Many discrete probability models are used in applications, the foremost being
the binomial distribution and the Poisson distribution. The binomial distri-
bution (sometimes called the Bernoulli distribution) applies to a situation in
which an event can either occur or not occur (the more common terms are
success or failure, a legacy from the days when probability theory centered
around games of chance). The terms success and failure, of course, are ideally
suited to reliability applications. The probability of success on any one trial is
p, and that of failure is 1 – p. The number of independent trials is denoted by
n, and the number of successes by r. Thus, the probability of r successes in n
trials with the probability of one success being p is

B(r; n, p) � � n
r � pr(1 − p)n − r for r � 0, 1, 2, . . . , n (A21)

where

� n
r � = n!/ r!(n − r)! ≡ number of combinations of n things taken r at a time

A number of line diagrams for the binomial density function2 are given in
Fig. A3. In Fig. A3 the number of trials is fixed at nine, and the probabil-
ity of success on each trial is changed from 0.2 to 0.5 to 0.8. Intuition tells us

1The notations F(x+) and F(x− ) mean the limits approached from the right and left, respectively.
2We use the notation B(r; n, p) rather than the conventional and less descriptive notation f (x).
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B r pn( ; 9,   )

Figure A3 Binomial density function for fixed n. (Adapted from Wadsworth and
Bryan [1960].)

that the most probable number of successes is np, which is 1.8, 4.5, and 7.2,
respectively. (It is shown in Section A7 that intuition has predicted the mean
value.)

Example 1: Clearly, we could use the binomial distribution to predict the prob-
ability of twice obtaining a 3, in six throws of a die:

r � 2 n � 6 p �

1
6

B(2; 6, 1
6 ) � � 6

2 � ( 1
6 )2(1 −

1
6 )6 − 2

� 15 × 0.0131 � 0.196

Example 2: We can also use the binomial distribution to evaluate the probabil-
ity of picking three aces on ten draws with replacement from a deck; however,
if we do not replace the drawn cards after each pick, the binomial model will
no longer hold, since the parameter p will change with each draw. The bino-
mial distribution does not hold when draws are made without replacement,
because the trials are no longer independent. The proper distribution to use in
such a case is the hypergeometric distribution [Freeman, 1963, pp. 113–120;
Wadsworth and Bryan, 1960, p. 59].

H(k; j, n, N ) �
� n

k � �N − n
j − k �

�N
j �

(A21a)

where

k =
j =
n =
N =

the number of successes
the number of trials
the finite number of possible successes
the finite number of possible trials
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A5.4 Poisson Distribution

Another discrete distribution of great importance is the Poisson distribution,
which can be derived in a number of ways. One derivation will be outlined
in this section (see Shooman [1990], pp. 37–42), and a second derivation in
Section A8. If p is very small and n is very large, the binomial density, Eq.
(A21), takes on a special limiting form, which is the Poisson law of probability.
Starting with Eq. (A21), we let np, the most probable number of occurrences,
be some number m

m � np � p �

m

n

B �r; n,
m

n � �

n!
r!(n − r)! �

m

n �
r

�1 −

m

n �
n − r

The limiting form called the Poisson distribution is

f (r; m) �
mre−m

r!
(A22)

The Poisson distribution can be written in a second form, which is very
useful for our purposes. If we are interested in events which occur in time, we
can define the rate of occurrence as the constant l = occurrences per unit time;
thus m = lt. Substitution yields the alternative form of the Poisson distribution:

f (r;l, t) �
(lt)re−lt

r!
(A23)

Line diagrams for the Poisson density function given in Eq. (A22) are shown
in Fig. A4 for various values of m. Note that the peak of the distribution is near
m and that symmetry about the peak begins to develop for larger values of m.

A6 CONTINUOUS RANDOM VARIABLES

A6.1 Density and Distribution Functions

The preceding section introduced the concept of a discrete random variable and
its associated density and distribution functions. A similar development will be
pursued in this section for continuous variables. Examples of some continuous
random variables are the length of a manufactured part, the failure time of a
system, and the value of a circuit resistance. In each of these examples there is
no reason to believe that the random variable takes on discrete values. On the
contrary, the variable is continuous over some range of definition. In a manner
analogous to the development of the discrete variable, we define a continuous
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Figure A4 Poisson density function for several values of m.

density function and a continuous distribution function. We shall start with the
cumulative distribution function.

The cumulative distribution function for the discrete case was defined in Eq.
(A18) as a summation. If the spacings between the discrete values of the ran-
dom variable x are Dx and we let Dx � 0, then the discrete variable becomes
a continuous variable, and the summation becomes an integration. Thus, the
cumulative distribution function of a continuous random variable is given by

F(x) � ∫ over the
domain of x

f (x) dx (A24)

If we let x take on all values between points a and b

P(x ≤ x) � F(x) � ∫
x

a
f (x) dx for a < x ≤ b (A25)

The density function f (x) is given by the derivative of the distribution function.
This is easily seen from Eq. (A25) and the fact that the derivative of the integral
of a function is the function itself.

dF(x)
dx

� f (x) (A26)
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The probability that x lies in an interval x < x < x + dx is given by

P(x < x < x + dx) � P(x ≤ x + dx) − P(x ≤ x)

� ∫
x + dx

a
f (x) dx − ∫

x

a
f (x) dx � ∫

x + dx

x
f (x) dx

� F(x + dx) − F(x) (A27)

It is easy to see from Eq. (A27) that if F(x) is continuous and we let dx � 0,
P(x = x) is zero. Thus, when we deal with continuous probability, it makes
sense to talk of the probability that x is within an interval rather than at one
point. In fact since the P(x =x) is zero, the numerical value is the same in the
continuous case whether the interval is open or closed since

P(a ≤ x ≤ b) � P(a < x < b) � P(a ≤ x < b) � P(a < x ≤ b)

Thus, the density function f (x) is truly a density, and like any other density
function it has a value only when integrated over some finite interval. The basic
properties of density and distribution functions previously discussed in the dis-
crete case hold in the continuous case. At the lower limit of x we have F(a)
=0, and at the upper limit F(b) =1. These two statements, coupled with Eq.
(A27), lead to ∫

b
a f (x) dx =1. Since f (x) is a probability, f (x) is nonnegative,

and F(x), its integral, is a nondecreasing function.

A6.2 Rectangular Distribution

The simplest continuous variable distribution is the uniform or rectangular dis-
tribution shown in Fig. A5(a). The two parameters of this distribution are the
limits a and b. This model predicts a uniform probability of occurrence in any
interval

P(x < x ≤ x + Dx) � Dx(b − a)−1

between a and b.

A6.3 Exponential Distribution

Another simple continuous variable distribution is the exponential distribution.
The exponential density function is

f (x) � le−lx 0 < x ≤ +∞ (A28)

which is sketched in Fig. A5(b). This distribution recurs time and time again
in reliability work. The exponential is the distribution of the time to failure t
for a great number of electronic-system parts. The parameter l is constant and
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Figure A5 Various continuous variable probability distributions: (a) uniform distri-
bution; (b) exponential distribution; (c) Rayleigh distribution; (d) Weibull distribution;
and (e) normal distribution.
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is called the conditional failure rate with the units fractional failures per hour.
The distribution function yields the failure probability and 1 – F(t) the success
probability. Specifically, the probability of no failure (success) in the interval
0 – t is given by

Ps(t1) � 1 − F(t1) � e−lt1

A6.4 Rayleigh Distribution

Another single-parameter density function of considerable importance is the
Rayleigh distribution, which is given as

f (x) � Kxe−Kx2/ 2 0 < x ≤ +∞ (A29)

and for the distribution function,

F(x) � 1 − e−Kx2/ 2 (A30)

The density function is sketched in Fig. A5(c). The Rayleigh distribution finds
application in noise problems in communication systems and in reliability
work. Whereas the exponential distribution holds for time to failure of a com-
ponent with a constant conditional failure rate l, the Rayleigh distribution
holds for a component with a linearly increasing conditional failure rate Kt.
The probability of success of such a unit is

Ps(t) � 1 − F(t) � e−Kt2/ 2

A6.5 Weibull Distribution

Both the exponential and the Rayleigh distributions are single-parameter dis-
tributions which can be represented as special cases of a more general two-
parameter distribution called the Weibull distribution. The density and distri-
bution functions for the Weibull are

f (x) � Kxme−Kx m + 1/ (m + 1) F(x) � 1 − e−Kx m + 1/ (m + 1) (A31)

This family of functions is sketched for several values of m in Fig. A5(d).
When m =0, the distribution becomes exponential, and when m =1, a Rayleigh
distribution is obtained. The parameter m determines the shape of the distri-
bution, and parameter K is a scale-change parameter.
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A6.6 Normal Distribution

The best-known two-parameter distribution is the normal, or Gaussian, distri-
bution. This distribution is very often a good fit for the size of manufactured
parts, the size of a living organism, or the magnitude of certain electric signals.
It can be shown that when a random variable is the sum of many other random
variables, the variable will have a normal distribution in most cases.

The density function for the normal distribution is written as

f (x) �
1

j
�

2p
e−x2/ 2j2 −∞ < x < + ∞

This function has a peak of 1/ j
�

2p at x =0 and falls off symmetrically on
either side of zero. The rate of falloff and the height of the peak at x = 0
are determined by the parameter j , which is called the standard deviation. In
general one deals with a random variable x which is spread about some value
such that the peak of the distribution is not at zero. In this case one shifts the
horizontal scale of the normal distribution so that the peak occurs at x =m

f (x) � 1

j
�

2p
e− (x − m)2/ 2j2

(A32)

The effect of changing j is as follows: a large value of j means a low, broad
curve and a small value of j a thin, high curve. A change in m merely slides
the curve along the x axis.

The distribution function is given by

F(x) � 1

j
�

2p ∫
x

−∞
e− (y − m)2/ 2j2 dy (A32a)

where y is a dummy variable of integration. The shapes of the normal density
and distribution functions are shown in Fig. A5(e). The distribution function
given in Eq. (A32) is left in integral form since the result cannot be expressed in
closed form. This causes no particular difficulty, since f (x) and F(x) have been
extensively tabulated and approximate expansion formulas are readily available
[Abramovitz and Stegun, 1972, pp. 931–936, Section 26.2]. In tabulating the
integral of Eq. (A32) it is generally convenient to introduce the change of
variables t = (x – m )/ j , which shifts the distribution back to the origin and
normalizes the x axis in terms of j units.

The area under the f (x) curve between a and b is of interest since it repre-
sents the probability that x is within the interval a < x ≤ b. The areas for – 1
< t ≤ + 1, – 2 < t ≤ + 2, and –3 < t ≤ + 3 are shown in Fig. A6 along with a
short table of areas between – ∞ and t.

The normal distribution can also be used as a limiting form for many other
distributions. The binomial distribution approaches the normal distribution for
large n.
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Figure A6 Area under the normal curve: (a) for – 1 < t ≤ 1, – 2 < t ≤ 2, and
– 3 < t ≤ 3; and (b) between – ∞ and various values of t.

A7 MOMENTS

The density or distribution function of a random variable contains all the infor-
mation about the variable, i.e., the entire story. Sometimes the entire story of
the random variable is not necessary, and an excerpt which sufficiently char-
acterizes the distribution is sufficient. In such a case one computes a few
moments (generally two) for the distribution and uses them to delineate the
salient features. The moments are weighted integrals of the density function
which describe various geometrical properties of the density function.

A7.1 Expected Value
It is easy to express the various moments of a probability distribution in terms
of an operator called the expected value. The expected value of the continuous
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random variable x defined over the range a < x ≤ b with density function f (x)
is

E(x) � ∫
b

a
x f(x) dx (A33)

For a discrete random variable x taking on values x � x1, x2, . . . , xn the expected
value is defined in terms of a summation

E(x) �
n

���
i � 1

xi f (xi) (A34)

A7.2 Moments

To be more general one defines an entire set of moments. The nth moment of
the random variable x computed about the origin and defined over the range
a < x ≤ b is given by

mr � ∫
+∞

−∞
xrf (x) dx (A35)

The zero-order moment m0 is the area under the density function, which is, of
course, unity. The first-order moment is simply the expected value, which is
called the mean and is given the symbol m

m1 � E(x) � m (A36)

The origin moments for a discrete random variable which takes on the values
x1, x2, . . . , xn are given by

mr �

n

���
i � 1

xr
i f (xi) (A37)

It is often of importance to compute moments about the mean rather than the
origin. The set of moments about the mean are defined as follows:

For continuous random variables:

m′r � E[(x − m)r] � ∫
+∞

−∞
(x − m)rf (x) dx (A38)

For discrete random variables:
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TABLE A1 Mean and Variance for Several Distributions

Distribution E(x) var x

Binomial np np(1 − p)
Poisson m m

Exponential
1
l

1

l2

Rayleigh

�
p

2K
0.4292

K

Weibull � K
m + 1 �

1 − ε
G(ε) � K

m + 1 �
1 − d

G(d) − [E(x)]2

ε ≡
m + 2
m + 1

d ≡
m + 3
m + 1

G ≡ the gamma function
Normal m j2

m′r � E[(x − m)r] � n

���
i � 1

(xi − m)rf (xi) (A39)

The second moment about the mean, m′2 = ∫+∞−∞(x – m)2f (x) dx, is called the
variance of x, var x, and is a measure of the sum of the squares of the devi-
ations from m. Generally this is expressed in terms of the standard deviation
j =

�
var x. One can easily express var x and j in terms of the expected-value

operator:

j2 � var x � E(x2) − m2

The means and variances of the distributions discussed in Section A5 are given
in Table A1.

A8 MARKOV MODELS

A8.1 Properties

There are basically four kinds of Markov probability models, one of which
plays a central role in reliability. Markov models are functions of two random
variables: the state of the system x and the time of observation t. The four
kinds of models arise because both x and t may be either discrete or continuous
random variables, resulting in four combinations. As a simple example of the
concepts of state and time of observation, we visualize a shoe box with two
interior partitions which divide the box into three interior compartments labeled
1, 2, and 3. A Ping-Pong ball is placed into one of these compartments, and the
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box is periodically tapped on the bottom, causing the Ping-Pong ball to jump
up and fall back into one of the three compartments. (For the moment we
neglect the possibility that it falls out onto the floor.) The states of the system
are the three compartments in the box. The time of observation is immediately
after each rap, when the ball has fallen back into one of the compartments.
Since we specified that the raps occur periodically, the model is discrete in both
state and time. This sort of model is generally called a Markov chain model or
a discrete-state discrete-time model. When the raps at the bottom of the box
occur continuously, the model becomes a discrete-state continuous-time model,
called a Markov process. If we remove the partitions and call the long axis of
the box the x axis, we can visualize a continuum of states from x = – l/ 2
to x =+ l/ 2. If the ball is coated with rubber cement, it will stick wherever
it hits when it falls back into the box. In this manner we can visualize the
other two types of models, which involve a continuous-state variable. We shall
be concerned only with the discrete-state continuous-time model, the Markov
process.

Any Markov model is defined by a set of probabilities pij which define the
probability of transition from any state i to any state j. If in the discrete-state
case we make our box compartments and the partitions equal in size, all the
transition probabilities should be equal. (In the general case, where each com-
partment is of different size, the transition probabilities are unequal.) One of
the most important features of any Markov model is that the transition prob-
ability pij depends only on states i and j and is completely independent of all
past states except the last one, state i. This seems reasonable in terms of our
shoe-box model since transitions are really dependent only on the height of the
wall between adjacent compartments i and j and the area of the compartments
and not on the sequence of states the ball has occupied before arriving in state
i. Before delving further into the properties of Markov processes, an example
of great importance, the Poisson process, will be discussed.

A8.2 Poisson Process

In Section A5.4 the Poisson distribution was introduced as a limiting form
of the binomial distribution. In this section we shall derive the Poisson dis-
tribution as the governing probability law for a Poisson process, a particular
kind of Markov process. In a Poisson process we are interested in the number
of occurrences in time, the probability of each occurrence in a small time Dt
being a constant which is the parameter of the process. Examples of Poisson
processes are the number of atoms transmuting as a function of time in the
radioactive decay of a substance, the number of noise pulses as a function of
time in certain types of electric systems, and the number of failures for a group
of components operating in a standby mode or in an instantaneous-replacement
situation. The occurrences are discrete, and time is continuous; therefore this
is a discrete-state continuous-time model. The basic assumptions which are
necessary in deriving a Poisson process model are as follows:
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1. The probability that a transition occurs from the state of n occurrences
to the state of n + 1 occurrences in time Dt as lDt. The parameter l
is a constant and has the dimensions of occurrences per unit time. The
occurrences are irreversible, which means that the number of occurrences
can never decrease with time.

2. Each occurrence is independent of all other occurrences.
3. The transition probability of two or more occurrences in interval Dt

is negligible. Another way of saying this is to make use of the
independence-of-occurrence property and write the probability of two
occurrences in interval Dt as the product of the probability of each occur-
rence, that is, (lDt)(lDt). This is obviously an infinitesimal of second
order for Dt small and can be neglected.

We wish to solve for the probability of n occurrences in time t, and to that
end we set up a system of difference equations representing the state prob-
abilities and transition probabilities. The probability of n occurrences having
taken place by time t is denoted by

P(x � n, t) ≡ Pn(t)

For the case of zero occurrences at time t + Dt we write the following differ-
ence equation:

P0(t + Dt) � (1 − lDt)P0(t) (A40)

which says that the probability of zero occurrences at time t + Dt is P0(t + Dt).
This probability is given by the probability of zero occurrences at time t, P0(t),
multiplied by the probability of no occurrences in interval Dt, 1– lDt. For the
case of one occurrence at time t + Dt we write

P1(t + Dt) � (lDt)P0(t) + (1 − lDt)P1(t) (A41)

The probability of one occurrence at t + Dt, P1(t + Dt), can arise in two ways:
(1) either there was no occurrence at time t, P0(t), and one happened in the
interval Dt (with probability lDt), or (2) there had already been one occurrence
at time t, P1(t), and no additional ones came along in the time interval Dt
(probability 1 – lDt). It is clear that Eq. (A41) can be generalized, yielding

Pn(t + Dt) � (lDt)Pn − 1(t) + (1 − lDt)Pn(t) for n � 1, 2, . . . (A42)

The difference equations (A40) and (A41) really describe a discrete-time
system, since time is divided into intervals Dt, but by taking limits as Dt � 0
we obtain a set of differential equations which truly describe the continuous-
time Poisson process. Rearranging Eq. (A40) and taking the limit of both sides
of the equation at Dt � 0 leads to
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lim
Dt� 0

P0(t + Dt) − P0(t)
Dt

� lim
Dt� 0

−lP0(t)

By definition the left-hand side of the equation is the time derivative of P0(t)
and the right-hand side is independent of Dt; therefore

dP0(t)
dt

� Ṗ0(t) � −lP0(t) (A43)

Similarly for Eq. (A41)

lim
Dt� 0

Pn(t + Dt) − Pn(t)
Dt

� lim
Dt� 0

lPn − 1(t) − lim
Dt� 0

lPn(t)

dPn(t)
dt

� Ṗn(t) � lPn − 1(t) − lPn(t)

for n � 1, 2, . . . , n (A44)

Equations (A43) and (A44) are a complete set of differential equations which,
together with a set of initial conditions, describe the process. If there are no
occurrences at the start of the problem, t = 0, n = 0, and

P0(0) � 1, P1(0) � P2(0) � · · · � Pn(0) � 0

Solution of this set of equations can be performed in several ways: classi-
cal differential-equation techniques, Laplace transforms, matrix methods, etc.
In this section we shall solve them using the classical technique of undeter-
mined coefficients. Substituting a solution of the form Aest gives s =– l, and
substituting the initial condition P0(0) =1 gives

P0(t) � e−lt (A45)

For n =1, Eq. (A42) becomes

Ṗ1(t) � lP0(t) − lP1(t)

Substitution from Eq. (A45) and rearrangement yields

Ṗ1(t) + lP1(t) � le−lt

The homogeneous portion of this equation is the same as that for P0(t). The
particular solution is of the form Bte−lt . Substituting yields B = l, and using
the initial condition P1(0) =0 =A gives

P1(t) � lte−lt (A46)
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TABLE A2 A Transition Matrix

Final States

Initial States s0(t + Dt) s1(t + Dt) s2(t + Dt) · · · sn(t + Dt)

s0(t) n � 0 p00 p01 p02 · · · p0n
s1(t) n � 1 p10 p11 p12 · · · p1n
s2(t) n � 2 p20 p21 p22 · · · p2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sn(t) n � n pn0 pn1 pn2 · · · pnn

It should be clear that solving for Pn(t) for n = 2, 3, . . . will generate the Poisson
probability law given in Eq. (A23). (Note: m ≡ r.)

Thus, the Poisson process has been shown to be a special type of Markov
process which can be derived from the three basic postulates with no mention
of the binomial distribution. We can give another important interpretation to
P0(t). If we let t0 be the time of the first occurrence, then P0(t) is the probability
of no occurrences:

P0(t) ≡ P(t < t0) � 1 − P(t0 < t)

Thus, 1 – P0(t) is a cumulative distribution function for the random variable
t, the time of occurrence. The density function for time of first occurrence is
obtained by differentiation:

f (t) �
d
dt

(1 − e−lt) � le−lt (A47)

This means that the time of first occurrence is exponentially distributed. Since
each occurrence is independent of all others, it also means that the time
between any two occurrences is exponentially distributed.

A8.3 Transition Matrix
Returning to some of the basic properties of Markov processes, we find that
we can specify the process by a set of differential equations and their associ-
ated initial conditions. Because of the basic Markov assumption that only the
last state is involved in determining the probabilities, we always obtain a set
of first-order differential equations. The constants in these equations can be
specified by constructing a transition-probability matrix.3 The rows represent
the probability of being in any state A at time t and the columns the prob-
ability of being in state B at time t + Dt. The former are called initial states
and the latter final states. An example is given in Table A2 for a process with n

3In Appendix B6–B8 a flowgraph model for a Markov process will be developed which parallels
the use of the transition matrix. The flowgraph model is popular in engineering analysis.
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TABLE A3 The First Five Rows and Columns of the Transition Matrix for a
Poisson Process

s0(t + Dt) s1(t + Dt) s2(t + Dt) s3(t + Dt) s4(t + Dt)
s0(t) 1 − lDt lDt 0 0 0
s1(t) 0 1 − lDt lDt 0 0
s2(t) 0 0 1 − lDt lDt 0
s3(t) 0 0 0 1 − lDt lDt
s4(t) 0 0 0 0 1 − lDt

+ 1 discrete states. The transition probability pij is the probability that in time
Dt the system will undergo a transition from initial state i to final state j. Of
course pii, a term on the main diagonal, is the probability that the system will
remain in the same state during one transition. The sum of the pij terms in any
row must be unity, since this is the sum of all possible transition probabilities.
In the case of a Poisson process, there is an infinite number of states. The
transition matrix for the first five terms of a Poisson process is given in Table
A3. Inspection of the Poisson example reveals that the difference equations4 for
the system can be obtained simply. The procedure is to equate the probability
of any final state at the top of each column to the product of the transition
probabilities in that column and the initial probabilities in the row. Specifically,
for the transition matrix given in Table A2,

Ps0 (t + Dt) � p00Ps0 (t) + p10Ps1 (t) + · · · + pn0Psn (t)

If the pij terms are all independent of time and depend only on constants
and Dt, the process is called homogeneous. For a homogeneous process, the
resulting differential equations have constant coefficients, and the solutions are
of the form e−rt or tne−rt. If for a homogeneous process the final value of
the probability of being in any state is independent of the initial conditions,
the process is called ergodic. A finite-state homogeneous process is ergodic
if every state can be reached from any other state with positive probability.
Whenever it is not possible to reach any other state from some particular state,
the latter state is called an absorbing state. Returning to the partitioned shoe-
box example of Section A8.1, if we allow the ball to hop completely out of
the box onto the floor, the floor forms a fourth state, which is absorbing. In a
transition matrix any column j having only a single entry (pij along the main
diagonal) is an absorbing state.

4The differential equations are obtained by taking the limit of the difference equations as Dt � 0.
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PROBLEMS

Note: Problems A1–A5 are taken from Shooman [1990].

A1. The following two theorems are known as De Morgan’s theorems:

A + B + C � A B C

ABC � A + B + C

Prove these two theorems using a Venn diagram. Do these theorems hold
for more than three events? Explain.

A2. We wish to compute the probability of winning on the first roll of a pair
of dice by throwing a seven or an eleven.
(a) Define a sample space for the sum of the two dice.
(b) Delineate the favorable and unfavorable outcomes.
(c) Compute the probability of winning and losing.
(d) List any assumptions you made in this problem.
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A3. Suppose a resistor has a resistance R with mean of 100 Q and a tolerance
of 5%, i.e., variation of 5 Q .
(a) If the resistance values are normally distributed with m = 100 Q and

j = 5 Q , sketch f (R).
(b) Assume that the resistance values have a Rayleigh distribution. If the

peak is to occur at 100 Q , what is the value of K? Plot the Rayleigh
distribution on the same graph as the normal distribution of part (a).

A4. A certain resistor has a nominal value (mean) of 100 Q .
(a) Assume a normal distribution and compute the value of j if we wish

P(95 < R < 105) = 0.95.
(b) Repeat part (a) assuming a Weibull distribution and specify the values

of K and m.
(c) Plot the density function for parts (a) and (b) on the same graph paper.

A5. Let a component have a good, a fair, and a bad state. Assume the transition
probabilities of failure are from good to fair, lg f Dt; from good to bad,
lgbDt; and from fair to bad, lf bDt.
(a) Formulate a Markov model.
(b) Compute the probabilities of being in any state.
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B1 INTRODUCTION

B1.1 History

Since its beginnings following World War II, reliability theory has grown into
an engineering science in its own right. (The early development is discussed
in Chapter 1 of Shooman [1990].) Much of the initial theory, engineering, and
management techniques centered about hardware; however, human and proce-
dural elements of a system were often included. Since the late 1960s the term
software reliability has become popular, and now reliability theory refers to
both software and hardware reliability.

B1.2 Summary of the Approach

The conventional approach to reliability is to decompose the system into
smaller subsystems and units. Then by the use of combinatorial reliability,
the system probability of success is expressed in terms of the probabilities
of success of the elements. Then by the use of failure rate models, the element
probabilities of success are computed. These two concepts are combined to
calculate the system reliability.

When reliability or availability of repairable systems is the appropriate fig-

*Parts of this appendix have been abstracted from Appendix B of Software Engineering: Design,
Reliability, and Management, by M. L. Shooman, McGraw-Hill, New York, 1983; and also
Probabilistic Reliability: An Engineering Approach, 2d ed., by M. L. Shooman, Krieger, 1990.
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ure of merit, Markov models are generally used to compute the associated
probabilities.

Often a proposed system does not meet its reliability specifications, and var-
ious techniques of reliability improvement are utilized to improve the predicted
reliability of the design.

Readers desiring more detail are referred to Shooman [1990] and the refer-
ences cited in that text.

B1.3 Purpose of This Appendix

This appendix was written to serve several purposes. The prime reason is to
provide additional background for those techniques and principles of reliabilty
theory which are used in the software reliability models developed in Chap-
ter 5. A second purpose is to expose software engineers who are not familiar
with reliability theory to some of the main methods and techniques. This is
especially important since many discussions of software reliability end up dis-
cussing how much of “hardware reliability theory” is applicable to software.
This author feels the correct answer is “some”; however, the only way to really
appreciate this answer is to learn something about reliability.

The third purpose is to allow readers who are software engineers to talk
with and understand hardware reliability engineers. If a reliability and qual-
ity control (R&QC) engineer handles the hardware reliability estimates and
the software engineer generates software reliability estimates, they must meet
at the interface. Even if the R&QC engineer computes reliability estimates
for both the hardware and the software, it is still necessary for the software
engineer to work with him or her and provide information as well as roughly
evaluate the thoroughness and quality of the software effort.

B2 COMBINATORIAL RELIABILITY

B2.1 Introduction

In performing the reliability analysis of a complex system, it is almost impos-
sible to treat the system in its entirety. The logical approach is to decompose
the system into functional entities composed of units, subsystems, or compo-
nents. Each entity is assumed to have two states, one good and one bad. The
subdivision generates a block-diagram or fault-tree description of system oper-
ation. Models are then formulated to fit this logical structure, and the calculus
of probability is used to compute the system reliability in terms of the subdivi-
sion reliabilities. Series and parallel structures often occur, and their reliability
can be described very simply. In many cases the structure is of a more com-
plicated nature, and more general techniques are needed.

The formulation of a structural-reliability model can be difficult in a large,
sophisticated system and requires much approximation and judgment. This is
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best done by a system engineer or someone closely associated with one who
knows the system operation thoroughly.

B2.2 Series Configuration

The simplest and perhaps most common structure in reliability analysis is the
series configuration. In the series case the functional operation of the system
depends on the proper operation of all system components. A series string
of Christmas tree lights is an obvious example. The word functional must be
stressed, since the electrical or mechanical configuration of the circuit may
differ from the logical structure.

A series reliability configuration will be portrayed by the block-diagram
representation shown in Fig. B1(a), or the reliability graph shown in Fig. B1(b).
In either case, a single path from cause to effect is created. Failure of any
component is represented by removal of the component, which interrupts the
path and thereby causes the system to fail.

The system shown in Fig. B1 is divided into n series–connected units. This
system can represent n parts in an electronic amplifier, the n subsystems in an
aircraft autopilot, or the n operations necessary to place a satellite in orbit. The
event signifying the success of the nth unit will be xn, and xn will represent the
failure of the nth unit. The probability that unit n is successful will be P(xn),
and the probability that unit n fails will be P(xn). The probability of system
success is denoted by Ps. In keeping with the definition of reliability, Ps ≡ R,
where R stands for the system reliability. The probability of system failure is

Pf � 1 − Ps

Since the series configuration requires that all units operate successfully for
system success, the event representing system success is the intersection of x1,
x2, . . . , xn. The probability of this event is given by

Unit 1 Unit 2 Unit n
Cause Effect

Unit
1

Unit
2

Unit
n

Cause Effect

(b)

(a)

Figure B1 Series reliability configuration: (a) reliability block diagram (RBD); (b)
reliability graph.
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R � Ps � P(x1x2x3 · · · xn) (B1)

Expansion of Eq. (B1) yields

Ps � P(x1)P(x2 | x1)P(x3 | x1x2) · · · P(xn | x1x2 · · · xn − 1) (B2)

The expression appearing in Eq. (B2) contains conditional probabilities,
which must be evaluated with care. For example, P(x3 | x1x2) is the probabil-
ity of success of unit 3 evaluated under the condition that units 1 and 2 are
operating. In the case where the power dissipation from units 1 and 2 affects
the temperature of unit 3 and thereby its failure rate, a conditional probability
is involved. If the units do not interact, the failures are independent, and Eq.
(B2) simplifies to

Ps � P(x1)P(x2)P(x3) · · · P(xn) (B3)

The reliability of a series system is always smaller than the smallest reli-
ability of the set of components. The lowest relability in the series is often
referred to as “the weakest link in the chain.” An alternative approach is to
compute the probability of failure. The system fails if any of the units fail,
and therefore we have a union of events

Pf � P(x1 + x2 + x3 + · · · + xn) (B4)

Expansion of Eq. (B4) yields

Pf � [P(x1) + P(x2) + P(x3) + · · · + P(xn)]

− [P(x1x2) + P(x1x3) + · · · + P (xixj)
i � j

]

+ · · · + (−1)n − 1[P(x1x2 · · · xn)] (B5)

Since

Ps � 1 − Pf (B6)

the probability of system success becomes

Ps � 1 − P(x1) − P(x2) − P(x3) − · · · − P(xn) + P(x1)P(x2 | x1)

+ P(x1)P(x3 | x1) + · · · + P(xi)P (xi | xj)
i � j

− · · · + (−1)nP(x1)P(x2 | x1) · · · P(xn | x1 · · · xn − 1) (B7)

The reliability expression in Eq. (B7) is equivalent to that in Eq. (B2) but is
much more difficult to evaluate because of the many terms involved. Equation
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(B7) also involves conditional probabilities; for example, P(x3 | x1x2) is the
probability that unit 3 will fail given the fact that units 1 and 2 have failed. In
the case of independence P(x3 | x1x2) becomes P(x3), and the other conditional
probability terms in Eq. (B7) simplify, yielding

Ps � 1 − P(x1) − P(x2) − P(x3) − · · · − P(xn)

+ P(x1)P(x2) + P(x1)P(x3) + · · · + P (xi)
i � j

P(xj)

− · · · + (−1)nP(x1)P(x2) · · · P(xn) (B8)

Equation (B8) is still more complex than Eq. (B3). It is interesting to note that
the reliability of any particular configuration may be computed by considering
either the probability of success or the probability of failure. In a very complex
structure both approaches may be used at different stages of the computation.

B2.3 Parallel Configuration

In many systems several signal paths perform the same operation. If the system
configuration is such that failure of one or more paths still allows the remaining
path or paths to perform properly, the system can be represented by a parallel
model.

A block diagram and reliability graph for a parallel system are shown in Fig.
B2. There are n paths connecting input to output, and all units must fail in order
to interrupt all the paths. This is sometimes called a redundant configuration.

In a parallel configuration the system is successful if any one of the parallel
channels is successful. The probability of success is given by the probability
of the union of the n successful events.

(a) (b)

Unit 1

Unit 2

Unit n

Cause Effect

•
•
•

Unit n

Unit 1

Unit 2

Effect•
•
•

Cause

Figure B2 Parallel reliability configuration: (a) reliability block diagram; (b) reli-
ability graph.
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Ps � P(x1 + x2 + x3 + · · · + xn) (B9)

Expansion of Eq. (B9) yields

Ps � [P(x1) + P(x2) + P(x3) + · · · + P(xn)]

− [P(x1x2) + P(x1x3) + · · · + P (xixj)
i � j

]

+ · · · + (−1)n − 1P(x1x2 · · · xn) (B10)

The conditional probabilties which occur in Eq. (B10) when the intersection
terms are expanded must be interpreted properly, as in the previous section
[see Eq. (B7)]. A simpler formula can be developed in the parallel case if one
deals with the probability of system failure. System failure occurs if all the
system units fail, yielding the probability of their intersection.

Pf � P(x1x2x3 · · · xn) (B11)

where

Ps � 1 − Pf (B12)

Substitution of Eq. (B11) into Eq. (B12) and expansion yields

Ps � 1 − P(x1)P(x2 | x1)P(x3 | x1x2) · · · P(xn | x1x2 · · · xn − 1) (B13)

If the unit failures are independent, Eq. (B13) simplifies to

Ps � 1 − P(x1)P(x2) · · · P(xn) (B14)

B2.4 An r-out-of-n Configuration

In many problems the system operates if r out of n units function, e.g., a bridge
supported by n cables, r of which are necessary to support the maximum load.
If each of the n units is identical, the probabiality of exactly r successes out
of n units is given by Eq. (A21)

B(r ; n, p) � � n
r � pr(1 − p)n − r for r � 0, 1, 2 · · · n (B15)

where p is the probability of success of any unit. The system will succeed if r,
r + 1 · · · n – 1, or n units succeed. The probability of system success is given
by
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x2

x2

x2

x3

x3

x3

x3

x4 x5x1

x5
x1

x5x1

x4
x1

x5x2
x4

x4

Figure B3 Reliability graph for a 4-out-of-5 system.

Ps �

n

���
k � r �

n
k � pk(1 − p)n − k (B16)

If the units all differ, Eqs. (B15) and (B16) no longer hold, and one is faced
with the explicit enumeration of all possible successful combinations. One can
draw a reliability graph as an aid. The graph will have (n

r ) parallel paths. Each
parallel path will contain r different elements, corresponding to one of the com-
binations of n things r at a time. Such a graph for a four-out-of-five system is
given in Fig. B3. The system succeeds if any path succeeds. Each path success
depends on the success of four elements:

Ps � P(x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5) (B17)

Expanding Eq. (B17) involves simplification of redundant terms. For example,
the term P[(x1x2x3x4)(x1x2x3x5)] becomes by definition P(x1x2x3x4x5). Thus,
the equation simplifies to

Ps � P(x1x2x3x4) + P(x1x2x3x5) + P(x1x2x4x5) + P(x1x3x4x5)

+ P(x2x3x4x5) − 4P(x1x2x3x4x5) (B18)

It is easy to check Eq. (B18). For independent, identical elements Eq. (B18)
gives Ps =  5p4 – 4p5. From Eq. (B16) we obtain

Ps �

5

���
k � 4 �

5
k� pk(1 − p)5 − k

� � 5
4� p4(1 − p)1 + � 5

5� p5(1 − p)0

� 5p4
− 4p5
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B2.5 Fault-Tree Analysis

Fault-tree analysis (FTA) is an application of deductive logic to produce a
failure- or fault-oriented pictorial diagram, which allows one to analyze system
safety and reliability. Various failure modes that can contribute to a specified
undesirable event are organized deductively and represented pictorially.

First the top undesired event is defined and drawn. Below this, secondary
undesired events are drawn. These secondary undesired events include the
potential hazards and failures that are immediate causes of the top event.
Below each of these subevents are drawn second-level events, which are the
immediate causes of the subevents. The process is continued until basic events
are reached (often called elementary faults). Since the diagram branches out
and there are more events at each lower level, it resembles an inverted tree.
The treelike structure of the diagram illustrates the various critical paths of
subevents leading to the occurrence of the top undesired event. A fault tree
for an auto braking system example is given in Section B5, Fig. B13.

Both FTAs and RBDs are useful for both qualitative and quantitative anal-
yses:

1. They force the analyst to actively seek out failure events (success events)
in a deductive manner.

2. They provide a visual display of how a system can fail, and thus aid
understanding of the system by persons other than the designer.

3. They point out critical aspects of systems failure (system success).

4. They provide a systematic basis for quantitative analysis of reliability.

Often in a difficult practical problem one utilizes other techniques to decom-
pose the system prior to effecting either an RBD or an FTA.

B2.6 Failure Mode and Effect Analysis

Failure mode and effect analysis (FMEA) is a systematic procedure for iden-
tifying the modes of failures and for evaluating their consequences. It is a
tabular procedure which considers hazards in terms of single-event chains and
their consequences. The FMEA is generally performed on the basis of lim-
ited design information during the early stages of design and is periodically
updated to reflect changes in design and improved knowledge of the system.
The basic questions which must be answered by the analyst in performing an
FMEA are:

1. How can each component or subsystem fail? (What is the failure mode?)

2. What cause might produce this failure? (What is the failure mechanism?)

3. What are the effects of each failure if it does occur?
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Once the FMEA is completed, it assists the analyst in:

1. Selecting, during initial stages, various design alternatives with high reli-
ability and high safety potential

2. Ensuring that all possible failure modes, and their effects on operational
success of the system, have been taken into account

3. Identifying potential failures and the magnitude of their effects on the
system

4. Developing testing and checkout methods
5. Providing a basis for qualitative reliability, availability, and safety anal-

ysis
6. Providing input data for construction of RBD and FTA models
7. Providing a basis for establishing corrective measures
8. Performing an objective evaluation of design requirements related to

redundancy, failure detection systems, and fail-safe character

An FMEA for the auto braking example is given in Section B5, Table B3.

B2.7 Cut-Set and Tie-Set Methods

A very efficient general method for computing the reliability of any system
not containing dependent failures can be developed from the properties of the
reliability graph. The reliability graph consists of a set of branches which rep-
resent the n elements. There must be at least n branches in the graph, but there
can be more if the same branch must be repeated in more than one path (see
Fig. B3). The probability of element success is written above each branch. The
nodes of the graph tie the branches together and form the structure. A path has
already been defined, but a better definition can be given in terms of graph the-
ory. The term tie set, rather than path, is common in graph nomenclature. A tie
set is a group of branches which forms a connection between input and output
when traversed in the arrow direction. We shall primarily be concerned with
minimal tie sets, which are those containing a minimum number of elements.
If no node is traversed more than once in tracing out a tie set, the tie set is
minimal. If a system has i minimal tie sets denoted by T1, T2, . . . , Ti, then
the system has a connection between input and output if at least one tie set is
intact. The system reliability is thus given by

R � P(T1 + T2 + · · · + Ti) (B19)

One can define a cut set of a graph as a set of branches which interrupts
all connections between input and output when removed from the graph. The
minimal cut sets are a group of distinct cut sets containing a minimum number
of terms. All system failures can be represented by the removal of at least one
minimal cut set from the graph. The probability of system failure is, therefore,
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Figure B4 Reliability graph for a six-element system.

given by the probability that at least one minimal cut set fails. If we let C1,
C2, . . . , Cj represent the j minimal cut sets and Cj the failure of the j th cut set,
the system reliability is given by

Pf � P(C1 + C2 + · · · + Cj)

R � 1 − Pf � 1 − P(C1 + C2 + · · · + Cj) (B20)

As an example of the application of cut-set and tie-set analysis we consider
the graph given in Fig. B4. The following combinations of branches are some
of the several tie sets of the system:

T1 � x1x2 T2 � x3x4 T3 � x1x6x4 T4 � x3x5x2 T5 � x1x6x5x2

Tie sets T1, T2, T3, and T4 are minimal tie sets. Tie set T5 is nonminimal since
the top node is encountered twice in traversing the graph. From Eq. (B19)

R � P(T1 + T2 + T3 + T4) � P(x1x2 + x3x4 + x1x6x4 + x3x5x2) (B21)

Similarly we may list some of the several cut sets of the structure

C1 � x1x3 C2 � x2x4 C3 � x1x5x3 C4 � x1x5x4

C5 � x3x6x1 C6 � x3x6x2

Cut sets C1, C2, C4, and C6 are minimal. Cut sets C3 and C5 are nonminimal
since they are both contained in cut set C1. Using Eq. (B20),

R � 1 − P(C1 + C2 + C4 + C6) � 1 − P(x1x3 + x2x4 + x1x5x4 + x3x6x2) (B22)

In a large problem there will be many cut sets and tie sets, and although Eqs.
(B19) and (B20) are easily formulated, the expansion of either equation is a
formidable task. (If there are n events in a union, the expansion of the probabil-
ity of the union involves 2n – 1 terms.) Several approximations which are use-
ful in simplifying the computations are discussed in Messinger and Shooman
[1967] and in Shooman [1990, p. 138].
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B3 FAILURE-RATE MODELS

B3.1 Introduction
The previous section has shown how one constructs various combinatorial reli-
ability models which express system reliability in terms of element reliabil-
ity. This section introduces several different failure models for the system ele-
ments. These element failure models are related to life-test results and failure-
rate data via probability theory.

The first step in constructing a failure model is to locate test data or plan a
test on parts substantially the same as those to be used. From these data the part
failure rate is computed and graphed. On the basis of the graph, any physical
failure information, engineering judgment, and sometimes statistical tests, a
failure-rate model is chosen. The parameters of the model are estimated from
the graph or computed using the statistical principles of estimation, which are
developed in Section A9. This section discusses the treatment of the data and
the choice of a model.

The emphasis is on simple models, which are easy to work with and con-
tain one or two parameters. This simplifies the problems of interpretation and
parameter determination. Also in most cases the data are not abundant enough
and the test conditions are not sufficiently descriptive of the proposed usage
to warrant more complex models.

B3.2 Treatment of Failure Data
Part failure data are generally obtained from either of two sources: the failure
times of various items in a population placed on a life test, or repair reports list-
ing operating hours of replaced parts in equipment already in field use. Expe-
rience has shown that a very good way to prevent these data is to compute and
plot either the failure density function or the hazard rate as a function of time.

The data we are dealing with are a sequence of times to failure, but the failure
density function and the hazard rate are continuous variables. We first compute
a piecewise-continuous failure density function and hazard rate from the data.

We begin by defining piecewise-continuous failure density and hazard-rate
functions in terms of the data. It can be shown that these discrete functions
approach the continuous functions in the limit as the number of data becomes
large and the interval between failure times approaches zero. Assume that our
data describe a set of N items placed in operation at time t = 0. As time progresses,
items fail, and at any time t the number of survivors is n(t). The data density
function (also called empirical density function) defined over the time interval
ti < t ≤ ti + Dti is given by the ratio of the number of failures occurring in the
interval to the size of the original population, divided by the length of the time
interval1

1In general a sequence of time intervals t0 < t ≤ t0 + Dt0, t1 < t ≤ t1 + Dt1, etc., is defined, where
t1 = t0 + Dt0, t2 = t1 + Dt1, etc.
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TABLE B1 Failure Data for 10 Hypothetical
Electronic Components

Failure Number Operating Time, h

1 8
2 20
3 34
4 46
5 63
6 86
7 111
8 141
9 186

10 266

f d(t) �
[n(ti) − n(ti + Dti)]/ N

Dti
for ti < t ≤ ti + Dti (B23)

Similarly, the data hazard rate2 over the interval ti < t ≤ ti + Dti is defined as
the ratio of the number of failures occurring in the time interval to the number
of survivors at the beginning of the time interval, divided by the length of the
time interval.

zd(t) �
[n(ti) − n(ti + Dti)]/ n(ti)

Dti
for ti < t ≤ ti + Dti (B24)

The failure density function f d(t) is a measure of the overall speed at which
failures are occurring, whereas the hazard rate zd(t) is a measure of the instan-
taneous speed of failure. Since the numerators of both Eqs. (B23) and (B24)
are dimensionless, both f d(t) and zd(t) have the dimensions of inverse time
(generally the time unit is hours).

The failure data for a life test run on a group of 10 hypothetical electronic
components are given in Table B1. The computation of f d(t) and zd(t) from
the data appears in Table B2.

The time intervals Dti were chosen as the times between failure, and the first
time interval t0 started at the origin; that is, t0 = 0. The remaining time intervals
ti coincided with the failure times. In each case the failure was assumed to
have occurred just before the end of the interval. Two alternate procedures
are possible. The failure could have been assumed to occur just after the time
interval closed, or the beginning of each interval ti could have been defined as
the midpoint between failures. In this book we shall consistently use the first
method, which is illustrated in Table B2.

2Hazard rate is sometimes called hazard or failure rate.
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TABLE B2 Computation of Data Failure Density and Data
Hazard Rate

Time Interval, Failure Density per Hour, Hazard Rate per Hour,
h f d(t)(×10−2) zd(t)(×10−2)

0–8
1

10 × 8
� 1.25

1
10 × 8

� 1.25

8–20
1

10 × 12
� 0.84

1
9 × 12

� 0.93

20–34
1

10 × 14
� 0.72

1
8 × 14

� 0.96

34–46
1

10 × 12
� 0.84

1
7 × 12

� 1.19

46–63
1

10 × 17
� 0.59

1
6 × 17

� 0.98

63–86
1

10 × 23
� 0.44

1
5 × 23

� 0.87

86–111
1

10 × 25
� 0.40

1
4 × 25

� 1.00

111–141
1

10 × 30
� 0.33

1
3 × 30

� 1.11

141–186
1

10 × 45
� 0.22

1
2 × 45

� 1.11

186–266
1

10 × 80
� 0.13

1
1 × 80

� 1.25

Since f d(t) is a density function, we can define a data failure distribution
function and a data success distribution function by

Fd(t) � ∫
t

0
f d(y) dy (B25a)

Rd(t) � 1 − Fd(t) � 1 − ∫
t

0
f d(y) dy (B25b)

where y is just a dummy variable of integration. Since the f d(t) curve is a
piecewise-continuous function consisting of a sum of step functions, its integral
is a piecewise-continuous function made up of a sum of ramp functions.

The functions Fd(t) and Rd(t) are computed for the preceding example by
the appropriate integration of Fig. B5(a) and are given in Fig. B5(c) and (d).
By inspection of Eqs. (B23) and (B25b) we see that
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Figure B5 Density and hazard functions for the data of Table B1. (a) Data failure
density functions; (b) data hazard rate; (c) data failure distribution function; (d) data
success function.
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Rd(ti) �
n(ti)

N
(B26)

In the example given in Table B1, only 10 items were on test, and the com-
putations were easily made. If many items are tested, the computation inter-
vals Dti cannot be chosen as the times between failures since the computa-
tions become too lengthy. The solution is to divide the same scale into several
equally spaced intervals. Statisticians call these class intervals, and the mid-
point of the interval is called a class mark. Graphical diagrams such as Fig.
B5(a) and (b) are called histograms.

B3.3 Failure Modes and Handbook Failure Data

After plotting and examining failure data for several years, people began to rec-
ognize several modes of failure. Early in the lifetime of equipment or a part,
there are a number of failures due to initial weakness or defects; poor insu-
lation, weak parts, bad assembly, poor fits, etc. During the middle period of
equipment operation fewer failures take place, and it is difficult to determine
their cause. In general they seem to occur when the environmental stresses
exceed the design strengths of the part or equipment. It is difficult to predict
the environmental-stress amplitudes or the part strengths as deterministic func-
tions of time; thus the middle-life failures are often called random failures.3 As
the item reaches old age, things begin to deteriorate, and many failures occur.
This failure region is quite naturally called the wear-out region. Typical f (t)
and z(t) curves4 illustrating these three modes of behavior are shown in Fig.
B6. The early failures, also called initial failures or infant mortality,5 appear
as decreasing z(t) and f (t) functions. The random-failure, or constant-hazard-
rate, mode is characterized by an approximately constant z(t) and a companion
f (t) which is approximately exponential. In the wear-out or rising-failure-rate
region, the z(t) function increases whereas f (t) has a humped appearance.

It is clear that it is easier to distinguish the various failure modes by inspec-
tion of the z(t) curve than it is from the appearance of the f (t) function. This
is one of the major reasons why hazard rate is introduced. Because of the
monotonic nature of F(t) and R(t) these functions are even less useful in dis-
tinguishing failure modes.

The curve of Fig. B6(b) has been discussed by many of the early writers on the
subject of reliability [Carhart, 1953] and is often called the bathtub curve because
of its shape. The fact that such a hazard curve occurs for many types of equipment

3Actually all the failures are random; thus a term such as unclassifiable as to cause would be
more correct.
4We are now referring to continuous hazard and failure density functions, which represent the
limiting forms of f d(t) and zd(t) as discussed.
5Some of the terms, as well as the concept of hazard, have been borrowed from those used by
actuaries, who deal with life insurance statistics.
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Figure B6 General form of failure curves. (a) Failure density; (b) hazard rate.

has been verified by experience. Also when failed components have been dis-
mantled to determine the reasons for failure, the conclusions have again justified
the hypothesis of three failure modes. In fact most manufacturers of high-reliabil-
ity components now subject their products to an initial burn-in period of ti hours
to eliminate the initial failure region shown in Fig. B6. At the onset of wearout
at time t2, the hazard rate begins to increase rapidly, and it is wise to replace the
item after t2 hours of operation. Thus, if the bathtub curve were really a univer-
sal model, one would pretest components for t1 hours, place the survivors in use
for an additional t2 – t1 hours, and then replace them with fresh pretested com-
ponents. This would reduce the effective hazard rate and improve the probability
of survival if burn-in and replacement are feasible. Unfortunately, many types of
equipment have a continuously decreasing or continuously increasing hazard and
therefore behave differently. It often happens that electronic components have a
constant hazard and mechanical components a wear-out characteristic. Unfortu-
nately, even though reliability theory is 4 to 5 decades old, not enough compara-
tive analysis has been performed on different types of hazard models and failure
data to make a definitive statement as to which models are best for all types of
components.

Many failure data on parts and components have been recorded since the
beginning of formal interest in reliability in the early 1950s. Large industrial
organizations such as Radio Corporation of America, General Electric Com-
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pany, Motorola, etc., published handbooks of part-failure-rate data compiled
from life-test and field-failure data. These data and other information were com-
piled into an evolving series of part-failure-rate handbooks: MIL-HDBK-217,
217A, 217B, 217C, 217D, 217E, 217F Government Printing Office, Washington,
DC. Another voluminous failure data handbook is Failure Rate Data Handbook
(FARADA), published by the GIDEP program, Government Industrial Data
Exchange Program, Naval Fleet Missile Systems, Corona, CA. The FARADA
handbook includes such vital information as the number on test, the number of
failures, and some details on the source of the data and the environment. This
information allows one to use engineering judgments in selecting failure rates
from this reference. Many practitioners now use failure databases compiled by
various telecommunications companies in the United States and worldwide (see
Shooman [1990, Appendix K], and Section D2.1 of this book).

In practice, failure rates for various components are determined from hand-
book data, field failure-rate data, or life test data provided by component man-
ufacturers. A large fraction of the components used in modern systems are
microelectronics circuits. Many are analog in nature; however, even more are
digital integrated circuits (ICs). One reason that modern electronic equipment is
very reliable is because these ICs have a very low failure rate. Furthermore, the
failure rate of ICs increases only slowly as their complexity increases. Anal-
ysis of past failure-rate data allows one to develop a simple model for the
failure rate of digital integrated circuits, which is very useful for initial reli-
ability comparisons of various designs.

A curve showing the failure rate per gate versus gate complexity for digital
integrated IC is given in Fig. B7, which was adapted from Siewiorek [1982].
The light solid and light dotted lines in the figure as well as the dark and
light circles represent data plotted from various sources. The heavy solid lines
were fitted to the data by the author. Note that the slopes are all approximately
parallel and that the reliability improved from 1965 to 1975 to 1985.

The heavy lines are based on the assumption that the failure rate increases
as the square root of the number of gates:

l b � C × (g)1/ 2 (B27a)

where

lb =
C =
g =

is the base failure rate
is a constant
is the number of gates in the equivalent circuit for the chip

Others use a different failure-rate model, where lb′ ∼ (g)a and 0.1 < a < 0.3
[Healey, 2001]. If we express the failure rates per gate, l b′ , we obtain from
Eq. (B27a):

l b′ � l b/ g � C/ g1/ 2 (B27b)
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Figure B7 Failure rate per gate as a function of chip complexity for bipolar technol-
ogy. (Adapted from Siewiorek [1982, p. 10, Fig. 1–5]).

The values of C, determined by fitting the heavy curve to the data for 1965,
1975, and 1985, are C = 0.32, 0.04, and 0.004. This indicates that IC reliability
has improved by about a factor of 10 for each decade. More details of this
model are given in Shooman [1990, pp. 641–644].

We now propose a hypothetical explanation for why the failure rate should be
proportional to the square root of the number of gates if we assume that most of
the IC failures occur from electromigration—a process that produces projections
of conducting material growing out of the various areas carrying current on an
IC chip. These projections grow as a function of current and time. If a projec-
tion touches another projection or current-carrying area on the chip, then shorting
may occur resulting in a failure of the IC. (Another possible result of electromi-
gration is the forming of voids, creating open circuits, or unacceptable changes in
line/ contact resistances. Note that newer technologies now in use are less prone
to electromigration failure modes [Bernstein, 2001].)
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We can model the time to failure in the following manner: Let s (mm) be
the average spacing between current-carrying elements on the chip and let v
(mm/ hr) be the average speed at which the projections elongate. The average
time to failure, tf (hr), is then proportional to s/ v. In general, tf , s, and v will
be random variables; however, we can characterize tf by its expected value,
which is generally called the mean time to failure (MTTF), yielding

MTTF � K1s/ v (B27c)

where K1 is a proportionality constant computed by taking the expected value
of the distribution for the ratio of the random variables s and v.

For a fixed chip area, A, we assume that the horizontal spacing sh is inversely
proportional to the number of gates across the width of the chip. Similarly,
the vertical spacing, sv, is inversely proportional to the number of gates along
the length of the chip. Assuming a square chip and g total gates, the number
of gates across the width (gates along the length) will be equal to

�
g and

sh = sv = s, which is given by

s � K2�
g

(B27d)

where K2 is a proportionality constant, which is a function of the fabrication
techniques used for the IC.

A substitution of Eq. (B27d) into Eq. (B27c) yields

MTTF � K1K2

v
�

g
(B27e)

The simplest failure-rate model is the constant failure-rate model, where l is
a constant with units failures/ hr. For this model, it can be shown that l =
1/ MTTF. Thus

l �
v
�

g

K1K2
(B27f)

This development therefore leads to a failure rate that is proportional to the
square root of the number of gates on the chip. The author emphasizes that
this is a hypothesis, not a proven explanation.

Another hypothesis for newer chip technologies relates initial yield and fail-
ure rate to residual chip defects. Thus l ∼ Area ∼ g1 [Bernstein, 2001].

B3.4 Reliability in Terms of Hazard Rate and Failure Density

In the previous section, various functions associated with failure data were
defined and computed for the data given in the examples. These functions
were zd(t), f d(t), Fd(t), and Rd(t). In this section we begin by defining two
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random variables and deriving in a careful manner the basic definitions and
relations between the theoretical hazard, failure density function, failure dis-
tribution function, and reliability function.

The random variable t is defined as the failure time of the item in question.6

Thus, the probability of failure as a function of time is given as

P(t ≤ t) � F(t) (B28)

which is simply the definition of the failure distribution function. We can define
the reliability, which is a probability of success in terms of F(t), as

R(t) � Ps(t) � 1 − F(t) � P(t ≥ t) (B29)

The failure density function is of course given by

dF(t)
dt

� f (t) (B30)

We now consider a population of N items with the same failure-time dis-
tribution. The items fail independently with probability of failure given by
F(t) =1 – R(t) and probability of success given by R(t). If the random vari-
able N(t) represents the number of units surviving at time t, then N(t) has a
binomial distribution with p = R(t). Therefore,

P[N(t) � n] � B[n; N, R(t)] �
N!

n!(N − n)!
[R(t)]n[1 − R(t)]N − n

n � 0, 1, . . . ,                                (B31)

The number of units operating at any time t is a random variable and is not
fixed; however, we can compute the expected value N(t). From Table A1 we
see that the expected value of a random variable with a binomial distribution
is given by NR(t) and leads to

n(t) ≡ E[N(t)] � NR(t) (B32)

Solving for the reliability yields

R(t) �
n(t)
N

(B33)

Thus, the reliability at time t is the average fraction of surviving units at time t.
This verifies Eq. (B27), which was obtained as a consequence of the definition
of f d(t). From Eq. (B29) we obtain

6In some problems, a more appropriate random variable is the number of miles, cycles, etc. The
results are analogous.
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F(t) � 1 −

n(t)
N

�

N − n(t)
N

(B34)

and from Eq. (B30)

f (t) �
dF(t)

dt
� −

1
N

dn(t)
dt

f (t) ≡ lim
Dt� 0

n(t) − n(t + Dt)
NDt

(B35)

Thus, we see that Eq. (B23) is valid, and as N becomes large and Dti becomes
small, Eq. (B23) approaches Eq. (B35) in the limit. From Eq. (B34) we see
that F(t) is the average fraction of units having failed between 0 and time t,
and Eq. (B35) states that f (t) is the rate of change of F(t), or its slope. From
Eq. (B35) we see that the failure density function f (t) is normalized in terms
of the size of the original population N. In many cases it is more informative
to normalize with respect to n(t), the number of survivors. Thus, we define the
hazard rate as

z(t) ≡ − lim
Dt� 0

n(t) − n(t + Dt)
n(t)Dt

(B36)

The definition of z(t) in Eq. (B36) of course agrees with the definition of zd(t)
in Eq. (B24). We can relate z(t) and f (t) using Eqs. (B35) and (B36):

z(t) � − lim
Dt r 0

n(t) − n(t + Dt)
Dt

1
n(t)

� N f(t)
1

n(t)

Substitution of Eq. (B33) yields

z(t) �
f (t)
R(t)

(B37)

We now wish to relate R(t) to f (t) and to z(t). From Eqs. (B29) and (B30) we
see that

R(t) � 1 − F(t)

� 1 − ∫
t

0
f (y) dy (B38)

where y is merely a dummy variable. Substituting into Eq. (B37) from Eqs.
(B35) and (B33), we obtain
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z(t) � −

1
N

dn(t)
dt

N
n(t)

� −

d
dt

ln n(t)

Solving the differential equation yields:

ln n(t) � − ∫
t

0
z(y) dy + c

where y is a dummy variable and c is the constant of integration. Taking the
antilog of both sides of the equation gives:

n(t) � ec exp [ − ∫
t

0
z(y) dy]

Inserting initial conditions

n(0) � N � ec

gives

n(t) � N exp [ − ∫
t

0
z(y) dy]

Substitution of Eq. (B33) completes the derivation

R(t) � exp [ − ∫
t

0
z(y) dy] (B39)

Equations (B35) and (B36) serve to define the failure density function and the
hazard rate, and Eqs. (B37) to (B39) relate R(t) to f (t) and z(t).7

B3.5 Hazard Models

On first consideration it might appear that if failure data and graphs such as
Fig. B5(a–d) are available, there is no need for a mathematical model. How-
ever, in drawing conclusions from test data on the behavior of other, similar
components it is necessary to fit the failure data with a mathematical model.
The discussion will start with several simple models and gradually progress to
the more involved problem of how to choose a general model which fits all
cases through adjustment of constants.

7An alternative derivation of these expressions is given in Shooman [1990, p. 183].
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Figure B8 Constant-hazard model: (a) constant hazard; (b) decaying exponential den-
sity function; (c) rising exponential distribution function; and (d) decaying exponential
reliability function.

Constant Hazard. For a good many years, reliability analysis was almost
wholly concerned with constant-hazard rates. Indeed many data have been
accumulated, like those in Fig. B5(b), which indicate that a constant-hazard
model is appropriate in many cases.

If a constant-hazard rate z(t) = l is assumed, the time integral is given by
∫
t
0 l dy = lt. Substitution in Eqs. (B37) to (B39) yields

z(t) � l (B40)

f (t) � le−lt (B41)

R(t) � e−lt
� 1 − F(t) (B42)

The four functions z(t), f (t), F(t), and R(t) are sketched in Fig. B8. A constant-
hazard rate implies an exponential density function and an exponential reli-
ability function.

The constant-hazard model forbids any deterioration in time of strength or
soundness of the items in the population. Thus, if l = 0.1 per hour, we can
expect 10 failures in a population of 100 items during the first hour of operation
and the same number of failures between the thousandth and thousand and first
hours of operation in a population of 100 items that have already survived
1,000 hours. A simple hazard model that admits deterioration in time, i.e.,
wear, is one in which the failure rate increases with time.
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Figure B9 Linearly increasing hazard: (a) linearly increasing hazard; (b) Rayleigh
density function; (c) Rayleigh distribution function; (d) Rayleigh reliability function.

Sometimes a test is conducted for N parts for T hours and no parts fail. The
total number of test hours is H = NT, but the number of failures is zero. Thus
one is tempted to estimate l by 0/ H, which is incorrect. A better procedure is
to say that the failure rate is less than if one failure occurred, l < 1/ H. More
advanced statistical techniques suggest that l ≈ (1/ 3)/ H [Welker, 1974].

Linearly Increasing Hazard. When wear or deterioration is present, the haz-
ard will increase as time passes. The simplest increasing-hazard model that can
be postulated is one in which the hazard increases linearly with time. Assuming
that z(t) = Kt for t ≥ 0 yields

z(t) � Kt (B43)

f (t) � Kte−Kt2/ 2 (B44)

R(t) � e−Kt2/ 2 (B45)

These functions are sketched in Fig. B9. The density function of Eq. (B44) is
a Rayleigh density function.

The Weibull Model. In many cases, the z(t) curve cannot be approximated by
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a straight line, and the previously discussed models fail. In order to fit various
z(t) curvatures, it is useful to investigate a hazard model of the form

z(t) � Ktm for m > −1 (B46)

This form of model was discussed in detail in a paper by Weibull [1951] and is
generally called a Weibull model. The associated density and reliability func-
tions are

f (t) � Ktme−Kt m + 1/ (m + 1) (B47)

R(t) � e−Kt m + 1/ (m + 1) (B48)

By appropriate choice of the two parameters K and m, a wide range of
hazard curves can be approximated. The various functions obtained for typi-
cal values of m are shown in Fig. B10. For fixed values of m, a change in
the parameter K merely changes the vertical amplitude of the z(t) curve; thus,
z(t)/ K is plotted versus time. Changing K produces a time-scale effect on the
R(t) function; therefore, time is normalized so that t m + 1 =[K / (m + 1)]t m + 1.
The amplitude of the hazard curve affects the time scale of the reliability func-
tion; consequently, the parameter K is often called the scale parameter. The
parameter m obviously affects the shape of all the reliability functions shown
and is consequently called the shape parameter. The curves m =0 and m =
1 are constant-hazard and linearly-increasing-hazard models, respectively. It is
clear from inspection of Fig. B10 that a wide variety of models is possible
by appropriate selection of K and m. The drawback is, of course, that this
is a two-parameter model, which means a greater difficulty in sketching the
results and increased difficulty in estimating the parameters. A three-parame-
ter Weibull model can be formulated by replacing t by t – t0, where t0 is called
the location parameter.

B3.6 Mean Time To Failure

It is often convenient to characterize a failure model or set of failure data by
a single parameter. One generally uses the mean time to failure or the mean
time between failures for this purpose. If we have life-test information on a
population of n items with failure times t1, t2, . . . , tn, then the MTTF8 is defined
by the following equation [see also Eq. (A34)]:

MTTF �

1
n

n

���
i � 1

ti (B49)

8Sometimes the term mean time between failures (MTBF) is used interchangeably with the term
MTTF; however, strictly speaking, the MTBF has meaning only when one is discussing a renewal
situation, where there is repair or replacement. See Shooman [1990, Section 6.10].
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If one is discussing a hazard model, the MTTF for the probability distribu-
tion defined by the model is given by Eq. (A33) as

MTTF � E(t) � ∫
∞

0
t f(t) dt (B50)

In a single-parameter distribution, specification of the MTTF fixes the
parameter. In a multiple-parameter distribution, fixing the MTTF only places
one constraint on the model parameters.

One can express Eq. (B50) by a simpler computational expression involving
the reliability function:9

MTTF � ∫
∞

0
R(t) dt (B51)

As an example of the use of Eq. (B51) the MTTF for several different haz-
ards will be computed. For a single component with a constant hazard:

MTTF � ∫
∞

0
e−lt d t � e−lt

−l
|
|
|
|

∞

0

� 1
l

(B52)

For a linearly increasing hazard:

MTTF � ∫
∞

0
e−Kt 2/ 2 dt � G( 1

2 )

2
�

K/ 2
�
�

p

2K
(B53)

For a Weibull distribution:

MTTF � ∫
∞

0
e−Kt (m + 1)/ (m + 1) dt � G[(m + 2)/ (m + 1)]

[K/ (m + 1)]1/ (m + 1)
(B54)

In Eq. (B52) the MTTF is simply the reciprocal of the hazard, whereas in Eq.
(B53) it varies as the reciprocal of the square root of the hazard slope. In Eq.
(B54) the relationship between MTTF, K, and m is more complex (see Table
A1).

In many cases we assume an exponential density (constant hazard) for sim-
plicity, and for this case we frequently hear the statement “the MTBF is the
reciprocal of the failure rate.” The reader should not forget the assumptions
necessary for this statement to hold.

9For the derivation, see Shooman [1990, p. 197].
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B4 SYSTEM RELIABILITY

B4.1 Introduction

The previous two sections have divided reliability into two distinct phases:
a formulation of the reliability structure of the problem using combinatorial
reliability, and a computation of the element probabilities in terms of hazard
models. This section unites these two approaches to obtain the reliability func-
tion for the system.

When the element probabilities are independent, computations are straight-
forward. The only real difficulties encountered here are the complexity of the
calculations in large problems.

B4.2 The Series Configuration

The series configuration, also called a chain structure, is the most common
reliability model and the simplest. Any system in which the system success
depends on the success of all its components is a series reliability configuration.
Unfortunately for the reliability analyst (but fortunately for the user of the
product or device), not all systems have this simple structure.

A series configuration of n items is shown in Fig. B11(a). The reliability of
this structure is given by

R(t) � P(x1, x2, . . . , xn) � P(x1)P(x2 |x1)P(x3 |x1x2)

· · · P(xn |x1x2 · · · xn − 1) (B55)

If the n items x1, x2, . . . , xn are independent, then

R(t) � P(x1)P(x2) · · · P(xn) �
n

∏
i � 1

P(xi) (B56)

If each component exhibits a constant hazard, then the appropriate component
model is e−l i t , and Eq. (B56) becomes

x1 x2 x3 xn(a)

x3

xn

x1

x2
(b)

Figure B11 Series (a) and parallel (b) reliability configurations.
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R(t) �
n

∏
i � 1

e−l i t
� exp �−

n

���
i � 1

l it� (B57)

Equation (B57) is the most commonly used and the most elementary system
reliability formula. In practice this formula is often misused (probably because
it is so simple and does work well in many situations, people have become
overconfident). The following assumptions must be true if Eq. (B57) is to hold
for a system:

1. The system reliability configuration must truly be a series one.
2. The components must be independent.
3. The components must be governed by a constant-hazard model.

If assumptions 1 and 2 hold but the components have linearly increasing haz-
ards zi(t) =Kit, Eq. (B56) then becomes

R(t) �
n

∏
i � 1

e−Kit 2/ 2
� exp �−

n

���
i � 1

Kit 2

2 � (B58)

If p components have a constant hazard and n − p components a linearly
increasing hazard, the reliability becomes

R(t) � �
p

∏
i � 1

e−li t� �
n

∏
i � p + 1

e−li t 2/ 2�
� exp�−

p

���
i � 1

lit� exp � −

n

���
i � p + 1

Kit 2

2 � (B59)

In some cases no simple composite formula exists, and the reliability must
be expressed as a product of n terms. For example, suppose each component
is governed by the Weibull distribution, z(t) =K it mi . If m and K are different
for each component,

R(t) �
n

∏
i � 1

exp � −Kit mi + 1

mi + 1 � � exp �−
n

���
i � 1

Kit mi + 1

mi + 1 � (B60)

The series reliability structure serves as a lower-bound configuration. To
illustrate this principle we pose a hypothetical problem. Given a collection of
n elements, from the reliability standpoint what is the worst possible reliability
structure they can assume? The intutitive answer, of course, is a series struc-
ture. (A proof is given in Shooman [1990, p. 205]; see also Section B6.4 of
this book.)
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B4.3 The Parallel Configuration

If a system of n elements can function properly when only one of the elements
is good, a parallel configuration is indicated. A parallel configuration of n items
is shown in Fig. B11(b). The reliability expression for a parallel system may
be expressed in terms of the probability of success of each component or, more
conveniently, in terms of the probability of failure

R(t) � P(x1 + x2 + · · · + xn) � 1 − P(x1x2 · · · xn) (B61)

In the case of constant-hazard components, Pf = P(x i) = 1 – e−li t , and Eq.
(B61) becomes

R(t) � 1 −

n

∏
i � 1

(1 − e−li t) (B62)

In the case of linearly increasing hazard, the expression becomes

R(t) � 1 −

n

∏
i � 1

(1 − e−Kit 2/ 2) (B63)

In the general case, the system reliability function is

R(t) � 1 −

n

∏
i � 1

(1 − e−Zi(t)) (B64)

where Zi(t) ≡ ∫
t
0 z(y) dy.

In order to permit grouping of terms in Eq. (B64) to simplify computation
and/ or interpretation, the equation must be expanded. The expansion results
in

R(t) � (e−Z1 + e−Z2 + · · · + e−Zn ) − (e− (Z1 + Z2) + e− (Z1 + Z3) + · · ·)

+ (e− (Z1 + Z2 + Z3) + e− (Z1 + Z2 + Z4) + · · ·) − · · · e− (Z1 + Z2 + Z3 + ··· + Zn) (B65)

Note that the signs of the terms in parentheses alternate and that in the first
set of parentheses, the exponents are all the Zs taken singly; in the second, all
the sums of Zs taken two at a time; and in the last term, the sum of all the Zs.
The r th parentheses in Eq. (B65) contain n!/ [r!(n – r)!] terms.

Just as the series configuration served as a lower-bound structure, the par-
allel model can be thought of as an upper-bound structure.

If we have a system of n elements with information on each element reli-
ability but little or no information on their interconnection, we can bound the
reliability function from below by Eq. (B56) and from above by Eq. (B64).
We would in general expect these bounds to be quite loose; however, they do
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provide some information even when we are grossly ignorant of the system
structure.

B4.4 An r-out-of-n Structure

Another simple structure which serves as a useful model for many reliability
problems is an r-out-of-n structure. Such a model represents a system of n
components in which r of the n items must be good for the system to succeed.
Of course r is less than n. Two simple examples of an r-out-of-n system are
(1) a piece of stranded wire with n strands in which at least r are necessary
to pass the required current and (2) a battery composed of n series cells of E
volts each where the minimum voltage for system operation10 is rE.

We may formulate a structural model for an r-out-of-n system, but it is
simpler to use the binomial distribution if applicable. The binomial distribution
can be used only when the n components are independent and identical. If the
components differ or are dependent, the structural-model approach must be
used.11 Success of exactly r out of n identical, independent items is given by

B(r : n) � � n
r � pr(1 − p)n − r (B66)

where r : n stands for r out of n, and the success of at least r out of n items is
given by

Ps �

n

���
k � r

B(k : n) (B67)

For constant-hazard components Eq. (B66) becomes

R(t) �
n

���
k � r �

n
k � e−klt(1 − e−lt)n − k (B68)

Similarly for linearly increasing or Weibull components, the reliability func-
tions are

10Actually when one cell of a series of n cells fails, the voltage of the string does not become
(n – 1)E unless a special circuit arrangement is used. Such a circuit is discussed in Shooman
[1990, p. 2.9].
11The reader should refer to the example given in Eq. (B17) and Fig. B3.
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R(t) � [ n

���
k � r �

n
k � e−kKt 2/ 2] (1 − e−Kt 2/ 2)n − k (B69)

R(t) � [ n

���
k � r �

n
k � e−kKt m + 1/ (m + 1)] (1 − e−Kt m + 1/ (m + 1))n − k (B70)

It is of interest to note that for r =1, the structure becomes a parallel system
and for r =n the structure becomes a series system. Thus, in a sense series
and parallel systems are subclasses of an r-out-of-n structure.

B5 ILLUSTRATIVE EXAMPLE OF SIMPLIFIED AUTO DRUM
BRAKES

B5.1 Introduction

The preceding sections have attempted to summarize the pertinent aspects of
reliability theory and show the reader how analysis can be performed. This
section illustrates via an example how the theory can be applied.

The example chosen for this section is actually a safety analysis. In the
case of the automobile, the only difference between a reliability and a safety
analysis is in the choice of subsystems included in the analysis. In the case
of safety, we concentrate on the subsystems whose failure could cause injury
to the occupants, other passengers, pedestrians, etc. In the case of reliability
analysis, we would include all subsystems whose failure either makes the auto
inoperative or necessitates a repair (depending on our definition of success).

B5.2 The Brake System

The example considers the braking system of a typical older auto, without
power brakes or antilock brakes and excluding the parking (emergency) brake
and the dash warning light. An analysis at the detailed (piece-part) level is a
difficult task. The major subsystems in a typical braking system may contain
several hundred parts and assemblies.

The major subsystems and approximate parts counts are: pressure differen-
tial valve (8 parts), self-adjusting drum brakes (4 × 15 parts), wheel cylinder (4
× 9 parts), tubing, brackets, and connectors (50 parts), dual master cylinder (22
parts), and master cylinder installation parts (20 parts). Frequently, because of
lack of data, analysis is not carried out at this piece-part level. Even with scanty
data, an analysis is still important, since often it will show obvious weaknesses
of such a braking system which can be improved when redesigning it. In such
a case, redesign is warranted, based on engineering judgment, even without
statistics on frequencies of the failure modes. The example will be performed
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TABLE B3 A Simplified Braking System FMECA

Safety
Failure Mode Mechanism Criticality Comments

M1: Differential Leakage or Medium Reduces
valve failure Blockage braking
(1/ 2 system) efficiency

M2: Differential Leakage affecting High Loss of
valve failure both front and both systems
(total system) back systems

M3: Master cylinder Leakage or Medium Reduces
failure blockage braking
(1/ 2 system) efficiency

M4: Master cylinder Leakage High Loss of
failure (front and back) both systems
(total system)

M5: Drum brakes Leakage or Medium Unbalance of
self-adjusting blockage of brakes causes

one assembly erratic behavior
M6: Tubing, brackets, Leakage or Medium Reduces

and connectors blockage braking
(1/ 2 system) efficiency

M7: Pedal and Broken or High Loss of
linkage jammed both systems

at a higher level, and will group together all failure mechanisms which cause
the particular failure mode in question.

B5.3 Failure Modes, Effects, and Criticality Analysis

An FMECA12 for the simplified braking system is given in Table B3. Inspec-
tion of the table shows that the modes which most seriously affect safety are
modes M2, M4, and M7, and the design should be scrutinized in a design
review to assure that the probability of occurrence for these modes is mini-
mized.

B5.4 Structural Model

The next step in analysis would be the construction of an SBD or an FT.13

Assume that a safety failure occurs if modes M2, M4, or M7 occur singly and

12Sometimes a column is added to an FMEA analysis which discusses (evaluates) the severity
or criticality of the failure mode. In such a case, the analysis is called an FMECA.
13Safety block diagram or fault tree.
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x1

x1

x3

x3
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x6

x6

x6

Figure B12 Safety block diagram for simplified brake example. The notation xi
means a failure mode for element i does not occur, indicating success of element i.

modes M1, M3, M5, and M6 occur in pairs. (Actually, the paired modes must
affect both front and rear systems to constitute a failure; but approximations
are made here to simplify the analysis.) Based on the above assumptions, the
SBD and FT given in Figs. B12 and B13, respectively, are obtained.

B5.5 Probability Equations

Given either the SBD of Fig. B12 or the FT of Fig. B13, an equation can be
written for the probability of safety (or unsafety), using probability principles.
Computer programs are used in complex cases; this simplified case can be
written:

Ps ≡ probability of a safe condition from Fig. B12

� P[(x2x4x7)(x1x3x5 + x1x3x6 + x1x5x6 + x3x5x6)]

Pu ≡ probability of an unsafe condition from Fig. B13

� P[(x2 + x4 + x7) + (x1x3 + x1x5 + x1x6 + x3x5 + x3x6 + x5x6)]

An analysis in more depth would require more detail (and more input data).
The choice of how much decomposition to lower levels of detail is required in
an analysis is often determined by data availability. To continue the analysis,
failure data on the modes M1, M2, . . . , M6 is required. If, for M3, the failure
rate were constant and equal to l3 failures per mile, then the possibility of
mode M3 occurring or not occurring in M miles would be:

P � mode M3 does not occur
in M miles � � P(X3) � e−l3M

P � mode M3 does occur in
M miles � � P(X3) � 1 − e−l3M

To complete the analysis, the failure-rate data li are substituted into the
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Figure B13 Safety fault tree for simplified brake example. Presence of any xi means
failure mode i does occur, indicating failure of element i.
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equations to determine P(Xi) or P(Xi); then these terms are substituted into the
equations for Ps or Pu; and last, Ps or Pu is substituted into a system safety
equation along with probabilities for all subsystems that affect safety. For more
advanced FT concepts, see Dugan [1996].

B5.6 Summary

The safety analysis consists of:

1. Decomposing the system into subsystems or piece-parts.
2. Drawing a safety block diagram (SBD) or fault tree (FT) (computer pro-

grams are available for this purpose). See Appendix D.
3. Computation of the probability of safety or unsafety from the SBD or

FT (computer programs are also available for this purpose).
4. Determining the failure rates of each component element. This is a data

collection and estimation problem.
5. Substitution of failure rates into expression of step 3 (also done by com-

puter programs).

B6 MARKOV RELIABILITY AND AVAILABILITY MODELS

B6.1 Introduction

Dependent failures, repair, or standby operation complicates the direct calcu-
lation of element reliabilities. In this section we shall discuss three different
approaches to reliability computations for systems involving such computa-
tions. The first technique is the use of Markov models, which works well and
has much appeal as long as the failure hazards z(t) and repair hazards w(t) are
constant. When z(t) and w(t) become time-dependent, the method breaks down,
except in a few special cases. (See Shooman [1990, pp. 348–359].) A second
method, using joint density functions, and a third method, using convolution-
like integrations, are more difficult to set up, but they are still valid when z(t)
or w(t) is time-dependent.14

Some of the Markov modeling programs discussed in Appendix D deal with
nonconstant hazards. In many cases, there is a paucity of failure-rate data; both
constant-failure rates and -repair rates are used by default.

B6.2 Markov Models

The basic properties of Markov models have already been discussed in Section
A8. In this section we shall briefly review some of the assumptions necessary

14See Shooman [1990, Section 5.8].
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for formulation of a Markov model and show how it can be used to make
reliability computations.

In order to formulate a Markov model (to be more precise we are talking
about continuous-time and discrete-state models) we must first define all the
mutually exclusive states of the system. For example, in a system composed
of a single nonrepairable element x1 there are two possible states: s0 = x1, in
which the element is good, and s1 = x1, in which the element is bad. The states
of the system at t = 0 are called the initial states, and those representing a final
or equilibrium state are called final states. The set of Markov state equations
describes the probabilistic transitions from the initial to the final states.

The transition probabilities must obey the following two rules:

1. The probability of transition in time Dt from one state to another is given
by z(t)Dt, where z(t) is the hazard associated with the two states in ques-
tion. If all the zi(t)’s are constant, zi(t) = li, and the model is called
homogeneous. If any hazards are time functions, the model is called non-
homogeneous.

2. The probabilities of more than one transition in time Dt are infinitesimals
of a higher order and can be neglected.

For the example under discussion the state-transition equations can be for-
mulated using the above rules. The probability of being in state s0 at time t
+ Dt is written Ps0 (t + Dt). This is given by the probability that the system
is in state s0 at time t, Ps0 (t), times the probability of no failure in time Dt,
1 – z(t)Dt, plus the probability of being in state s1 at time t, Ps1 (t), times the
probability of repair in time Dt, which equals zero.

The resulting equation is

Ps0 (t + Dt) � [1 − z(t)Dt]Ps0 (t) + 0Ps1 (t) (B71)

Similarly, the probability of being in state s1 at t + Dt is given by

Ps1 (t + Dt) � [z(t)Dt]Ps0 (t) + 1Ps1 (t) (B72)

The transition probability z(t)Dt is the probability of failure (change from state
s0 to s1), and the probability of remaining in state s1 is unity.15 One can summa-
rize the transition Eqs. (B71) and (B72) by writing the transition matrix given
in Table B4. Note that it is a property of transition matrices that its rows must
sum to unity. Rearrangement of Eqs. (B71) and (B72) yields

15Conventionally, state s1 would be called an absorbing state since transitions out of the state are
not permitted.
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TABLE B4 State Transition Matrix for a Single
Element

Final States

Initial States s0 s1

s0 1 − z(t)Dt z(t)Dt
s1 0 1

Ps0 (t + Dt) − Ps0 (t)
Dt

� −z(t)Ps0 (t)

Ps1 (t + Dt) − Ps1 (t)
Dt

� z(t)Ps0 (t)

Passing to a limit as Dt becomes small, we obtain

dPs0 (t)
dt

+ z(t)Ps0 (t) � 0 (B73)

dPs1 (t)
dt

� z(t)Ps0 (t) (B74)

Equations (B73) and (B74) can be solved in conjunction with the appropriate
initial conditions for Ps0 (t) and Ps1 (t), the probabilities of ending up in state s0

or state s1, respectively. The most common initial condition is that the system
is good at t =0, that is, P s0 (t =0) =�1 and Ps1 (t = 0) =  0. Equations (B73) and
(B74) are simple first-order linear differential equations which are easily solved
by classical theory. Equation (B73) is homogeneous (no driving function), and
separation of variables yields

dPs0 (t)
Ps0 (t)

� −z(t) dt

ln Ps0 (t) � − ∫
t

0
z(y) dy + C1

Ps0 (t) � exp [ − ∫
t

0
z(y) dy + C1] � C2 exp [ − ∫

t

0
z(y) dy] (B75)

Inserting the initial condition Ps0 (t = 0) =1,
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Ps0 (t � 0) � 1 � C2e−0

� C2 � 1

and one obtains the familiar reliability function

R(t) � Ps0 (t) � exp [ − ∫
t

0
z(y) dy] (B76)

Formal solution of Eq. (B76) proceeds in a similar manner.

Ps1 (t) � 1 − exp [ ∫ t

0
z(y) dy] (B77)

Of course a formal solution of Eq. (B74) is not necessary to obtain Eq.
(B77), since it is possible to recognize at the outset that

Ps0 (t) + Ps1 (t) � 1.

The role played by the initial conditions is clearly evident from Eq. (B75).
Since C2 =Ps0 (0), if the system was initially bad, Ps0 (t) =0, and R(t) =0. If
there is a fifty-fifty chance that the system is good at t =0, then P s0 (t) = 1

2 ,
and

R(t) � 1
2 exp [ − ∫

t

0
z(y) dy]

This method of computing the system reliability function yields the same
results, of course, as the techniques of Sections B3 to B5. Even in a single-ele-
ment problem it generates a more general model. The initial condition allows
one to include the probability of initial failure before the system in question
is energized.

B6.3 Markov Graphs

It is often easier to characterize Markov models by a graph composed of nodes
representing system states and branches labeled with transition probabilities.
Such a Markov graph for the problem described by Eqs. (B73) and (B74) or
Table B4 is given in Fig. B14. Note that the sum of transition probabilities
for the branches leaving each node must be unity. Treating the nodes as sig-
nal sources and the transition probabilities as transmission coefficients, we can
write Eqs. (B73) and (B74) by inspection. Thus, the probability of being at any
node at time t + Dt is the sum of all signals arriving at that node. All other
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Ps0
Ps1

z t t( )D

1 ( )– z t tD 1

Figure B14 Markov graph for a single nonrepairable element.

nodes are considered probability sources at time t, and all transition probabili-
ties serve as transmission gains. A simple algorithm for writing Eqs. (B73) and
(B74) by inspection is to equate the derivative of the probability at any node
to the sum of the transmissions coming into the node. Any unity gain factors
of the self-loops must first be set to zero, and the Dt factors are dropped from
the branch gains. Referring to Fig. B14, the self-loop on Ps1 disappears, and
the equation becomes Ṗs1 = zPs0 . At node Ps0 the self-loop gain becomes – z,
and the equation is Ṗs0 = – zPs0 . The same algorithm holds at each node for
more complex graphs.

B6.4 Example—A Two-Element Model

One can illustrate dependent failures,16 standby operation, and repair by dis-
cussing a two-element system. For simplicity repair is ignored at first. If a
two-element system consisting of elements x1 and x2 is considered, there are
four system states: s0 =x1x2, s1 =x1x2, s2 =x 1x2, and s3 =x 1x2. The state
transition matrix is given in Table B5 and the Markov graph in Fig. B15.

The probability expressions for these equations can be written by inspection,
using the algorithms previously stated.

dPs0 (t)
dt

� − [z01(t) + z02(t)]Ps0 (t) (B78)

dPs1 (t)
dt

� − [z13(t)]Ps1 (t) + [z01(t)]Ps0 (t) (B79)

dPs2 (t)
dt

� − [z23(t)]Ps2 (t) + [z02(t)]Ps0 (t) (B80)

dPs3 (t)
dt

� [z13(t)]Ps1 (t) + [z23(t)]Ps2 (t) (B81)

16For dependent failures, see Shooman [1990, p. 235].
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TABLE B5 State Transition Matrix for Two Elements

Final States

Initial States s0 s1 s2 s3

Zero failures s0 1 − [z01(t) + z02(t)]Dt z01(t)Dt z02(t)Dt 0
One failure s1 0 1 − [z13(t)]Dt 0 z13(t)Dt

s2 0 0 1 − [z23(t)]Dt z23(t)Dt
Two failures s3 0 0 0 1

The initial conditions associated with this set of equations are Ps0 (0), Ps1 (0),
Ps2 (0), Ps3 (0).

It is difficult to solve these equations for a general hazard function z(t), but
if the hazards are specified, the solution is quite simple. If all the hazards are
constant, z01(t) = l1, z02(t) = l2, z13(t) = l3, and z23(t)= l 4. The solutions are

1 ( )– z t t13 D

1 – [ ( ) +z t t01 Dz t02( )]

1 ( )– z t t23 D

s x x3 = 1 2s x x0 = 1 2

s x x2 = 1 2

s x x1 = 1 2 z
t

t
13 ( )D

z
t

t

01
( )D

z
t

t
02 ( )D

z
t

t

23
( )D

1

Figure B15 Markov graph for two distinct nonrepairable elements.
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Ps0 (t) � e− (l1 +l2)t (B82)

Ps1 (t) �
l1

l1 + l2 − l3
(e−l3t

− e− (l1 +l2)t) (B83)

Ps2 (t) �
l2

l1 + l2 − l 4
(e−l 4t

− e− (l1 +l2)t) (B84)

Ps3 (t) � 1 − [Ps0 (t) + Ps1 (t) + Ps2 (t)] (B85)

where

Ps0 (0) � 1 and Ps1 (0) � Ps2 (0) � Ps3 (0) � 0

Note that we have not as yet had to say anything about the configuration of
the system, but only have had to specify the number of elements and the tran-
sition probabilities. Thus, when we solve for Ps0 , Ps1 , Ps2 , we have essentially
solved for all possible two-element system configurations. In a two-element
system, formulation of the reliability expressions in terms of Ps0 , Ps1 , and Ps2

is trivial, but in a more complex problem we can always formulate the expres-
sion using the tools of Sections B3 to B5.

For a series system, the only state representing success is no failures; that
is, Ps0 (t). Therefore

R(t) � Ps0 (t) � e− (l1 +l2)t (B86)

If the two elements are in parallel, one failure can be tolerated, and there are
three successful states, Ps0 (t), Ps1 (t), Ps2 (t). Since the states are mutually exclu-
sive,

R(t) � Ps0 (t) + Ps1 (t) + Ps2 (t) � e− (l1 +l2)t

+
l1

l1 + l2 − l3
(e−l3t

− e− (l1 +l2)t)

+
l2

l1 + l2 − l 4
(e−l 4t

− e− (l1 +l2)t) (B87)

It is easy to see why a series configuration of n components has the poorest
reliability and why a parallel configuration has the best. The only successful
state for a series system is where all components are good; thus, R(t) =P s0 (t).
In the case of a parallel system, all states except the one in which all compo-
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nents have failed are good, and R(t) = Ps0 (t) + Ps1 (t) + Ps2 (t). It is clear that
any other system configuration falls somewhere in between.

B6.5 Model Complexity

The complexity of a Markov model depends on the number of system states. In
general we obtain for an m-state problem a system of m first-order differential
equations. The number of states is given in terms of the number of components
n as

m � � n
0 � + � n

1 � + � n
2 � + · · · + � n

n � � 2n

Thus, our two-element model has 4 states, and a four-element model 16 states.
This means that an n-component system may require a solution of as many as
2n first-order differential equations. In many cases we are interested in fewer
states. Suppose we want to know only how many failed items are present in
each state and not which items have failed. This would mean a model with n
+ 1 states rather than 2n, which represents a tremendous saving. To illustrate
how such simplifications affect the Markov graph we consider the collapsed
flowgraph shown in Fig. B16 for the example given in Fig. B15. Collapsing
the flowgraph is equivalent to the restriction Ps′1 (t) = Ps1 (t) + Ps2 (t) applied to
Eqs. (B78) to (B81). Note that this can collapse the flowgraph only if z13 = z23;
however, z01 and z02 need not be equal. These results are obvious if Eqs. (B79)
and (B80) are added.

Markov graphs for a system with repair are shown in Fig. B17(a) and (b).
The graph in Fig. B17(a) is a general model, and that of Fig. B17(b) is a
collapsed model.

The system equations can be written for Fig. B17(a) by inspection using the
algorithm previously discussed.

1 ( )– z t t01’ D

where ( ) =z t01’ z t z t01 02( ) + ( )

z t t01’ ( )D z t t12’ ( )D

1 ( )– z t t12’ D 1

s x x0 =’ 1 2
No failure

s x x2 =’ 1 2
Two failures

s x x=’ 1 2 1 2+ x x
One failure

z t z t z t12 13 23’ ( ) = ( ) + ( )

Figure B16 Collapsed Markov graph corresponding to Fig. B15.
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Figure B17 Markov graphs for a system with repair: (a) general model; (b) collapsed
model.
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s = x0 1 s = x1

lDt

1 – tlD 1

Figure B18 Markov graph for the reliability of a single component with repair.

Ṗs0 � − (z01 + z02)Ps0 + w10Ps1 + w20Ps2

Ṗs1 � − (z13 + w10)Ps1 + z01Ps0

Ṗs2 � − (z23 + w20)Ps2 + z02Ps0

Ṗs3 � z13Ps1 + z23Ps2 (B88)

Similarly for Fig. B18(b)

Ṗs′0 � −z′01Ps′0 + w′10Ps′1

Ṗs′1 � − (z′12 + w′10)Ps′1 + z′01Ps′0

Ṗs′2 � z′12Ps′1 (B89)

The solution to Eqs. (B88) and (B89) for various values of the zs and ws will
be deferred until the next section.

B7 REPAIRABLE SYSTEMS

B7.1 Introduction

In general, whenever the average repair cost in time and money of a piece
of equipment is a fraction of the initial equipment cost, one considers system
repair. If such a system can be rapidly returned to service, the effect of the fail-
ure is minimized. Obvious examples are such equipment as a television set,
an automobile, or a radar installation. In such a system the time between fail-
ures, repair time, number of failures in an interval, and percentage of operating
time in an interval are figures of merit which must be considered along with
the system reliability. Of course, in some systems, such as those involving life
support, surveillance, or safety, any failure is probably catastrophic, and repair
is of no avail.
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B7.2 Availability Function

In order to describe the beneficial features of repair in a system that tolerates
shutdown times, a new system function called availability is introduced. The
availability function A(t) is defined as the probability that the system is oper-
ating at time t. By contrast, the reliability function R(t) is the probability that
the system has operated over the interval 0 to t. Thus, if A(250) = 0.95, then
if 100 such systems are operated for 250 hours on the average, 95 will be
operative when 250 hours is reached and 5 will be undergoing various stages
of repairs. The availability function contains no information on how many (if
any) failure-repair cycles have occurred prior to 250 hours. On the other hand,
if R(250) = 0.95, then if 100 such systems are operated for 250 hours, on the
average, 95 will have operated without failure for 250 hours and 5 will have
failed at some time within this interval. It is immaterial in which stage of the
first or subsequent failure-repair cycles the five failed systems are. Obviously
the requirement that R(250) = 0.95 is much more stringent than the requirement
that A(250) = 0.95. Thus, in general, R(t) ≤ A(t).

If a single unit has no repair capability, then by definition A(t) = R(t). If we
allow repair, then R(t) does not change, but A(t) becomes greater than R(t).
The same conclusions hold for a chain structure. The situation changes for any
system involving more than one tie set, i.e., systems with inherent or purposely
introduced redundancy. In such a case, repair can beneficially alter both the
R(t) and A(t) functions. This is best illustrated by a simple system composed
of two parallel units. If a system consists of components A and B in parallel
and no repairs are permitted, the system fails when both A and B have failed.
In a repairable system if A fails, unit B continues to operate, and the system
survives. Meanwhile, a repairer begins repair of unit A. If the repairer restores
A to usefulness before B fails, the system continues to operate. The second
component failure might be unit B, or unit A might fail the second time in a
row. In either case there is no system failure as long as the repair time is shorter
than the time between failures. In the long run, at some time a lengthy repair
will be started and will be in progress when the alternate unit fails, causing
system failure. It is clear that repair will improve system reliability in such a
system. It seems intuitive that the increase in reliability will be a function of
the mean time to repair divided by the MTTF.

To summarize, in a series system, repair will not affect the reliability expres-
sion; however, for a complete description of system operation we shall have
to include measures of repair time and time between failures. If the system
structure has any parallel paths, repair will improve reliability, and repair time
and time between failures will be of importance. In some systems, e.g., an
unmanned space vehicle, repair may be impossible or impractical.17

17Technology is rapidly reaching the point where repair of an orbiting space vehicle is practical.
The Hubble Space Telescope has already been repaired twice.



REPAIRABLE SYSTEMS 457

s = x0 1 s = x1 1

mDt

lDt

1 – tlD 1 – tmD

Figure B19 Markov graph for the availability of a single component with repair.

B7.3 Reliability and Availability of Repairable Systems

As long as the failure and repair density functions are exponential, i.e.,
constant-hazard, we can structure Markov repair models, as done in the pre-
vious section. The reliability and availability models will differ, and we must
exercise great care in assigning absorbing states in a reliability model for a
repairable system.

The reliability of a single component x1 with constant failure hazard l and
constant repair hazard m can be derived easily using a Markov model. The
Markov graph is given in Fig. B18 and the differential equations and reliability
function in Eqs. (B90) and (B91).

Ṗs0 + lPs0 � 0

Ṗs1 � lPs0 (B90)

Ps0 (0) � 1 Ps1 (0) � 0

R(t) � Ps0 (t) � 1 − Ps1 (t) � e−lt (B91)

Note that repair in no way influenced the reliability computation. Element fail-
ure x1 is an absorbing state, and once it is reached, the system never returns
to x1.

If we wish to study the availability, we must make a different Markov graph.
State x1 is no longer an absorbing state, since we now allow transitions from
state x1 back to state x1. The Markov graph is given in Fig. B19 and the dif-
ferential equations and state probabilities in Eqs. (B92) and (B93). The corre-
sponding differential equations are

Ṗs0 + lPs0 � mPs1 Ṗs1 + mPs1 � lPs0

Ṗs0 (0) � 1 Ps1 (0) � 0 (B92)

Solution yields the probabilities
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Figure B20 Availability function for a single component.

Ps0 (t) �
m

l + m
+

l

l + m
e− (l + m)t

Ps1 (t) �
l

l + m
−

l

l + m
e− (l + m)t (B93)

By definition, the availability is the probability that the system is good, Ps0 (t):

A(t) � Ps0 (t) �
m

l + m
+

l

l + m
e− (l + m)t (B94)

The availability function given in Eq. (B94) is plotted in Fig. B20.

B7.4 Steady-State Availability

An important difference between A(t) and R(t) is their steady-state behavior.
As t becomes large, all reliability functions approach zero, whereas availability
functions reach some steady-state value. For the single component the steady-
state availability

Ass(t) � lim
t�∞

A(t) � m/ (l + m) (B95a)

In the normal case, the mean repair time 1/m is much smaller than the time
to failure 1/ l, and we can expand the steady-state availability in a series and
approximate by truncation:
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Ass(t) � A(∞) �
1

1 + l/m � 1 −

l

m
+

l2

2m2
+ · · · ≈ 1 −

l

m
(B95b)

The transient part of the availability function decays to zero fairly rapidly.
The time at which the transient term is negligible with respect to the steady-
state term depends on l and m. As an upper bound we know that the term
e−at ≤ 0.02 for t > 4/ a; therefore, we can state that the transient term is over
before t = 4 / (l + m). If m > l, the transient is over before t = 4/m. The
interaction between reliability and availability specifications is easily seen in
the following example.

Suppose a system is to be designed to have a reliability of greater than 0.90
over 1,000 hours and a minimum availability of 0.99 over that period. The
reliability specification yields

R(t) � e−lt ≥ 0.90 0 < t < 1, 000

e−1,000l ≈ 1 − 103l � 0.90 l ≥ 10−4

Assuming A(∞) for the minimum value of the availability, Eq. (B95) yields

A(∞) � 1 −
l

m
� 0.99

m � 100l � 10−2

Thus, we use a component with an MTTF of 104 hours, a little over 1 year, and
a mean repair time of 100 hours (about 4 days). The probability of any failure
within 1,000 hours (about 6 weeks) is less than 10%. Furthermore, the prob-
ability that the system is down and under repair at any chosen time between
t =0 and t = 103 hours is less than 1%. Now to check the approximations.
The transient phase of the availability function lasts for 4/ (10−2 + 10−4) ≈ 400
hours; thus the availability will be somewhat greater than 0.99 for 400 hours
and then settle down at 0.99 for the remaining 600 hours. Since m is 100l, the
approximation of Eq. (B95) is valid. Also since lt =10−4 × 103 =10−1, the
two-term series expansion of the exponential is also satisfactory.

The availability function has been defined as a probability function, just as
the reliability function was. There is another statistical interpretation which
sheds some light on the concept. Suppose that a large number of system oper-
ating hours are accumulated. This can be done either by operating one sys-
tem for a long time, so that many failure and repair cycles are obtained and
recorded, or by operating a large number of identical systems (an ensemble)
for a shorter period of time and combining the data. If the ratio of cumulative
operating time to total test time is computed, it approaches A(∞) as t � ∞.
Actually the data taken during the transient period of availability should be
discarded to avoid any distortions. In fact if one wished to compute the trans-
ient phase of availability from experimental data, one would be forced to use



460 SUMMARY OF RELIABILITY THEORY
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Figure B21 Markov reliability model for two identical parallel elements and one
repairer.

a very large number of systems over a short period of time. In analyzing the
data one would break up the time scale into many small intervals and compute
the ratio of cumulative operating time over the intervals divided by the length
of the interval. [See Eq. (3.80).]

In a two-element nonseries system, the reliability function as well as the
availability function is influenced by system repairs. The Markov reliability
and availability graphs for systems with two components are given in Figs.
B21, B22, and B23, and their solution is discussed in Shooman [1990, p. 345].

B7.5 Computation of Steady-State Availability
When only the steady-state availability is of interest, a simplified computa-
tional procedure can be used. In the steady state, all the state probabilities
should approach a constant; therefore, setting the derivatives to zero yields the
following:

s = x x0 1 2 s = x x x x1 1 2 1 2+ s = x x2 1 2

m’Dt

lD’ t lDt

1 – tlD’ 1    ( + )– tl Dm’ 1

where

k k

l l
l l
m m
m

’
’
’
’

= 2 for an ordinary system
= for a standby system
= for one repairer
= for more than one repairer ( > 1)m

Figure B22 Markov reliability model for two identical parallel elements and k
repairers.
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Figure B23 Markov availability graph for two identical parallel elements and k
repairers.

Ṗs0 (t) � Ṗs1 (t) � Ṗs2 (t) � 0

This set of equations cannot be solved for the steady-state probabilities, since
their determinant is zero. Any two of these equations can, however, be com-
bined with the identity

Ps0 (∞) + Ps1 (∞) + Ps2 (∞) � 1 (B96)

to yield a solution. A simpler method for computing steady-state availability
using Laplace transforms is discussed in Chapter 4.

So far we have discussed reliability and availability computations only in
one- and two-element systems. Obviously we could set up and solve Markov
models for a larger number of elements, but the complexity of the problem
increases very rapidly as n, the number of elements, increases. (If the elements
are distinct, it goes as 2n, and if identical, as n + 1.)

B8 LAPLACE TRANSFORM SOLUTIONS OF MARKOV MODELS

The formulation of a Markov model always leads to a set of first-order dif-
ferential equations. For simple models, these equations are easily solved by
using conventional differential equation theory. As we add more components,
however, the model becomes more complex, and when repair is added to the
model, the equations become coupled, making the solution more difficult. The
easiest approach to the solution of such equations is through the use of Laplace
transforms. In addition, the Laplace transform method provides a particularly
simple method of calculating the mean time to failure (MTTF), the steady-
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state availability (Ass), and the initial behavior of the reliability or availability
functions: R(t � 0) or A(t � 0).

B8.1 Laplace Transforms

One can appreciate the simplification that the Laplace transform provides in
the solution of differential equations by analogy to the use of logarithms
for simplifying certain numerical computations. In the predigital computer
era, accurate computations to many decimal places for expressions such as
a = (A × B) / (C × D) depended on lengthy hand computations, cumber-
some mechanical calculators, or logarithms. Using logarithms, the log(a) =
log(A)+ log(B) – log(C ) – log(D). Thus multiplication and division are reduced
to addition and subtraction of logarithms and a is determined by taking the
antilogarithm of log(a). Of course, for high accuracy, log tables with many
digits of precision are required; such tables were calculated by mathemati-
cians during the Depression of the 1930s as part of Franklin D. Roosevelt’s
New Deal programs used for creating jobs. Logarithm tables up to 10 or 16 dig-
its appear in Abramowitz [1972, pp. 95–113]. The concept is to use logarithms
to convert multiplication and division to simpler addition and subtraction and
recover the answer by taking antilogarithms. The analogous procedure is to
use Laplace transforms to convert differential equations to algebraic equations,
solve the simpler algebraic equations, and use inverse Laplace transforms to
recover the answer. The Laplace transform will now be introduced as an aid in
the solution of differential equations. The Laplace transform of a time function
f (t) is defined by the integral18

L{ f (t)} � F(s) � { f (t)}*
� f *(s) � ∫

∞

0
f (t)e−st d t (B97)

Four equivalent sets of notation for the Laplace transform are given in Eq.
(B97). The first two are the most common, but they will not always be used
since the symbol F(s) causes confusion when we take the Laplace transform
of both a density and a distribution function in the same equation. The third
and fourth notation will be used whenever confusion might arise. The asterisk
or the change in argument from t to s (or both) symbolizes the change from
the time domain to the transform domain. The utility of the Laplace transform
is that it reduces ordinary constant-coefficient linear differential equations to
algebraic equations in s which are easily solved. The solution in terms of s
is then converted back to a time function by an inverse-transform procedure.
Sometimes the notation L −1 is used to denote the inverse-transform procedure;
thus one could write L −1{F(s)} = f (t). A pictorial representation of the Laplace
transform solution of a differential equation is given in Fig. B24.

18The Laplace transform is defined only over the range of s for which this integral exists.
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Figure B24 The solution of a differential equation by Laplace transform techniques.

Since only a few basic transform techniques will be needed in this book,
this discussion will be brief and will not touch on the broad aspects of the
method. The Laplace transforms of three important functions follow.

Example 1: For the exponential functions f (t) = e−at

L{ f (t)} � f *(s) � ∫
∞

0
e−ate−st d t � ∫

∞

0
e− (a + s)t d t

�

−e− (a + s)t

s + a

|
|
|
|

∞

0

�

1
s + a

for s > −a (B98)

The restriction s > – a is necessary in order that the integral not diverge.

Example 2: Similarly, for the cosine function
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f (t) � cos at �
eia + e− ia

2

f *(s) � { eia

2 }∗
+ { e− ia

2 }∗
�

1
2

s + ia
+

1
2

s − ia
�

s
s2 + a2

for s > 0

(B99)

Note that in the above computation two properties were used. The Laplace
transform is an integral, and the integral of a sum of two time functions is the
sum of the integrals; thus, the transform of the sum is the sum of transforms.
This is referred to as the superposition property. Also, the result of Eq. (B98)
was used for each term in Eq. (B99).

Example 3: As a third example we consider the unit step function u−1(t) and
the constant unity. When f (t) =1 or f (t) = u−1(t)

f *(s) � ∫
∞

0
1e−st d t �

e−st

−s

|
|
|
|

∞

0

�

1
s

for s > 0 (B100)

Note that although a step function and a constant are different functions, their
Laplace transforms are the same, since over the region from 0 < t < +∞ they
have the same value. Thus, the Laplace transform holds only for positive t.
We can view a step as the limit of an exponential as we increase the time
constant, 1/ a � ∞. Equation (B100) could therefore be obtained from Eq.
(B98) by letting a � 0. The transforms for several time functions of interest
are given in Table B6.

In order to solve differential equations with Laplace transform techniques
we must compute the transform of a derivative. This can be done directly from
Eq. (B97) using integration by parts

L { d f(t)
dt } � { d f(t)

dt }∗
� ∫

∞

0

d f(t)
dt

e−st d t � ∫
∞

0
e−st d f(t)

Letting dv =d f(t) and u =e−st and integrating by parts,

L { d f(t)
dt } � e−stf (t)|

|
∞
0 + s ∫

∞

0
f (t)e−st d t

We first discuss the evaluation of the e−stf (t) term at its upper and lower limits.
Since the Laplace transform is defined only for functions f (t) which build up
more slowly then e−st decay [see footnote to Eq. (B97)], lim

t r ∞
e−stf (t) =0. At
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TABLE B6 A Short Table of Laplace Transforms

{ f (t)}*
� f *(s) �

No. f (t) L{ f (t)} � F(s)

1 u0(t) 1

2 u
−1(t)

1
s

3 u
−2(t)

1

s2

4 e−at 1
s + a

5
1

(n − 1)!
tn − 1e−at 1

(s + a)n

6 sin at
a

s2 + a2

7 cos at
s

s2 + a2

8 e−bt sin at
a

(s + b)2 + a2

9 e−bt cos at
s + b

(s + b)2 + a2

10 Ae−at + Be−bt (A + B)s + Ab + Ba
(s + a)(s + b)

Note: The functions u0(t), u
−1(t), . . . , u

−n(t) are called the singularity
functions, where u

−n(t) is the derivative of u
− (n + 1)(t). The unit step, u

−1(t),
was already defined as 0 for – ∞ ≤ t < 0 and 1 for 0 ≤ t ≤ +∞. The unit
ramp, u

−2(t), is the integral of the step function (of course, the step is the
derivative of the ramp). The function u0(t) is the unit-impulse function in
which the amplitude is the derivative of the step function and is 0 every-
where except t = 0, where it is infinite. The area of the impulse is unity
at t = 0, as it must be since the step is the integral of the impulse.

the lower limit we obtain the initial value of the function f(0).19 The integral
is of course the Laplace transform itself

{ d f(t)
dt }∗

� s f *(s) − f (0) (B101)

By letting g(t) = d nf (t)/ dtn it is easy to generate a recursion relationship

19The notation f (0) means the value of the function at t = 0. If singularity functions occur at t =
0, we must use care and write f (0− ), which is the limit as 0 is approaches from the left.
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{ dg(t)
dt }∗

� { d n + 1f (t)
dtn + 1 }∗

� s { d nf (t)
dtn }∗

− f n(0) (B102)

for the second derivation

{ d 2f (t)
dt2 }∗

� s2f *(s) − s f(0) − ḟ (0) (B103)

Using the information discussed, we can solve the homogeneous differential
equation

d 2y
dt2

+ 5
dy
dt

+ 6y � 0
y(0) � 0
ẏ(0) � 1

Taking the transform of each term, we have

[s2y*(s) − sy(0) − ẏ(0)] + 5[sy*(s) − y(0)] + 6y*(s) � 0

[s2y*(s) − 1] + 5[sy*(s)] + 6y*(s) � 0

(s2 + 5s + 6)y*(s) � 1

y*(s) �
1

(s + 2)(s + 3)

Using transform 10 in Table B6,

A + B � 0 3A + 2B � 1

A � +1 B � −1

y(t) � e−2t
− e−3t

Suppose we add the driving function e−4t to the above example, that is,

{ d 2y
dt2

+ 5
dy
dt

+ 6y}∗
� {e−4t}*

(s + 2)(s + 3)y*(s) − 1 �

1
s + 4

y*(s) �
s + 5

(s + 4)(s + 2)(s + 3)

No transform for this function exists in the table, but we can use partial-fraction
algebra to reduce this to known results
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s + 5
(s + 4)(s + 2)(s + 3)

�

1
2

s + 4
+

3
2

s + 2
+

−2
s + 3

Thus, each term represents an exponential, and

y(t) � 1
2 e−4t + 3

2 e−2t
− 2e−3t

The e−4t term represents the particular solution (driving function), and the e−2t

and e−3t terms represent the homogeneous solution (natural response).
The partial-fraction-expansion coefficients can be found by conventional

means or by the following shortcut formula

f (s) �
N(s)
D(s)

�

N(s)
n

∏
i � 1

(s + ri)

�

A1

s + r1
+

A2

s + r2
+ · · · +

An

s + rn

where

Ai � [ N(s)
D(s)

(s + ri)]
s � −ri

(B104)

For the above example

A1 � [ s + 5
(s + 4)(s + 2)(s + 3)

(s + 4)]
s � −4

�

1
2

A2 � [ s + 5
(s + 4)(s + 2)(s + 3)

(s + 2)]
s � −2

�

3
2

A3 � [ s + 5
(s + 4)(s + 2)(s + 3)

(s + 3)]
s � −3

� −2

The derivation of Eq. (B104) as well as a similar one for the case of repeated
roots can be found in any text on Laplace transforms.

We have already discussed two Laplace transform theorems, superposition
and derivative property. Some additional ones useful in solving Markov models
appear in Table B7.

The first and second theorems have already been discussed. The third theo-
rem is simply the integral equivalent of the differentiation theorems. The con-
volution theorem is important since it describes the time-domain equivalent of
a product of two Laplace transforms. Theorems 6 and 7 are useful in computing
the initial and final behavior of reliability functions.
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TABLE B7 A Short Table of Laplace Transform Theorems

No. Operation f (t) L{ f (t)} � F(s)

1 Linearity (superposition) a1 f 1(t) + a2 f 2(t) a1F1(s) + a2F2(s)
property

2 Differentiation theorems
d f(t)

dt
sF(s) − f (0)

d 2f (t)
dt2

s2F(s) − s f(0) − ḟ (0)

dnf (t)
dtn

sL { dn − 1f (t)
dtn − 1 }

− f n − 1(0)

3 Integral theorems ∫
t

0
f (t) dt

F(s)
s

∫
t

−∞
f (t) dt

F(s)
s

+
∫

0

−∞
f (t) dt

s

4 Convolution theorem ∫
t

0
f 1(t)f 2(t − t) dt F1(s)F2(s)

5 Multiplication-by-t t f(t) −

dF(s)
ds

property

6 Initial-value theorem lim
t r 0

f (t) lim
s r ∞

sF(s)

7 Final-value theorem lim
t r ∞

f (t) lim
s r 0

sF(s)

Note: The function sF(s) is a ratio of polynomials in problems we shall consider. The roots of the
denominator polynomial are called poles. We cannot apply the initial- and final-value theorems
if any pole of sF(s) has a zero or positive real part. The statement is conventionally worded: the
initial- and final-value theorems hold only provided that all poles of sF(s) lie in the left half of
the s plane.

B8.2 MTTF from Laplace Transforms

The MTTF can also be computed from the Laplace transform of R(t). [See Eq.
(B51).]

Another form in terms of R*(s)—an alternate notation for L{R(t)}—is
obtained by considering ∫

t
0 R(t) dt. Using Theorem 3 of Table B7, we obtain

L {∫
t

0
R(t) dt} �

R*(s)
s

(B105)

However,
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MTTF � lim
t�∞ ∫

t

0
R(t) dt

Using Theorem 7 of Table B12,

MTTF � lim
t�∞ ∫

t

0
R(t) dt � lim

s r 0
sL {∫

t

0
R(t) dt} � lim

s r 0
s

R*(s)
s

Thus,

MTTR � lim
s r 0

R*(s) (B106)

The above formula is extremely useful for computing the MTTF for a Markov
model.

B8.3 Time-Series Approximations from Laplace Transforms

One of the objectives of the MTTF computations of the previous section is to
simplify the algebra involved in obtaining time functions from the transformed
function. In most practical cases, the transform expression (ratio of two poly-
nomials in s) has a denominator that is of second, third, or higher order. The
solution requires the factoring of the polynomial (generally requiring numeri-
cal methods) and subsequent partial-fraction expansion. Calculating the MTTF
from F(s) by taking the limit as given in Eq. (B106), is simple; however, it pro-
vides only partial information. In Section 3.4.1, we discussed approximating
the system-time function in the high-reliability region by the leading terms in
the Taylor-series expansion. If this is our objective, and if we have the Laplace
transform, we can find the Taylor-series coefficients simply and directly with-
out first finding the time function.

Any function f (t), whose various derivatives exist, can be expanded in a
Taylor series:

f (t) � f (0) + f ′(0)t/ 1! + f ′′(0)t 2/ 2! + f ′′′(0)t 3/ 3! + · · · (B107)

Where f ′′′(0) is the third time derivative of f (t) evaluated at t = 0, and similarly
for f (0), f ′, and so on.

Note that the derivatives of f (t) always exist for a reliability function that
is a linear combination of exponential terms, since all derivatives exist for an
exponential function. We can rewrite this equation in terms of a set of constant
Ki, which stand for the time derivatives, and obtain
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f (t) � K0 + K1t/ 1! + K2t 2/ 2! + · · · +
∞

���
n � 0

Knt n/ n! (B108)

If we take L{ f (t)} for the function in Eq. (B108), we obtain a series of simple
Laplace transforms for the right-hand side of the equation. These transforms
can easily be obtained from entry no. 5 in Table B6 by setting a = 0, yielding

L{ f (t)} � F(s) �
∞

���
n � 0

Kn

s n + 1
(B109)

Knowing that f (t) in Eq. (B108) is a reliability function, we know that R(0) =
1; thus K0 =  1. We can easily manipulate F(s) into the series form given by Eq.
(B109) by the simple process of long division. Of course, this method presup-
poses that we have the transform, which is generally true if we are solving a
Markov model. If we already have the time function, it is probably easier to use
the expansions discussed in Section 3.4.1 than to first compute the transform
and use this approach. The following example illustrates the method.

Let us suppose that in the process of solving a Markov model we obtain
the following Laplace transform of a reliability function:20

R(s) �
s + l + l′ + m′

s 2 + [l + l′ + m′]s + ll′
(B110)

Performing long division of the numerator and denominator polynomials, we
obtain

1
s

−

ll′
s3

+
ll[l + l′ + m′]

s 4
+ · · ·

s 2 + [l + l′ + m′]s + ll′ s + [l + l′ + m′]
(B111)

Thus, by using Table B6, entry no. 5 to obtain the inverse transform, that is,
the expression for R(t) that corresponds to R(s) given in Eq. (B111),

R(t) ≈ 1 −

ll′t 2

2
+

ll′[l + l′ + m′]t 3

6
+ · · · (B112)

For a parallel system, l′ = 2l and m′ = m, and substitution in Eq. (B112) yields

20This example is actually the Laplace transform of the reliability of two parallel elements with
repair. For hot standby, l′ = 2l, and for cold standby, l′ = l. See Eqs. (3.65a, b).
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R(t) ≈ 1 − l2t 2 +
l2[3l + m]t 3

3
+ · · · (B113)

For a standby system, l′ = l and m′ = m, and substitution in Eq. (B112) yields

R(t) ≈ 1 −

l2t 2

2
+

l2[2l + m]t 3

6
+ · · · (B114)

Comparing Eq. (B113) with (B114), we see from the coefficients of the t 2 term
that the standby system is superior.
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PROBLEMS

Note: Problems B1–B4, B6, and B10–B12 are taken from Shooman [1990].

B1. A series system is composed of n identical independent components. The
component probability of success is pc and qc =  1 – pc.
(a) Show that if qc << 1, the system reliability R is approximately given

by R ≈ 1 – nqc.
(b) If the system has 10 components and R must be 0.99, how good

must the components be?

B2. A parallel system is composed of 10 identical independent components.
If the system reliability R must be 0.99, what is the minimum component
reliability?
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B3. A 10-element system is constructed of independent identical components
so that 5 out of the 10 elements are necessary for system success. If the
system reliability R must be 0.99, how good must the components be?

B4. Draw reliability graphs for the following three reliability block diagrams.
Note: The probabilities of system success for independent identical units
are given for each part—(a), (b), and (c)—of Fig. P1.

a b

c

d e

(a) = 2 + 2 – 5 + 2P p p p ps
2 3 4 5 (b) = 4 – 2 – 4 + 4P p p p ps

2 3 4 5 6– p

a b

c

d

e f

(c) = 2   + – 2 – 7 + 14P p p p p ps
2 3 4 5 6 2– 9 + 2p p

b c

d

e f

a

g

Figure P1

B5. Formulate a fault-tree model for the systems given in problem B4.

B6. Find all the minimal tie sets and cut sets for the three systems in problem
B4.

B7. Solve problems B2 and B3.

B8. Assume numerical values for the axes of Fig. B6, and explain the cost
trade-offs of burn-in and replacement.

B9. Check the MTTF computation given in Eq. (B54).
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B10. A communication system is composed of a fixed-frequency transmitter
T1 and a fixed-frequency receiver R1. The fixed frequency is f 1 and both
receiver and transmitter have constant hazards l. In order to improve the
reliability, a second receiver and transmitter operating on frequency f 2

are used to provide a redundant channel. Both channels are identical,
except for frequency. Construct a reliability diagram for the system and
write the reliability function. In order to improve reliability, a tuning unit
is added to each receiver so that it can operate at frequency f 1 or f 2.
The hazard for each tuning unit is given by l′. Draw the new reliability
diagram and write the reliability function. Sketch the reliability of the
improved system and the original two-channel system. Assume that l′ =
0.1l and repeat for l′ = 10l. (Use series approximations, if necessary.)

B11. Solve for the reliability expression for a three-element standby system
using a Markov model. All elements are independent identical units with
constant-hazard l.

B12. For a single component with repair, R(t) and A(t) are given by Eqs. (B91)
and (B94). If we specify that R(t1) = 0.9,
(a) What can you say about A(t1)?
(b) How are l and m constrained if A(t1) ≥ 0.99?
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C1 INTRODUCTION TO COMPUTER ARCHITECTURE

Most readers of this book probably have an electrical engineering or com-
puter science background and are familiar with the material presented in this
appendix; thus they can skip it altogether or thumb through it as a refresher.
However, some readers may have a background in mathematics, operations
research, or some similar field; for them, this appendix will serve as a concise
background. The reader is referred to the following references for more detailed
information: Hill, 1981; Kohavi, 1978; Mano, 1995; Roth, 1995; Shiva, 1988;
Wakerly, 2001.

C1.1 Number Systems
Computers are constructed from switching elements that are two-state devices;
thus it is common to utilize the binary number system (base 2) for computer
computation, design of arithmetic algorithms, and construction of computer
hardware. A number, N, written in radix (base), r, takes on the general poly-
nomial form.

N � anr n + an − 1r n − 1 + · · · + a1r1 + a0r0 . a−1r−1 + a−2r−2 + · · ·

�−−−−−−−− whole number portion −−−−−−−−� |
|
|

�−− fraction portion −−�

radix
point

(C1)
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Each number system has r distinct digits; for example, in binary, the two digits
0 and 1; in decimal, the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

One can convert from one number system to another using these basic defi-
nitions. As an example, consider the conversion of a base-2 number to a base-
10 number:

(11110101)2 � 27 + 26 + 25 + 24 + 22 + 20

� 128 + 64 + 32 + 16 + 4 + 1 � (245)10

Note that parentheses and base subscripts are commonly used to clarify the
notation when one is discussing two or more number systems and conversions.
Similarly, one can convert from base 10 to base 2 by extracting the largest
powers of 2 that are contained in the base-10 number. Conversion of (245)10

to (?)2 proceeds as follows:

245 117 53 21 5 5 1 1
−128 −64 −32 −16 −8 −4 −2 −1

117 53 21 5 X 1 X 0
Yes Yes Yes Yes No Yes No Yes

Thus the subtraction process shows that 245 base 10 contains 2 to the powers
7, 6, 5, 4, 2, and 0 (the Yes’s), but not 23 = 8 or 21 = 2 (the No’s) that yields
the binary number 11110101. The references give many simpler algorithms for
conversion.

The first twenty numbers in the decimal, binary, octal (base 8), hexadecimal
(base 16; commonly called Hex), and the binary-coded decimal (BCD) systems
are given in Table C1. Since the Hex number system is base 16, we need
sixteen digit symbols. Clearly, the first ten are the digits 0–9 and the remaining
six are generally represented by the first six letters of the English alphabet—A,
B, . . . , F.

Note from Table C1 that it is easy to convert from binary to octal. One
divides the binary number into groups of three digits and writes the octal num-
bers (0 to 7) that correspond to the group of three digits. Similarly, one can
convert from binary to Hex by grouping four digits at a time and using a simi-
lar process. Reverse conversions involve expanding each octal digit into three
binary digits or each Hex digit into four binary digits. The BCD number sys-
tem uses four binary digits to represent the digital numerals from 1 to 9. This
is emphasized in Table C1 by the vertical bar used for separating the binary
digits into groups of four. The advantage of the BCD system is that each deci-
mal digit can be converted by repetition of the same circuit; thus designs based
on BCD numbers are highly modular.
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TABLE C1 Number Systems Commonly Used in Computer and Digital Circuit
Design

Decimal Binary Octal Hex BCD

0 00000 00 00 0000|0000
1 00001 01 01 0000|0001
2 00010 02 02 0000|0010
3 00011 03 03 0000|0011
4 00100 04 04 0000|0100
5 00101 05 05 0000|0101
6 00110 06 06 0000|0110
7 00111 07 07 0000|0111
8 01000 10 08 0000|1000
9 01001 11 09 0000|1001

10 01010 12 0A 0001|0000
11 01011 13 0B 0001|0001
12 01100 14 0C 0001|0010
13 01101 15 0D 0001|0011
14 01110 16 0E 0001|0100
15 01111 17 0F 0001|0101
16 10000 20 10 0001|0110
17 10001 21 11 0001|0111
18 10010 22 12 0001|1000
19 10011 23 13 0001|1001
20 10100 24 14 0010|0000

C1.2 Arithmetic in Binary

One can discuss at length arithmetic in various bases; however, the algorithms
can become quite detailed, especially when one considers both positive and
negative numbers. In the binary number system, the rules for positive numbers
are quite simple.

1. The sum of any two binary digits (0 + 0, 0 + 1, 1 + 0, 1 + 1) is 0 if the
digits are the same (0 + 0, 1 + 1) and 1 if the digits differ (0 + 1, 1 +
0). A carry to the next digit is only generated when both digits are 1.

2. The difference of any two binary digits (0 − 0, 0 − 1, 1 − 0, 1 − 1) is 0
if the digits are the same (0 − 0, 1 − 1) and 1 if the digits differ (0 − 1,
1 − 0). A borrow to the next digit is only generated in the case 0 − 1.

3. To multiply two binary numbers, we treat the process just like decimal
multiplication, forming partial products that are shifted left once each
time we shift to another bit of the multiplier (number on the bottom).
The partial products are either 0 or a replica of the multiplicand (number
on the top); then they are added using binary addition.

4. Long division of two binary numbers proceeds as in the decimal number
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system, and each trial divisor is subtracted from the number on the top
using binary subtraction.

C2 LOGIC GATES, SYMBOLS, AND INTEGRATED CIRCUITS

Digital-logic elements used in circuits have evolved over the years. The earliest
realization of logic elements (logic gates) were relays with multiple contacts,
which were soon replaced by vacuum tube switches and vacuum tube diode
circuits. Vacuum tubes were in turn replaced by transistors and semiconductor
diodes, and, finally, by integrated circuits. Modern-day digital circuits (often
called chips) are composed of various integrated circuits; some, such as micro-
processors and memory systems, are quite complex, whereas others are simple-
logic circuits. We will discuss the simple-logic circuits since many more com-
plex circuits can be viewed as interconnection of the simple circuits. Such logic
circuits realize simple-logic functions such as union, intersection, compliment,
and so forth (see Appendix A3 for a definition of these logic operations based
on set theory that applies to both digital logic and probability theory). The
inputs to the logic gates are called switching variables (represented by letters
A, B, x, y, etc.), and the output is a switching function, f (x, y). The union of
two switching variables A and B is written as f (A, B) = A + B, (A U B), and is
called an OR function; the associated logic gate is an OR gate. Similarly, an
intersection of A, B is written as f (A, B) = A . B, (A

U
B), and is called an AND

gate. The complement of A is given by A or A′ and is called a NOT gate or an
inverter. Note the symbols A and A′ are used interchangeably in this text. The
logic symbols for these gates are given in Fig. C1. These three logic gates as

A

A

A

A

A

A

B

B

B

B

B

f A  B( , )

f A  B( , )

f A  B( , )

f A  B( , )

f A  B( , )

f A  B( , )

OR: ( , ) = +f A  B A B

AND: ( , ) =f A  B A   B·

NAND: ( , ) = ( )f A  B A   B·

NOR: ( , ) = ( + )f A  B A B

NOT: ( , ) =f A  B A

EXOR: ( , ) =f A  B A B�

Figure C1 Logic functions and circuit symbols for common logic gates.
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well as the others given in Fig. C1 are discussed further in the next section.
The complement can be denoted by a NOT gate or by a small circle shown at
the output of the logic gate (cf. Fig. C2).

C3 BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS

One can define a logic function in terms of its variables, a mapping connect-
ing the values that the variables assume, and the resulting value of the logic
function. For example, if we have two switching variables, x and y, we can
write the general form of a two-variable switching function as f (x, y). This is
similar to the definition of a function in calculus; however, the variables x and
y are discrete and only take on the values 0 and 1. Thus we can define the
switching function mapping in terms of the 4 combinations (00, 01, 10, 11) of
the variables in tabular form. Such a table is called a truth table; truth tables
for the 6 functions given in Fig. C1 are shown in Table C2. The OR function
is 1 whenever x or y or both are 1; the AND function is 1 only when both x
and y are 1. The NAND function is the complement of the AND; the NOR
function is the complement of the OR. Although the EXOR function is like
an OR function, it excludes the case where both x and y are 1. The EXOR
function is 1 whenever the inputs x and y disagree. There is another function
that is sometimes defined as the complement of the exclusive OR function; this
is called the coincidence function, which is 1 whenever x and y agree. Note
that there is an alternate way to denote the NOR and NAND functions shown
in Fig. C2(a) and (b). A circuit for implementing an EXOR function and the
logic symbol are shown in Fig. C2(c).

In constructing the truth tables given in Table C2, we assumed that the prop-
erties of the complement, union, and intersection of 1s and 0s given in Table
C3 hold. A more basic treatment [Hill, 1981] develops these relationships from
the principles of Boolean algebra. However, we will assume that the properties
of Table C3, as well as the basic Boolean algebra identities given in Table C4,
have been proven.

TABLE C2 Truth Tables for the Six Functions in Fig. C1

NOT (Inverter) OR, AND, NAND, NOR, EXOR,
Function Functions

f (x, y)

x f (x) � x x y x + y x . y x . y x + y x ⊕ y

0 1 0 0 0 0 1 1 0
1 0 0 1 1 0 1 0 1

1 0 1 0 1 0 1
1 1 1 1 0 0 0
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(a) NOR Gates

(b) NAND Gates

(c) EXOR Gates

x
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x y+
z = x y( + )’

x

y

z = x y’ ’·

x’

y’

x
y

z = x y( + )’

x
y

z = x y’ ’·

OR Followed by NOT

AND Preceded by NOTs

NOR Symbol

Equivalent NOR Symbol

x
y

x   y·
z = x   y( )· ’

x

y

z = +x y’ ’

x’

y’

x
y

z = x   y( )· ’

x
y

z = +x y’ ’

AND Followed by NOT

OR Preceded by NOTs

NAND Symbol

Equivalent NAND Symbol

x
y z = x y�

EXOR Circuit Composed
of AND/OR/NOT Gates

EXOR Symbol

x
y z = +x   y x y· ·’ ’

x   y’·

x y’ ·

x’

x
y’

y

Figure C2 Equivalent forms for logic functions; equivalent symbols/ circuits for (a)
NOR gates, (b) NAND gates, and (c) EXOR gates.
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TABLE C3 Properties of 1 and 0 in Boolean
Algebra

0 � 1 0 + 0 � 0 0 . 0 � 0
1 � 0 0 + 1 � 1 0 . 1 � 0

1 + 0 � 0 1 . 0 � 0
1 + 1 � 1 1 . 1 � 1

The identities given in Table C3 and C4 can be used to manipulate Boolean
expressions. For example, consider the following expression:

x . y . z � ? let a � x . y (C1)

Substituting a and applying identity {17} (one of DeMorgan’s laws),

a . z � a + z

Now, substituting again for a:

x . y . z � x . y + z

Again, applying identity {17}, we obtain

x . y . z � x + y + z (C2)

Thus we have proved that one of DeMorgan’s laws applies to three variables.
(One can show that both of DeMorgan’s laws apply to n variables.)

Consider another example: We wish to simplify the expression, that is,
obtain an equivalent expression with fewer terms, fewer variables, or both.
Note that in the second form of Eq. (C3), the “dots” indicating multiplication
of Boolean variables have been omitted for brevity, as is usually done.

f (x, y, z) � x . y . z + x . y . z + x . z � xyz + xyz + xz (C3)

Applying identity {14} to the first two terms, one obtains

f (x, y, z) � xy(z + z) + xz

From identity {5} and {6}, one obtains

f (x, y, z) � xy(1) + xz � xy + xz (C4)

The result of our Boolean algebraic manipulation is that Eq. (C4) has two
terms rather than the three in the original function given in Eq. (C3), and both
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terms in Eq. (C4) contain only two variables (often called literals). Thus the
manipulation has transformed the switching function into an equivalent simpler
form, which would result in a simpler circuit if one tries to build a digital-
circuit realization of this function (see Section C5).

Any switching function may be written in one of two standard (canonical)
forms: the sum-of-products (SOP) form and the product-of-sums (POS) form.
Either form holds for n variables, but for simplicity we will illustrate by con-
sidering a switching function of three variables in SOP form. The standard
SOP form is as follows:

f (x, y, z) � [x y z + x yz + xyz + xy z + xyz + xyz + xyz + xyz] (C5)

Various combinations of the 8 terms appear in the brackets. All possible com-
binations of these 8 terms represent a three-variable function, which includes
the degenerate cases of no terms (a null circuit), all terms (always unity), the 8
functions that contain 1 term each, the 28 functions with 2 terms each, and so
on, for a total of 256 possible functions. As an example, consider the switch-
ing function composed of first, second, and eighth terms in the bracket of Eq.
(C5):

f (x, y, z) � [x y z + x yz + xyz] (C6)

The number of different switching functions, N, of 3 variables can be computed
as the number of combinations of 8 terms taken 0 at a time plus the number of
combinations of 8 terms taken 1 at a time plus the number of combinations of
8 terms taken 2 at a time, and so on. One can show that the sum of this series is
given by 28 = 256: Expand the binomial (a + b)n using the binomial expansion
and then let a = b = 1; the expression reduces to the series of combinations
discussed previously. In general, if there are k variables, there are 2k terms
within the SOP bracket [cf. Eq. (C5)], and N is given by

N � 22k
(C7)

The 8 terms inside the bracket in the SOP form are called minterms, and an
inspection of the example given in Eq. (C6) suggests a simplified form of nota-
tion in terms of binary numbers:

f (x, y, z) � [x y z + x yz + xyz] � [000 + 001 + 111] � ��� m(0, 1, 7) (C8)

One would say that the switching function is in SOP form and contains
minterms 0, 1, 7, and one can write the SOP form directly from a truth table
by including minterms corresponding to each row for which the function is a
1. For example, the EXOR function given in Table C2 is given by
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f (x, y) � [01 + 10] � ��� m(1, 2) � xy + xy (C9)

The POS form is similar to the SOP form and is illustrated as follows for 3
variables:

f (x, y, z) � [(x + y + z) . (x + y + z) . (x + y + z) . (x + y + z)
. (x + y + z) . (x + y + z) . (x + y + z) . (x + y + z) (C10)

As with the SOP form, various combinations of the 8 terms appear in the brack-
ets.

The number N is the same as with SOP, as given by Eq. (C7). The terms
in the bracket of Eq. (C10) are called maxterms; the notation is similar to that
illustrated in Eqs. (C8) and (C9), except that a capital M is used and that instead
of the summation symbol, a product symbol is used. One can write the POS
form from the truth table in a manner similar to that of the SOP, but a maxterm
is included for each row of the truth table where the function is a 0 and all
variables are complemented. As an example, consider the EXOR function of
Table C2, which is given in SOP form in Eq. (C9). The POS form is given by

g(x, y) � ∏ M(0, 3) � (x + y) . (x + y)

Complementing all the variables, we obtain the POS form:

g(x, y) � (x + y) . (x + y) (C11)

One can show that Eqs. (C9) and (C11) are the same by expanding Eq. (C11)
and simplifying

g(x, y) � (x + y) . (x + y) � xx + xy + xy + yy (C12)

The first and the last terms go to 0, and we have the same expression as Eq.
(C9).

C4 SWITCHING FUNCTION SIMPLIFICATION

C4.1 Introduction

Digital-logic design begins by formulating the switching function and then
drawing a logic circuit that implements the design. Sometimes it is possible to
write the logic function in an equivalent but simpler form to lead to a simpler
logic circuit.

The basis of logic simplification is when the union of two logic functions
occurs where the two functions are identical; however, one contains a logic
variable, the other contains its complement. For example,
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f (x, y) � xyz . xyz � xy(z + z) � (xy)(1) � xy (C13)

One can describe an algebraic simplification process as successive applications
of the above simplification along with identities {5} and {8} of Table C4 to
simplify a logic function. However, it is easier to define a graphical process
called the Karnaugh map (K map) simplification.

C4.2 K Map Simplification

The K map method is very useful in simplifying logic functions. It begins
by constructing a “special matrix,” in which a pair of horizontal or vertical
adjacent cells represents variable simplification; such a pair means that one
variable drops out. The elementary logic terms (minterms) that make up the
logic expression are entered in the map as ones (zeroes are entered in the
other squares), and adjacencies that signify logic simplification are identified
by inspection. For two variables, f (x, y), we use a square map as shown in
Table C5. A similar rectangular map for three variables is shown in Table C6,
and a larger square map for four variables is shown in Table C7. Note that in
the three- and four-variable maps, the columns and rows are ordered 00, 01,
11, 10 to provide the “touching” property, not 00, 01, 10, 11 as blind intuition
might suggest to do.

The way one proceeds with the K map method is to expand the function to
be minimized to include all variables; oftentimes, it is convenient to convert
to the “binary notation.” (The terms in the expanded function are generally
called minterms.) Consider the three examples each given in Tables C8, C9,
and C10. Note the expansion, binary notation, and the shorthand notation in

TABLE C5 Two-Variable K Map, f (x, y)

0 x

1 x

x
y 0

y
1
y

Rules:
(a) Horizontal or vertical touching of two “1”

cells means that one variable drops out—the
one that appears as the variable and its com-
plement.

(b) All four cells are “1” cells, meaning both
(two) variables drop out; the function becomes
unity.

(c) Diagonal touching does not count.
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TABLE C6 Three-Variable K Map, f (x, y, z)

0 x

1 x

x
yz 00

yz
01
yz

11
yz

10
yz

Rules:
(a) Horizontal or vertical touching of two “1” cells

means that one variable drops out—the one that
appears as the variable and its complement.

(b) Four adjacent cells—four across or down, or four
in a square—mean two variables drop out; the func-
tion becomes a single variable.

(c) Diagonal touching does not count.
(d) All eight cells mean three variables drop out; the

function becomes unity.

TABLE C7 Four-Variable K Map, f (w, x, y, z)

00 wx

01 wx

11 wx

10 wx

wx
yz 00

yz
01
yz

11
yz

10
yz

Rules:
(a) Horizontal or vertical touching of two “1” cells means

that one variable drops out—the one that appears as
the variable and its complement.

(b) Four adjacent cells—four across or down, or four in
a square—mean two variables drop out; the function
becomes two variables.

(c) Eight adjacent cells—two adjacent rows or columns of
four across or down—mean three variables drop out;
the function becomes a single variable.

(d) Diagonal touching does not count.
(e) All sixteen cells mean four variables drop out; the

function becomes unity.
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TABLE C8 Two-Variable K Map Simplification, f (x, y)

0 x 1

0

1

11 x

x
y 0

y
1
y

Rules:
(a) f (x, y) � x′ + xy expands to x′(y + y′) + xy � x′y + x′y′

+ xy. The shorthand notations become

00 + 01 + 11 � ��� m(0, 1, 3).
�− minterms −�

Three minterms shown in the map all appear as (ones)
in cells 0, 1, 3 r 00, 01, 11.

(b) The two touching horizontal terms (00, 01) are circled
to show that they combine. The literal y drops out since
it appears as y and y′ in the terms, yielding x′.

(c) The two touching vertical terms (01, 11) are circled to
show that they combine. The literal x drops out since
it appears as x and x′ in the terms, yielding y.

(d) The simplified expression is x′ + y. Note that the min-
term 01 was used twice in the simplification, which is
legitimate because f (x, y) = f (x, y) + f (x, y).

TABLE C9 Three-Variable K Map Simplification, f (x, y, z)

0 x 1

0

1

1

1

1

0

01 x

x
yz 00

yz
01
yz

11
yz

10
yz

Rules:
(a) f (x, y, z) =000 + 001 + 011 + 101 + 111 =��� m(0, 1, 3,

5, 7). Note the simplified minterm notation.
(b) One always uses the largest groupings first. The four adja-

cent cells in the center of the map are grouped, elimi-
nating y and x and yielding z. This grouping is said to
“cover” these four minterms. However, minterm 0 re-
mains. One can take minterm 0 by itself, but further sim-
plification occurs if we group 0 and 1, thereby eliminating
z and yielding x′y′.

(c) Simplified function f (x, y, z) =z + x′y′.
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TABLE C10 Four-Variable K Map Simplification, f (w, x, y, z)

00 wx 1

0

0

1

1

1

0

0

1

1

0

0

0

0

1

0

01 wx

11 wx

10 wx

wx
yz 00

yz
01
yz

11
yz

10
yz

Rules:
(a) f (w, x, y, z) = ��� m(0, 1, 3, 5, 7, 8, 14). Note the simplified minterm

notation.
(b) As in the three-variable example, first the four adjacent cells (0001, 0011,

0101, and 0111) are grouped, thereby eliminating y and x and yielding
w′z.

(c) We can group 0000 with 0001 as in the three-variable example, but a
better move is to cover 1000 so that it touches only one other cell
(0000). Thus grouping these two yields x′y′z′. Note that the top and
bottom edges of all maps “touch,” as do the right and left edges. This
means the four-variable “square” is mappable on the surface of a torus, as
are two- and three-variable K maps.

(d) All ones are covered except for 1110. Unfortunately, this minterm does
not touch any others (no diagonals are allowed) and must be included
without simplification as wxyz′.

(e) The resulting function is f (w, x, y, z) = w′z = x′y′z + wxyz′.

terms of the “sigma notation” shown in the examples. For convenience, the
prime notation is sometimes used to represent complement. In the four-vari-
able example shown in Table C10, we can visualize the map as a surface, and
since the top edge of the map “touches” the bottom edge, we can view the map
as a cylinder. Furthermore, the left edge and right edge touch so the ends of the
cylinder are joined, forming a torus (a donut shape). In addition, the four cor-
ners form a grouping, and sometimes there is more than one distinct grouping,
leading to equivalent and different groupings of the same complexity.

A K map for five variables v, w, x, y, z can be viewed as two four-variable
maps: one suspended above the other, with v =1 on the top plane and v = 0
on the bottom plane, and one where adjacency also holds for cells above and
below each other. Maps for six or more variables involve a “stack” of four-
variable maps, which become very complex. Fortunately, they are not often
needed, and another method—the Quine–McCluskey (QM) method, involv-
ing a series of tables—can be used. The QM method becomes complicated;
however, computer program implementation exists for large problems (see Hill
[1981], Kohavi [1978], Mano [1995], Roth [1995], Shiva [1988], and Wakerly
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[2001]). The physical problem is sometimes such that a particular minterm or
minterms cannot exist; thus we do not care whether they exist or not. Such
terms, called don’t-cares, are entered as d in the K map and are treated as
ones if they help the simplification and as zeroes if they are of no aid. The
cells in the map that are not ones (minterms) are called maxterms; these are
generally labeled as zeroes. The zeroes can also be grouped to yield the sim-
plified function called the product-of-sums form (POS) mentioned previously.
The application of don’t-cares and the POS form are treated in the problems
at the end of this appendix and also in the references.

C5 COMBINATORIAL CIRCUITS

C5.1 Circuit Realizations: SOP

Once the logic functions are minimized, the designer produces circuits that
realize the logic function. The resulting minimizations from grouping the ones
in the K map produce a union of intersection terms (in common engineering
terms, a sum of products, or SOP). The product terms are developed using
AND gates, and their outputs feed into an OR gate. If complements of the
variables are needed as inputs to the AND gates, inverters are required. Thus
any SOP form can be realized using only {AND, OR, NOT} gates; this set of
logic functions is called a complete set. There are other combinations of logic
gates that also form a complete set (e.g., NAND gates or NOR gates). Three
examples of SOP circuits are shown in Fig. C3.

C5.2 Circuit Realizations: POS

As was discussed in the previous section, one can group zeroes in the K map
and obtain a POS design. The resulting circuit is similar to those in Fig. C3;
however, instead of a multiple input OR preceded by a number of AND gates,
the circuit is a group of OR gates followed by an AND gate. For examples,
the reader is referred to the problems at the end of this appendix.

C5.3 NAND and NOR Realizations

Up until now, we have discussed the circuit realizations that all involved the
complete set of {AND, OR, NOT} gates. Sometimes, it is more convenient
or simpler to deal with other types of logic gates. It turns out that two other
complete sets of logic gates are often used: {NAND} and {NOR} gates. We
state without proof (see the problems at the end of this appendix) that each of
the AND and OR gates in the SOP form can be replaced with a NAND gate.
Furthermore, if one does not wish to use an inverter, a two-input NAND gate
with inputs tied together can suffice. Similarly, in a POS design, we can replace
OR and AND gates by NOR gates and the inverter by a two-input NOR with
inputs tied together. With a little more effort, one can also use NAND gates
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(a) Example 1

(b) Example 2

(c) Example 3
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Figure C3 Three examples of SOP circuits.

for POS designs and NOR gates for SOP designs. For more details, see the
following references: Hill [1981], Kohavi [1978], Mano [1995], Roth [1995],
Shiva [1988], Wakerly [2001].

C5.4 EXOR

The standard OR gate has an output equal to one whenever either of the inputs
has an input of one or both inputs are one. An exclusive OR function (EXOR)
has an output equal to one whenever either of the inputs has an input of one
but not when both inputs are one. The switching function can be written as
f (x, y) = xy′ + x′y. This function has a special logic symbol written as f (x, y) =
x ⊕ y. The EXOR function occurs frequently in coding theory and in other
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application areas. It is easy to recognize in a K map by its “checkerboard”
pattern of ones and zeroes. In shorthand notation, f (x, y) = 10 + 01 = ��� m(1,
2); for three and four variables, f (x, y, z) = xy′z′ +x′yz′ +x′y′z+xyz = 100 + 010
+ 001 + 111 = ��� m(0, 1, 2, 4, 7); f (w, x, y, z) = wx′y′z′ + w′xy′z′ + w′x′yz′ +
w′x′y′z + wxyz′ + wxy′z + wx′yz + w′xyz = 1000 + 0100 + 0010 + 0001 + 1110
+ 1101 + 1011 + 0111 = ��� m(0, 1, 2, 4, 7, 8, 11, 13, 14). Note that one of the
properties of the EXOR function is that in the binary notation, each minterm
has an odd number of ones. The function is used extensively in Chapter 2 on
coding.

C5.5 IC Chips

Several courses in electrical engineering curricula study in detail the features of
integrated circuits (also called ICs or “chips”); however, for our purposes, we
need to know a few facts. Integrated circuits come in a wide variety of device
types or families that vary in switching speed, power consumption, immunity
to noise and cost, and other factors. We can illustrate some of the differences
by focusing on two families: the transistor–transistor logic (TTL) logic family,
which is the most common and least expensive family, and the complementary
metal oxide silicon (CMOS, or “sea moss”) family, which is used extensively
for low-power, portable (i.e., battery and solar cell–powered) applications such
as calculators. Switching delays range from about 3 to 20 nanoseconds (bil-
lionths of a second), the quiescent power dissipation range from about 0.0025
to 10 milliwatts, and a cost—depending on the complexity of the circuit and
the quantity purchased—ranging from 10c/ to $2. Within each logic family
there are subcategories such as the low-power Schottky subfamily, which are
TTL (LSTTL) circuits with a lower-than-normal power usage, and fast Schot-
tky TTL (FAST TTL) circuits that switch faster than regular TTL circuits. The
reader should consult a recent Motorola or Texas Instruments databook and the
current state of technology for more details.

The kinds of available logic gate packages depend strongly on the number of
pins in the package. The simpler ICs come in standard 14- or 16-pin packages
approximately 20 × 6 × 5 mm with 7 or 8 pins 5 mm long on each side. A
typical 14-pin package has 2 pins devoted to power (typically, Vcc = 5 volts
and ground, which are generally pins 14 and 7); thus 12 pins are available for
input and output signals. For an inverter, there is 1 input and 1 output pin;
thus 6 devices come in a standard package, which is called a HEX inverter.
For a two-input gate (AND, OR, NAND, NOR), 2 input pins and 1 output
pin are required; thus 4 gates can be placed in a package, which is called a
QUAD two-input gate. Similarly, a three-input gate has 3 gates per package
and is called a TRIPLE three-input gate. A DUAL four-input gate has 2 gates
per package (with 2 unused pins). The biggest standard-size gate has a single
13-input gate. See Table C11 for typical TTL gates.

Of course, complex integrated circuits such as memories and microproces-
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TABLE C11 Some Examples of Typical TTL Logic Gates.
[Reprinted with permission of ON Semiconductor; Motorola, 1992.]

Hex Inverter   MC54/74F04

Quad 2-Input AND Gate   MC54/74F08

Quad 2-Input OR Gate   MC54/74F32

Quad 2-Input NOR Gate   MC54/74F02

Quad 2-Input NAND Gate   MC54/74F00
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sors may come in large packages and have 50–100 pins. One can consult an
Intel databook for typical examples of the present state of the art of logic for
larger ICs.
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TABLE C11 (Continued)

Triple 3-Input NAND Gate   MC54/74F10

Dual 4-Input AND Gate   MC54/74F21

13-Input NAND Gate   SN54/74LS133
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C6 COMMON CIRCUITS: PARITY-BIT GENERATORS AND
DECODERS

C6.1 Introduction

The short discussion of digital integrated circuits in the preceding section may
have left the reader with the notion that there are only small IC packages,
such as QUAD two-input AND gates (called small-scale integration, or SSI)
and large-memory and microprocessor chips (called large-scale integrated cir-
cuits, or LSI, or very large scale integrated circuits, or VLSI). Such is not
the case, however, and IC designers have been active for several decades pro-
ducing medium-scale integrated (MSI) circuits. The MSI devices are available
for a large range of practical functions that could be built out of ICs but at a
greater cost and size. In essence, it is easier and cheaper to do the wiring and
constructing on the IC chip rather than externally. Formally, we can classify
the scale of ICs in terms of the number of gates in their equivalent circuits: 1 <
SSI < 20; 20 < MSI < 200; 200 < LSI < 200,000; and VLSI > 200,000 (some
say VLSI > 500,000). We will discuss two MSI devices: a parity-bit generator
and a decoder, both of which were used in Chapter 2.
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C6.2 A Parity-Bit Generator

In Chapter 2, we discussed the use of a parity-bit code to help detect simple
errors in transmission of digital words. The most common scheme is to add
check bit to the word so that all the words have an odd number of ones. After
transmission, we can count the number of ones in the word; if the count is
even, we know that one error has occurred (actually, an odd number of errors),
and we signal “transmission error.” Sometimes we set the parity bit so that
the number of ones in the word is an even number; we call this even parity.
From our discussion in Section C5.4, we see that EXOR gates could be used to
accomplish both the generation of a parity bit and the checking of parity for the
transmitted word. Rather than use a group of AND gates (as shown in Fig. 2.1)
or a “tree” of EXOR gates (shown in Fig. 2.2), one can use an MSI device—the
SN74180, a 9-bit odd/ even parity generator/ checker (see Fig. 2.4). This circuit
and the similar (newer and faster) 74LS280 shown in Fig. 2.7 and repeated in
Fig. C4 can be used to compute parity-bit generation or checking for up to 9
bits. By studying Fig. C4(a) and (b), one can see that inputs 8–13 and 1, 2, 4
(note that pin 3 is not used; this is denoted as NC = no connection) labeled A,
B, C, D, E, F, G, H, I are used for up to nine inputs. Outputs 5 and 6 yield
the EXOR function of all the inputs and its complement; these are labeled by
equivalent wording of even or odd parity. Suppose that one wishes to check
the parity of a 16-bit word (labeled as bits 0–15) in a computer circuit. One
can use two 74LS280 chips in cascade. Bits 0–7 go into inputs A–H of chip
1 and bits 8–15 go into inputs A–H of chip 2. The output of chip 1 goes into
input I of chip 2. When an input is not used (e.g., input I of chip 1), it can be
left unconnected in some logic families, but in others it serves as an “antenna”
that picks up stray inputs that may interfere with operation. The safest course
of operation is to connect an unused input to +5 volts or ground, depending on
the logic family and the function of the input. Unused inputs for a 74LS280
are connected to ground. The details of Fig. C4(b) are best left to an electrical
engineer who has studied IC design.

C6.3 A Decoder

Another MSI circuit used in Chapter 2 was a decoder. A decoder (sometimes
called a demultiplexer) converts the binary representation of n variables into
2n outputs. One can liken the functional operation of the decoder to a selector
switch such as the one found on the ventilation systems in many automobiles:
Rotation of the knob switches from “off” to “interior air circulation” to “vent
air conditioner” to “floor air conditioner” to “outside air vent” and so on. In
a decoder, the binary input is analogous to the number of clicks of switch
rotation; which one of the 2n outputs selected is analogous to the air circulation
function selected.

For example, the 74LS138 3-to-8 decoder (shown in Fig. 2.7 and repeated
in Fig. C5) converts the three digits of the input variable A2A1A0 (pins 1, 2,
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Figure C4 A 74LS280 9-bit odd/ even parity generator/ checker. [Reprinted with per-
mission of ON Semiconductor; Motorola, 1992.]
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1-of-8 Decoder/Demultiplexer
MC54/74F138

(b) Functional Block Diagram

(a) Diagram
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Figure C5 A 74LS138A 1-of-8 decoder/ demultiplexer (also called a 3-to-8 decoder).
[Reprinted with permission of ON Semiconductor; Motorola, 1992.]

3) into the eight possible output combinations (pins 15–7): 000 = AB C, 001
= A BC , . . . , ABC, which represent the outputs O0 to O7. The small circle at
the outputs in the logic diagram indicates that this is the complement of the
desired output. It is fairly common for integrated circuits to produce the desired
output, its complement, or both signals. Similarly, the inputs to various inte-
grated circuits may call for the desired signal or its complement. The designer
keeps track of which signals are needed, alternates complementary outputs and
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inputs (which cancel), or occasionally uses inverters where needed. There is an
additional set of three inputs (4, 5, 6; G1, G2A, G2B), which are called enable
inputs. These inputs are designed for expansion of certain ICs in groups to
work with larger combinations of inputs and outputs and also serve to connect
or disconnect all the inputs or outputs. (Note that output of the enable AND
gate is shown in the logic diagram to be an input to all the output gates so
it can switch all the outputs on or off.) For example, one can design a 4-to-
16 decoder by using two 74LS138 3-to-8 decoders. One bank of 8 outputs is
handled by the first decoder; the other bank of 8 outputs is handled by the
second decoder. The enable inputs are configured so that they switch on or off
the appropriate bank. Thus, by inserting the extra variable (fourth input) into
the G1 input of one decoder and the variable into the G2A input of the other
decoder that complements the variable, the extra variable switches between the
two banks. The enable input AND gate has an output if G1 = 1, G2A = 0, and
G2B = 0. Thus, if any enable input is not used, it must be connected to 1 (5
volts) if it is G1 or connected to 0 (grounded) if it is the G2A or G2B input.
In Fig. 2.7, we only need a 3-to-8 decoder; thus none of the enable inputs are
used, and G1 is connected to +5 volts and G2A, G2B are grounded (0 volts).
Note that the G1 connection to +5 volts also uses a resistor to limit the current
into the input to protect it when switching occurs and that the decoder requires
a 16-pin package.

C7 FLIP-FLOPS

Computers and digital circuits are composed of three broad classes of facili-
ties: the computational units called central processing units (CPUs) (frequently
microprocessors); the memory units (flip-flops, electronic memory, and disk,
card, tape, CD, and other media); and input/ output facilities (keyboards, moni-
tors, communication connections, etc.). The fastest of the memory storage units
are flip-flops (FFs), which are individually connected or connected in banks
called registers. Registers, discussed briefly in Chapter 2, are storage devices
made up of cascaded single-bit FF storage circuits with switching time delays
of several nanoseconds (about the same as logic gates).

In addition, there are single-input FFs; among them is the trigger or toggle
FF (T FF). When the input T is 0, the output Q (and its complement Q′) holds
(stores) its previous state (either a 0 or 1). When T = 1, the values of Q and Q′
flip from their previous states to the complement (0 or 1). There is also a delay
FF (D FF), which stores as output whatever the D input is after a switching
delay. Both the T and D FF are single-input devices. A symbolic diagram of
a T FF is shown in Fig. C6 along with a state table. A state table is similar to
a truth table, but it contains an additional column (serving like an additional
input) that is the previous output. Note the first line of the state table reveals
that if the previous storage state Qn is 0 and there is no T input (0 input), then
the new state Qn + 1 is the same as the old—that is, 0. The second line in the
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(a) A Single Input FFT

(b) A 2-Input FFJK
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1           0           0           1
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0           1           1           0
1           0           1           1
1           1           0           1
1           1           1           0
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JK FF

Figure C6 Diagrams of various flip-flops. [Reprinted with permission of ON Semi-
conductor; Motorola, 1992.]

state table also reveals that with no input, the stored state does not change and the
stored value of 1 remains stored. In the last two lines of the state table, the input
of 1 changes the stored state from 0 to 1 or 1 to 0. In a large circuit with many
interconnected FFs, there may be unwanted signals that propagate after one or
more FFs switch. It is desirable to have all the FFs synchronized so that they ini-
tiate switching simultaneously in a short instant of time less than the switching
time. The C input (clock input) accomplishes this synchronization. A timing sig-
nal, which is a pulse of short duration (less than the switching time), is fed to the
C input that “opens” the T input and allows it to switch the FF if T = 1. (The inputs
T and C are essentially fed to a two-input AND gate, and the output of the gate is
the switching signal.) Other synchronization circuitry and features for clearing a
stored value or setting a stored value (reset to 0 or preset to unity) are included
in commercial FFs but need not be discussed here.

The second part of Fig. C6 shows a two-input JK FF. A 1 signal on the J
and a 0 signal on the K input set the output Q to 1 regardless of its previous
storage value (see rows 3 and 6 in the state table). A 1 signal on the K and a
0 signal on the J input set the output Q to 0 regardless of its previous storage
value (see rows 2 and 5 in the state table). As a way to remember the function,
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(c) A 74LS73A FFJK
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Figure C6 (Continued)

one can think of J as “jump” and K as “kill.” If both inputs J and K have a
0 signal, then nothing changes in the output (see rows 1 and 4 in the state
table). If both the J and K inputs are simultaneously 1, then the FF behaves
like a T FF, that is, the stored state flips its value (see rows 7 and 8 in the
state table). There is also another kind of two-input FF called a reset (R) and
set (S) FF (or a reset–set FF) that behaves like a JK FF, except the S = R =
1 condition is not allowed. (For more details, see the references [Hill, 1981;
Kohavi, 1978; Mano, 1995; Roth, 1995; Shiva, 1988; Wakerly, 2001].) Some
designers consider a JK FF a basic design element since it is easily connected
to behave like a T or D FF. See the problems at the end of this appendix for
more details.

The 74LS73A JK FF shown in Fig. C6(c) is essentially the same as the JK
FF just discussed, but with the following modifications: (a) It is dual—that is,
two devices are fit into a 14-pin package; (b) it is negative edge–triggered—that
is, the clock-pulse input opens the J and K inputs when the pulse falls from 1
to 0; and (c) a 0 signal on the CD-input sets (clears) the Q output to 0 (and,
of course, the Q′ output becomes 1).

A simple application of a T FF is in a digital–electronic elevator control
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system. When you are outside the elevator and push the up or down button
for calling the elevator to a floor and release the button, the signal remains
stored. An implementation is to connect a power source and a switch in series
and feed the signal to the T input of a T FF (and also into the C input). The
call signal will be stored. One FF is needed for the up and one for the down
inputs. Once the elevator reaches your floor, a floor switch can feed another
voltage into the T input to switch the call state back to 0. Actually, the circuit
must know if the elevator is traveling up or down to know which call signal
to clear (this would require another T FF storage element).

C8 STORAGE REGISTERS

Flip-flops can serve as single-bit storage registers; however, they are generally
organized inside of MSI circuits called registers, such as the 74F195 device (a
4-bit shift/ storage register in a 16-pin package; see Fig. C7). Up to four bits
of data can be stored in the register, and there is also shift-right function. If we
wish to store a 16-bit word, we use a cascade of four such devices. Other stor-
age registers provide more bits of storage (in packages with more pins), both
shift-right and shift-left operation, and other functions. Generic block diagrams
of storage/ shift registers are shown in Figs. 2.10 and 2.11.

At the heart of this storage register are four reset–set (RS) FFs that behave
like JK FFs, where R is like K and S is like J. The clock-pulse (CP) input
is for a clock pulse that feeds all four FFs. The MR′ input is used to reset
(clear) all the FF outputs—Q0, Q1, Q2, Q3—instantly to 0. For convenience,
the complement of the Q3 output is supplied. Parallel input of data is provided
(as with most shift/ storage registers) via inputs D0, D1, D2, D3. We can liken
parallel loading of the register to four soldiers facing four adjacent doors of
a barracks (D0, D1, D2, D3). When the corporal beats the drum (the CP), the
four doors open and the soldiers enter the barracks and stand to attention inside
(Q0, Q1, Q2, Q3), after which the doors close. The analogy for serial loading
is that the four soldiers are in single file facing a single door (J, K′). When the
corporal beats the drum (the CP and the shift pulse, or PE), the single door
opens, and the first soldier enters the barracks and stands to attention inside
(Q0). As the sound of the drum dissipates, the door closes and the first soldier
comes to attention (Q0). At the next drumbeat, the soldier inside makes a right
turn, takes a step forward, makes a left turn, and stands to attention (the soldier
shifts right from position Q0 to Q1); then the door opens and the second soldier
steps inside (Q0). As the sound of the drum dissipates, the door closes and the
second soldier stands to attention (Q0) next to the first who is already standing
to attention (Q1). The process repeats itself for two more drumbeats until all
four soldiers are in the barracks standing to attention. If there is an attack,
the burglar sounds the alarm (MR′), causing all four soldiers to run from the
barracks to arm themselves and leave the barracks empty (reset to 0).

Applications of storage/ shift registers are shown in Figs. 2.9, 2.10, and 2.11;
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4-Bit Parallel Access-Shift Register
MC74F195
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Figure C7 Diagrams of a 74F195 shift/ storage register. [Reprinted with permission
of ON Semiconductor; Motorola, 1992.]

they are also discussed in the problems at the end of this appendix. Some
shift/ storage registers provide additional facilities, such as both shift-right and
shift-left capability. The reader is referred to the following references for more
details: Motorola, 1992; Shiva, 1988; and Wakerly, 2001.
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PROBLEMS

C1. Convert the following base-2 number to base 10, base 8, base 16:
(1011110101)2.

C2. As a check, convert the base-10, base-8, and base-16 numbers obtained
back to base 2.

C3. Expand Table C1 for numbers between 20 and 30.

C4. Prove the identities of Table C4 by substituting all possible combinations
of ones and zeroes for the variables and computing the results.

C5. Add the following base-2 numbers and check the results by converting
to base 10: (1011110101)2 + (11110101)2 = ?

C6. Repeat problem C5 for the subtraction problem: (1011110101)2 −

(11110101)2 = ?

C7. Repeat the problems in Tables C8–C10 using the POS form. To use
the POS form, draw a K map and enter ones for the maxterms (note
the minterms are ones in the SOP map and the maxterms are zeroes).
Proceed to minimize the K map as with the POS form and write the
minimum function in SOP form. Then complement all variables.

C8. Which method is better for the problems of Tables C8–C10: the SOP
method shown or the POS method of problem C7?

C9. Consider the three examples that are each given in Tables C8–C10.
Assume that you can replace one of the zeroes in each K map. For each
problem in the tables, choose the best location to insert a don’t-care (d)
and decide whether it should become a 1 or a 0 for best minimization.
Explain your reasoning. Minimize the function and draw an SOP circuit
for the minimized function.



PROBLEMS 503

C10. Repeat problem C9 for a POS design. (Hint: Study the solution of prob-
lem C1 to learn how to do a POS design.)

C11. Prove that the NAND gate is a complete set. (Hint: Since we know that
the set of AND, OR, NOT gates is a complete set, we can perform our
proof by showing that we can construct an AND, an OR, and a NOT
gate from one or more NAND gates.

C12. Repeat problem C11 and show that a NOR gate is a complete set.

C13. Draw a circuit for the examples of Tables C8–C10 in the SOP form for
using only NAND gates.

C14. Draw a circuit for the examples of Tables C8–C10 in the POS form for
using only NOR gates.

C15. Consider the four-variable K map given in Table C7. Fill the entire map
with a “checkerboard pattern” of ones and zeroes, starting with a 0 in
the top left-hand corner. Minimize the function and draw an SOP circuit
using AND, OR, NOT gates. Repeat the circuit using EXOR gates; then
compare the two circuits.

C16. Repeat problem C15 for a “checkerboard pattern,” starting with a 1 in
the top left-hand corner.

C17. Draw a diagram to show how a 74LS280 IC can be used to check an
8-bit word for even parity and for odd parity.

C18. Repeat problem C17 for a 16-bit word.

C19. Show how to connect two 74LS138 3-to-8 decoders to implement a
4-to-16 decoder.

C20. Start with a JK FF and show how the two inputs can be connected to
operate like a T FF. Explain.

C21. Start with a JK FF and show how the two inputs can be connected to
operate like a D FF. (Hint: You will need an inverter to take the com-
plement of one of the inputs.) What will the delay time of the D FF
be?

C22. Fill in the details of the elevator-floor-button-control system outlined in
Section C7 and draw the circuit diagram. Explain the operation.

C23. Use a 74F195 storage/ shift register to design the storage application
shown in Fig. 2.9. Explain how to connect the inputs and outputs of
the 74F195.

C24. Repeat problem C23 for the application shown in Fig. 2.10.

C25. Repeat problem C23 for the application shown in Fig. 2.11.
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D1 INTRODUCTION

Analysis is the theme of this book; indeed, Chapters 1–7 stressed both exact
and approximate analytical approaches. However, it is clear that a large, prac-
tical system will involve computer analysis. Thus the focus of this appendix
is to briefly discuss a sampling of the many available computer programs and
point the reader to references that discuss such programs in more detail. In all
cases, the intent is to provide a smooth transition from analysis to computation.

Analysis programs are important for many reasons, including the following:

1. to replace laborious computation;
2. to model complex effects that are difficult to solve analytically;
3. to solve a system that is so large or complex that it is intractable, even

with approximations and simplifications;
4. to provide a graphic- and text-based record of the system model under

consideration; and
5. to document parameter values and computations based on the model.

The reader should not underestimate the utility of a well-thought-out computer
program to aid in documentation to satisfy reasons (4) and (5) of the preceding
list. A program might be used for documentation even if all the computations
are done analytically.

In the early days of reliability analysis, the size of a computational program,
the speed of the computer, and the size of memory were of prime importance.
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To put this in perspective, the reader should consider the title, subtitle, and pub-
lication date of the following article written by Schmidt and Busch, two engi-
neers with the GE Controls Department, in The Electronic Engineer: “An Elec-
tronic Digital Slide Rule—If This Hand-Sized Calculator Ever Becomes Com-
mercial, the Conventional Slide Rule Will Become Another Museum Piece”
[1968]. The authors were speaking of the forerunner of the scientific calculator
now available in any stationery store or drugstore for $12 (as low as $8 during
fall back-to-school sales). The first pocket-sized commercial scientific calcu-
lator, introduced in the early 1970s, was the Hewlett-Packard HP-35; it sold
for about $400! To the author’s knowledge, the first comprehensive reliabil-
ity computation program (one that models repair via solution of the analytical
equations) was the GEM Markov modeling program developed by the Naval
Applied Sciences Lab in the late 1960s [Orbach, 1968]. This program used the
supercomputer of the day—the CDC 6600, and complex problem solutions ran
one-half to one hour.

Computer solutions of reliability or availability models fall into a number of
major classes. All the approaches to be discussed in this appendix are practical
because of the great power and memory size of modern desktop and laptop
computers. The main choice hinges on ease of use and cost of the program.
The least desirable approach is to write a custom analysis program in some
modern version of a standard computer language, such as C or FORTRAN.
This certainly works, but unless someone within your organization has already
developed such a program, the overhead cost is too great.

The next choice is to formulate a set of equations for the analysis and use
one of the standard mathematical solution tools such as Mathematica [1999],
Mathcad [1995], Matlab [1992], Macsyma [Ralston, 1976], and Maple [Ellis,
1992] to solve the equations. All these systems are powerful and can solve
logic equations for combinatorial reliability or availability expressions or dif-
ferential equations for Markov model solutions. The choice should be based on
cost, ease of use, familiarity, availability within your organization, availabil-
ity of “readable” manuals describing how the program is used in reliability or
availability modeling, and other practical factors.

Another class of reliability analysis programs is a Monte Carlo solution (see
Rubinstein [1981] and Shooman [1990]). Such a simulation approach is very
flexible and allows one to model highly complex behaviors. However, solu-
tion requires the generation of random values for the times to failure, times to
repair, and other parameters for each “run” of the simulation program. The pro-
gram must be repeated N times, and the probabilities must be estimated from
the ratios of the number of favorable outcomes divided by N. As N � ∞,
these ratios approach the true probabilities. The main limitation of such an
approach is the size of N required and how long one must wait for the running
of N simulations. At one time, simulation required supercomputers and long
running times. The method, invented by von Neuman and Ulam, was used
initially to solve complex nuclear calculations during the Manhattan Project
at Los Alamos Laboratories in New Mexico and went under the code name
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“Monte Carlo” for secrecy. (Of course, Monte Carlo evoked the image of the
games of chance in the casinos of the famous city in Monaco.) Many simu-
lation programs are written in the language SIMSCRIPT (and its successors),
developed by the RAND corporation in the early 1960s and implemented on
early IBM computers [Sammet, 1969, p. 657]. We again comment that the
power and speed of modern desktop and laptop computers makes the Monte
Carlo method practical for many solutions that previously required prohibitive
running times. For further details, see Shooman [1990, Section 5.10.4].

The methods introduced in the preceding paragraphs are discussed in the
remainder of this chapter. The next section, however, focuses on the customized
commercial programs commonly thought of as reliability and availability mode-
ling programs. All such programs start with a model building phase that is based
on interactive or tabular input or, in more modern cases, an interactive graphical
editor. The next step is to choose from available component density functions,
including databases for some components, or to provide input of failure-rate data;
the program should then formulate the equations for the model without user assis-
tance. The next step is solution of the model equations, which only requires infor-
mation from the user regarding the points in time at which reliability or availabil-
ity values are required. The final phase is the output section, which provides tab-
ular and graphical output in addition to model documentation as selected by the
user. Most of the programs to be discussed run on Windows ’95, ’98, or 2000 and
later versions. Some of these programs have alternate versions that can be run on
a Macintosh- or UNIX-based operating system.

D2 VARIOUS TYPES OF RELIABILITY AND AVAILABILITY
PROGRAMS

D2.1 Part-Count Models

Reliability and availability programs have been developed by universities, gov-
ernment agencies, military contractors, and various commercial organizations.
Such programs generally can be grouped under a number of headings. The sim-
plest of such programs are those that implement a so-called part-count model.
Such a model assumes that all parts are vital to system operation; thus they are
all in series in a reliability sense. For such a model, the system failure rate is
the sum of the part failure rates, so programs of this type are essentially large
databases of part and component failure rates. The analyst starts with a parts
list, identifies each component, and enters the environmental parameters; the
program computes the failure rates based on the database and environmental
and other adjustment factors, or else the user inputs failure-rate parameters.
One of the most popular failure-rate databases was that contained in the mili-
tary handbook MIL-HDBK-217A, B, C, D, E, and F, published from 1962 to
1992. Thus many of the earlier part-count programs used these handbooks as
their databases and were sometimes called MIL-HDBK-217 programs. Newer
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programs frequently use data collected by the telecommunications industry
[Bellcore, 1997; Shooman, 1990, p. 643].

D2.2 Reliability Block Diagram Models

The part-count method assumes that all components are in series. This is often
not the case, however, and an improved model is needed for reliability estima-
tion. The simpler reliability block diagram (RBD) models consider elements
in various series and parallel combinations. The more general RBD programs
utilize cut-set or tie-set algorithms, such as those discussed in Section B2.7.
Sometimes, such models are combined with a failure-rate database; in other
cases, the analyst must input the set of required failure rates to the program.
The programs generally include a plotting option that graphs the system R ver-
sus t. Generally, the program allows one to deal with discrete probabilities at
some point in time (often called demand probabilities). If the system contains
repair and the system is decoupled, then discrete availabilities can be used in
the model to compute steady-state availability.

D2.3 Reliability Fault Tree Models

The fault tree (FT) method discussed in Section B2.5 and shown in Fig. B13
introduces an analysis technique that is a competitor to the RBD method. Sys-
tem analysts and designers who focus on system success paths often favor the
RBD method. Many feel that it is easier to list modes of failure and build a
system model from these modes; this results in an FT model. Also, those who
perform safety analysis often claim that the FT method is more intuitive. In
any event, however, the two methods are mathematically equivalent [Shooman,
1970]. One can describe the RBD method as a probability of success viewpoint
and the FT method as a probability of failure viewpoint. The classic FT mod-
eling method is described in McCormick [1981, Chapter 8]; the recent work
on FT modeling can be found in Dugan [1996]. The exact analytical solution
of the FT and the RBD methods can both be based on cut sets or tie sets,
and approximations are frequently incorporated. Cut sets are generally used
because they represent failure combinations that have small probability in reli-
able systems, and the omission of a cut set in error only has a small effect on
the computation of reliability or availability.

D2.4 Markov Models

If repair is involved in a system, the components are decoupled, and steady-
state availability solutions are satisfactory, the availability probabilities can
then be substituted into an RBD or an FT model. If the components are not
decoupled, discrete-state and continuous-time Markov models would be the
conventional approaches. Such Markov models result in a set of differential
equations. The following are five approaches to solving such models:
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1. Solve the differential equations and obtain a closed-form time function
that can be plotted.

2. Solve the differential equations and obtain a numerical solution that can
be plotted.

3. Use Laplace transforms to help solve the differential equations and obtain
a closed-form time function that can be plotted.

4. Use Laplace transforms to help solve the differential equations and obtain
a numerical solution that can be plotted.

5. Solve only for the steady-state values that reduce the differential equa-
tions to a set of algebraic equations that can be more easily solved for
an algebraic solution.

The analysis techniques discussed in Chapters 3 and 4 are based on a com-
bination of these five approaches. In many cases, the analytical approach is
all that is required. For large, complex problems, however, a computer pro-
gram may be required to check analytical approximations, to obtain a solution
in intractable complex cases, and to document the model solution. The vari-
ous Markov modeling programs allow one or more of these approaches, and
the simpler ones only use approach (5) for steady state. The more compre-
hensive programs include graphical input programs for constructing a Markov
state model to define the problem and provide facilities for printing a copy of
the Markov diagram to document the model. Sometimes the Markov model
is built around a simulation program that allows great flexibility in modeling
the repair process. A discussion of the use of one program to perform Markov
modeling is given in Section D5.

D2.5 Mathematical Software Systems: Mathcad, Mathematica, and
Maple

The vast power of the digital computer stimulated two areas in numerical com-
putation. The most obvious was the consolidation and improvement of the
many algorithms that were available for computing roots of polynomials, solv-
ing systems of algebraic equations and differential equations, and so on. In
addition, much research was done on the symbolic solution of expressions; for
example, integration, differentiation, the closed-form solution of differential
equations, and the factoring of polynomials. These developments culminated
in a wide variety of mathematical packages that are very helpful in many anal-
ysis and solution tasks. Some of the leading programs are Mathematica [1999],
Mathcad [1995], Matlab [1992], Macsyma [Ralston, 1976], and Maple [Ellis,
1992]. There is a great amount of overlap among these programs, for which
reason the initial comparison should be based on whether the program supports
symbolic manipulation. The choice of which program to use may be based on
specific features as well as availability and prior experience with a particular
program at work. However, if the program must be acquired, its flexibility and
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TABLE D1 Information on Mathematical Programs

Product Company Name Telephone
Name and Address Number Web Address

Mathematica Wolfram Research, (217) 398-0700 www.wolfram.com
Inc.
100 Trade Center
Drive
Champaign, IL
61820

Mathcad MathSoft, Inc. (617) 577-1017 www.mathsoft.com
101 Main Street
Cambridge, MA
02142

Matlab The MathWorks (508) 647-7000 www.mathworks.com
3 Apple Hill Drive
Natick, MA 01760

Macsyma Symbolics Technology, — www.symbolics.com
Inc.

Maple Waterloo Maple, Inc. (800) 267-6583 www.maplesoft.com

ease of use in addition to one’s confidence in its accuracy and validity should
all be the major deciding factors. The use of Maple to check analytical solutions
is discussed in Section D5. A good discussion of some of these programs and
their origins appears in Ralston [1976, pp. 35–46].

At this point, a table comparing the features and prices of such programs as
well as the availability of test copies is in order. However, because the factors
change rapidly and all of this information is available on the Web, readers are
urged to contact the manufacturers to make their own comparison. To facilitate
such a search, contact information for the programs is provided in Table D1.

D2.6 Fault-Tolerant Computing Programs

In the mid-1970s, researchers in the fault-tolerant computer field began to
develop specialized reliability and availability programs. These programs
incorporated a general reliability computation program and added some fea-
tures of special interest to the fault-tolerant field, such as coverage and
transient faults. Some of the first such programs were developed by Profes-
sor Algirdas Avizienis and his students at UCLA (ARIES ’76 and ARIES
’82) [Markam, 1982]. Several other programs (ASSIST, CARE, HARP, and
SHURE) were developed soon after ARIES by various researchers at NASA’s
Langley Research Center. (For a description of HARP and CARE, see Bavuso
[1988]; for ASSIST and SHURE, see Johnson [1988].) Some of the more
recent fault-tolerant programs (e.g., SHARPE) were developed by Professor
Kishor Trivedi and his students at Duke University [Sahner, 1987, 1995].
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D2.7 Risk Analysis Programs

Risk analysis programs represent another class of large, comprehensive reli-
ability and availability analysis programs. The term risk analysis generally
implies that the analysis includes the consequences of failure [Shooman, 1990,
Appendix J]. The impetus of such programs was the first probabilistic risk
analysis for a nuclear power reactor performed for the U.S. Nuclear Regula-
tory Commission (NRC) by a team of experts lead by Professor Neils Ras-
mussen of MIT [McCormick, 1981, p. 240; NRC, 1975]. Risk analysis gen-
erally includes a final stage that predicts the probability of various classes of
failures (accidents, calamities) and the result of such accidents (property loss,
injuries, deaths). In addition, the team that conducted the NRC study (known
in familiar terms as Wash 1400) found that it was difficult to include all the
possible effects with such a large, complex system as a nuclear power reac-
tor by using reliability block diagrams and fault trees. New techniques called
event trees and event sequence diagrams were developed to help in the analy-
sis, along with fault tree methods [McCormick, 1981, p. 193]. Such programs
have been developed for analysis of nuclear reactors and other similar risk
situations [McCormick, Chapter 10].

Several risk analysis programs have been evolved over the past few
decades, namely: SAPHIRE [Long, 1999]; RISKMAN [Wakefield]; NUPRA,
REBECCA, and CAFTA/ ETA [Smith]. Presently, NASA Headquarters is
developing a comprehensive risk analysis program called QRAS for its space
projects [Safie, 1998; Shooman, 2000]. The analyst must judge whether one
of these risk programs is suitable for fault-tolerant studies.

D2.8 Software Reliability Programs

Software reliability models and the supporting programs differ from those of
hardware reliability. Many programs have been developed by researchers and
companies; however, three multimodel programs exist: SMERFS, CASRE, and
SoRel. The best description and comparison of software reliability modeling
programs is in Appendix A of the Handbook of Software Reliability Engineer-
ing [Stark, 1996]. The SMERFS program was developed in 1983 by the U.S.
Naval Surface Warfare Center in Dahlgren, Virginia. In 1991, the LAAS Labo-
ratory at the National Center for Scientific Research in Toulouse, France devel-
oped SoRel. The Jet Propulsion Laboratory developed CASRE in 1993. For
further details, see Stark [1996].

D3 TESTING PROGRAMS

The development of large, comprehensive reliability and availability programs
requires the technical skills of reliability analysts who know probability and
reliability methods and those of skilled programmers who can translate the
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a’ e’b’ f ’

a’ c’ d’

System
Failure

Figure D1 Fault tree for testing reliability programs.

algorithms into code. Seldom do these skills reside in the same people; gener-
ally, the reliability analysts explain the algorithms and the programmers code
the program. There is often insufficient coordination and review between the
two groups, resulting in user-unfriendly interfaces or errors in the algorithms.
The user should not expect a polished program such as a commercial word
processor or a spreadsheet program, where the millions of users eventually
report all the major bugs that are fixed in later releases.

The user should test any new program by comparing the solutions with those
obtained with prior programs. The author has found that some of these pro-
grams do not make an exact computation when elementary events are repeated
in a fault tree. Instead, they use an approximation that is generally (but not
always) valid. One should test any program to see if it properly computes the
fault tree given in Fig. D1.

The example given in Fig. D1 fails if a and b fail, if a and c and d fail, or if
e and f fail; thus the cut sets for the example are a′b′, a′c′d′, e′f ′. The correct
reliability expression for the probability of failure is given by Eq. (D1a).

Pf � P(a′b′ + a′c′d′ + e′f ′) � P(a′b′) + P(a′c′d′) + P(e′f ′)

− P(a′b′a′c′d′) − P(a′b′e′f ′) − P(a′c′d′e′f ′)

+ P(a′b′a′c′d′e′f ′) (D1a)
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The intersection of two like elements obeys the following logic law: x . x = x.
Thus Eq. (D1a) becomes

Pf � P(a′b′ + a′c′d′ + e′f ′) � P(a′b′) + P(a′c′d′) + P(e′f ′)

− P(a′b′c′d′) − P(a′b′e′f ′) − P(a′c′d′e′f ′)

+ P(a′b′c′d′e′f ′) (D1b)

If all the elements are independent and have a probability of failure of q, that
is, P(a′) =P(b′) =P(c′) =P(d′) =P(e′) =P( f ′) =q, the probability of failure
becomes

Pf � 2q2 + q3
− 2q4

− q5 + q6 (D1c)

Many programs do not perform the step given in Eq. (D1b); rather, they expand
Eq. (D1a) as

Pf � 2q2 + q3
− q4

− 2q5 + q7 (D1d)

Equations (D1c) and (D1d) have the same first two terms, but the following
three terms differ. If q is small, the higher-order powers of q are negligible,
and the two expressions give approximately the same numerical result. If q is
not small, however, the two expressions differ. If q = 0.2, Eq. (D1c) gives Pf

=0.084544, and Eq. (D1d) yields 0.0857728. Larger values of q result in even
a larger difference—thus caveat emptor! (“let the buyer beware”).

D4 PARTIAL LIST OF RELIABILITY AND AVAILABILITY
PROGRAMS

Many reliability and availability programs exist, all varying greatly in their
ease of use, facilities provided, and cost. The purchaser should be wary of the
basic validity of some of these programs, as was discussed in the preceding
section. The contact information provided in Table D2 should allow users to
conduct their own search and comparison via the Web.

Additional reliability and availability software advertisements can be found
in the end pages of the Proceedings Annual Reliability and Maintainability
Symposium. Sometimes, specialized reliability programs appear in the litera-
ture, such as the NAVY TIGER program [Luetjen, 1982], which was designed
to analyze reliability and availability of naval ships and incorporates certain
preventive maintenance programs used by the U.S. Navy.
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D5 AN EXAMPLE OF COMPUTER ANALYSIS

As part of a consulting assignment, the author was asked to derive a closed-
form analytical solution for a spacecraft system with one on-line element and
two different standby elements with dormancy failure rates. By dormancy fail-
ure rates, one means that the two standby elements have small but nonzero
failure rates while on standby. A full Markov model for the three elements
would require eight states, resulting in eight differential equations. Normally,
one would use a numerical solution; however, the company staff for whom the
author was consulting wished to include the solution in a proposal and felt that
a closed-form solution would be more impressive and that it had to be checked
for validity. (Errors had been found in previous company derivations). Assum-
ing that the two standby elements had identical on-line and standby failure
rates allowed a reduction to a six-state model. Formulation of the six equa-
tions, computing the Laplace transforms, and checking the resulting pencil-
and-paper equations and solutions took the author a day while he worked with
one of the company’s engineers.

To check the results, the six basic differential equations were submitted in
algebraic form to the Maple symbolic equation program, and an algebraic solu-
tion was requested. The first four of the state probabilities were easily checked,
but the fifth equation took about half a page in printed form and was difficult
to check. The Maple program provided a factoring function; when it was asked
to factor the equation, another form was printed. Careful checking showed that
the second form and the pencil-and-paper solution were both identical. The last
(sixth) equation was the most complex, for which the Maple solution produced
an algebraic form with many terms that covered more than a page. Even after
using the Maple factoring function, it was not possible to show that the two
equations were identical. As an alternative, the numerical values of the failure
rates were substituted into the pencil-and-paper solution and numerical values
were obtained. Failure rates were substituted into the Maple equations, and
the program was asked for numerical solutions of the differential equations.
These numerical solutions were identical (within round-off error to many dec-
imal places) and easily checked.

There are several lessons to be learned from this discussion. The Maple
symbolic equation program is very useful in checking solutions. However, as
problems become larger, numerical solutions may be required, though it is pos-
sible that newer versions of Maple or some of the other symbolic programs
may be easier to use with large problems. Checking an analytical solution is a
good way of ensuring the accuracy of your results. Even in a very large prob-
lem, it is common to make a simplified model that could be checked in this
way. Because of potential errors in modeling or in computational programs, it
is wise to check all results in two ways: (a) by using two different modeling
programs, or (b) by using an analytical solution (sometimes an approximate
solution) as well as a modeling program.
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PROBLEMS

D1. Search the Web for reliability and availability analysis programs. Make
a table comparing the type of program, the platforms supported, and the
cost.
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D2. Use a reliability analysis program to compute the reliability for the first
three systems in Table 7.8 and check the reliability.

D3. Use a symbolic modeling program to check Eq. (3.56).

D4. Use a Markov modeling program to check the results given in Eq. (3.58).

D5. Use a fault tree program to solve the model of Fig. D1 to see if the results
agree with Eqs. (D1c) or (d).
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cut-set methods, 292–294, 419, 420
density function, 218–221
distribution function, 218–221
event-space, 288–292
failure rate, 222–224 (see also Hazard)
graph (see block diagram)
probability of success, 219–221
reliability function, 218–221
system, example, auto-brake system,

442–446
parallel, 440, 441
r-out-of-n structure, 441, 442
series 438–440

theory, 218–221

tie-set methods, 292–294, 419, 420
Reliability optimization, algorithms, 359–365

apportionment 85, 86, 342–349, 366, 367
Albert’s method, 345–349
availability, 349–351
equal weighting, 343
relative difficulty, 344, 345
relative failure rates, 345

communication system, 383 (7.31)
concepts, 11, 12, 85, 86, 332–334
decomposition, 337–340 (see also Software

development, graph model)
definition, 2, 4, 334–336
dynamic programming, 371–379
greedy algorithm, 369–371
interfaces, 340
minimum bounds, 341, 342
multiple constraints, 365, 366
parallel redundancy, 336
redundant components, 336
subsystem, 340–342

bounded enumeration, 353–359
lower bounds (minimum system

design), 354–357
upper bounds (augmentation policy),

358, 359
exhaustive enumeration, 351–353
series system, 335
standby redundancy, 336, 337
standby system, 367–369

Reliability theory (see also Reliability
modeling)

combinatorial reliability, 412, 413
exponential expansions, 92–94
parallel configuration, 415, 416
r-out-of-n configuration, 416, 417
series configuration, 413–415

common mode effects, 99–101
cut-set and tie-set methods, 419, 420
failure mode and effect analysis (FMEA),

418, 419, 443
failure-rate models, 421–429

density function, 422–425, 429–431
distribution function, 423–425
failure data, 421–425

bathtub curve, 425, 426
handbook, 425–427
integrated circuits, 427–429

hazard function, 422–424, 432–438
reliability function, 423–425

fault-tree analysis (FTA), 418, 445
history, 411, 412
reliability block diagram (RBD), 413
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reliability graph, 413
Repairable systems, 111–117

availability function, 111, 117–119
reliability function, 111
single-element Markov models, 115
two-element Markov models, 112, 115, 116

Redundancy (see parallel systems)
couplers, 91, 92
microcode-level, 186

Rollback and recovery (recovery block), 191,
203, 268–275

checkpointing, 274, 275
distributed storage, 275
journaling, 272, 273
rebooting, 270, 271
recovery, 271, 272
retry, 273, 274

r-out-of-n system, 101–104

SABRE, 135
SECDED (see Coding methods)
Software development, 203, 205

build, 218, 221
coding, 208, 214, 215
error, 225–227 (see also Software

Reliability, error models)
fault, 225, 226
graph model, 211–214
hierarchy diagram (H-diagram), 211–214
life cycle, 207–218

deployment, 208
design, 208, 211–214
incremental model, 221
maintenance, 208
needs document, 207, 208
object-oriented programming (OOP), 207
phases, 208
pseudocode, 226
rapid prototype model, 208, 210, 220
redesign, 208, 218
requirements document, 208, 209
specifications document, 208–210
structured procedural programming

(SPP), 207, 215
warranty, 218
waterfall model, 219

process diagrams, 218–221
reused code (legacy code), 210
source lines of code (SLOC), 210, 211, 214
testing, 208, 215–218

Software engineering (see Software
development)

Software Engineering Institute, 268

Software fail-safe, 203
Software redundancy, 262
Software reliability, 203, 204

data, error, 203, 225–227
generation, 227–229
models, 225–236
removal, 227–229

constant-rate, 230–232
exponentially decreasing rate, 234–236
linearly decreasing rate, 232–234
S-shaped, 235, 236

hardware, operator, software, 202
independence, 202

macro models, 262
mean time to failure (MTTF), 238–241,

245–246,
models, 237–250

Bayesian, 261
comparison, 249–250
constant error-removal-rate, 238–242
exponentially decreasing error-removal

rate, 246–248
linearly decreasing error-removal rate,

242–246
model-constant estimation, 250–258

from development test data, 260
handbook estimation, 250–252
least-squares estimation, 256, 257
maximum-likelihood estimation,

257–258
moment estimation, 252–256

other models, 258–262
N-version programming, 263–268
programs, CASRE, 258

Markov models, 507, 508
reliability block diagram, 507
reliability fault tree models, 507
reliable software, 203
SMERFS, 258
software development, 205
SoRel, 258

Space Shuttle (see NASA)
Standby systems, 83, 104

comparison with parallel, 108–111, 178,
179

redundancy, 2
Storage errors, CD, 62

CD-ROM, 62
STRATUS, 122, 131–135

availability, 134, 135
Continuum, 134

Stuck-at-one, 147
Stuck-at-zero, 147
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Sun, 136, 137
Syndrome, 51–56, 66

Tandem, 122, 126–131, 136
Guardian, 127
Himalaya, 126, 129

Technology timeline, 4
Telephone switching systems, 15, 16
Three-state elements, 92
Tie-set methods (see Reliability modeling;

Network reliability, definition)

Triple modular redundancy (TMR) (see
N-modular redundancy)

Undetected errors, 32
Uptime, 14, 134 (see also Availability)

VAX, 136
Voting (see N-modular redundancy)

Year 2000 Problem (Y2K), 205–208
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