МННИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РФ ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

Б.С. ГАСПЕР, И.Н.ЛИПАТОВ

РЕШЕНИЕ ЗАДАЧ ПО КУРСУ "ПРИКЛАДНАЯ ТЕОРИЯ НАДЕЖНОСТИ"

Учебное пособие

УДК 621.3.019.076 Г22

Решение задач по курсу «Прикладная теория надежности»: Учебное пособие / Б.С. Гаспер, И.Н. Липатов; Пермский государственный технический университет. Пермь, 1998, 87 с.

Изложены вопросы практического применения теории надежности. Приводятся теоретические сведения, решения типовых задач и задачи для самостоятельного решения по основным разделам теории надежности.

Указания предназначены для студентов специальности «Автоматизированные системы управления» вечерне-заочного и дневного обучения.

Печатается по решению редакционно-издательского совета Пермского государственного технического университета.

Табл. 3. Ил. 47. Библиогр.: 1 назв.

Рецензенты: д.т.н., профессор, зав. каф. АСУ О.Б. Низамутдинов, д.т.н., профессор, директор ГосНИИУМС Н.И. Артемов.

<u>ОГЛАВЛЕНИЕ</u>

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1. Определение количественных характеристик на

дежно сти по статистическим данным об отказах изделия.	4
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2. Аналитическое определение количественных характеристик надежности изделия.	9
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3. Последовательное соединение элементов в систему.	15
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4. Расчет надежности системы с постоянным резервированием.	19
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5. Резервирование замещением в режиме облегченного (теплого) резерва и в режиме ненагруженного (холодного) резерва	27
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 6. Расчет надежности системы с поэлементным резервированием.	33
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7. Резервирование с дробной кратностью и постоянно включенным резервом.	41
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 8. Скользящее резервирование при экспоненциальном законе надежности.	45
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 9. Расчет показателей надежности резервированных устройств с учетом восстайовления.	49
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 10. Расчет надежности резервированных восста-	

навливаемых устройств по графу состояний

ПРАКТИЧЕСКОЕ ЗАПЯТИЕ № 1

<u>Определение количественных характеристик надежности</u> по статистическим данным об отказах изделия

Теоретические сведения

Вероятность безотказной работы по статистическим данным об отказах

$$P^*(t) = \frac{n(t)}{N}$$
, (1.1)

где n(t) - число изделий, не отказавших к моменту времени t; N - число изделий, поставленных на испытания; $P^*(t)$ - статистическая оценка вероятности безотказной работы изделия.

Вероятность отказа по статистическим данным

$$q^{*}(t) = \frac{N - n(t)}{N} , \qquad (1.2)$$

где N - n(t) - число изделий, отказавших к моменту времени t;

Частота отказов по статистическим данным об отказах

$$f^{*}(t) = \frac{\Delta n(t)}{N \cdot \Delta t} , \qquad (1.3)$$

где $\Delta n(t)$ - число отказавших изделий на участке времени (t, t+ Δt); Δt - интервал времени.

Интенсивность отказов по статистическим данным об отказах

$$\lambda * (t) = \frac{\Delta n(t)}{\Delta t \cdot n(t)} , \qquad (1.4)$$

Среднее время безотказной работы изделия по статистическим данным

$$m_t^* = \frac{1}{N} \sum_{i=1}^{N} t_i , \qquad (1.5)$$

где t_i - время безотказной работы і-го изделия.

Для определения m_i^* по формуле (1.5) необходимо знать моменты выхода из строя всех N изделий. Можно определять m_i^* из уравнения

$$m_i^* \approx \sum_{i=1}^m n_i t_{\varphi,i} , \qquad (1.6)$$

где n_i - количество вышедших из строя изделий в i-м интервале времени $t_{cp,i}=(t_{i-1}+t_i)/2$; $m=t_k/\Delta t$; $\Delta t=t_{i+1}-t_i$; t_{i-1} - время начала i-го интервала; t_i - время конца i-го интервала; t_k - время, в течение которого вышли из строя все изделия.

Дисперсия времени безотказной работы изделия по статистическим дайным

$$D_{t}^{\bullet} = \frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - m_{t}^{\bullet})^{2}$$
(1.7)

где D_t^{\bullet} - статистическая оценка дисперсии времени безотказной работы изделия.

Решение типовых задач

Задача 1.1. На испытание поставлено 1000 однотипных электронных ламп, за 3000 ч отказало 80 ламп. Требуется определить $P^*(t)$, $q^*(t)$ при t = 3000 ч.

<u>Решение.</u> В данном случае N=1000; n(t)=1000-80=920; N-n(t)=1000-920=80.

По формулам (1.1) и (1.2) определяем

$$P*(3000) = \frac{n(t)}{N} = \frac{920}{1000} = 0.92,$$

$$q*(3000) = \frac{N - n(t)}{N} = \frac{80}{1000} = 0.08,$$

или

$$q*(3000) = 1 - P*(3000) = 1 - 0.92 = 0.08.$$

Задача 1.2. На испытание было поставлено 1000 однотипных ламп. За первые 3000 ч отказало 80 ламп, а за интервал времени 3000 - 4000 ч отказало еще 50 ламп. Требуется определить статистическую оценку частоты и интенсивности отказов электронных ламп в промежутке времени 3000 - 4000 ч.

<u>Решение.</u> В данном случае N=1000; t=3000 ч; $\Delta t =1000$ ч; $\Delta n(t)=50$; n(t)=920.

По формулам (1.3) и (1.4) находим

$$f^{*}(t) = f^{*}(3000) = \frac{\Delta n(t)}{N \cdot \Delta t} = \frac{50}{1000 \cdot 1000} = 5 \cdot 10^{-5} \text{ l/q},$$

$$\lambda^{*}(t) = \lambda^{*}(3000) = \frac{\Delta n(t)}{\Delta t \cdot n(t)} = \frac{100}{100 \cdot 200} = 5 \cdot 10^{-3} \text{ l/q}.$$

Задача 1.3. На испытание поставлено N=400 изделий. За время t=3000 ч отказало 200 изделий, т.е. n(t)=400-200=200. За интервал времени $(t.t+\Delta t)$ где $\Delta t=100$ ч, отказало 100 изделий, т.е. $\Delta n(t)=100$. Требуется определить $P^*(3000)$, $P^*(3100)$, $f^*(3000)$, $\lambda^*(3000)$.

Решение. По формуле (1.1) вычисляем

$$P^{*}(3000) = \frac{n(t)}{N} = \frac{200}{400} = 0.5.$$

$$P*(3100) = \frac{n(t)}{N} = \frac{100}{400} = 0.25.$$

Используя формулы (1.3) и (1.4), получаем

$$f^*(t) = f^*(3000) = \frac{\Delta n(t)}{N \cdot \Delta t} = \frac{100}{400 \cdot 100} = 2.5 \cdot 10^{-3} (1/4),$$

$$\lambda^*(t) = \lambda^*(3000) = \frac{\Delta n(t)}{\Delta t \cdot n(t)} = \frac{100}{100 \cdot 200} = 5 \cdot 10^{-3} (1/4).$$

Задача 1.4. На испытание поставлено 6 однотипных изделий. Получены следующие значения t_i (t_i - время безотказной работы i-го изделия): t_1 =280 ч; t_2 =350 ч; t_3 =400 ч; t_4 =320 ч; t_5 =380 ч; t_6 =330 ч.

Требуется определить статистическую оценку среднего времени безотказной работы изделия.

Решение. По формуле (1.5) имеем

$$m_t^* = \frac{1}{N} \sum_{i=1}^{N} t_i = \frac{280 + 350 + 400 + 320 + 380 + 330}{6} = \frac{2060}{6} = 343,3$$
 4.

Задача 1.5. За наблюдаемый период эксплуатации в аппаратуре было зафиксировано 7 отказов. Время восстановления составило: t_1 =12 мин; t_2 =23 мин; t_3 =15 мин; t_4 =9 мин; t_5 =17 мин; t_6 =28 мин; t_7 =25 мин; t_8 =31 мин. Требуется определить среднее время восстановления аппаратуры m_{tB} *.

Решение.

$$m_{tB}^* = \frac{1}{n} \sum_{i=1}^{n} t_i = \frac{12 + 23 + 15 + 9 + 17 + 28 + 25 + 31}{8} = \frac{160}{8} = 20$$
 мин.

Задача 1.6. В результате наблюдения за 45 образцами радиоэлектронного оборудования получены данные до первого отказа всех 45 образцов (табл.1.1). Требуется определить m_t^*

Таблица 1.1

∆t _i , ч	n _i	∆t _i , ч	$\mathbf{n_i}$	Δt _i , ч	n _i
0-5	1	30-35	4	60-65	3
5-10	5	35-40	3	65-70	3
10-15	8	40-45	0	70-75	3
15-20	2	45-50	1	75-80	1
20-25	5	50-55	0	_	_
25-30	6	55-60	0	_	_

Решение. В данном случае

$$\begin{aligned} &t_{\text{cpl}} = 2.5; t_{\text{cp2}} = 7.5; t_{\text{cp3}} = 12.5; t_{\text{cp4}} = 17.5; t_{\text{cp5}} = 22.5; t_{\text{cp6}} = 27.5; t_{\text{cp7}} = 32.5; t_{\text{cp8}} = 37.5; t_{\text{cp1}} = 42.5; \\ &t_{\text{cp10}} = 47.5; t_{\text{cp11}} = 52.5; t_{\text{cp12}} = 57.5; t_{\text{cp13}} = 62.5; t_{\text{cp14}} = 67.5; t_{\text{cp15}} = 72.5; t_{\text{cp15}} = 77.5; N = 45; m = 16. \end{aligned}$$

Используя формулу (1.6), получаем

$$m_t^* \approx \frac{1}{N} \sum_{i=1}^m n_i \cdot t_{cp,i} = \frac{1 \cdot 2,5 + 5 \cdot 7,5 + 8 \cdot 12,5 + 2 \cdot 17,5 + 5 \cdot 22,5 + 6 \cdot 27,5 + 4 \cdot 32,5 + 3 \cdot 37,5 +$$

$$\frac{+0\cdot 42,5+1\cdot 47,5+0\cdot 52,5+0\cdot 57,5+3\cdot 62,5+3\cdot 67,5+3\cdot 72,5+1\cdot 77,5}{45}=\frac{1427,5}{45}=31.7 \text{ y}.$$

Задачи для самостоятельного решения

- Задача 1.7. На испытание поставлено 100 однотипных изделий. За 4000 ч отказало 50 изделий. За интервал времени 4000 4100 ч отказало ещё 20 изделий. Требуется определить $f^*(t)$, $\lambda^*(t)$ при t=4000 ч.
- Задача 1.8. На испытание поставлено 100 однотипных изделий. За 4000 ч отказало 50 изделий. Требуется определить $p^*(t)$ и $q^*(t)$ при t=4000 ч.
- Задача 1.9. В течение 1000 ч из 10 гироскопов отказало 2. За интервал времени 1000 1100 ч отказал еще один гироскоп. Требуется определить $f^*(t)$, $\lambda^*(t)$ при t =1000 ч.
- Задача 1.10. На испытание поставлено 1000 однотипных электронных ламп. За первые 3000 ч отказало 80 ламп. За интервал времени 3000 4000 ч отказало еще 50 ламп. Требуется определить р*(t) и q*(t) при t=4000 ч.
- Задача 1.11. На испытание поставлено 1000 изделий. За время t=1300 ч вышло из строя 288 штук изделий. За последующий интервал времени 1300 1400 ч вышло из строя еще 13 изделий. Необходимо вычислить $p^*(t)$ при t=1300 ч и t=1400 ч; $f^*(t)$, $\lambda^*(t)$ при t=1300 ч.
- Задача 1.12. На испытание поставлено 45 изделий. За время t=60 ч вышло из строя 35 штук изделий. За последующий интервал времени 60-65 ч вышло из строя еще 3 изделия. Необходимо вычислить p*(t) при t=60 ч и t=65 ч; f*(t), $\lambda*(t)$ при t=60 ч.

Залача 1.13. В результате наблюдения за 45 образцами радиоэлектронного оборудования, которые прошли предварительную 80-часовую приработку, получены данные до первого отказа всех 45 образцов (табл.1.2). Необходимо определить m_t^*

Таблица 1.2.

∆t _i , ч	ni	∆t _i , ч	n _i	∆t _i , ч	n _i
0-10	19	30-40	3	60-70	1
10-20	13	40-50	0	_	_
20-30	8	50-60	1	_	_

Задача 1.14. На испытание поставлено 8 однотипных изделий. Получены следующие значения t_i (t_i - время безотказной работы i-го изделия): t_1 =560 ч; t_2 =700 ч; t_3 =800 ч; t_4 =650 ч; t_5 =580 ч; t_6 =760 ч; t_7 =920 ч; t_8 =850 ч. Следует определить статистическую оценку среднего времени безотказной работы изделия.

Задача 1.15. За наблюдаемый период эксплуатации в аппаратуре было зарегистрировано 6 отказов. Время восстановления составило: t_1 =15 мин; t_2 =20 мин; t_3 =10 мин; t_4 =28 мин; t_5 =22 мин; t_6 =30 мин. Требуется определить среднее время восстановления аппаратуры m_{ts} *.

Задача 1.16. На испытание поставлено 1000 изделий. За время t=11000 ч вышло из строя 410 изделий. За последующий интервал времени 11000-12000 ч вышло из строя еще 40 изделий. Необходимо вычислить $P^*(t)$ при t=11000 ч и t=12000 ч, а также $f^*(t)$, $\lambda^*(t)$ при t=11000 ч.

ПРАКТИЧЕСКОЕ ЗАПЯТИЕ № 2

<u>Аналитическое определение количественных характеристик надёжности</u> изделия

Теоретические сведения

Количественные характеристики надежности изделия

$$P(t) = \exp(-\int_{0}^{t} \lambda(t)dt) = 1 - \int_{0}^{t} f(t)dt; \qquad (2.1)$$

$$q(t) = 1 - P(t);$$
 (2.2)

$$f(t) = \frac{dq(t)}{dt} = -\frac{dP(t)}{dt};$$
(2.3)

$$\lambda(t) = \frac{f(t)}{P(t)},\tag{2.4}$$

$$m_t = \int_0^\infty P(t)dt, \tag{2.5}$$

где P(t) - вероятность безотказной работы изделия на интервале времени от 0 до t; q(t) - вероятность отказа изделия на интервале времени от 0 до t; f(t) - частота отказов изделия или плотность вероятности времени безотказной работы изделия T; $\lambda(t)$ - интенсивность отказов изделия; m_t - среднее время безотказной работы изделия.

Формулы (2.1) - (2.5) для экспоненциального закона распределения времени безотказной работы изделия примут вид

$$P(t) = e^{-\lambda t}; (2.6)$$

$$q(t) = 1 - e^{-\lambda t};$$
 (2.7)

$$f(t) = \lambda \cdot e^{-\lambda t}; \qquad (2.8)$$

$$\lambda(t) = \frac{\lambda \cdot e^{-\lambda t}}{-\lambda t} = \lambda, \tag{2.9}$$

$$\mathbf{m}_{t} = \frac{1}{\lambda}.\tag{2.10}$$

Формулы (2.1) - (2.5) для нормального закона распределения времени безотказной работы изделия запишутся как

$$P(t) = 0.5 - \Phi(U);$$
 $U = \frac{t - m_1}{\sigma_1};$ (2.11)

$$q(t) = 0.5 + \Phi(U); \qquad \qquad \Phi(U) = \frac{1}{\sqrt{2\pi}} \int_{0}^{U} e^{-\frac{U^{2}}{2}} dU; \qquad (2.12)$$

$$f(t) = \frac{\varphi(U)}{\sigma_1}; \qquad \qquad \varphi(U) = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{U^2}{2}}; \qquad (2.13)$$

$$\lambda(t) = \frac{\varphi(U)}{\sigma_1} \cdot \frac{1}{0, 5 - \Phi(U)},\tag{2.14}$$

где Ф(U) - функция Лапласа, обладающая свойствами

$$\Phi(0) = 0; \tag{2.15}$$

$$\Phi(-U) = -\Phi(U); \tag{2.16}$$

$$\Phi(\infty) = 0.5; \tag{2.17}$$

здесь m_t - среднее значение случайной величины $T; \ \sigma_t^2$ - дисперсия случайной величины $T; \ T$ - время безотказной работы изделия.

Значения функции Лапласа приведены в приложении $\Pi.7.13^*$ Значения функции $\phi(U)$ приведены в приложении $\Pi.7.17^*$

Формулы (2.1) - (2.5) для закона распределения Вейбулла времени безот-казной работы изделия следующие:

$$P(t) = e^{-at^k}$$
 (2.18)

$$q(t) = 1 - e^{-at^k} (2.19)$$

$$f(t) = akt^{k-1} \cdot P(t); \qquad (2.20)$$

$$\lambda(t) = akt^{k-1}, \tag{2.21}$$

$$m(t) = \frac{\frac{1}{k} \Gamma\left(\frac{1}{k}\right)}{a^{\frac{1}{k}}},$$
 (2.22)

где a, k - параметры закона распределения Вейбулла; $\Gamma(x)$ - гамма-функция, значения которой приведены в приложении $\Pi.7.18$ *

Формулы (2.1) - (2.5) для закона распределения Релея времени безотказной работы изделия имеют вид

$$P(t) = \exp\left(-\frac{t^2}{2\sigma_1^2}\right),\tag{2.23}$$

$$q(t) = 1 - \exp\left(-\frac{t^2}{2\sigma_1^2}\right); \tag{2.24}$$

$$f(t) = \frac{t}{\sigma_1^2} \cdot \exp\left(-\frac{t^2}{2\sigma_1^2}\right); \tag{2.25}$$

$$\lambda(t) = \frac{t}{\sigma_1^2}; \tag{2.26}$$

$$m(t) = \sigma_t \sqrt{\frac{\pi}{2}}, \tag{2.27}$$

где σ_t - мода распределения случайной величины $T;\ T$ - время безотказной работы изделия.

^{*}Сборник задач по теории надежности / Под редакцией А.М.Половко и И.М.Маликова. М.: Советское радво. 1972.

Решение типовых залач

Задача 2.1. Время работы элемента до отказа подчинено экспоненциальному закону распределения с параметром λ =2,5·10⁻⁵ 1/ч. Требуется вычислить количественные характеристики надежности элемента P(t), q(t), f(t), m_t для t=1000 ч.

Решение. Используем формулы (2.6), (2.7), (2.8), (2.10) для P(t), q(t), f(t), m_t .

1. Вычислим вероятность безотказной работы:

$$P(t) = e^{-\lambda t} = e^{-2.540^{-5}t}$$

Используя данные таблицы П.7.14 (сборник задач), получим

$$P(1000) = e^{-2.5 \cdot 10^{-5} \cdot 1000} = e^{-0.025} = 0.9753$$

- 2. Определим вероятность отказа q(1000) = 1 P(1000) = 0,0247.
- 3. Найдем частоту отказов

$$f(t) = \lambda(t)P(t) = 2.5 \cdot 10^{-5} \cdot e^{-2.5 \cdot 10^{-5} \cdot t}$$
;

$$f(1000) = 2.5 \cdot 10^{-5} \cdot e^{-2.5 \cdot 10^{-5} \cdot 1000} = 2.5 \cdot 10^{-5} \cdot 0.9753 = 2.439 \cdot 10^{-5} 1/4$$

4. Вычислим среднее время безотказной работы

$$m_t = \frac{1}{\lambda} = \frac{1}{2.5 \cdot 10^{-5}} = 40000 \text{ y.}$$

Задача 2. 2. Время работы элемента до отказа подчинено нормальному закону с параметрами m_t =8000 ч, σ_t =2000 ч. Требуется вычислить количественные характеристики надежности P(t), f(t), $\lambda(t)$, m_t для t=10000 ч.

Решение. Воспользуемся формулами (2.11), (2.12), (2.13),(2.14) для P(t), f(t), $\lambda(t)$, m_t .

1. Вычислим вероятность безотказной работы

$$P(t)=0,5-\Phi(U); U=(t-m_t)/\sigma_t;$$

$$U=(10000-8000)/2000=1;$$
 $\Phi(1)=0.3413;$

P(10000)=0,5-0,3413=0,1587.

2. Определим частоту отказа

$$f(t) = \frac{1}{\sqrt{2\pi} \cdot \sigma_t} \cdot \exp\left[-\frac{(t - m_t)^2}{2\sigma_t^2}\right]$$

Введем обозначение

$$\varphi(U) = \frac{1}{\sqrt{2\pi}} e^{-\frac{U^2}{2}}; \varphi(-U) = \varphi(U).$$

Тогда

f(t)=
$$\phi(U)/\sigma_i$$
; U=(t-m_i)/ σ_i ;
f(1000)= $\phi(1)/2000$ =0,242/2000=12,1-10⁻⁵ 1/4.

3. Рассчитаем интенсивность отказов

 $\lambda(t)=f(t)/P(t)$;

 $\lambda(10000)=f(10000)/P(10000)=12.1\cdot10^{-5}/0.1587=76.4\cdot10^{-5}1/4.$

4. Среднее время безотказной работы элемента $m_i = 8000$ ч.

Задача 2.3. Время работы изделия до отказа подчиняется закону распределения Релея. Требуется вычислить количествённые характеристики надежности изделия P(t), f(t), $\lambda(t)$, m_t для t=1000 ч, если параметр распределения $\sigma_t=1000$ ч.

Решение. Воспользуемся формулами (2.23), (2.25), (2.27), (2.26) для P(t). f(t), m_t , $\lambda(t)$.

1. Вычислим вероятность безотказной работы P(t)

$$P(t) = \exp\left(-\frac{t^2}{2\sigma_1^2}\right);$$

$$P(1000) = \exp\left(-\frac{1000^2}{2 \cdot 1000^2}\right) = e^{-0.5} = 0.606.$$

2. Определим частоту отказа

 $f(t)=t \cdot P(t)/\sigma_1^2$

 $f(1000)=1000 \cdot 0.606/1000^2=0.606 \cdot 10^{-3} 1/4$

3. Рассчитаем интенсивность отказов

 $\lambda(t)=t/\sigma_1^2$;

 $\lambda(1000)=1000/1000^2=10^{-3}1/4$

4. Определим среднее время безотказной работы изделия

$$m_{\tau} = \sigma_{\tau} \sqrt{\frac{\pi}{2}} = 1000 \cdot 1,253 = 1253 \text{ ч.}$$

Задача 2.4. Время безотказной работы изделия подчиняется закону Вейбулла с параметрами k=1,5; $a=10^{-4}$ 1/4, а время работы изделия t=100 ч. Требуется вычислить количественные характеристики надежности изделия P(t), f(t), $\lambda(t)$. m_t .

Решение.

1. Определим вероятность безотказной работы P(t) по формуле (2.18):

 $P(t)=\exp(-at^{k})$; $P(100)=\exp(-10^{-4}\cdot 100^{1.5})$; $x=100^{1.5}$;

 $\lg x=1,5 \cdot \lg 100=3$; x=1000; $P(100)=e^{-0.1}=0.9048$.

2. Найдем частоту отказов

 $f(t)=akt^{k-1}P(t)$;

 $f(100)=10^{-4}\cdot 1.5\cdot 100^{0.5}\cdot 0.9048\approx 1.35\cdot 10^{-3}$ 1/4.

3. Вычислим интенсивность отказов

 $\lambda(t)=f(t)/P(t)$;

 $\lambda(100)=f(100)/P(100)=1,35\cdot10^{-3}/0.9048\approx1,5\cdot10^{-3}1/4$

4. Определим среднее время безотказной работы изделия

$$m_{_1} = \frac{\frac{1}{k} \cdot \Gamma \bigg(\frac{1}{k} \bigg)}{a^{1/k}} = \frac{\frac{1}{l,5} \cdot \Gamma \bigg(\frac{1}{l,5} \bigg)}{(10^{-4})^{1/l,5}} = \frac{0.666 \cdot \Gamma (0.666)}{10^{-2.666}} \, .$$

Так как $z\Gamma(z)=\Gamma(z+1)$, то

$$m_1 = \frac{\Gamma(1,666)}{10^{-2.666}}$$
;

 $x=10^{-2,666}$; $\lg x=-2,666 \cdot \lg 10=-2,666=\bar{3},333$; x=0,00215.

Используя приложение П.7.18 (сборник задач), получим m_t =0,90167/0,00215=426 ч.

Задача 2.5. В результате анализа данных об отказах аппаратуры частота отказов получена в виде $f(t) = c_1 \lambda_1 e^{-\lambda_1 t} + c_2 \lambda_2 e^{-\lambda_2 t}$ Требуется определить количественные характеристики надежности: P(t), $\lambda(t)$, m_t .

Решение.

1. Определим вероятность безотказной работы. На основании формулы (2.1) имеем

$$\begin{split} P(t) &= 1 - \int_0^t f(t) dt = 1 - \left[\int_0^t c_1 \lambda_1 e^{-\lambda_1 t} dt + \int_0^t c_2 \lambda_2 e^{-\lambda_2 t} dt \right] = 1 - \left[-c_1 e^{-\lambda_1 t} \Big|_0^t - c_2 e^{-\lambda_2 t} \Big|_0^t \right] = \\ &= 1 - \left[-c_1 e^{-\lambda_1 t} + c_1 - c_2 e^{-\lambda_2 t} + c_2 \right] = 1 - \left[-(c_1 + c_2) + c_1 e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t} \right] = 0 \end{split}$$

Вычислим сумму $C_1 + C_2$. Так как $\int\limits_{-\infty}^{\infty} f(t) dt = 1$, то

$$\int_{0}^{\infty} c_{1} \lambda_{1} e^{-\lambda_{1} t} dt + \int_{0}^{\infty} c_{2} \lambda_{2} e^{-\lambda_{2} t} dt = c_{1} + c_{2} = 1$$

Тогда

$$P(t) = c_1 e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t}$$

2. Найдем зависимость интенсивности отказов от времени

$$\lambda(t) = \frac{f(t)}{P(t)} = \frac{c_1 \lambda_1 e^{-\lambda_1 t} + c_2 \lambda_2 e^{-\lambda_2 t}}{c_1 e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t}}$$

3. Определим среднее время безотказной работы аппаратуры. На основании формулы (2.5)

$$m_1 = \int\limits_0^\infty P(t)dt = c_1 \int\limits_0^\infty e^{-\lambda_1 t} dt + c_2 \int\limits_0^\infty e^{-\lambda_2 t} dt = \frac{c_1}{\lambda_1} + \frac{c_2}{\lambda_2}$$

Задачи для самостоятельного решения

<u>Задача 2.6.</u> Вероятность безотказной работы автоматической линии изготовления цилиндров автомобильного двигателя в течение 120 ч равна 0,9

Предполагается, что справедлив экспоненциальный закон надежности. Требуется рассчитать интенсивность отказов и частоту отказов линии для момента времени t=120 ч, а также среднее время безотказной работы.

Задача 2.7. Среднее время безотказной работы автоматической системы управления равно 640 ч. Предполагается, что справедлив экспоненциальный закон надежности. Необходимо определить вероятность безотказной работы в течение 120 ч, частоту отказов для момента времени t=120 ч и интенсивность отказов.

Задача 2.8. Время работы изделия подчинено нормальному закону с параметрами m_t =8000 ч, σ_t =1000 ч. Требуется вычислить количественные харакгеристики надежности P(t), f(t), $\lambda(t)$, m_t для t=8000 ч.

Задача 2.9. Время безотказной работы прибора подчинено закону Релея с параметром σ_t =1860 ч. Требуется вычислить P(t), f(t), λ (t) для t=1000 ч и среднее время безотказной работы прибора.

Задача 2.10. Время исправной работы скоростных шарикоподшипников подчинено закону Вейбулла с параметрами κ =2,6; a=1,65·10⁻⁷ 1/ч. Требуется вычислить количественные характеристики надежности P(t), f(t), λ (t) для t=150 ч и среднее время безотказной работы шарикоподшипников.

Задача 2.11.Вероятность безотказной работы изделия в течение t=1000 ч, P(1000)=0,95. Время исправной работы подчинено закону Релея. Требуется определить количественные характеристики надежности f(t), $\lambda(t)$, m_t .

Задача 2.12. Среднее время исправной работы изделия равно 1260 ч. Время исправной работы подчинено закону Релея. Необходимо найти его количественные характеристики надежности P(t), f(t), $\lambda(t)$ для t=1000 ч.

Задача 2.13. В результате анализа данных об отказах изделия установлено, что частота отказов имеет вид $f(t)=2\lambda e^{-\lambda t}(1-e^{-\lambda t})$. Необходимо найти количественные характеристики надежности P(t), $\lambda(t)$, m_t .

Задача 2.14. В результате анализа данных об отказах изделий установлено, что вероятность безотказной работы выражается формулой $P(t) = 3e^{-\lambda t}$ - $3e^{-2\lambda t} + e^{-3\lambda t}$ Требуется найти количественные характеристики надежности P(t), $\lambda(t)$, m_t .

Задача 2.15. Определить вероятность безотказной работы и интенсивность отказов прибора при t=1300 ч работы, если при испытаниях получено значение среднего времени безотказной работы $m_t = 1500$ ч и среднее квадратичное отклонение $\sigma_t = 100$ ч.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №3

Последовательное соединение элементов в систему

Теоретические сведения

Соединение элементов называется последовательным, если отказ хотя бы одного элемента приводит к отказу всей системы. Система последовательно соединенных элементов работоспособна тогда, когда работоспособны все ее элементы.

Вероятность безотказной работы системы за время t

$$P_{c}(t) = P_{1}(t) \cdot P_{2}(t)...P_{n}(t) = \prod_{i=1}^{n} P_{i}(t),$$
(3.1)

где $P_i(t)$ - вероятность безотказной работы і-го элемента за время t.

Если $P_i(t) = P(t)$, то

$$P_c(t)=P^n(t). (3.2)$$

Выразив $P_c(t)$ через интенсивность отказов $\lambda_i(t)$ элементов системы, имеем:

$$P_c(t) = \exp(-\sum_{i=1}^{n} \int_{0}^{t} \lambda_i(t) dt), \qquad (3.3)$$

или

$$P_c(t) = \exp(-\int_0^t \lambda_c(t)dt), \tag{3.4}$$

где

$$\lambda_{c}(t) = \sum_{i=1}^{n} \lambda_{i}(t). \tag{3.5}$$

здесь $\lambda_i(t)$ – интенсивность отказов i-го элемента: $\lambda_c(t)$ — интенсивность отказов системы.

Вероятность отказа системы на интервале времени (0,t)

$$q_c(t) = 1 - \prod_{i=1}^{n} \lambda_i(t). \tag{3.6}$$

Частота отказов системы

$$f_{c}(t) = -\frac{dP_{c}(t)}{dt}.$$
(3.7)

Интенсивность отказов системы

$$\lambda_c(t) = \frac{f_c(t)}{P_c(t)}. \tag{3.8}$$

Среднее время безотказной работы системы

$$\mathbf{m}_{tc} = \int_{0}^{\infty} \mathbf{P}_{c}(t) dt. \tag{3.9}$$

В случае экспоненциального закона надежности всех элементов системы

$$\lambda_{_{1}}(t) = \lambda_{_{1}} = \text{const}; \qquad (3.10)$$

$$\lambda_{c}(t) = \sum_{i=1}^{n} \lambda_{i} = \lambda_{c}; \qquad (3.11)$$

$$P(t) = \exp(-\lambda t); \tag{3.12}$$

$$P_{c}(t) = e^{-\lambda_{c}t};$$
 (3.13)

$$f_{i}(t) = \lambda_{i} \cdot e^{-\lambda_{i}t}; \qquad (3.14)$$

$$q_{c}(t) = 1 - e^{-\lambda_{c}t};$$
 (3.15)

$$\mathbf{m}_{tc} = \frac{1}{\lambda_c} = \frac{1}{\sum_{i=1}^{n} \lambda_i}; \tag{3.16}$$

$$m_{tc} = \frac{1}{\lambda_i}; (3.17)$$

где ти - среднее время безотказной работы і-го элемента.

При расчете надежности систем часто приходится перемножать величины вероятности безотказной работы отдельных элементов расчета, возводить их в степень и извлекать корни. При значениях P(t), близких к единице, эти вычисления можно с достаточной для практики точностью выполнять по следующим приближенным формулам:

$$\left.\begin{array}{l}
P_{1}(t)P_{2}(t)...P_{n}(t) \approx 1 - \sum_{i=1}^{n} q_{i}(t), \\
P_{i}^{n}(t) = 1 - Nq_{i}(t), \\
\sqrt{P_{i}(t)} = 1 - q_{i}(t)/n,
\end{array}\right}$$
(3.18)

где q_i(t) - вероятность отказа i-го элемента.

Решение типовых залач

Задача 3.1. Система состоит из трех устройств. Интенсивность отказов электронного устройства λ_1 =0,16·10⁻³ 1/ч = const. Интенсивности отказов двух электромеханических устройств линейно зависят от времени и определяются следующими формулами

$$\lambda_2 = 0.23 \cdot 10^{-4} t 1/4, \lambda_3 = 0.06 \cdot 10^{-6} t^{2.6} 1/4$$

Необходимо рассчитать вероятность безотказной работы изделия в течение 100 ч.

Решение. На основании формулы (3.3) имеем

$$\begin{split} &P_c(t) = exp(-\sum_{i=1}^n \int\limits_0^t \lambda_i(t)dt) = exp\bigg\{-\bigg[\int\limits_0^t \lambda_1 dt + \int\limits_0^t \lambda_2 dt + \int\limits_0^t \lambda_3 dt\bigg]\bigg\} = \\ &= exp\bigg[-\bigg(\lambda_1 t + 0.23 * 10^{-4} \frac{t^2}{2} + 0.06 * 10^{-6} * \frac{t^{3.6}}{3.6}\bigg)\bigg]. \end{split}$$

Palling Pallob 4

$$\mathbf{P}_{c}(100) = \exp\left[-\left(0.16 \cdot 10^{-3} \cdot 100 + 0.23 \cdot 10^{-4} \cdot \frac{100^{2}}{2} + 0.06 \cdot 10^{-6} \cdot \frac{100^{3}}{3.6}\right)\right] \approx 0.33$$

Задача 3.2. Система состоит из трех блоков, среднее время безотказной работы которых m_{11} =160 ч; m_{12} =320 ч; m_{13} =600 ч. Для блоков справедлив экспоненциальный закон надежности. Требуется определить среднее время безотказной работы системы.

Решение. Воспользовавшись формулой (3.17), получим

$$\lambda_1 = \frac{1}{m_{11}} = \frac{1}{160}; \lambda_2 = \frac{1}{m_{12}} = \frac{1}{320}; \lambda_3 = \frac{1}{m_{13}} = \frac{1}{600}.$$

здесь λ_i - интенсивность отказов і-го блока. На основании формулы (3.11) имеем

$$\lambda_c = \lambda_1 + \lambda_2 + \lambda_3 = \frac{1}{160} + \frac{1}{320} + \frac{1}{600} \approx 0.011 \text{ 1/4}.$$

здесь λ_c - интенсивность отказов системы. На основании формулы (3.16) получим

$$m_{uc} = \frac{1}{\lambda_c} = \frac{1}{0.011} \approx 91 \text{ q}.$$

Задача 3.3. Система состоит из 12600 элементов, средняя интенсивность отказов которых $\lambda_{\rm cp}$ =0,32 · 10 · 6 1/ч. Требуется определить $P_c(t)$, $q_c(t)$, $f_c(t)$, $m_{\rm tc}$, для t=50 ч. Здесь $P_c(t)$ - вероятность безотказной работы системы в течение времени t; $q_c(t)$ - вероятность отказа системы в течение времени t; $f_c(t)$ - частота отказов или плотность вероятности времени T безотказной работы системы: $m_{\rm tc}$ - среднее время безотказной работы системы.

<u>Решение</u>. Интенсивность отказов системы по формуле (3.11)

$$\lambda_c = \lambda_{cp} \cdot n = 0.32 \cdot 10^{-6} \cdot 12600 = 4.032 \cdot 10^{-3} \text{ I/y}.$$

Из (3.13) имеем

$$P_c(t)=e^{-\lambda ct}$$
; $P_c(50)=e^{-4.032\cdot0.001\cdot50}\approx0.82$.

Из (3.15) получим

$$q_c(t)=1-P_c(t); q_c(50)=1-P_c(50) \approx 0.18.$$

Из (3.14) имеем

$$f_c(t) = \lambda_c e^{-\lambda_c t} = \lambda_c P_c(t); f_c(50) = 4.032 \cdot 10^{-3} \cdot 0.82 = 3.28 \cdot 10^{-3} 1/4.$$

Из (3.16) получим

$$m_{tc}=1/\lambda_c=1/4,032\cdot 10^{-3}\approx 250$$
 ч.

Задача 3.4. Система состоит из двух устройств. Вероятность безотказной работы каждого из них в течение времени t = 100 ч: $P_1(100) = 0.95$; $P_2(100) = 0.97$

Справедлив экспоненциальный закон надежности. Необходимо найти среднее время безотказной работы системы.

Решение. Найдем вероятность безотказной работы изделия:

 $P_c(100)=P_1(100)\cdot P_2(100)=0,95\cdot 0,97=0,92.$

Найдем интенсивность отказов изделия, воспользовавшись формулой $P_{-}(t) = e^{-\lambda_{-}t}$

или

$$P_{c}(100)=0.92=e^{-\lambda c \cdot 100}$$

По таблице П.7.14 (сборник задач) имеем

Тогда

$$m_{tc}=1/\lambda_c=1/(0.83\cdot 10^{-3})=1200$$
 ч.

<u>Задача 3.5</u>. Вероятность безотказной работы одного элемента в течение времени t P(t)=0,9997. Требуется определить вероятность безотказной работы системы, состоящей из n=100 таких же элементов.

Решение. Вероятность безотказной работы системы $P_c(t)=P^n(t)=(0,9997)^{100}$ Вероятность $P_c(t)$ близка к единице, поэтому для ее вычисления воспользуемся формулой (3.18). В нашем случае q(t)=I-P(t)=I-0,9997=0,0003. Тогда $P_c(t)\approx I-nq(t)=I-100\cdot 0,0003=0,97$.

Задача 3.6. Вероятность безотказной работы системы в течение времени t $P_c(t)$ =0,95. Система состоит из n=120 равнонадежных элементов. Необходимо найти вероятность безотказной работы элемента.

<u>Решение</u>. Очевидно, что вероятность безотказной работы элемента $P_{t}(t) = \sqrt{P_{c}(t)}$.

Так как P(t) близка к единице, то вычисления P(t) удобно выполнить по формуле (3.18). В нашем случае $q_c(t)=1-P_c(t)=1-0.95=0.05$. Тогда

$$P_{_{1}}(t) = \sqrt[n]{P_{_{c}}(t)} \approx 1 - \frac{q_{_{c}}(t)}{n} = 1 - \frac{0.05}{120} \approx 0.9996.$$

Задача 3.7. Система состоит из 12600 элементов, средняя интенсивность отказов которых λ_{cp} =0,32 · 10⁻⁶ 1/ч. Необходимо определить вероятность безот-казной работы в течение t=50 ч.

Решение. Интенсивность отказов системы по формуле (3.11)

$$\lambda_c = \lambda_{cn} \cdot n = 0.32 \cdot 10^{-6} \cdot 12600 = 4.032 \cdot 10^{-3} 1/4$$
.

Тогда на основании (3.13)

$$P_c(t)=e^{-\lambda ct}$$

или

$$P_c(50) = e^{-4.032 \cdot 0.001 \cdot 50} \approx 0.82.$$

Задачи для самостоятельного решения

Задача 3.8. Аппаратура связи состоит из 2000 элементов, средняя интенсивность отказов которых $\lambda_{cp} = 0.33 \quad 10^{-5}$ 1/ч. Необходимо определить вероятность безотказной работы аппаратуры в течении t=200 ч и среднее время безотказной работы аппаратуры.

Задача 3.9. Невосстанавливаемая в процессе работы электронная машина состоит из 200000 элементов, средняя интенсивность отказов которых λ =0,2 · 10⁻⁶ 1/ч. Требуется определить вероятность безотказной работы электронной машины в течение t=24 ч и среднее время безотказной работы электронной машины.

Задача 3.10. Система управления состоит из 6000 элементов, средняя интенсивность отказов которых λ_{cp} =0,16·10⁻⁶ 1/ч. Необходимо определить вероятность безотказной работы в течение t=50 ч и среднее время безотказной работы.

Задача 3.11. Прибор состоит из n=5 узлов. Надежность узлов в течение времени t характеризуется вероятностью безотказной работы $P_1(t)=0.98$; $P_2(t)=0.99$; $P_3(t)=0.998$; $P_4(t)=0.975$; $P_5(t)=0.985$. Необходимо определить вероятность безотказной работы прибора.

Задача 3.12. Система состоит из пяти приборов, среднее время безотказной работы которых m_{t1} =83 ч; m_{t2} =220 ч; m_{t3} =280 ч; m_{t4} =400 ч; m_{t5} =700 ч. Для приборов справедлив экспоненциальный закон надежности. Требуется найти среднее время безотказной работы системы.

Задача 3.13. Прибор состоит из пяти блоков. Вероятность безотказной работы каждого блока в течение времени t=50 ч $P_1(50)=0.98$; $P_2(50)=0.99$; $P_3(50)=0.998$; $P_4(50)=0.975$; $P_5(50)=0.985$. Справедлив экспоненциальный закон надежности. Требуется найти среднее время безотказной работы прибора.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №4

Расчет надежности системы с постоянным резервированием

Теоретические сведения

При постоянном резервировании резервные элементы 1,2,... соединены параллельно с основным (рабочим) элементом в течение всего периода работы системы. Все элементы соединены постоянно, перестройка схемы при отказах не происходит, отказавший элемент не отключается (рис. 4.1).

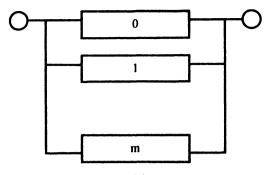


Рис. 4.1

Вероятность отказа системы

$$q_c(t) = \prod_{j=0}^{m} q_j(t),$$
 (4.1)

где q_i(t) - вероятность отказа ј-го элемента

Вероятность безотказной работы системы

$$P_c(t) = 1 - \prod_{j=0}^{m} [1 - P_j(t)],$$
 (4.2)

где P_i(t) - вероятность безотказной работы j-го элемента.

Если $P_j(t)=P(t)$, j=0, 1, ..., m, то

$$q_{c}(t) = q^{m+1}(t); P_{c}(t) = 1 - [1 - P(t)]^{m+1}.$$
(4.3)

При экспоненциальном законе надежности отдельных элементов

$$P_{j}(t) = P(t) = e^{-\lambda t};$$

$$q_{c}(t) = (1 - e^{-\lambda t})^{m+1};$$

$$P_{c}(t) = 1 - (1 - e^{-\lambda t})^{m+1};$$

$$m_{tc} = \frac{1}{\lambda} \sum_{i=1}^{m} \frac{1}{1+i}.$$
(4.4)

Резервирование называется общим, если резервируется вся система, состоящая из последовательного соединения п элементов. Схема общего резервирования показана на рис. 4.2.

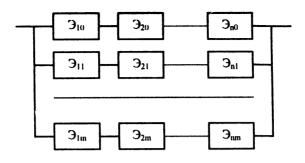


Рис. 4.2

Основная цепь содержит п элементов. Число резервных цепей равно m, т.е. кратность резервирования равна m.

Определим количественные характеристики надежности системы с общим резервированием (резервные цепи включены постоянно).

Вероятность безотказной работы ј-й цепи

$$P_{j}(t) = \prod_{i=1}^{n} P_{ij}(t); j = 0, 1, ..., m,$$
(4.5)

где $P_{ij}(t)$, j=0,1,2,...m; i=1,2,3,...,n - вероятность безотказной работы элемента Θ_{ij} .

Вероятность отказа ј-й цепи

$$q_{j}(t) = 1 - \prod_{i=1}^{n} P_{ij}(t)$$
. (4.6)

Вероятность отказа системы с общим резервированием

$$q_{c}(t) = \prod_{j=0}^{m} \left[1 - \prod_{i=1}^{n} P_{ij}(t) \right]. \tag{4.7}$$

Вероятность безотказной работы системы с общим резервированием

$$P_{c}(t) = 1 - \prod_{j=0}^{m} \left[1 - \prod_{i=1}^{n} P_{ij}(t) \right]. \tag{4.8}$$

Частный случай: основная и резервные цепи имеют одинаковую надежность, т.е.

$$P_{ii}(t)=P_i(t) \tag{4.9}$$

Тогда

$$q_c(t) = \left[1 - \prod_{i=1}^{n} P_i(t)\right]^{m-1}$$
 (4.10)

$$P_{c}(t) = 1 - \left[1 - \prod_{i=1}^{n} p_{i}(t)\right]^{m+1}$$
 (4.11)

Рассмотрим экспоненциальный закон надежности, т. е.

$$P_{i}(t)=e^{-\lambda it} (4.12)$$

В этом случае формулы (4.10), (4.11) примут вид

$$q_c(t) = (1 - e^{-\lambda(t)})^{m+1},$$
 (4.13)

$$P_c(t)=1-(1-e^{-\lambda 0t})^{m+1},$$
 (4.14)

$$\lambda_{o} = \sum_{i=1}^{n} \lambda_{i} , \qquad (4.15)$$

где λ_0 – интенсивность отказов цепи, состоящей из n элементов.

Частота отказов системы с общим резервированием

$$f_{c}(t) = -\frac{dp_{c}(t)}{dt} = \lambda_{o} \cdot (m+1)e^{-\lambda_{o}t} \cdot (1-e^{-\lambda_{o}t})^{m}$$
(4.16)

Интенсивность отказов системы с общим резервированием

$$\lambda_{c}(t) = \frac{f_{c}(t)}{p_{c}(t)} = \frac{\lambda_{o}(m+1)e^{-\lambda_{o}t} \cdot (1-e^{-\lambda_{o}t})^{m}}{1-(1-e^{-\lambda_{o}t})^{m+1}}.$$
 (4.17)

Среднее время безотказной работы резервированной системы

$$m_{ic} = T_{ij} \sum_{j=0}^{m} \frac{1}{1+j},$$
 (4.18)

где $T_0 = 1/\lambda_0$ - среднее время безотказной работы не резсрвированной системы.

Решение типовых задач

Задача 4.1. Система состоит из 10 равнонадежных элементов, среднее время безотказной работы элемента m_t =1000 ч. Предполагается, что справедлив экспоненциальный закон надежности для элементов системы, основная и резервная системы равнонадежны. Необходимо найти среднее время безотказной работы системы m_{tc} , а также частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$ в момент времени t=50 ч в следующих случаях:

- а) нерезервированной системы,
- б) дублированной системы при постоянно включенном резерве.

Решение.

a)

$$\lambda_c = \sum_{i=1}^n \lambda_i$$
,

где λ_c – интенсивность отказов системы; λ_i - интенсивность отказов i-го элемента; n=10.

$$\lambda_i=1/m_{ti}=1/1000=0,001; i=1,2,...,n; \lambda=\lambda_i; \lambda_c=\lambda \cdot n=0,001 \cdot 10=0,01 \cdot 1/4; m_{tc}=1/\lambda_c=100 \cdot q; f_c(t)=\lambda_c(t) \cdot P_c(t); \lambda_c(50)=\lambda_c; P_c(t)=e^{-\lambda ct}; f_c(50)=\lambda_c e^{-\lambda ct}=0,01 \cdot e^{-0,01 \cdot 50}\approx 6 \cdot 10^{-3} \text{ 1/y};$$

$$\begin{split} &\lambda_c(50){=}0,01\ 1/\text{u}.\\ &6)\\ &m_{1c}=\frac{1}{\lambda_c}\sum_{j=0}^m\frac{1}{1+j};\quad m{=}1;\quad m_{1c}=\frac{1}{0,01}\bigg(1+\frac{1}{2}\bigg){=}150\ \text{u};\\ &P_c(t)=1-\Big(1-e^{-\lambda_{e^1}}\Big)^{m-1}\cdot\quad \lambda_0{=}\lambda_c{=}0,01\ 1/\text{u};\\ &P_c(t)=1-\Big(1-e^{-\lambda_{e^1}}\Big)^2=2e^{-\lambda_{e^1}}-e^{-2\lambda_{e^1}};\\ &f_c(t)=-\frac{dp_c(t)}{dt}=2\lambda_0e^{-\lambda_{e^1}}\cdot\Big(1-e^{-\lambda_{e^1}}\Big);\\ &\lambda_c(t)=\frac{f_c(t)}{p_c(t)}=\frac{2\lambda_0\Big(1-e^{-\lambda_{e^1}}\Big)}{2-e^{-\lambda_{e^1}}};\\ &f_c(50){\approx}4,8\cdot10^{-3}\ 1/\text{u};\quad \lambda_c(50){\approx}5,7\cdot10^{-3}\ 1/\text{u}. \end{split}$$

Задача 4.2. В системе телеуправления применено дублирование канала управления. Интенсивность отказов канала $\lambda=10^{-2}$ 1/ч. Следует рассчитать вероятность безотказной работы системы $P_c(t)$ при t=10 ч, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ системы.

Решение. В данном случае n=1; λ_i = λ ; λ_0 = $n\lambda$ = λ ; m=1. По формуле (4.14) имеем

$$P_c(t)=1-(1-e^{-\lambda t})^2;$$

 $P_c(10)=1-(1-e^{-0.1})^2$

Из приложения $\Pi.7.14$ (сборник задач) получим $e^{-0.1}=0.9048$. Тогда

$$P_c(10)=1-(1-0.9048)^2=1-0.0952^2\approx 1-0.01=0.99$$
.

Определим тыс. Из формулы (4.4)

$$m_{tc} = \frac{1}{\lambda} \sum_{i=0}^{l} \frac{1}{1+i} = \frac{1}{\lambda} \left(1 + \frac{1}{2} \right) = 150 \text{ q}.$$

Найдем частоту отказов

$$f_c(t) = -\frac{dp_c(t)}{dt} = 2\lambda \cdot e^{-\lambda t} \cdot (1 - e^{-\lambda t}).$$

Вычислим интенсивность

$$\lambda_c \big(t \big) = \frac{f_c \big(t \big)}{p_c \big(t \big)} = \frac{2 \lambda \lambda^{-\lambda_1} \cdot \left(l - e^{-\lambda_1} \right)}{e^{-\lambda_1} \big(2 - e^{-\lambda_1} \big)} = \frac{2 \lambda \cdot \left(l - e^{-\lambda_1} \right)}{2 - e^{-\lambda_1}}.$$

<u>Задача 4.3.</u> Нерезервированная система управления состоит из n=5000 элементов. Для повышения надежности системы предполагается провести общее дублирование элементов. Чтобы приближенно оценить возможность достижения заданной вероятности безотказной работы системы $P_c(t)=0.9$ при t=10 ч, необходимо рассчитать среднюю интенсивность отказов одного элемента при предположении отсутствия последействия отказов.

<u>Решение</u>. Вероятность безотказной работы системы при общем дублировании и равнонадежных элементах

$$P_c(t)=1-(1-e^{-\lambda nt})^2$$

или

$$P_c(t)=1-[1-P^n(t)]^2$$

где

$$P(t)=e^{-\lambda t}$$

здесь P(t) - вероятность безотказной работы одного элемента.

Так как должно быть

$$1-[1-P^{n}(t)]^{2}\geq 0,9,$$

TO
$$p(t) \ge (1 - \sqrt{0,1})^{1/n}$$

Разложив $\left(1-\sqrt{0.1}\right)^{1/n}$ по степени 1/n в ряд и пренебрегая членами ряда высшего порядка малости, получим

$$(1-\sqrt{0.1})^{1/5(880)} \approx 1-\frac{1}{5000}\sqrt{0.1} = 1-6.32\cdot 10^{-5}$$

Учитывая, что P(t)=exp(-λt)≈I-λt, получим I-λt≥I-6.32 · 10⁻⁵

или

$$\lambda \le (6,32 \cdot 10^{-5})/t = (6,32 \cdot 10^{-5})/10 = 6,32 \cdot 10^{-6} 1/4$$
.

Задачи для самостоятельного решения

Задача 4.4. Приемник состоит из трех блоков: УВЧ, УПЧ и УНЧ. Интенсивности отказов этих блоков соответственно λ_1 =4·10⁻⁴ 1/ч; λ_2 =2,5·10⁻⁴ 1/ч: λ_3 =3·10⁻⁴ 1/ч. Требуется рассчитать вероятность безотказной работы приемника при t=100 ч для следующих случаев: а) резерв отсутствует; б) имеется общее дублирование приемника в целом.

Задача 4.5. Для изображенной на рис.4.3. логической схемы системы определить $P_c(t)$, m_{tc} , $f_c(t)$, $\lambda_c(t)$. Резерв нагруженный, отказы независимы.

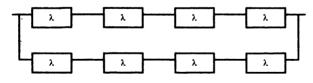
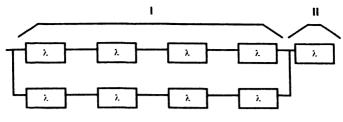


Рис. 4.3

Задача 4.6. В радиопередатчике, состоящем из трех равнонадежных каскадов (n=3), применено общее постоянное дублирование всего радиопередатчика. Интенсивность отказов каскада $\lambda=5\cdot 10^4$ 1/ч. Найти $P_c(t)$, m_{tc} , $f_c(t)$, $\lambda_c(t)$ радиопередатчика с дублированием.

Задача 4.7. Для изображенной на рис. 4.4 логической схемы системы вычислить интенсивность отказов $\lambda_c(t)$. Резерв нагруженный, отказы независимы.



Dис. 4.4

Задача 4.8. Радиоэлектронная аппаратура состоит из трех блоков: I, II, III. Интенсивности отказов этих блоков соответственно λ_1 , λ_2 , λ_3 . Требуется определить вероятность безотказной работы аппаратуры $P_c(t)$ для следующих случаев: а) резерв отсутствует; б) имеется дублирование радиоэлектронной аппаратуры в целом.

Задача 4.9. Схема расчета надежности изделия показана на рис. 4.5. Предполагается, что справедлив экспоненциальный закон надежности для элементов изделия. Интенсивности отказов элементов имеют значения: $\lambda_1 = 0.3 \cdot 10^{-3}$ 1/ч; $\lambda_2 = 0.7 \cdot 10^{-3}$ 1/ч. Требуется найти вероятность безотказной работы изделия в течение времени t = 100 ч, среднее время безотказной работы изделия, частоту отказов и интенсивность отказов в момент времени t = 100 ч.

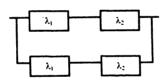
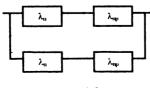


Рис. 4.5

Задача 4.10. В телевизионном канале связи, состоящем из приемника и передатчика, применено общее дублирование. Передатчик и приемник имеют интенсивности отказов соответственно λ_n =2·10⁻¹ 1/ч, λ_{up} =1·10⁻¹ 1/ч. Схема канала представлена на рис. 4.6. Требуется определить вероятность безотказной работы канала $P_c(t)$, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$.



Дис. 4.6

Задача 4.11. Схема расчета надежности изделия приведена на рис.4.7. Предполагается, что справедлив экспоненциальный закон надежности для элементов изделия. Требуется определить интенсивность отказов изделия, если интенсивности отказов элементов имеют значения λ_1 , λ_2 .

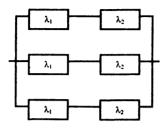
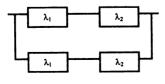


Рис. 4.7

Задача 4.12. Нерезервированная система управления состоит из n=4000 элементов. Известна требуемая вероятность безотказной работы системы $P_c(t)=0.9$ при t=100 ч. Необходимо рассчитать допустимую среднюю интенсивность отказов одного элемента, считая элементы равнонадежными, для того чтобы приближенно оценить достижение заданной вероятности безотказной работы при отсутствии профилактических осмотров в следующих случаях: а) резервирование отсутствует; б) применено общее дублирование.

Задача 4.13. Устройство обработки состоит из трех одинаковых блоков. Вероятность безотказной работы устройства $P_y(t_i)$ в течение $(0,t_i)$ должна быть не менее 0,9. Определить, какова должна быть вероятность безотказной работы каждого блока в течение $(0,t_i)$ для случаев: а) резерв отсутствует; б) имеется пассивное общее резервирование с неизменной нагрузкой всего устройства в целом; в) имеется пассивное раздельное резервирование с неизменной нагрузкой по блокам.

Задача 4.14. Вычислитель состоит из двух блоков, соединенных последовательно и характеризующихся соответственно интенсивностями отказов λ_1 =120,54 · 10⁻⁶ 1/ч и λ_2 =185,66 · 10⁻⁶ 1/ч. Выполнено пассивное общее резервирование с неизменной нагрузкой всей системы (блока 1 и 2) (рис.4.8). Требует-



Оис 4.8

ся определить вероятность безотказной работы $P_c(t)$ вычислителя, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$ вычислителя. Определить $P_c(t)$ при t=20 ч.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №5

<u>Резервирование замещением в режиме облегченного (теплого) резерва</u>
<u>и в режиме ненагруженного (холодного) резерва</u>

Теоретические сведения

Резервные элементы находятся в облегченном режиме до момента их включения в работу. Надежность резервного элемента в этом случае выше надежности основного элемента, так как резервные элементы находятся в режиме недогрузки до момента их включения в работу.

Вероятность отказа резервированной системы с облегченным резервированием

$$q_{c}(t) = 1 - e^{-\lambda_{e}t} \left[1 + \sum_{i=1}^{m} \frac{a_{i}}{i!} \left(1 - e^{-\lambda_{i}t} \right)^{i} \right],$$
 (5.1)

где

$$\mathbf{a}_{1} = \prod_{j=0}^{i-1} \left(\mathbf{j} + \frac{\lambda_{0}}{\lambda_{1}} \right). \tag{5.2}$$

здесь λ_1 - интенсивность отказа резервного элемента в режиме недогрузки до момента включения его в работу; λ_0 - интенсивность отказа резервного элемента в состоянии работы; m - кратность резервирования, или количество резервных элементов.

Вероятность безотказной работы системы с облегченным резервированием

$$P_{c}(t) = 1 - q_{c}(t) = e^{-\lambda_{0}t} \left[1 + \sum_{i=1}^{m} \frac{a_{i}}{i!} \left(1 - e^{-\lambda_{i}t} \right)^{i} \right]$$
(5.3)

Среднее время безотказной работы системы с облегченным резервированием

$$m_{\omega} = \int_{0}^{\infty} P_{c}(t)dt = \frac{1}{\lambda_{o}} \sum_{i=0}^{m} \frac{1}{1+ik}, \qquad (5.4)$$

$$k = \frac{\lambda_1}{\lambda_0}.$$
 (5.5)

Частота отказов f_c(t) системы с облегченным резервированием

$$f_{c}(t) = \lambda_{n} e^{-\lambda_{n} t} \left[1 + \sum_{i=1}^{m} \frac{a_{i}}{i!} \left(1 - e^{-\lambda_{1} t} \right)^{i} - \frac{\lambda_{1}}{\lambda_{0}} e^{-\lambda_{1} t} \sum_{i=1}^{m} \frac{a_{i}}{(i-1)!} \left(1 - e^{-\lambda_{1} t} \right)^{i-1} \right].$$
 (5.6)

Интенсивность отказов системы с облегченным резервированием

$$\lambda_{c}(t) = \frac{f_{c}(t)}{p_{c}(t)} = \lambda_{0} \left[1 - \frac{\lambda_{1}}{\lambda_{0}} e^{-\lambda_{1}t} \frac{\sum_{i=1}^{m} \frac{a_{1}}{(i-1)!} (1 - e^{-\lambda_{1}t})^{i-1}}{1 + \sum_{i=1}^{m} \frac{a_{i}}{i!} (1 - e^{-\lambda_{1}t})^{i}} \right].$$
 (5.7)

При λ_1 =0 имеем режим ненагруженного (холодного) резерва.

Вероятность отказа резервированной системы с ненагруженным резервированием

$$q_{c}(t) = 1 - e^{-\lambda_{s}t} \sum_{i=0}^{m} \frac{(\lambda_{o}t)^{i}}{i!}.$$
 (5.8)

Вероятность безотказной работы системы с ненагруженным резервом

$$P_{c}(t) = 1 - q_{c}(t) = e^{-\lambda_{0}t} \sum_{i=0}^{m} \frac{(\lambda_{0}t)^{i}}{i!}.$$
 (5.9)

Среднее время безотказной работы системы с ненагруженным резервом

$$m_{\kappa} = \int_{0}^{\infty} p_{\kappa}(t)dt = \frac{m+1}{\lambda_{n}}.$$
 (5.10)

Частота отказов системы с ненагруженным резервом

$$f_c(t) = -\frac{dp_c(t)}{dt} = \frac{\lambda_0^{m+1}}{m!} t^m e^{-\lambda_0 t}$$
(5.11)

Интенсивность отказов системы с ненагруженным резервом

$$\lambda_{e}(t) = \frac{f_{e}(t)}{p_{e}(t)} = \frac{\lambda_{0}^{m+1}t^{m}}{m! \sum_{i=0}^{m} \frac{(\lambda_{0}t)^{i}}{i!}}.$$
 (5.12)

Решение типовых задач

Задача 5.1. Система состоит из 10 равнонадежных элементов, среднее время безотказной работы элемента m_t =1000 ч. Предполагается, что справедлив экспоненциальный закон надежности для элементов системы, основная и резервная системы равнонадежны. Необходимо найти вероятность безотказной работы системы $P_c(t)$, среднее время безотказной работы системы m_{tc} , а также частоту отказов $f_c(t)$ и интенсивность отказов λ_c (t) в момент времени t=50 ч в следующих случаях: а) нерезервированной системы; б) дублированной системы при включении резерва по способу замещения (ненагруженный резерв).

Решение:

а) интенсивность отказов системы $\lambda_c = \sum_{i=1}^n \lambda_i$,

где λ_i – интенсивность отказов і-го элемента; n = 10,

$$\lambda_{i} = \frac{1}{m_{u}} = \frac{1}{1000} = 0,001; i = \overline{1, n}; \lambda = \lambda_{i},$$

$$\lambda_{c} = \lambda n = 0,001 \cdot 10 = 0,01 \cdot 1/4,$$

$$m_{uc} = \frac{1}{\lambda_{c}} = 100 \cdot 4; \quad p_{c}(t) = e^{-\lambda_{c}t};$$

$$f_{c}(t) = \lambda_{c}(t) \cdot p_{c}(t); \quad \lambda_{c}(50) = \lambda_{c};$$

$$f_{c}(50) = \lambda_{c} e^{-\lambda_{c}t} = 0,01 \cdot e^{-0,01 \cdot 50} \approx 6 \cdot 10^{-3} \text{ 1/4};$$

$$\lambda_{c}(50) = 0,01 \cdot 1/4.$$

$$6)$$

$$m_{tc} = \frac{m+1}{t}; \quad m=1;$$

 $m_{tc} = \frac{m+1}{\lambda_c}; m=1;$ $m_{tc} = \frac{2}{0.01} = 200 \text{ q}.$

Определим вероятность безотказной работы

$$P_c(t) = e^{-\lambda_0 t} \sum_{i=0}^m \frac{(\lambda_0 t)^i}{i!} = e^{-\lambda_0 t} (1 + \lambda_0 t).$$

Так как $\lambda_0 = \lambda_c$, то $P_c(t) = e^{-\lambda ct} (1 + \lambda_c t)$.

Найдем частоту отказов

$$f_{c}(t) = -\frac{dp_{c}(t)}{dt} = -\left[-\lambda_{c}e^{-\lambda_{c}t}(1+\lambda_{c}t) + \lambda_{c}e^{-\lambda_{c}r}\right] = \lambda_{c}^{2}te^{-\lambda_{c}t}$$

Вычислим интенсивность отказов

$$\lambda_c(t) = \frac{f_c(t)}{p_c(t)} = \frac{\lambda_c^2 t e^{-\lambda_c t}}{e^{-\lambda_c t} (1 + \lambda_c t)} = \frac{\lambda_c^2 t}{1 + \lambda_c t}.$$

Получим

$$\begin{split} &P_c(50) \!\!=\!\! e^{-0.01 \cdot 50} (1 \!+\! 0.01 \cdot 50) \!\!=\!\! e^{-0.5 \cdot } 1.5 \!\!=\!\! 0.6065 \cdot 1.5 \!\!\approx\!\! 0.91, \\ &f_c(50) \!\!=\!\! 0.01^2 \cdot 50 \cdot e^{-0.01 \cdot 50} \!\!=\!\! 0.01 \cdot 0.5 \cdot e^{-0.5} \!\!\approx\!\! 3 \cdot 10^{-3} 1/\mathrm{u}, \\ &\lambda_c(50) \!\!=\!\! \frac{f_c(50)}{p_c(50)} \!\!=\!\! \frac{3 \cdot 10^{-3}}{0.91} \approx 3.3 \cdot 10^{-3} 1/\mathrm{u}. \end{split}$$

3адача 5.2. Радиопередатчик имеет интенсивность отказов λ_0 =0,4 \cdot 10⁻³ 1/ч. Его дублирует такой же передатчик, находящийся до отказа основного передатчика в режиме ожидания (в режиме облегченного резерва). В этом режиме интенсивность отказов передатчика λ_1 =0,06 \cdot 10⁻³ 1/ч. Требуется вычислить вероятность безотказной работы передающей системы в течение времени t=100 ч, а также среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$.

<u>Решение.</u> В рассматриваемом случае кратность резервирования m=1. Используя формулу (5.3), получим

$$\begin{split} P_c\left(t\right) &= e^{-\lambda_0 t} \cdot \left[1 + \sum_{i=1}^l \frac{a_i}{i!} (1 - e^{-\lambda_1 t})^i\right] = e^{-\lambda_0 t} \left[1 + a_1 (1 - e^{-\lambda_1 t})\right]; \\ i &= \prod_{j=0}^{i-l} \left(j + \frac{\lambda_0}{\lambda_1}\right) \qquad \qquad a_1 = \prod_{j=0}^{0} \left(j + \frac{\lambda_0}{\lambda_1}\right) = \frac{\lambda_0}{\lambda_1} \;. \end{split}$$

Тогда

$$P_{c}(t) = e^{-\lambda_{e}t} \left(1 + \frac{\lambda_{o}}{\lambda_{1}} - \frac{\lambda_{o}}{\lambda_{1}} e^{-\lambda_{1}t} \right). \tag{5.13}$$

Из (5.13) имеем

$$P_{c}(100) = {}^{-0.4 \cdot 10^{-3} \cdot 100} \left(1 + \frac{0.4 \cdot 10^{-3}}{0.06 \cdot 10^{-3}} - \frac{0.4 \cdot 10^{-3}}{0.06 \cdot 10^{-3}} e^{-0.00 \cdot 10^{-3} \cdot 100} \right) =$$

$${}^{0.04} \left(1 + \frac{40}{6} - \frac{40}{6} e^{-0.006} \right) \approx 0.96 [1 + 6.67 - 6.67(1 - 0.006)] \approx 0.998$$

Определим по формуле (5.4)

$$\begin{split} m_{tc} &= \frac{1}{\lambda_0} \sum_{i=0}^{1} \frac{1}{1+i\frac{\lambda_1}{\lambda_0}} = \frac{1}{\lambda_0} \left(1 + \frac{1}{1+\frac{\lambda_1}{\lambda_0}} \right) = \frac{1}{\lambda_0} \left(1 + \frac{\lambda_0}{\lambda_1 + \lambda_0} \right) = \\ &= \frac{1}{0.4 \cdot 10^{-3}} \left(1 + \frac{0.4 \cdot 10^{-3}}{0.46 \cdot 10^{-3}} \right) = 4668 \text{ y} \end{split}$$

Найдем частоту отказов

$$\begin{split} & f_c(t) = -\frac{dp_c(t)}{dt} = -\Bigg[-\lambda_0 e^{-\lambda_0 t} \Bigg(1 + \frac{\lambda_0}{\lambda_1} - \frac{\lambda_0}{\lambda_1} e^{-\lambda_1 t} \Bigg) + e^{-\lambda_0 t} \lambda_0 e^{-\lambda_1 t} \Bigg] = \\ & = \lambda_0 e^{-\lambda_0 t} \Bigg[1 + \frac{\lambda_1}{\lambda_0} - \frac{\lambda_1}{\lambda_0} e^{-\lambda_1 t} - e^{\lambda_1 t} \Bigg] = \lambda_0 \frac{\lambda_1 + \lambda_0}{\lambda_1} e^{-\lambda_0 t} \Big(1 - e^{-\lambda_1 t} \Big). \end{split}$$

Перепишем (5.13) в виде

$$P_{c}(t) = \frac{\lambda_{1} + \lambda_{0}}{\lambda_{1}} e^{-\lambda_{0}t} \left(1 - \frac{\lambda_{0}}{\lambda_{1} + \lambda_{0}} e^{-\lambda_{1}t}\right).$$

Определим интенсивность отказов

$$\lambda_{e}(t) = \frac{f_{e}(t)}{p_{e}(t)} = \frac{\lambda_{0} \left(1 - e^{-\lambda_{1}t}\right)}{1 - \frac{\lambda_{0}}{\lambda_{1} + \lambda_{0}}} e^{-\lambda_{1}t}.$$

Задача 5.3. Вероятность безотказной работы преобразователя постоянного тока в переменный в течение времени t=1000 ч равна 0,95, т. е. P(1000)=0,95. Для повышения надежности системы электроснабжения на объекте имеется такой же преобразователь, который включается в работу при отказе первого 30

(режим ненагруженного резерва). Требуется рассчитать вероятность безотказной работы и среднее время безотказной работы системы, состоящей из двух преобразователей, а также определить частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$ системы.

<u>Решение.</u> В рассматриваемом случае кратность резервирования m=1. Используя формулу (5.9), получим

$$P_{c}(t) = e^{-\lambda_{e}t} \sum_{t=0}^{m} \frac{(\lambda_{o}t)^{t}}{i!} = e^{-\lambda_{e}t} (1 + \lambda_{o}t). \tag{5.14}$$

Так как для отдельного преобразователя имеет место экспоненциальный закон надежности, то

$$P(t) = e^{-\lambda_{t}t}, (5.15)$$

где P(t) – вероятность безотказной работы преобразователя; λ_0 – интенсивность отказов преобразователя в состоянии работы.

Из (5.15) имеем

$$P(1000)=e^{-\lambda o \cdot 1000}=0.95$$
.

Из приложения П.7.14 (сборник задач) получим

$$\lambda_0 \cdot 1000 = 0.051$$

откуда

$$\lambda_0 = 0.051/1000 \approx 0.5 \cdot 10^{-4} 1/4$$

Тогда из (5.14) имеем

$$P_c(1000)=0.95(1+0.05)=0.9975$$

По формуле (5.10) определим

$$m_{tc} = (m+1)/\lambda_0 = 2/\lambda_0 = 2/(0.5 \cdot 10^{-4}) = 40000 \text{ y}.$$

Отметим, что среднее время безотказной работы нерезервированного преобразователя равно m_{tc} =1/ λ_0 =20000 ч.

Определим частоту отказов по формуле (5.11)

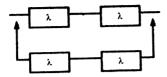
$$f_c(t) = \frac{\lambda_0^2}{1!} t e^{-\lambda_0 t} = \lambda_0^2 t e^{-\lambda_0 t}$$

Вычислим интенсивность отказа

$$\Delta_{c}(t) = \frac{f_{c}(t)}{p_{c}(t)} = \frac{\lambda_{0}^{2}t \cdot e^{-\lambda_{0}t}}{e^{-\lambda_{0}t}(1 + \lambda_{0}t)} = \frac{\lambda_{0}^{2}t}{1 + \lambda_{0}t}.$$

Задачи для самостоятельного решения

Задача 5.4. Система состоит из двух одинаковых элементов. Для повышения ее надежности конструктор предложил дублирование системы по способу замещения с ненагруженным состоянием резерва (рис.5.1). Интенсивность отказов элемента равна λ Требуется определить вероятность безотказной работы системы $P_c(t)$, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$.



Оис. 5.1

Задача 5.5. Схема расчета надежности изделия приведена на рис.5.2. Необходимо определить вероятность безотказной работы $P_c(t)$, частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ изделия. Найти $\lambda_c(t)$ при t=0.

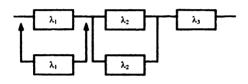


рис. 5.2

Задача 5.6. Схема расчета надежности системы приведена на рис.5.3, где A, Б, В, Γ - блоки системы. Определить вероятность безотказной работы $P_c(t)$ системы.

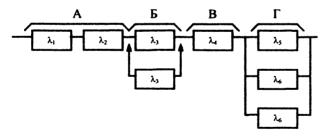
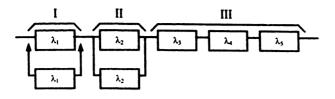


Рис. 5.3

<u>Задача 5.7</u>. Схема расчета надежности системы приведена на рис.5.4. Определить вероятность безотказной работы P_c(t) системы.



Оис. 5.4

Задача 5.8. Передающее устройство состоит из одного работающего передатчика (λ =8·10⁻³ 1/ч) и одного передатчика в облегченном резерве (λ_0 =8·10⁻⁴ 1/ч). Требуется определить вероятность безотказной работы устройства $P_c(t)$, среднее время безотказной работы устройства m_{tc} . Найти $P_c(t)$ при t=20 ч.

Задача 5.9. В радиопередающем канале связной системы используется основной передатчик Π_1 , два передатчика Π_2 и Π_3 , находящиеся в ненагруженном резерве. Интенсивность отказов основного работающего передатчика $\lambda_0 = 10^{-3}$ 1/ч. С момента отказа передатчика Π_1 в работу включается Π_2 . после отказа передатчика Π_2 включается Π_3 . При включении резервного передатчика в работу его интенсивность отказов становится равной λ_0 . Считая переключатель абсолютно надежным, определить вероятность безотказной работы $P_c(t)$ радиопередающего канала, среднее время безотказной работы m_{tc} канала. Следует вычислить также $P_c(t)$ при t=100 ч.

Задача 5.10. Устройство автоматического поиска неисправностей состоит из двух логических блоков. Среднее время безотказной работы этих блоков одинаково и для каждого m_t =200 ч. Требуется определить среднее время безотказной работы устройства m_{tc} для двух случаев: а) имеется ненагруженный резерв всего устройства; б) имеется ненагруженный резерв каждого блока.

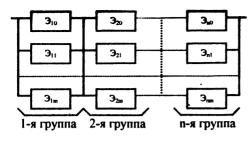
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №6

Расчет надежности системы с поэлементным резервированием

Теоретические сведения

При поэлементном резервировании резервируются отдельно элементы системы (рис.6.1). Определим количественные характеристики надежности системы.

33



Оис. 6.1

Вероятность отказа і - й группы

$$q_i(t) = \prod_{j=0}^{m} q_{ij}(t); \quad i = \overline{1, n}, \tag{6.1}$$

где $q_{ii}(t)$ - вероятность отказа элемента Θ_{ii} на интервале времени (0, t).

Вероятность безотказной работы і-й группы

$$P_{i}(t) = 1 - q_{i}(t) = 1 - \prod_{j=0}^{m_{i}} \left[1 - p_{ij}(t) \right]; \quad i = \overline{1, n},$$
(6.2)

где $P_{ii}(t)$ – вероятность безотказной работы элемента Θ_{ii} на интервале времени (0,t); m_i - кратность резервирования элемента j-й группы.

Вероятность безотказной работы системы с поэлементным резервированием

$$P_c(t) = \prod_{i=1}^n p_i(t)$$

или

$$P_{c}(t) = \prod_{i=1}^{n} \left\{ 1 - \prod_{j=0}^{m_{i}} \left[1 - p_{ij}(t) \right] \right\}. \tag{6.3}$$

Для равнонадежных элементов системы и m:=m=const

$$P_{ij}(t)=P(t); (6.4)$$

$$P_{ij}(t)=P(t); (6.4)$$

$$P_{c}(t)=[1-[1-P(t)]^{m+1}]^{n}. (6.5)$$

Если

$$P_{ii}(t)=P_i(t), (6.6)$$

то формула (6.3) примет вид

$$P_{c}(t) = \prod_{i=1}^{n} \left\{ -\left[1 - p_{i}(t)\right]^{m_{i}+1} \right\}$$
(6.7)

При экспоненциальном законе надежности, когда $P_i(t)=e^{-\lambda it}$,

$$P_{c}(t) = \prod_{i=1}^{n} \left\{ -\left[1 - e^{-\lambda_{i}t}\right]^{m_{i}+1} \right\}.$$
(6.8)

В этом случае формула (6.5) примет вид

$$P_{c}(t) = \left\{ -\left[1 - e^{-\lambda t}\right]^{m+1} \right\}^{n}, \tag{6.9}$$

а среднее время безотказной работы системы

$$m_{\alpha} = \int_{0}^{\infty} p_{\alpha}(t)dt. \tag{6.10}$$

Подставляя (6.9) в (6.10), получим

$$m_{k} = \frac{(n-1)!}{\lambda(m+1)} \sum_{i=0}^{m} \frac{1}{v_{i}(v_{i}+1)K(v_{i}+n-1)},$$
(6.11)

где $v_j = (j+1)/(m+1)$.

Решение типовых задач

Задача 6.1. Для повышения надежности усилителя все его элементы дублированы. Предполагается, что справедлив экспоненциальный закон надежности для элементов системы. Необходимо найти вероятность безотказной работы усилителя в течение t=5000 ч. Состав элементов нерезервированного усилителя и данные по интенсивности отказов элементов приведены в табл. 6.1.

Таблица 6.1

Элементы	Количество элементов	Интенсивность отказов элемента λ , 10^{-5} 1/ч
Транзисторы	1	2,16
Резисторы	5	0,23
Конденсаторы	3	0,32
Диоды	. 1	0,78
Катушки индуктивности	1	0,09

<u>Решение</u>. В рассматриваемом случае имеет место раздельное резервирование с кратностью $m_i=m=1$, число элементов нерезервированного усилителя n=11. Тогда, используя данные табл. 6.1, на основании формулы (6.8) получим

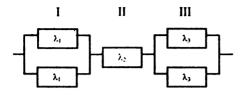
$$P_c(5000) = \prod_{i=1}^{11} \left\{ 1 - \left[e^{-\lambda_i \cdot 5000} \right]^2 \right\}.$$

Так как λ_i <<1, то для приближенного вычисления показательную функцию можно разложить в ряд и ограничиться первыми двумя членами разложения:

$$\begin{split} &1\text{-exp}(-5000\lambda_i)\approx 5000\lambda_i.\\ &\text{Тогда}\\ &P_c(5000)\approx \prod_{i=1}^{11}\left[1-\left(5000\lambda_i\right)^2\right]\approx 1-\sum_{i=1}^{11}(5000\lambda_i)^2=1-5000^2\cdot\sum_{i=1}^{11}\lambda_i^2=\\ &=1-25\cdot 10^{-6}[2,16^2+5\cdot 0,23^2+3\cdot 0,32^2+0,78^2+0,09^2]\cdot 10^{-10}\approx 0,985. \end{split}$$

Задача 6.2. Схема расчета надежности резервированного устройства приведена на рис. 6.2. Интенсивности отказов элементов имеют следующие значения: λ_1 =0,23·10⁻³ 1/ч; λ_2 =0,5·10⁻⁴ 1/ч; λ_3 =0,4·10⁻³ 1/ч. Предполагается, что спра-

ведлив экспоненциальный закон надежности для элементов системы. Необходимо найти среднее время безотказной работы устройства, вероятность безотказной работы устройства, интенсивность отказов устройства.



Оис. 6.2

Решение.

Имеем

$$m_{ic} = \int_{0}^{a} p_{c}(t)dt. \tag{6.12}$$

где P_c(t) - вероятность безотказной работы устройства. Очевидно, что

$$P_{c}(t) = P_{I}(t) \cdot P_{II}(t) \cdot P_{III}(t). \tag{6.13}$$

Здесь $P_{I}(t)$, $P_{II}(t)$, $P_{III}(t)$ – вероятность безотказной работы I, II и III группы элементов.

$$\begin{split} P_{I}(t) &= 1 - q_{I}(t); \ q_{I}(t) = [1 - P_{I}(t)]^{2}; \\ P_{I}(t) &= 1 - [1 - P_{I}(t)]^{2} = 2P_{I}(t) - P_{I}^{2}(t); \\ P_{II}(t) &= P_{2}(t); \\ P_{III}(t) &= 1 - q_{III}(t); \ q_{III}(t) = [1 - P_{3}(t)]^{2}; \\ P_{III}(t) &= 1 - [1 - P_{3}(t)]^{2} = 2P_{3}(t) - P_{3}^{2}(t). \end{split}$$

Из (16.13) имеем

$$\begin{split} &P_c(t) = [2P_1(t) - P_1^2(t)]P_2(t) \ [2P_3(t) - P_3^2(t)] = \\ &= 4P_1(t) \ P_2(t) \ P_3(t) - 2P_1^2(t)P_2(t) \ P_3(t) - 2P_1(t)P_2(t) \ P_3^2(t) + P_1^2(t)P_2(t) \ P_3^2(t). \end{split}$$

Так как
$$P_1(t) = e^{-\lambda_1 t}$$
; $P_2(t) = e^{-\lambda_2 t}$; $P_3(t) = e^{-\lambda_3 t}$, то

$$P_{c}(t) = 4e^{-(\lambda_{1}+\lambda_{2}+\lambda_{3})t} - 2e^{-(2\lambda_{1}+\lambda_{2}+\lambda_{3})t} - e^{-(\lambda_{1}+\lambda_{2}+2\lambda_{3})t} + e^{-(2\lambda_{1}+\lambda_{2}+2\lambda_{3})t}$$

или

$$P_{c}(t) = 4e^{-0.68 \cdot 0.001 \cdot t} - 2e^{-0.91 \cdot 0.001 \cdot t} - 2e^{-1.08 \cdot 0.001 \cdot t} + e^{-1.31 \cdot 0.001 \cdot t}$$
(6 14)

Подставляя (6.14) в (6.12), получим
$$m_{_{1c}} = \frac{4}{\lambda_{_1} + \lambda_{_2} + \lambda_{_3}} - \frac{2}{2\lambda_{_1} + \lambda_{_2} + \lambda_{_3}} - \frac{2}{\lambda_{_1} + \lambda_{_2} + 2\lambda_{_3}} + \frac{1}{2\lambda_{_1} + \lambda_{_2} + 2\lambda_{_3}}$$

или

$$m_{\kappa} = \frac{4}{10^{-3}(0.23 + 0.05 + 0.4)} - \frac{2}{10^{-3}(0.46 + 0.05 + 0.4)} - \frac{2}{10^{-3}(0.46 + 0.05 + 0.4)} = \frac{2}{10^{-3}(0.23 + 0.05 + 0.8)} + \frac{1}{10^{-3}(0.46 + 0.05 + 0.8)} \approx 2590 \text{ y.}$$

Известно, что

$$\lambda_{c}(t) = \frac{f_{c}(t)}{\beta(t)}. \tag{6.15}$$

Определим

$$f_{\epsilon}(t) = -\frac{d\mathbf{p}_{\epsilon}(t)}{dt} = 4(\lambda_{1} + \lambda_{2} + \lambda_{3})e^{-(\lambda_{1} + \lambda_{2} + \lambda_{3})t} - 2(2\lambda_{1} + \lambda_{2} + \lambda_{3})e^{-(2\lambda_{1} + \lambda_{2} + \lambda_{3})t} - \\
-2(\lambda_{1} + \lambda_{2} + 2\lambda_{3})e^{-(\lambda_{1} + \lambda_{2} + 2\lambda_{3})t} + (2\lambda_{1} + \lambda_{2} + 2\lambda_{3})e^{-(2\lambda_{1} + \lambda_{2} + 2\lambda_{3})t}$$
(6.16)

или

$$f_c(t) = 10^{-3} (2,72e^{-0.51 \cdot 10^{-3}t} - 1,82e^{-0.91 \cdot 10^{-3}t} - 2,16e^{-1.001 \cdot 10^{-3}t} + 1,31e^{-1.31 \cdot 10^{-3}t}).$$

Из (6.15) получим

$$\lambda_{c}(t) = \frac{10^{-3} \left(2,72e^{-0.68+0^{-3}t} - 1,82e^{-0.91+10^{-3}t} - 2,16e^{-1.08+0^{-3}t} + 1,31e^{-1.31+10^{-3}t} \right)}{4e^{-0.68+0^{-3}t} - 2e^{-0.91+0^{-3}t} - 2e^{-1.08+0^{-3}t} + e^{-1.31+0^{-3}t}}.$$

Задача 6.3. Схема расчета надежности устройства приведена на рис. 6.3. Предполагается, что справедлив экспоненциальный закон надежности для элементов устройства и все элементы устройства равнонадежны. Интенсивность отказов элемента $\lambda=1,33\cdot10^{-3}1/4$. Требуется определить $f_c(t)$, m_{tc} , $P_c(t)$, $\lambda_c(t)$ резервированного устройства.

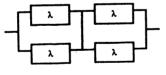


Рис. 6.3

Решение

$$m_{\kappa} = \int_{0}^{\infty} p_{\kappa}(t)dt; \qquad (6.17)$$

$$\begin{split} &P_c(t) \!\!=\!\! P_I(t) \! \cdot \! P_{II}(t) \!\!=\!\! P_I^2(t), \quad \text{t.k. } P_I(t) \!\!=\!\! P_{II}(t); \\ &P_I(t) \!\!=\!\! 1 \!\!-\!\! q_I(t); \quad q_I(t) \!\!=\!\! q^2(t); \quad q(t) \!\!=\!\! 1 \!\!-\!\! P(t); \quad P(t) \!\!=\!\! e^{-\lambda t}, \\ &q(t) \!\!=\!\! 1 \!\!-\!\! e^{-\lambda t}; \quad q_I(t) \!\!=\!\! (1 \!\!-\! e^{-\lambda t})^2; \quad P_I(t) \!\!=\!\! 1 \!\!-\!\! (1 \!\!-\! e^{-\lambda t})^2; \\ &P_c(t) \!\!=\!\! [1 \!\!-\!\! (1 \!\!-\! e^{-\lambda t})^2]^2 \end{split}$$

или

$$P_c(t) = (1-1+2e^{-\lambda t}-e^{-2\lambda t})^2 = 4e^{-2\lambda t}-4e^{-3\lambda t}+e^{-4\lambda t}$$
. (6.18) Подставляя (6.18) в (6.17), получим

37

$$\begin{split} m_{tc} &= \int\limits_{0}^{1} (4e^{-2\lambda t} - 4e^{-3\lambda t} + e^{-4\lambda t}) dt = \frac{2}{\lambda} \cdot \cdot \frac{4}{3\lambda} + \frac{1}{4\lambda} = \frac{11}{12\lambda}; \\ m_{tc} &= \frac{11}{12 \cdot 133 \cdot 10^{-3}} = 690 \text{ y}. \end{split}$$

Определим

$$f_c(t) = -\frac{dp_c(t)}{dt} = 8\lambda e^{-2\lambda t} - 12\lambda e^{-3\lambda t} + 4\lambda e^{-4\lambda t} = 4\lambda e^{-2\lambda t} (2 - 3e^{-\lambda t} + e^{-2\lambda t}).$$

Имеем

$$\begin{split} &\lambda_{c}(t) = \frac{f_{c}(t)}{p_{c}(t)} = \frac{4\lambda \cdot e^{-2\lambda t} \left(2 - 3e^{-\lambda t} + e^{-2\lambda t}\right)}{e^{-2\lambda t} \left(4 - 4e^{-\lambda t} + e^{-2\lambda t}\right)} = \\ &= \frac{4\lambda \cdot \left(2 - 3e^{-\lambda t} + e^{-2\lambda t}\right)}{\left(2 - e^{-\lambda t}\right)^{2}} = \frac{4\lambda \cdot \left(1 - e^{-\lambda t}\right) \cdot \left(2 - e^{-\lambda t}\right)}{\left(2 - e^{-\lambda t}\right)^{2}} = \frac{4\lambda \cdot \left(1 - e^{-\lambda t}\right)}{2 - e^{-\lambda t}}. \end{split}$$

Задача 6.4. Нерезервированная система управления состоит из n=5000 элементов. Для повышения надежности системы предполагается провести раздельное дублирование элементов. Чтобы приближенно оценить возможность достижения заданной вероятности безотказной работы системы $P_c(t)=0.9$ при t=10 ч, необходимо рассчитать среднюю интенсивность отказов одного элемента при предположении отсутствия последействия отказов.

<u>Решение.</u> Имеем вероятность безотказной работы системы при раздельном дублировании и равнонадежных элементах

$$\mathbf{p}_{c}(t) = \left\{ \mathbf{l} - \left[\mathbf{l} - \mathbf{p}(t) \right]^{2} \right\}^{n}$$

где P(t) - вероятность безотказной работы одного элемента.

Так как должно быть

$$\left\{1-\left[1-p(t)\right]^2\right\}^n\geq 0.9,$$

TO

$$p(t) \ge 1 - \sqrt{1 - \sqrt[9]{0.9}}$$

Разложим $\sqrt[9]{0.9} = (1-0.1)^{1/n}$ по степени 1/n в ряд и, пренебрегая членами ряда высшего порядка малости, получим

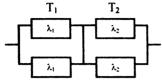
$$(1-0,1)^{1/5000} \approx 1 - \frac{1}{5000} \cdot 0, 1 = 1 - 2 \cdot 10^{-5}$$

Учитывая, что $P(t) = \exp(-\lambda t) \approx 1 - \lambda t$, интенсивность отказов элемента $\lambda \le \frac{1}{t} \sqrt{1 - \sqrt[4]{0.9}} = \frac{1}{10} \sqrt{1 - 1 + 2 \cdot 10^{-5}} \approx 4.4 \cdot 10^{-4}$ 1/ч.

Задачи для самостоятельного решения

<u>Задача 6.5.</u> Схема расчета надежности устройства показана на рис.6.4. Предполагается, что справедлив экспоненциальный закон надежности для эле-

ментов устройства. Интенсивности отказов элементов имеют следующие значения: λ_1 =0,3·10⁻³ 1/ч, λ_2 =0,7·10⁻³ 1/ч. Необходимо определить вероятность безотказной работы устройства в течение времени t=100 ч, среднее время безотказной работы, частоту отказов и интенсивность отказов в момент времени t=100 ч.



Дис. 6.4

Задача 6.6. Схема расчета надежности приведена на рис. 6.5. Предполагается, что справедлив экспоненциальный закон надежности для элементов изделия. Требуется определить интенсивность отказов изделия, если интенсивности отказов элементов имеют следующие значения: λ_1 =0,23·10⁻³ 1/ч, λ_2 =0,17·10⁻³ 1/ч.

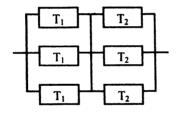
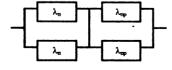


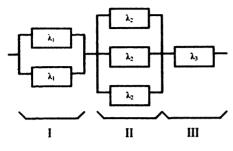
Рис. 6.5

Задача 6.7. В телевизионном канале связи, состоящем из приемника и передатчика, применено раздельное дублирование передатчика и приемника. Передатчик и приемник имеют интенсивности отказов $\lambda_n=2\cdot 10^{-3}$ 1/ч и $\lambda_{np}=1\cdot 10^{-3}$ 1/ч соответственно. Схема канала представлена на рис. 6.6. Требуется определить вероятность безотказной работы канала $P_c(t)$, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$.



Dис. 6.6

Задача 6.8. Схема расчета надежности системы показана на рис. 6.7, где также приведены интенсивности отказов элементов. Требуется определить вероятность безотказной работы системы $P_c(t)$ и частоту отказов $f_c(t)$.



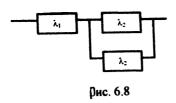
Dис. 6.7

Задача 6.9. Радиоэлектронная аппаратура состоит из трех блоков: I, II и III. Интенсивности отказов для этих трех блоков соответственно равны λ_1 , λ_2 , λ_3 . Требуется определить вероятность безотказной работы аппаратуры $P_c(t)$ для следующих случаев: а) резерв отсутствует; б) имеется дублирование каждого блока.

Задача 6.10. Нерезервированная система управления состоит из n=4000 элементов. Известна требуемая вероятность безотказной работы системы $P_c(t)=0.9$ при t=100 ч. Необходимо рассчитать допустимую среднюю интенсивность отказов одного элемента, считая элементы равнонадежными, для того чтобы приближенно оценить достижение заданной вероятности безотказной работы при отсутствии профилактических осмотров в следующих случаях: а) резервирование отсутствует; б) применено раздельное (поэлементное) дублирование.

Задача 6.11. В радиопередатчике, состоящем из трех равнонадежных каскадов (n=3) применено раздельное дублирование каждого каскада. Интенсивность отказов каскадов λ =5·10⁻⁴ 1/ч. Рассчитать вероятность безотказной работы $P_c(t)$ в течение времени t=100 ч и среднее время безотказной работы m_{tc} радиопередатчика.

Задача 6.12. Вычислитель состоит из двух блоков, соединенных последовательно, и характеризуется соответственно интенсивностями отказов λ_1 =120,54·10⁻⁶ 1/ч и λ_2 =185,66·10⁻⁶ 1/ч. Выполнено пассивное поэлементное резервирование с неизпенной нагрузкой блока 2 (см. рис. 6.8). Требуется определить вероятность безотказной работы $P_c(t)$ вычислителя, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$ вычислителя. Следует также определить $P_c(t)$ при t=20 ч.



Задача 6.13. Вычислительное устройство состоит из n=3 одинаковых блоков, к каждому из которых подключен блок в нагруженном резерве. Интенсивность отказов каждого блока $\lambda = 10^{-4}$ 1/ч. Требуется определить вероятность безотказной работы $P_c(t)$ устройства и среднее время безотказной работы устройства m_{tc} .

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7

Резервирование с дробной кратностью и постоянно включенным резервом

Теоретические сведения

Резервированная система состоит из ℓ отдельных систем (рис. 7.1). Для ее нормальной работы необходимо, чтобы исправными были не менее чем ℓ систем. Кратность резервирования такой системы

$$m = \frac{l-h}{h}. \tag{7.1}$$

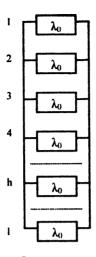


Рис. 7.1

Предполагается, что основные и все резервные системы равнонадежны. Вероятность безотказной работы резервированной системы :

$$P_{C}(t) = \sum_{i=0}^{1-h} C_{i}^{i} P_{0}^{1-i}(t) \sum_{j=0}^{i} (-1)^{j} C_{i}^{j} P_{0}^{j}(t)$$

где

$$C_{i}^{i} = \frac{I!}{i! (1-i)!}$$
 (7.2)

здесь $P_o(t)$ - вероятность безотказной работы основной системы или любой резервной системы; l - общее число основных и резервных систем; h — число систем, необходимых для нормальной работы.

На рис. $7.1~\lambda_0$ есть интенсивность отказов любой одной из систем. Предположим, что для любой отдельно взятой системы справедлив экспоненциальный закон надежности, т.е.

$$P_0(t) = e^- (7.3)$$

Среднее время безотказной работы системы

$$m_{ic} = \int_{0}^{\infty} P_{c}(t)dt = \frac{1}{\lambda_{i0}} \sum_{0}^{h} \frac{1}{h+i}$$
 (7.4)

Решение типовых задач

Задача 7.1. Система электроснабжения блока ЭВМ состоит из четырех генераторов, номинальная мощность каждого из которых 18 кВт. Безаварийная работа блока еще возможна, если система электроснабжения может обеспечивать потребителя мощностью 30 кВт. Необходимо определить вероятность безотказной работы системы энергоснабжения в течение времени $t=600^\circ$ с, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ системы энергоснабжения, если интенсивность отказов каждого из генераторов $\lambda=0,5\cdot10^{-3}$ 1/4.

Решение. Мощности двух генераторов достаточно для питания блока ЭЦВМ, так как их суммарная мощность составляет 36 кВт. Это означает, что отказ системы электроснабжения не наступит, если откажут один или два любых генератора, т.е. произойдет резервирование с дробной кратностью m=2/2 при общем числе устройств, равном 4. На основании формулы (7.2) имеем

$$\begin{split} &P_{c}(t) = \sum_{i=0}^{2} C_{4}^{i} P_{0}^{4-i}(t) \sum_{j=0}^{i} (-1)^{j} C_{i}^{j} P_{0}^{j}(t) = \\ &= C_{4}^{0} P_{0}^{4}(t) C_{0}^{0} P_{0}^{0}(t) + C_{4}^{1} P_{0}^{3}(t) \cdot \left[C_{1}^{0} P_{0}^{0}(t) - C_{1}^{1} P_{0}^{i}(t) \right] + \\ &+ C_{4}^{2} P_{0}^{2}(t) \cdot \left[C_{2}^{0} P_{0}^{i}(t) - C_{2}^{1} P_{0}^{i}(t) + C_{2}^{2} P_{0}^{2}(t) \right]. \end{split}$$

Так как

$$C_4^0=1$$
; $C_0^0=1$; $C_4^1=4$; $C_1^0=1$; $C_1^1=1$; $C_4^2=6$; $C_2^0=1$; $C_2^1=2$; $C_2^2=1$,

TO

$$P_c(t)=6P_0^2(t)-8P_0^3(t)+3P_0^4(t)$$
.

Так как $P_0(t)$ =exp(- λt), то $P_c(t)$ =6e $^{-2\lambda t}$ - 8e $^{-3\lambda t}$ +3e $^{-4\lambda t}$.

Для данных нашей задачи $\lambda t=0,09$. Тогда

 $P_c(600)=0,997.$

Найдем среднее время безотказной работы на основании формулы (7.4)

$$m_{u} = \frac{1}{\lambda} \sum_{i=0}^{2} \frac{1}{2+i} = \frac{13}{12 \lambda} \approx 7220 \quad q.$$

Определим частоту отказов

$$f_c(t) = -\frac{dP_c(t)}{dt} = 12\lambda \cdot e^{-2\lambda \cdot t} - 24\lambda \cdot e^{-3\lambda \cdot t} + 12\lambda \cdot e^{-4\lambda \cdot t}$$

Получим интенсивность отказов

$$\lambda_{c}(t) = \frac{f_{c}(t)}{P_{c}(t)} = \frac{12 \lambda \cdot (1 - 2e^{-\lambda t} + e^{-2\lambda \cdot t})}{6 - 8e^{-\lambda t} + 3e^{-2\lambda \cdot t}}$$

Задача 7.2. Для повышения точности измерения некоторой величины применена схема группирования приборов из пяти по три, т.е. результат измерения считается верным по показанию среднего (третьего) прибора. Требуется найти вероятность безотказной работы $P_c(t)$, среднее время безотказной работы

 m_{tc} такой системы, а также частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$ системы, если интенсивность отказов каждого прибора $\lambda=0.4\cdot 10^{-3}$ 1/ч.

Решение. В данном случае измерительная система отказывает в том случае, если откажут из пяти приборов три и более, т.е. имеет место общее резервирование дробной кратности, когда общее число приборов 1=5, число приборов, необходимых для нормальной работы, h=3, а кратность резервирования m=2/3.

Используя формулу (7.2), получим

$$\begin{split} &P_c(t) = \sum_{i=0}^{l-h} C_1^i P_0^{l-i}(t) \sum_{j=0}^i (-1)^j C_i^j P_0^j(t) = \sum_{i=0}^2 C_5^i P_0^{5-i}(t) \sum_{j=0}^i (-1)^j C_i^j P_0^j(t) = \\ &= C_5^o P_0^5(t) \cdot C_0^o P_0^o(t) + C_5^t P_0^4(t) \Big[C_1^o P_0^o(t) - C_1^l P_0^l(t) \Big] + C_5^2 P_0^3(t) \Big[C_2^o P_0^o(t) - C_2^l P_0^l(t) + C_2^2 P_0^2(t) \Big], \end{split}$$

Так как

$$C_5^0 = 1$$
; $C_0^0 = 1$; $C_5^1 = 5$; $C_1^0 = 1$; $C_1^1 = 1$; $C_5^2 = 10$; $C_2^0 = 1$; $C_2^1 = 2$; $C_2^2 = 1$,

то

$$\begin{split} &P_{C}(t) = P_{0}^{5}(t) + 5P_{0}^{4}(t)[1 - P_{0}(t)] + 10P_{0}^{3}(t)[1 - 2P_{0}(t) + P_{0}^{2}(t)] = \\ &= 6P_{0}^{5}(t) - 15P_{0}^{4}(t) + 10P_{0}^{3}(t). \end{split}$$

Так как $P_0(t) = \exp(-\lambda t)$, то

$$P_c(t) = 6e^{-5\lambda t} - 15e^{-4\lambda t} + 10e^{-3\lambda t}$$

Найдем среднее время безотказной работы на основании формулы (7.4)

$$m_{ic} = \frac{1}{\lambda} \sum_{i=0}^{2} \frac{1}{3+i} = \frac{1}{\lambda_0} \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right) = \frac{47}{60\lambda} = 1958 \text{ q}.$$

Определим частоту отказов

$$f_{e}(t) = -\frac{dP_{e}(t)}{dt} = -30 \lambda \cdot e^{-5\lambda\lambda} - 60 \lambda \cdot e^{-} + 30 \lambda \cdot e^{-3\lambda\lambda} =$$

$$= 30\lambda e^{-3\lambda t} (e^{-2\lambda t} - 2e^{-\lambda t} + 1) = 30\lambda e^{-3\lambda t} (1 - e^{-\lambda t})^{2}.$$

Получим интенсивность отказов

$$\lambda_{c}(t) = \frac{f_{c}(t)}{P_{c}(t)} = \frac{30 \lambda (1 - e^{-\lambda t})^{2}}{6 e^{-2\lambda t} - 15 e^{-\lambda t} + 10}.$$

Задачи для самостоятельного решения

Задача 7.3. Интенсивность отказов измерительного прибора λ =0,83·10⁻³ 1/ч. Для повышения точности измерения применена схема группирования из трех по два (m=1/2). Необходимо определить вероятность безотказной работы схемы $P_c(t)$, среднее время безотказной работы схемы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ схемы.

Задача 7.4. Интенсивность отказов измерительного прибора λ =0,83·10⁻³ 1/ч. Для повышения точности измерения применена схема группирования из пяти по три (m=2/3). Необходимо определить вероятность безотказ-

ной работы схемы $P_c(t)$, частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ схемы.

Задача 7.5. Автомобильный двигатель имеет t=4 свечи зажигания по одной на каждый цилиндр. Интенсивность отказов свечи $\lambda=10^{-3}\cdot 1/4$, а длительность работы двигателя в течение всего путешествия t=20 ч. Предполагается, что автомобиль может ехать также при одном неработающем цилиндре. Необходимо определить вероятность безотказной работы двигателя $P_c(t)$, среднее время безотказной работы двигателя m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ двигателя. Вычислить вероятность того, что автомобиль доставит туристов в пункт назначения без замены свечей.

Задача 7.6. В вычислительном устройстве применено резервирование с дробной кратностью "один из трех" Интенсивность отказов одного нерезервированного блока равна: λ_0 =4·10⁻³ 1/ч. Требуется рассчитать вероятность безот-казной работы устройства $P_c(t)$ и среднее время безотказной работы m_{tc} резервированного вычислительного устройства.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 8

Скользящее резервирование при экспоненциальном законе надежности

Теоретические сведения

Вероятность безотказной работы резервированной системы

$$P_{c}(t) = e^{-} \sum_{i=0}^{m_{c}} \frac{(\lambda_{o} t)^{i}}{i!},$$
 (8.1)

где λ_0 = $n\lambda$ интенсивность отказов нерезервированной системы; λ - интенсивность отказа элемента, n - число элементов основной системы; m_0 - число резервных элементов, находящихся в ненагруженном резерве.

В этом случае кратность резервирования

$$m=m_0/n$$
. (8.2)

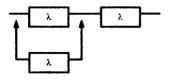
Среднее время безотказной работы резервированной системы $m_{tc} = T_0(m_0 + 1),$ (8.3)

где Т₀ - среднее время безотказной работы нерезервированной системы.

Решение типовых задач

Задача 8.1. Система состоит из двух одинаковых элементов. Для повышения ее надежности конструктор предложил скользящее резервирование при одном резервном элементе, находящемся в ненагруженном состоянии (рис. 8.1). Интенсивность отказов элемента равна λ . Требуется найти вероят-

ность безотказной работы $P_c(t)$ резервированной системы, среднее время безотказной работы m_{tc} системы, а также частоту отказов $f_c(t)$ и интенсивность отказов $\lambda_c(t)$ резервированной системы.



Duc 8.1

<u>Решение.</u> В рассматриваемом случае n=2; $m_0=1$; $\lambda_0=n\lambda=2\lambda$. На основании формулы (8.1) имеем

$$P_{c}(t) = e^{-}$$
 $\sum_{i=0}^{1} \frac{(\lambda_{0}t)^{i}}{i!} = e^{-\lambda_{0}t}(1 + \lambda_{0}t)$

или

$$P_c(t) = e^{-2 \lambda t} (1 + 2 \lambda t)$$

Определим среднее время безотказной работы

$$m_{c} = T_{0}(m_{0} + 1); T_{0} = \frac{1}{\lambda_{0}},$$

или

$$m_{tc} = \frac{1}{2 \cdot \lambda} \cdot 2 = \frac{1}{\lambda}$$

Имеем частоту отказов

$$f_c(t) = -\frac{dP_c(t)}{dt} = -\left[-2 \cdot \lambda \cdot e^{-2\lambda \cdot t} (1 + 2 \cdot \lambda \cdot t) + 2 \cdot \lambda \cdot e^{-2\lambda \cdot t}\right],$$

или

$$f_c(t) = 4 \lambda^2 \cdot t \cdot e^{-t}$$

Определим интенсивность отказов

$$\lambda_c(t) = \frac{f_c(t)}{P_c(t)} = \frac{4 \cdot \lambda^2 \cdot t}{1 + 2 \cdot \lambda \cdot t}$$

Задача 8.2. Цифровая вычислительная машина состоит из 1024 однотилных ячеек и сконструирована так, что есть возможность заменить любую из отказавших ячеек. В составе ЗИП имеется 3 ячейки, каждая из которых может заменить любую отказавшую. Требуется определить вероятность безотказной работы ЦВМ $P_c(t)$, среднее время безотказной работы m_{tc} , частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$. Также требуется определить $P_c(t)$ при t=10000 ч. Известно, что интенсивность отказов ячейки $\lambda=0,12\cdot10^{-6}$ 1/ч. Под отказом будем понимать событие, когда ЦВМ не может работать из-за отсутствия ЗИПа, т.е. когда весь ЗИП израсходован и отказала еще одна ячейка памяти ЦВМ.

Решение. Так как любая ячейка из состава ЗИПа может заменить любую отказавшую ячейку ЦВМ, то имеет место "скользящее" резервирование. В нашем случае число элементов основной системы n=1024, интенсивность отказов нерезервированной системы λ_0 = $n\lambda$ =1024-0,12- $10^{-6}\approx 1$,23- 10^{-4} 1/ч, число резервных элементов m_0 =3. На основании формулы (8.1) имеем

$$P_{c}(t) = e^{-\lambda_{0} \cdot t} \sum_{i=0}^{3} \frac{(\lambda_{0} \cdot t)^{i}}{i!} = e^{-\lambda_{0} \cdot t} \cdot (1 + \lambda_{0} \cdot t + \frac{\lambda_{0}^{2} \cdot t^{2}}{2} + \frac{\lambda_{0}^{3} \cdot t^{3}}{6}).$$

Определим время безотказной работы

$$m_{tc} = T_0 \cdot (m_0 + 1); T_0 = \frac{1}{\lambda_0},$$

или

$$m_{tc} = \frac{1}{1.23 \cdot 10^{-4}} (3 + 1) \approx 32500 \text{ 4.}$$

Имеем частоту отказов

$$f_c(t) = -\frac{dP_c(t)}{dt} = \frac{1}{6} \cdot \lambda_0^4 \cdot t^3 \cdot e^{-\lambda_0 \cdot t}$$

Получим интенсивность отказов

$$\lambda_{c}(t) = \frac{f_{c}(t)}{P_{c}(t)} = \frac{1}{6} \cdot \frac{\lambda_{0}^{4} \cdot t^{3}}{1 + \lambda_{0} \cdot t + \frac{\lambda_{0}^{2} \cdot t^{2}}{2} + \frac{\lambda_{0}^{3} \cdot t^{3}}{6}}.$$

Определим вероятность безотказной работы при t=10000 ч

$$P_c(t) \approx e^{-1.23 \cdot 10^{-4} \cdot 10^4} \cdot \left[1 + 1.23 \cdot 10^{-4} \cdot 10^4 + \frac{(1.23 \cdot 10^{-4} \cdot 10^4)^2}{2} + \frac{(1.23 \cdot 10^{-4} \cdot 10^4)^3}{6}\right] \approx 0.96.$$

Задачи для самостоятельного решения

Задача 8.3. Машина состоит из 1024 стандартных ячеек и множества других элементов. В ЗИПе имеется еще две однотипные ячейки, которые могут заменить любую из отказавших. Все элементы, кроме указанных теек, идеальные в смысле надежности. Известно, что интенсивность отказов ячеек есть величина постоянная, а среднее время безотказной работы машины с учетом двух запасных ячеек m_{tc} =60 ч. Предполагается, что машина допускает короткий перерыв в работе на время отказавших ячеек. Требуется определить среднее время безотказной работы одной ячейки m_t = m_{ti} , i=1,1024. Также следует определить вероятность безотказной работы резервированной системы.

Задауа 8.4. Система состоит из п однотипных элементов, каждый из которых имеєт среднее время безотказной работы $m_{ii}=m_i=1/\lambda$, $i=\overline{1,n}$. Для повышения надежности применено скользящее резервирование, при котором m_0 резервных элементов находятся в ненагруженном режиме. Необходимо найти

среднее время безотказной работы резервированной системы m_{tc} . Определить вероятность безотказной работы резервированной системы $P_c(t)$, если m_0 =2, а также частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$ резервированной системы.

Задача 8.5. Бортовая аппаратура спутника включает в себя аппаратуру связи, командную и телеметрическую системы, систему питания и систему ориентации. Аппаратура связи состоит из двух работающих ретрансляторов и одного ретранслятора в ненагруженном резерве. Переключающее устройство предполагается абсолютно надежным. Командная система имеет постоянное резервирование. Системы питания, ориентации и телеметрии резерва не имеют. Заданы интенсивности отказа: каждого комплекта ретранслятора λ_1 , командной системы λ_2 , системы телеметрии λ_3 , системы питания λ_4 и системы ориентации λ_5 . Требуется определить вероятность безотказной работы $P_c(t)$ бортовой аппаратуры спутника. Логическая схема для расчета надежности бортовой аппаратуры спутника представлена на рис. 8.2. Здесь I - аппаратура ретранслятора, II - командная система, III - остальные системы.

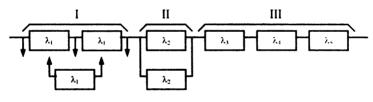


Рис. 8.2

Задача 8.6. Блок усилителей промышленной частоты включает в себя n=4 последовательно соединенных усилителя и один усилитель в ненагруженном резерве. Интенсивность отказов каждого работающего усилителя $\lambda=6\cdot10^{-4}$ 1/ч. Определить вероятность безотказной работы $P_c(t)$ резервированной системы, среднее время безотказной работы m_{tc} системы, частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$. Вычислить также $P_c(t)$ при t=100 ч.

Задача 8.7. Блок телеметрии включает в себя два одинаковых приемника. Интенсивность отказов каждого приемника составляет λ =4·10⁻⁴ 1/ч. Имеется один приемник в ненагруженном скользящем резерве. Определить вероятность безотказной работы $P_c(t)$ резервированной системы, среднее время безотказной работы m_{tc} системы, частоту отказов $f_c(t)$, интенсивность отказов $\lambda_c(t)$. Вычислить также $P_c(t)$ при t=250 ч и $P_c(t)$, когда резерв отсутствует.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 9

<u>Расчет показателей надежности резервированных</u> устройств с учетом восстановления

Теоретические сведения

Резервирование, при котором возможно восстановление отказавших элементов, является эффективным средством повышения надежности. Отказ резервированной группы с восстановлением произойдет, если все элементы, составляющие группу, ремонтируются.

При резервировании с восстановлением резерв как бы все время пополняется восстанавливаемыми блоками.

Показатели надежности, как правило, определяются при условии, что в момент включения все элементы работоспособны.

Наиболее часто используются два метода расчета надежности восстанавливаемых систем, которые условно называются: метод интегральных уравнений и метод дифференциальных уравнений.

Рассмотрим в дальнейшем 2-й метод. В методе дифференциальных уравнений использовано допущение о показательных распределениях времени между отказами и восстановлением.

Вначале перечисляются возможные состояния системы и составляется ее математическая (логическая) модель в виде схемы состояний, на которой прямоугольниками или кружками изображаются возможные состояния и стрелками - возможные направления переходов из одного состояния в другое. По схеме состояний составляют систему дифференциальных уравнений для вероятностей состояний.

Для этого целесообразно использовать следующие правила:

- левые части уравнений содержат производные по времени вероятностей соответствующих состояний $\hat{P_j}(t)$, а каждый член правой части уравнения получается путем умножения интенсивности перехода, стоящей над стрелкой, связанной с данным состоянием, на соответствующую вероятность состояния;
- знак зависит от направления стрелки (плюс, если стрелка направлена острием к состоянию, и минус в противном случае);
- число уравнений равно числу состояний; система дифференциальных уравнений должна быть дополнена нормировочным условием, заключающемся в том, что сумма вероятностей всех состояний равна единице.

Решение системы дифференциальных уравнений с помощью преобразований Лапласа или каким-либо другим методом позволяет определить требуемые показатели надежности.

Когда перерывы в работе системы допустимы, в качестве показателей надежности используют функцию готовности $K_r(t)$ и функцию простоя $K_n(t)$ или коэффициенты готовности K_r и простоя K_n , определяемые в виде

$$K_{\Gamma} = \lim_{t \to \infty} K_{\Gamma}(t),$$

$$K_{\Pi} = \lim_{t \to \infty} K_{\Pi}(t).$$
(9.1)

Функция готовности $K_r(t)$ равна вероятности того, что в момент времени t система исправна. Функция простоя $K_n(t)$ равна вероятности того, что в момент времени t система неисправна.

Имеют место соотношения

$$K_r(t)+K_r(t)=1;$$

 $K_r+K_n=1.$ (9.2)

Часто рассматривают установивший режим эксплуатации при $t\to\infty$ Тогда $\dot{P_i}(t)=0$ и система дифференциальных уравнений переходят в систему алгебраических уравнений.

Когда перерывы в работе системы недопустимы, в качестве показателей надежности используются условные вероятности непрерывной безотказной работы в течение заданного времени выполнения задачи $\widetilde{P}(t_i)$ при условии, что в начальный момент времени все элементы системы работоспособны. В рассматриваемом случае имеются "поглощающие" состояния и необходимо решить полную систему дифференциальных уравнений при соответствующих начальных условиях.

При нескольких работоспособных состояниях

$$K_{\Gamma}(t) = \sum_{j=1}^{n} P_{j}(t),$$
 (9.3)

где n – число работоспособных состояний; $P_j(t)$ – вероятность j-го работоспособного состояния.

Часто число неработоспособных состояний значительно меньше числа работоспособных. При этом удобнее вычислять коэффициент простоя

$$K_{\Pi}(t) = \sum_{i=1}^{n-1} P_i(t),$$
 (9.4)

где $P_l(t)$ — вероятность l—го неработоспособного состояния; m+1 — общее число состояний.

Особенности расчета резервированных систем

Система, состоящая из равнонадежных одного основного и k резервных элементов, может находиться в любом из (k+2) состояний: 0 — все элементы работоспособны; 1 — один элемент в неработоспособном состоянии; j — когда j

элементов в неработоспособном состоянии; k+1 – когда (k+1) элементов в неработоспособном состоянии.

Предполагается, что при замене работающего элемента на резервный перерыва в работе системы не происходит, поэтому отказ системы наступает при одновременной неработоспособности основного и всех резервных элементов (состояние k+1).

Рассмотрим случай ненагруженного резерва с абсолютно надежным переключателем и с одной ремонтной бригадой, обслуживающей систему (ограниченное восстановление). По предположению, элементы в ненагруженном резерве имеют интенсивность отказов λ =0. Если число неработоспособных элементов оказывается больше одного, то существует очередь на ремонт.

Схема состояний системы представлена на рис. 9.1. Система дифференциальных уравнений имеет следующий вид:

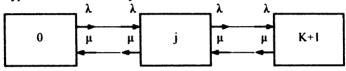


Рис. 9.1

$$\dot{\mathbf{P}}_{0}(t) = -\lambda \mathbf{P}_{0}(t) + \mu \cdot \mathbf{P}_{1}(t);$$

$$\dot{P}_{j}(t) = \lambda P_{j-1}(t) - (\lambda + \mu) P_{j}(t) + \mu P_{j+1}(t); \quad j = \overline{1, k};$$
(9.5)

$$\dot{P}_{k-1}(t) = \lambda P_k(t) - \mu P_{k+1}(t)$$
.

При t→ ∞ система (9.5) переходит в систему алгебраических уравнений: $-\lambda P_0 + \mu P_1 = 0$;

$$\lambda P_{j-1} - (\lambda + \mu)P_j + \mu P_{j+1} = 0; \quad j = \overline{1, k};$$
 (9.6)

$$\lambda P_k - \mu P_{k+1} = 0.$$

Для решения системы (9.6) необходимо добавить уравнение

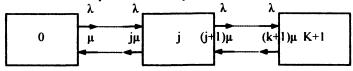
$$\sum_{j=0}^{k+1} P_j = 1 (9.7)$$

В результате решения системы (9.6) совместно с уравнением (9.7) получим установившиеся значения коэффициентов простоя и готовности

$$K_{\pi} = P_{k+1} = \frac{1}{\sum_{j=0}^{k+1} \left(\frac{\mu}{\lambda}\right)^{j}};$$

$$K_{\pi} = 1 - P_{k+1} = 1 - \frac{1}{\sum_{j=0}^{k+1} \left(\frac{\mu}{\lambda}\right)^{j}}.$$
(9.8)

Если та же система, состоящая из k+1 элементов, обслуживается (k+1) ремонтными бригадами (неограниченное восстановление), то очередь на ремонт отсутствует. Схема состояний для ненагруженного резерва и неограниченного восстановления представлена на рис. 9.2.



Вис. 9.2

В результате решения системы уравнений при Р_i(t)=0 получим

К п =
$$P_{k+1} = \frac{1}{\sum_{j=0}^{k+1} \frac{(k+1)!}{j!} \cdot \left(\frac{\mu}{\lambda}\right)^{k+1-j}};$$

(9.9)

Схемы состояний для системы, состоящей из одного основного и k элементов в нагруженном резерве, представлены на рис. 9.3 для ограниченного восстановления и на рис. 9.4 - для неограниченного.

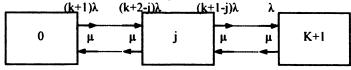
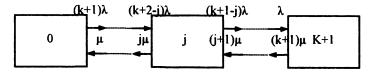


Рис. 9.3



Вис. 9.4

Рассуждая аналогично, получим для ограниченного восстановления

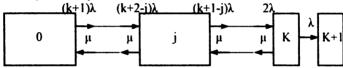
$$K_{II} = \frac{1}{\sum_{i=0}^{k-1} \frac{1}{j!} \left(\frac{\mu}{\lambda}\right)^{i}}; \quad K_r = 1 - K_{II};$$
 (9.10)

для неограниченного восстановления

$$K_{II} = \left(\frac{\lambda}{\mu + \lambda}\right)^{k-1}$$

$$K_{\Gamma} = 1 - \left(\frac{\lambda}{\mu + \lambda}\right)^{k-1} = \sum_{j=0}^{k} C_{k+1-j}^{k+1-j} \cdot \left(\frac{\mu}{\mu + \lambda}\right)^{k-1} \cdot \left(\frac{\lambda}{\mu + \lambda}\right)^{j}$$
(9.10a)

Рассмотрим резервированные системы, для которых отказы недопустимы, но ремонт отказавшего элемента производится во время выполнения задачи. Если система состоит из основного элемента и k элементов в нагруженном резерве, то ограниченного восстановления схема состояний представлена на рис. 9.5. При попадании системы в состояние (k+1) происходит отказ системы, который недопустим и приводит к невыполнению поставленной задачи.



Вис. 9.5

Вероятность безотказной работы системы

$$\widetilde{P}(t_i) = \sum_{i=0}^k P_j(t_i)$$
(9.11)

найдена в предположении, что при t=0 в системе нет неиспользованных элементов, т.е.

$$P_0(0)=1$$
; $P_1(0)==P_{k+1}(0)=0$.

Вероятность отказа системы в течение времени выполнения задачи также является условной вероятностью

$$\widetilde{\mathfrak{q}}(t_{\perp}) = P_{t+1}(t_{\perp}). \tag{9.12}$$

Важным показателем является среднее время безотказной работы

$$m_i = \int_0^\infty \widetilde{P}(t) dt = \int_0^\infty \sum_{j=0}^k P_j(t) dt$$
 (9.13)

При решении системы уравнений, составленных по схеме состояний рис. 9.5 с помощью преобразований Лапласа, целесообразно использовать правило, облегчающее расчет.

Для определения среднего времени безотказной работы достаточно найти преобразование Лапласа вероятности безотказной работы P(s) и подставить в него s=0.

Решение типовых задач

Задача 9.1. Для питания радиостанции используется электроагрегат с двумя генераторами, каждый из которых обладает производительностью, достаточной для нормальной работы: эти генераторы работают поочередно. При отказе работающего генератора в работу включается резервный генератор, а отказавший отключается и ремонтируется. Отказ электроагреграта состоит в прекращении питания радиостанции. Конструкция электроагрегата допускает одновременный ремонт обоих генераторов, имеется нужное число ремонтников. Интенсивность отказов одного генератора равна λ , а интенсивность восстановления одного генератора равна μ . Следует вычислить коэффициент готовности электроагрегата, если μ =5 λ . Предполагается показательное распределение времени безотказной работы и времени восстановления.

<u>Решение.</u> Электроагрегат может находиться в одном из трех состояний, которые обозначены цифрами:

- 0 электроагрегат работоспособен, оба генератора работоспособны.
- 1 электроагрегат работоспособен, но один из генераторов отказал и на-ходится в ремонте.
 - 2 электроагрегат неработоспособен, оба генератора ремонтируются.

Обозначим вероятности указанных состояний в момент времени t через $P_0(t), P_1(t), P_2(t)$. Эти вероятности при $t \to \infty$ имеют пределы P_0, P_1, P_2 .

Поскольку для рассматриваемого электроагрегата переход из состояния 0 в состояние 1 не нарушает его работоспособности, то $K_1 = P_0 + P_1$.

Составим схему состояний (рис. 9.6) и соответствующую этой схеме сис-

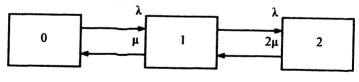


Рис. 9.6

тему уравнений:

$$\dot{P}_{0}(t) = -\lambda P_{0}(t) + \mu P_{1}(t);$$

$$\dot{P}_{1}(t) = \lambda P_{0}(t) - (\lambda + \mu)P_{1}(t) + 2\mu P_{2}(t);$$

$$\dot{P}_{2}(t) = \lambda P_{1}(t) - 2\mu P_{2}(t).$$

Для определения установившихся значений P_0 и P_1 положим все производные равными нулю. Учитывая, что $P_0(t)+P_1(t)+P_2(t)=1$, получим:

$$-\lambda P_0 + \mu P_1 = 0;$$

 $\lambda P_0 - (\lambda + \mu) P_1 + 2\mu P_2 = 0;$
 $P_0 + P_1 + P_2 = 1.$

Для получения величин Р₀, Р₁, Р₂ используем правило Крамера:

$$P_i = \frac{\Delta_i}{\Lambda}$$

где Δ – определитель, элементами которого являются коэффициенты при P_0 , P_1 , P_2 : Δ_i – определитель, который образуется из Δ путем замены і-го столбца коэффициентами правой части системы уравнений. Определим

$$\Delta = \begin{vmatrix} -\lambda & \mu & 0 \\ \lambda & -(\lambda + \mu) & 2\mu \\ 1 & 1 & 1 \end{vmatrix} = \lambda(\lambda + \mu) + 2\mu^{2} + 2\mu\lambda - \mu\lambda = \lambda^{2} + 2\mu(\mu + \lambda);$$

$$\Delta_{n} = \begin{vmatrix} 0 & \mu & 0 \\ 0 & -(\lambda + \mu) & 2\mu \\ 1 & 1 & 1 \end{vmatrix} = 2\mu^{2};$$

$$\Delta_{1} = \begin{vmatrix} -\lambda & 0 & 0 \\ \lambda & 0 & 2\mu \\ 1 & 1 & 1 \end{vmatrix} = 2\lambda\mu$$

Получим

$$P_0 = \frac{\Delta_0}{\Delta} = \frac{2 \mu^2}{\lambda^2 + 2 \mu(\mu + \lambda)},$$

$$P_1 = \frac{\Delta_1}{\Delta} = \frac{2 \lambda \mu}{\lambda^2 + 2 \mu(\mu + \lambda)}.$$

Обозначив

$$\rho = \frac{\lambda}{\mu},$$

получим в результате

$$P_0 = \frac{2}{1 + (1 + \rho)^2}; P_1 = \frac{2\rho}{1 + (1 + \rho)^2}.$$

Соответственно

$$K_{\Gamma} = P_0 + P_1 = \frac{2(1 + \rho)}{1 + (1 + \rho)^2}$$

При $\rho=0,2$ получим $K_1=0,98$.

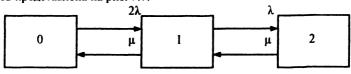
Задача 9.2. Связная радиостанция включает в ссбя приемный и передающий блоки, интенсивности отказов которых одинаковы, $\lambda=10^{-2}$ 1/ч. Интенсивность восстановления $\mu=2$ 1/ч. Станцию обслуживает одна ремонтная бригада. При неработоспособности любого из блоков радиостанция неработоспособна. При этом работоспособный блок не выключается и в нем могут происходить отказы. Требуется определить значения коэффициентов готовности и простоя радиостанции.

<u>Решение.</u> Связная радиостанция в любой момент времени может находиться в одной из трех состояний:

0 - оба блока работоспособны;

- 1 один блок работоспособен;
- 2 оба блока неработоспособны.

Радиостанция работоспособна только в состоянии 0 и неработоспособна в состояниях 1 и 2. Схема состояний с соответствующими интенсивностями переходов представлена на рис. 9.7.



Оис. 9.7

Этой схеме соответствует система дифференциальных уравнений:

$$\dot{P}_0(t) = -2\lambda P_0(t) + \mu P_1(t);$$

$$P_1(t) = 2\lambda P_0(t) - (\lambda + \mu)P_1(t) + \mu P_2(t);$$

$$P_1(t) = \lambda P_1(t) - \mu P_2(t)$$

При t→∞

$$P_{i}(t) = 0$$

и система алгебраических уравнений

$$-2\lambda P_0 + \mu P_1 = 0$$
;

$$2\lambda P_0 - (\lambda + \mu)P_1 + \mu P_2 = 0;$$

$$\lambda P_1 - \mu P_2 = 0$$
.

При решении этой системы используем нормировочное условие

$$P_0 + P_1 + P_2 = 1$$

которое может заменить любое из уравнений системы. В результате решения системы уравнений либо подстановкой, либо по правилу Крамера получим

$$\begin{split} P_0 &= \frac{\mu^2}{\mu^2 + 2 \, \mu \lambda + 2 \, \lambda^2}; \\ P_1 &= \frac{2 \, \mu \lambda}{\mu^2 + 2 \, \mu \lambda + 2 \, \lambda^2}; \\ P_2 &= \frac{2 \, \lambda^2}{\mu^2 + 2 \, \mu \lambda + 2 \, \lambda^2}. \end{split}$$

Коэффициент готовности радиостанции

$$K_{\Gamma} = P_0 = \frac{\mu^2}{\mu^2 + 2\mu\lambda + 2\lambda^2}.$$

Коэффициент простоя

$$K_{\Pi} = P_1 + P_2 = \frac{2 \mu \lambda + 2 \lambda^2}{\mu^2 + 2 \mu \lambda + 2 \lambda^2}.$$

Подставляя числовые значения, получаем

$$K_{\Pi} \approx 10^{-2}$$
; $K_{\Gamma} = 1 - K_{\Pi} \approx 0.99$.

Задача 9.3. Специализированная бортовая ЭВА состоит из трех блоков (1, 2 и 3), два из которых (1 и 2) включены последовательно в основную цепь, а блок 3 находится в состоянии ненагруженного резерва (рис. 9.8). Известно также, что интенсивность отказов λ_2 блока 2 пренебрежимо мала по сравнению с интенсивностями отказов λ_1 и λ_3 блоков 1 и 3 (т.е. $\lambda_1 = \lambda_3 >> \lambda_2$) и устройство эксплуатируется в условиях ограниченного восстановления. Требуется определить коэффициенты готовности K_Γ и простоя K_Π . Интенсивность отказов и восстановлений устройства равна соответственно λ и μ , причем $\lambda = \mu$.

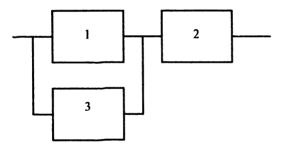
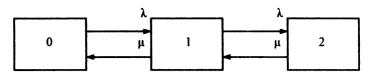


Рис. 9.8

<u>Решение.</u> Если предположить, что наличие в системе блока 2 не ухудшает ее надежность, то можно выделить следующие три состояния, в которых может пребывать устройство:

- 0 блоки 1 и 3 исправны и ЭВА работоспособна;
- 1 один из блоков (1 или 3) поврежден и ремонтируется, а система попрежнему сохраняет работоспособность;
- 2 оба блока (1 и 3), а следовательно, и система в целом неработоспособны.

Схема перечисленных состояний приведена на рис. 9.9.



Dис. 9.9

Обозначим вероятности указанных состояний в некоторый момент времени t соответственно $P_0(t), P_1(t), P_2(t)$.

Очевидно, что $\lim_{t\to 0} P_0(t) = P_0, \lim_{t\to 0} P_1(t) = P_1, \lim_{t\to 0} P_2(t) = P_2$.

Ясно, что $K_1 = P_0 + P_1$, поскольку переход системы из состояния 0 в состояние 1 $(0 \rightarrow 1)$ не отражается на ее работоспособности, а $K_{\Gamma I} = P_2$ или $K_{\Gamma I} = 1 - K_{\Gamma}$, так как $P_0 + P_1 + P_2 = 1$.

Запишем уравнения, соответствующие схеме состояний устройства. В соответствии с (9.5) и рис. 9.9 получим:

$$\dot{P}_{0}(t) = -\lambda P_{0}(t) + \mu P_{1}(t),$$

$$\dot{P}_{1}(t) = \lambda P_{0}(t) - (\lambda + \mu) P_{1}(t) + \mu P_{2}(t),$$

$$\dot{P}_{2}(t) = \lambda P_{1}(t) - \mu P_{2}(t).$$

$$-\lambda P_0 + \mu P_1 = 0,$$

$$\lambda P_0 - (\lambda + \mu)P_1 + \mu P_2 = 0,$$

$$\lambda P_1 - \mu P_2 = 0,$$

$$P_0 + P_1 + P_2 = 1.$$

Совместное решение 1, 2 и 4-го уравнений системы дает следующий результат:

$$\begin{split} P_0 &= \frac{\rho^2}{\rho(1+\rho)+1}; \\ P_1 &= \frac{\rho}{\rho(1+\rho)+1}; \\ P_2 &= \frac{1}{\rho(1+\rho)+1}, \end{split}$$
 где $\rho = \frac{\mu}{2}.$

Поскольку $\rho=\mu/\lambda=1$ по условиям задачи, то, подставив это значение в формулы вероятностей состояний системы, получим $P_0=P_1=P_2=0,3333$, по этому $K_\Gamma=P_0+P_1=0,6666$, $K_{11}=P_2=1-K_\Gamma=0,3333$.

Задача 9.4. Преобразователь "параметр-код" состоит из рабочего блока н блока в ненагруженном резерве. Распределения времен между отказами и вос-

становления показательные с параметрами $\lambda = 8\cdot 10^{-3}$ 1/ч, $\mu = 0.8$ 1/ч. Требуется определить значения коэффициентов простоя и степень уменьшения величины коэффициента простоя преобразователя при применении неограниченного восстановления по сравнению с ограниченным.

<u>Решение.</u> Для определения значений коэффициентов простоя для случаев ограниченного и неограниченного восстановления воспользуемся соответственно выражениями (9.8) и (9.9). Число возможных состояний равно трем.

Для ограниченного восстановления

$$K_{II.O} = \frac{1}{1 + \frac{\mu}{\lambda} + \left(\frac{\mu}{\lambda}\right)^2} = \frac{\lambda^2}{\mu^2 + \mu\lambda + \lambda^2}.$$

Для неограниченного восстановления

$$K_{\Pi.H} = \frac{1}{2\left(\frac{\mu}{\lambda}\right)^2 + 2\left(\frac{\mu}{\lambda}\right) + 1} = \frac{\lambda^2}{2\mu^2 + 2\mu\lambda + \lambda^2}.$$

Для рассматриваемой задачи справедливо соотношение $\mu >> \lambda$, и полученные выражения могут быть с достаточной для практики точностью определены приближенно:

$$K_{\rm H,O} \approx \frac{\lambda^2}{\mu^2}; K_{\rm H,H} \approx \frac{\lambda^2}{2\,\mu^2}.$$

Таким образом, при применении неограниченного восстановления по сравнению с ограниченным величина коэффициента простоя уменьшилась в два раза. Значения этих коэффициентов:

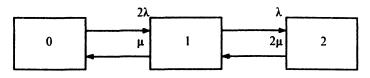
$$K_{\Pi,O} \approx 10^{-4}$$
; $K_{\Pi,H} \approx 0.5 \cdot 10^{-4}$.

Задача 9.5. Радиоприемное устройство, состоящее из рабочего блока и блока в нагруженном резерве, рассчитано на непрерывную круглосуточную работу. Через три часа после включения это устройство может получить команду на перестройку режима работы. Интенсивность отказов и восстановления каждого блока $\lambda = 8 \cdot 10^{-3}$ 1/ч; $\mu = 0.2$ 1/ч. Имеются две дежурные ремонтные бригады. Определить вероятность застать радиоприемное устройство в неработоспособном состоянии через три часа после включения (значение функции простоя) а также и значение коэффициента простоя.

<u>Решение.</u> Радиоприемное устройство в любой момент времени может находиться в одном из следующих состояний:

- 0 оба блока работоспособны;
- 1 один блок неработоспособен;
- 2 оба блока неработоспособны.

При нахождении в состояниях 0 и 1 устройство работоспособно, в состоянии 2 устройство неработоспособно. Схема состояний устройства с соответствующими интенсивностями переходов представлена на рис.9.10.



Оис. 9.10

Система дифференциальных уравнений, составленная по этой схеме, имсет вид

$$\dot{P}_{0}(t) = -2\lambda P_{0}(t) + \mu P_{1}(t);$$

$$\dot{P}_{1}(t) = 2\lambda P_{0}(t) - (\lambda + \mu)P_{1}(t) + 2\mu P_{2}(t);$$

$$\dot{P}_{1}(t) = \lambda P_{1}(t) - 2\mu P_{2}(t)$$
.

Для определения функции простоя решим эту систему при начальных условиях $P_0(0)=1$; $P_1(0)=P_2(0)=0$. Переходим к изображениям и получим систему алгебраических уравнений:

$$(s + 2\lambda)P_0(s) - \mu P_1(s) = 1;$$

$$-2\lambda P_0(s) + (s + \lambda + \mu)P_1(s) -2\mu P_2(s) = 0;$$

$$-\lambda P_1(s) + (s + 2\mu)P_2(s) = 0.$$

Для получения величин P_i(s) используем правило Крамера

$$P_{i}(s) = \frac{\Delta_{i}}{\Lambda}$$

где Δ – определитель, элементами которого являются коэффициенты при $P_0(s)$, $P_1(s)$, $P_2(s)$; Δ_i – определитель, который образуется из Δ путем замены і-го столбца коэффициентами правой части системы.

В рассматриваемом случае требуется определить функцию простоя, равную $P_2(t)$. Для этого запишем определители Δ и Δ_2 :

$$\Delta = \begin{vmatrix} (s+2\lambda) & -\mu & 0 \\ -2\lambda & (s+\lambda+\mu) & -2\mu \\ 0 & -\lambda & (s+2\mu) \end{vmatrix};$$

$$\Delta_{2} = \begin{vmatrix} (s+2\lambda) & -\mu & 1 \\ -2\lambda & (s+\lambda+\mu) & 0 \\ 0 & -\lambda & 0 \end{vmatrix}.$$

Следовательно,

$$P_{2}(s) = \frac{2 \lambda^{2}}{s \cdot [s^{2} + 3(\lambda + \mu) s + 4 \lambda \mu + 2 \mu^{2} + 2 \lambda^{2}]}$$

Найдем корни уравнения

$$s^2 + 3(\lambda + \mu)s + 2(\mu + \lambda)^2 = 0$$

Имеем

$$s_{1,2} = 0.5 \left[-3(\mu + \lambda) \pm \sqrt{9(\mu + \lambda)^2 - 8(\mu + \lambda)^2} \right] = 0.5[-3(\mu + \lambda) \pm (\mu + \lambda)].$$

Следовательно,

$$s_1 = -2(\mu + \lambda)$$
; $s_2 = -(\mu + \lambda)$.

Запишем

$$P_2(s) = \frac{2\lambda^2}{s(s-s_1)(s-s_2)} = \frac{A}{s} + \frac{B}{s-s_1} + \frac{C}{s-s_2}$$

Определим

$$A = \lim_{s \to 0} sP_2(s) = \frac{2\lambda^2}{s_1s_2};$$

B =
$$\lim_{s \to s_1} (s - s_1) P_2(s) = \frac{2 \lambda^2 s_2}{s_1 s_2 (s_1 - s_2)}$$

$$C = \lim_{s \to s_2} (s - s_2) P_2(s) = \frac{-2 \lambda^2 s_1}{s_1 s_2 (s_1 - s_2)}$$

Производя обратное преобразование Лапласа $P_2(t) = L^{-1}\{P_2(s)\}$, получим

$$P_2(t) = A \cdot I(t) + Be^{s_1 t} + Ce^{s_2 t} = \frac{2 \lambda^2}{s_1 s_2} \left(1 + \frac{s_2 e^{s_1 t} - s_1 e^{s_2 t}}{s_1 - s_2} \right).$$

Так как

$$\frac{2 \lambda^2}{s_1 s_2} = \frac{\lambda^2}{(\mu + \lambda)^2}$$
; $s_1 - s_2 = -(\mu + \lambda)$,

то

$$K_{\Pi}(t) = P_2(t) = \frac{\lambda^2}{(\mu + \lambda)^2} [1 + e^{-2(\mu + \lambda)t} - 2e^{-(\mu + \lambda)t}].$$

Используя это выражение, определим коэффициент простоя при t→∞

$$K_{\Pi} = \frac{\lambda^{2}}{(\mu + \lambda)^{2}}.$$

Подставляя числовые значения, получаем

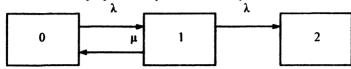
$$K_{\Pi}(3)=2\cdot10^{-4}$$
; $K_{\Pi}=1.5\cdot10^{-3}$

Задача 9.6. Вычислительное устройство состоит из рабочего блока и блока в ненагруженном резерве. Интенсивность отказов и восстановлений каждого блока $\lambda = 2 \cdot 10^{-2}$ 1/ч; $\mu = 2$ 1/ч.

При одновременной неисправности обоих блоков устройство неработоспособно. Следует определить среднее время безотказной работы устройства \mathbf{m}_t . <u>Решение.</u> Вычислительное устройство в любой момент времени может находиться в одном из следующих состояний:

- 0 оба блока работоспособны;
- 1 один блок неработоспособен;
- 2 оба блока неработоспособны.

Схема состояний устройства представлена на рис. 9.11.



Dис. 9.11

Для определения m_t сначала необходимо определить вероятность непрерывной безотказной работы в течение времени t. Система дифференциальных уравнений, полученная по схеме состояний, имеет следующий вид:

$$\begin{split} \dot{P_0}(t) &= -\lambda P_0(t) + \mu P_1(t); \\ \dot{P_1}(t) &= \lambda P_0(t) - (\lambda + \mu) P_1(t); \\ \dot{P_2}(t) &= \lambda P_1(t). \end{split}$$

Начальные условия:

$$P_0(0) = 1$$
; $P_1(0) = P_2(0) = 0$

При помощи преобразования Лапласа получим систему алгебраических уравнений относительно изображений:

$$(s+\lambda)P_0(s) - \mu P_1(s) = 1;$$

$$-\lambda P_0(s) + (s+\lambda+\mu)P_1(s) = 0;$$

$$-\lambda P_1(s) + sP_2(s) = 0.$$

Путем решения этой системы либо подстановкой, либо по правилу Крамера имеем

$$P_2(s) = \frac{\lambda^2}{s(s-s_1)(s-s_2)}$$

Раскладывая $P_2(s)$ на элементарные дроби и производя обратное преобразование Лапласа, определим вероятность $P_2(t)$ попадания за время (0,t) в состояние 2:

$$P_2(t) = 1 - \frac{s_1 \cdot \exp \left[s_2 t\right] - s_2 \cdot \exp \left[s_1 t\right]}{s_1 - s_2},$$

где обозначено

$$s_{1,2} = 0.5 \left[-(2 \lambda + \mu) \pm \sqrt{(2 \lambda + \mu)^2 - 4 \lambda^2} \right].$$

Следовательно, вероятность непрерывной безотказной работы вычислительного устройства за время (0,t) равна

$$\tilde{P}(t) = 1 - P_2(t) = \frac{s_1 \exp \left[s_2 t\right] - s_2 \exp \left[s_1 t\right]}{s_1 - s_2}$$

Находим среднее время безотказной работы

$$m_1 = \int_0^{\pi} \widetilde{P}(t) dt = -\frac{s_1 + s_2}{s_1 s_2} = \frac{1}{\lambda} \left(2 + \frac{\mu}{\lambda}\right).$$

Задача 9.7. Радиолокационная станция сопровождения содержит рабочий блок и блок в нагруженном резерве. Интенсивность отказов и восстановлений каждого блока соответственно λ и μ . Время сопровождения в среднем составляет величину t_c . При одновременной неработоспособности обоих блоков сопровождаемая цель теряется и происходит отказ станции. При переходе на резервный блок потери цели не происходит. Требуется определить вероятность непрерывной безотказной работы в течение времени $(0,t_c)$, или, иначе, вероятность непопадания в состояние 2 на этом интервале и среднее время безотказной работы станции m_t

<u>Решение.</u> Радиолокационная станция сопровождения в любой момент времени может находиться в одном из следующих состояний:

0 - оба блока работоспособны;

1 - один блок неработоспособен;

2 - оба блока неработоспособны.

Схема состояний представлена на рис. 9.12.

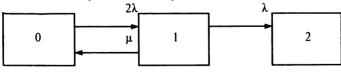


Рис. 9.12

Работоспособными являются состояния 0 и 1, неработоспособным - 2. Следовательно, вероятность непопадания в состояние 2 за время t_c определяется как

$$\tilde{P}(t_c) = P_0(t_c) + P_1(t_c) = 1 - P_2(t_c).$$

Для определения вероятности $\widetilde{P}(t_c)$ по схеме состояний составим систему дифференциальных уравнений:

$$\dot{P}_{0}(t) = -2\lambda P_{0}(t) + \mu P_{1}(t);$$

$$\dot{P}_{1}(t) = 2\lambda P_{0}(t) - (\lambda + \mu)P_{1}(t);$$

 $\dot{P}_{2}(t) = \lambda P_{1}(t).$

При помощи преобразования Лапласа получим систему алгебраических уравнений относительно изображений при $P_0(0)=1$; $P_1(0)=P_2(0)=0$:

$$\begin{split} &(s+2\lambda)P_{0}(s)-\mu P_{1}(s)=1;\\ &-2\lambda P_{0}(s)+(s+\lambda+\mu)P_{1}(s)=0;\\ &-\lambda P_{1}(s)+sP_{2}(s)=0. \end{split}$$

Путем решения этой системы либо подстановкой, либо по правилу Крамера, имеем:

$$P_2(s) = \frac{2 \lambda^2}{s(s - s_1)(s - s_2)}$$

Раскладывая $P_2(s)$ на элементарные дроби и производя обратное преобразование Лапласа, определим вероятность попадания в состояние 2 за время $(0,t_c)$:

$$P_2(t_c) = 1 - \frac{s_1 \exp \left[s_2 t_c\right] - s_2 \exp \left[s_1 t_c\right]}{s_1 - s_2},$$

где обозначено

$$s_{1,2} = 0.5 \left[-3 \lambda - \mu \pm \sqrt{(\mu + 3 \lambda)^2 - 8 \lambda^2} \right].$$

Следовательно, вероятность непрерывной безотказной работы радиолокационной станции за время $(0,t_c)$

$$\widetilde{P}(t_c) = \frac{s_1 \exp \left[s_2 t_c\right] - s_2 \exp \left[s_1 t_c\right]}{s_1 - s_2}.$$

Для определения среднего времени безотказной работы станции m_t запишем преобразование Лапласа для вероятности безотказной работы P(s) и подставим в него s=0:

$$P(s) = P_0(s) + P_1(s) = \frac{s + 3\lambda + \mu}{s^2 + (3\lambda + \mu) s + 2\lambda^2};$$

$$m_1 = P(s)|_{s=0} = \frac{3\lambda + \mu}{2\lambda^2}.$$

Задача 9.8. Станция радиорелейной связи включает два работающих приемопередающих блока и один блок в ненагруженном резерве. Наработка на отказ каждого работающего блока m_t =200 ч; среднее время восстановления одного блока m_t =2 ч. Станцию обслуживает одна ремонтная бригада. При неработоспособности двух блоков станции третий блок выключается и в нем не могут происходить отказы. Требуется определить коэффициент простоя станции.

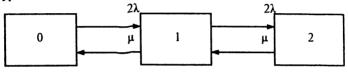
Решение. Возможны следующие состояния радиорелейной связи:

- 0 все блоки работоєпособны;
- 1 неработоспособен один блок;
- 2 неработоспособны два блока.

При неработоспособности одного блока блок из ненагруженного резерва переводится в рабочее состояние. Работоспособными являются состояния 0 и 1, неработоспособным - состояние 2.

Обозначим вероятности указанных состояний в момент времени t через $P_0(t)$, $P_1(t)$, $P_2(t)$. Эти вероятности при $t \rightarrow \infty$ имеют пределы P_0 , P_1 , P_2 . В рассматриваемом случае $K_{\Pi} = P_2$, т.к. состояние 2 является неработоспособным

Составим схему состояний (рис. 9.13) и соответствующую этой схеме систему уравнений:



Вис. 9.13

$$\dot{P}_{0}(t) = -2\lambda P_{0}(t) + \mu P_{1}(t);$$

$$\dot{P}_{1}(t) = -(\mu + 2\lambda)P_{1}(t) + 2\lambda P_{0}(t) + \mu P_{2}(t);$$

$$\dot{P}_{1}(t) = 2\lambda P_{1}(t) - \mu P_{2}(t).$$

Для определения установившегося значения P_2 положим все производные равными нулю. Учитывая, что $P_0(t) + P_1(t) + P_2(t) = 1$, получим

$$-2\lambda P_0 + \mu P_1 = 0;$$

$$2\lambda P_0 - (\mu + 2\lambda)P_1 + \mu P_2 = 0;$$

$$P_0 + P_1 + P_2 = 1.$$

Для получения величины P₂ используем правило Крамера:

$$P_2 = \frac{\Delta_2}{\Lambda},$$

где

$$\Delta = \begin{vmatrix} -2\lambda & \mu & 0 \\ 2\lambda & -(\mu + 2\lambda) & \mu \\ 1 & 1 & 1 \end{vmatrix} = \mu^2 + 2\mu\lambda + 4\lambda^2$$

$$\Delta_2 = \begin{vmatrix} -2\lambda & \mu & 0 \\ 2\lambda & -(\mu + 2\lambda) & 0 \\ 1 & 1 & 1 \end{vmatrix} = 4\lambda^2$$

Следовательно,

$$K_{\Pi} = P_2 = \frac{\Delta_2}{\Delta} = \frac{4 \lambda^2}{\mu^2 + 2 \mu \lambda + 4 \lambda^2}.$$

при μ >> λ

$$K_{\Pi} \approx \frac{4 \lambda^2}{\mu^2}$$
.

Так как при показательном распределении времени безотказной работы и времени восстановления

$$\lambda = \frac{1}{m_1} = 5 \cdot 10^{-3} \text{ 1/y}; \quad \mu = \frac{1}{m_2} = 0.5 \text{ 1/y},$$

TO

$$K_{\Pi} \approx \frac{4 \cdot 0.5^2}{0.5^2} \cdot 10^{-4} = 4 \cdot 10^{-4}$$

Задачи для самостоятельного решения

<u>Задача 9.9.</u> Радиорелейная станция содержит два приемопередатчика, один используется по назначению, а второй находится в ненагруженном резерве. Определить среднее время безотказной работы станции m_t при условии, что для каждого приемопередатчика $\lambda = 2 \cdot 10^{-3}$ 1/ч; $\mu = 0,2$ 1/ч.

Задача 9.10. Регистрирующее устройство содержит рабочий блок и блок в нагруженном резерве. Вероятность отказа блока в течение 25 часов $q(t_i)=0,1$. Ремонт производится одной бригадой с интенсивностью $\mu=0,2$ 1/ч. Определить коэффициент простоя регистрирующего устройства.

Задача 9.11. Система связи содержит одно устройство, предназначенное для выполнения задачи, и одно устройство в нагруженном резерве. Интенсивность отказов каждого устройства $\lambda=1/4$, восстановления $\mu=1/4$. Ремонт устройств производится независимо друг от друга. Определить функцию готовности.

Задача 9.12. Система сопровождения состоит из рабочего блока и блока в нагруженном резерве. Для каждого блока заданы: $\lambda = 2 \cdot 10^{-3} \ 1/\text{ч}$, $\mu = 0,2 \ 1/\text{ч}$. Определить время безотказной работы системы.

Задача 9.13. Преобразователь "параметр-код" состоит из рабочего блока и блока в нагруженном резерве. Распределения времен между отказами и восстановления показательные с параметрами $\lambda = 8 \cdot 10^{-3}$ 1/ч, $\mu = 0.8$ 1/ч. Требуется определить значения коэффициентов простоя и степень уменьшения величины коэффициента простоя преобразователя при применении неограниченного возстановления по сравнению с ограниченным.

<u>Задача 9.14.</u> Устройство состоит из двух одинаковых блоков, один используется по прямому назначению, а второй находится в нагруженном резер-

ве. Интенсивность отказов каждого блока $\lambda = 6 \cdot 10^{-1}$ 1/ч, интенсивность восстановления $\mu = 2$ 1/ч. Ремонт производится одной ремонтной бригадой. Требуется определить коэффициент простоя устройства.

Задача 9.15. Усилитель состоит из двух равнонадежных блоков, для каждого из которых $\lambda = 3 \cdot 10^{-3}$ 1/ч. Имеется усилитель в ненагруженном резерве. Ремонт производит одна бригада, среднее время ремонта $m_\tau = 0.5$ ч. Определить коэффициент простоя усилителя с резервом.

Задача 9.16. Усилитель состоит из двух равнонадежных блоков, для каждого $\lambda = 3 \cdot 10^{-3}$ 1/ч. Применено поблочное резервирование усилителя в ненагруженном режиме. Ремонт производит одна бригада, среднее время ремонта $m_\tau = 0.5$ ч. Определить коэффициент простоя усилителя с поблочным резервированием.

Задача 9.17. Вычислитель состоит из двух одинаковых рабочих блоков и одного блока в нагруженном скользящем резерве. Для каждого блока $\lambda = 8 \cdot 10^{-3}$ 1/ч; $\mu = 1$ 1/ч, ремонтных бригад две. Определить коэффициент простоя вычислителя.

Задача 9.18. Вычислитель состоит из двух одинаковых рабочих блоков и одного резервного блока в ненагруженном резерве. Для каждого блока $\lambda = 8 \cdot 10^{-3}$ 1/ч; $\mu = 1$ 1/ч, ремонтных бригад две. Определить коэффициент простоя вычислителя.

Задача 9.19. Генератор импульсов содержит один рабочий блок, один блок в нагруженном резерве и один блок в ненагруженном резерве. При неработоспособности рабочего блока или блока в нагруженном резерве блок из ненагруженного резерва переводится в нагруженный. Задано для каждого блока $\lambda=10^{-2}$ 1/ч, $\mu=0.5$ 1/ч, ремонтная бригада одна. Определить коэффициент простоя генератора.

Задача 9.20. Передатчик содержит рабочий блок ($\lambda = 9 \cdot 10^{-3} \text{ 1/ч}$) и блок в облегченном резерве ($\nu = 10^{-3} \text{ 1/ч}$). Определить коэффициент простоя передатчика при условии, что ремонт производится одной бригадой с интенсивностью $\mu = 0.3 \text{ 1/ч}$.

Задача 9.21. Преобразователь частоты содержит один рабочий блок и один блок в нагруженном резерве. Ремонт производится одной бригадой, обеспечивающей среднее время восстановления 0,5 ч. Определить предельно допустимую интенсивность отказов преобразователя, чтобы удовлетворялось условие $K_{\Pi} \le 2 \cdot 10^{-4}$

Задача 9.22. Преобразователь частоты содержит один рабочий блок и один блок в ненагруженном резерве. Ремонт производится одной бригадой, обеспечивающей среднее время восстановления 0,5 ч. Определить предельно допустимую интенсивность отказов преобразователя, чтобы удовлетворялось условие $K_{\Pi} \le 2 \cdot 10^{-4}$

Задача 9.23. Для нерезервированного изделия, имеющего интенсивность отказов $\lambda = 2 \cdot 10^{-2}$ 1/ч, может быть применен либо нагруженный, либо ненагруженный резерв. Ремонт производится одной ремонтной бригадой с интенсивностью $\mu = 2$ 1/ч. Определить, во сколько раз уменьшится значение коэффициента простоя при применении ненагруженного резерва вместо нагруженного.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 10

<u>Расчет надежности резервированных восстанавливаемых</u> устройств по графу состояний

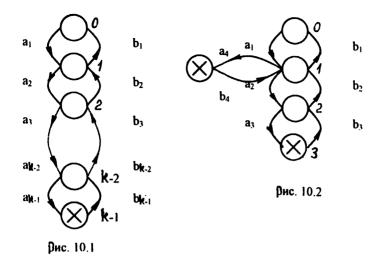
Теоретические сведения

Основным недостатком известных методов оценки надежности резервированных систем является их сложность даже при небольшом числе возможных состояний резервированной системы. Эти методы требуют составления и решения дифференциальных уравнений, описывающих функционирование системы. Большое число состояний системы, например вычислительной системы (ВС), приводит к большому числу дифференциальных уравнений, которое не дает возможности вычислить количественные характеристики надежности даже с помощью ЦВМ.

Этих трудностей в ряде случаев удается избежать, записывая решения в преобразованиях Лапласа непосредственно из графа состояний анализируемого устройства. Рассмотрим методику на простом примере.

Пусть граф состояний восстанавливаемого устройства имеет вид, представленный на рис. 10.1.

Узлам графа приписаны состояния устройства, а ветвям - возможные переходы из одного состояния в другое с интенсивностями a_i и b_i . Система отказывает, если она переходит в состояние k-1. Тогда вероятность застать резервированную восстанавливаемую систему в момент времени t в состоянии отказа $K_{II}(t)$ и вероятность ее отказа Q(t) в течение времени t в преобразованиях



Лапласа могут быть записаны в следующем виде:

$$K_{II}(s) = \frac{B}{S[A_0 s^{k+1} + A_1 s^{k+2} + ... + A_{k+1}]},$$
 (10.1)

$$Q(s) = \frac{B}{S[A_0's^{k+1} + A_1s^{k+2} + A_2s^{k+3} + ... + A_{k+1}']},$$
 (10.2)

где k - число состояний системы, равное числу узлов графа состояний: A_i , A_i' , B - коэффициенты, зависящие от интенсивностей переходов a_i , b_i (i: 1,2,...,k-1).

Коэффициенты $A_i,\ A'_i,\ B$ можно определить из графа состояний по следующему правилу.

Коэффициент при старшем члене s^{k-1} полинома равен единице, т.е. $A_0 = 1$. Коэффициент A_1 равен сумме всех интенсивностей переходов a_i и b_i .

Коэффициент A_2 равен сумме всех попарных произведений интенсивностей переходов, за исключением членов вида a_ib_i , $a_{i+1}b_i$. Из графа (см. рис. 10.1) видно, что члены вида a_ib_i образованы интенсивностями переходов, находящимися в одном кольце графа, а члены $a_{i+1}b_i$ - интенсивностями переходов из одного и того же состояния в разные (стрелки, обозначающие интенсивности переходов, выходят из узлов).

Коэффициент A_3 равен сумме произведений интенсивностей переходов, взятых по три, за исключением тех членов суммы, в которых встречаются произведения $a_ib_i,...,a_{i+1}b_i,...$

Коэффициент A_i при члене A_{is}^{k-1-i} равен сумме произведений интенсивностей переходов, взятых по i (i=1,2,...,k-1), за исключением тех членов суммы, в которых встречаются произведения $a_ib_i,...,a_{i+1}b_i,...$

Коэффициент В равен произведению всех интенсивностей отказов и не содержит интенсивностей восстановления, т.е.

$$\mathbf{B} = \prod_{i=1}^{k-1} \mathbf{a}_i. \tag{10.3}$$

Коэффициенты A_i' в выражении (10.2) находятся при известных коэффициентах A_i следующим образом. Если в выражении для коэффициента A_i исключить все члены, содержащие в качестве сомножителя интенсивность перехода b_{k-1} , то полученное выражение будет равно коэффициенту A_i' . Эта закономерность очевидна, так как выражение (10.2) характеризует поведение системы до ее отказа и получено в предположении, что обратного перехода из отказового состояния (состояния k-1) в исправное (состояние k-2) нет.

При анализе надежности резервированных восстанавливаемых устройств обычно за критерии надежности принимают функцию готовности $K_{\Gamma}(t)$, коэффициент готовности $K_{\Gamma}=\lim_{t\to\infty}K_{\Gamma}(t)$ и вероятность безотказной работы P(t) в

течение времени t. Эти характеристики можно получить из (10.1) и (10.2), воспользовавшись соотношениями

$$K_{\Gamma}(s) = \frac{1}{s} - K_{\Pi}(s), \quad K_{\Gamma} = 1 - \lim_{s \to 0} sK_{\Pi}(s), \quad P(s) = \frac{1}{s} - Q(s).$$
 (10.4)

Функция готовности $K_{\Gamma}(t)$ есть вероятность того, что в любой момент времени t система готова κ действию.

Наиболее просто из графа состояний находятся коэффициенты простоя и готовности. Очевидно, что

$$K_{\Pi} = \lim_{n \to \infty} sK_{\Pi}(s) \approx B/A_{k-1}, K_{\Gamma} = 1 - K_{\Pi}$$
 (10.5)

Коэффициент готовности K_{Γ} является финальной вероятностью пребывания системы в исправном состоянии.

Граф состояний резервированной восстанавливаемой системы может иметь более сложный вид, чем изображенный на рис. 10.1. Сложные ветвящиеся графы получаются в случае раздельного резервирования, учета двух характеров отказов, отсутствия контроля моментов отказов отдельных устройств резервированной системы, резервирования неравнонадежных устройств и т.п.

В этом случае может быть несколько отказовых состояний. Тогда вероятность того, что резервированная система неисправна в любой момент времени t, вычисляется из соотношения

$$K_{\pi}(t) \approx \sum_{i=1}^{N} P_{i}(t),$$
 (10.6)

где $P_i(t)$ - вероятность того, что система в момент времени t находится в i-м (отказовом) состоянии, N - число отказовых состояний. Очевидно, что преобразование Лапласа для $P_i(t)$ находится из выражения

$$P_{r}(s) = \frac{\Delta_{r}(s)}{\Delta(s)}, \qquad (10.7)$$

гле

$$\Delta(s) = s[A_0 s^{k-1} + A_1 s^{k-2} + A_2 s^{k-3} + A_{k-1}]; \qquad (10.8)$$

$$\Delta_{1}(s) = B_{n} \cdot s^{n_{1}} + B_{1} \cdot s^{n_{1}-1} + B_{2} \cdot s^{n_{1}} + B_{n_{1}}. \tag{10.9}$$

здесь $\Delta(s)$ - главный определитель; k - число состояний системы; n_i - число, зависящее от номера отказового состояния.

Установлено, что при принятых выше допущениях независимо от вида графа резервированной восстанавливаемой системы коэффициенты A_i определителя $\Delta(s)$ находятся по изложенному выше правилу.

Оказывается, что число n_i и коэффициенты B_i определителя $\Delta_i(s)$ легко находятся непосредственно из графа состояний и выражений для коэффициентов A_i при соответствующих степенях s определителя $\Delta(s)$.

Степень полинома числителя $\Delta_i(s)$ находится из выражения

$$n_i = k - 1 - l_i$$
, (10.10)

где k - число узлов графа состояний; l_i - число переходов из начального состояния системы, определенного начальными условиями ее функционирования, в состояние i по кратчайшему пути.

Если начальным состоянием системы является состояние, когда все устройства системы исправны, то l_i - номер уровня состояния i, т.е. l_i равно минимальному числу отказавших устройств системы в состоянии i. Таким образом, степень полинома числителя вероятности $P_i(s)$ пребывания системы в i-м состоянии зависит от номера состояния i и от начальных условий. Так как число переходов l_i может быть 0,1,2,...,k-1, то степень полинома $\Delta_i(s)$ на основании (10.10) также может принимать значения n_i =0,1,2,...,k-1.

Коэффициент при s^{k-1-j} ($j \in [0;k-1]$) полинома $\Delta_i(s)$ равен сумме только тех членов коэффициента при s^{k-j} полинома $\Delta(s)$, в которых имеются произведения всех интенсивностей переходов из состояния 0 (все элементы исправны) в состояние і по кратчайшему пути, т.е. без восстановления.

Формулу для определения наработки на отказ t_{cp} (t_{cp} - математическое ожидание времени между соседними отказами восстанавливаемой системы) получим, воспользовавшись общей формулой для коэффициента готовности вида

$$K_{\Gamma} = \frac{t_{ep}}{t_{ep} + t_{B}}, \qquad (10.11)$$

где t_В - среднее время восстановления системы.

Из формулы (10.11) находим

$$t_{\varphi} = \frac{K_{\Gamma}t_{\rm B}}{1 - K_{\Gamma}}. \tag{10.12}$$

Пользоваться этой формулой на практике целесообразно в следующих случаях:

- 1) среднее время восстановления системы t_в известно из опыта;
- 2) система имеет лишь одно отказовое состояниие k-1 (см. рис. 10.1), причем из этого состояния в соседнее состояние (или в соседние состояния) возможен переход с одной и той же интенсивностью bk.1. Тогда

$$t_{\rm H} = \frac{1}{b_{\rm k, L}} \,. \tag{10.13}$$

3) система имеет несколько отказовых состояний (рис. 10.2), но интенсивности переходов из этих состояний в соседние одинаковы, т.е. $b_3=b_4$ по рис. 10.2. Тогда среднее время восстановления системы по рис. 10.2

$$t_{\rm B} = \frac{1}{b_{\rm B}} = \frac{1}{b_{\rm A}} \, .$$

Случаи 2 и 3 легко распознаются по графу состояний. Тогда для определения наработки на отказ достаточно найти K_{Γ} описанным выше способом.

На практике наиболее часто встречаются случаи, когда число отказовых состояний системы велико, а значения интенсивностей восстановления зависят от отказового состояния. Тогда $t_{\rm B}$ неизвестно, а наработку на отказ невозможно определить непосредственно по формуле (10.12).

Среднее время восстановления и наработку на отказ можно определить, если известны финальные вероятности пребывания системы во всех возможных состояниях и интенсивности переходов из отказовых в предотказовые состояния.

Интенсивность восстановления системы μ_c равна сумме произведений интенсивностей переходов из отказовых состояний в исправные на соответствующие вероятности отказовых состояний, т.е.

$$\mu_{c} = \sum_{i \in c} \mu_{i} R_{i}, \qquad (10.14)$$

где R_i - вероятность того, что если система откажет, то она попадет в i-е отказовое состояние; μ_i - сумма интенсивностей переходов из i-го отказового состояния во все исправные состояния, граничащие с i-м отказовым состоянием (например, по рис. $10.2~\mu_3$ = b_3 , μ_4 = b_4); е_ - подмножество отказовых состояний, граничащих с исправными.

Вероятность R_і вычисляется по формуле

$$R_{i} = \frac{P_{i}}{\sum_{i \in L} P_{j}},$$
 (10.15)

где P_i - финальная вероятность пребывания системы в i-м отказовом состоянии, граничащем с исправным состоянием; P_j - финальная вероятность пребывания системы в j-м отказовом состоянии, граничащем или не граничащем с исправным состоянием; E_j - подмножество всех отказовых состояний.

Интенсивности μ_i легко определить по графу состояний, воспользовавшись соотношением

$$\mu_i = \sum_{r,s} \mu_{ri}, \qquad (10.16)$$

где μ_{ij} - интенсивность перехода из i-го отказового состояния в j-е граничащее исправное состояние (например, по рис. 10.2 $\mu_3 = \mu_{32} = b_3$, $\mu_4 = \mu_{41} = b_4$); е₊ - подмножество исправных состояний, граничащих с отказовыми состояниями.

Подставляя значения R_i и μ_i из (10.15) и (10.16) в (10.14), получим

$$\mu_{c} = \left[\sum_{i \in C} \mathbf{P}_{i} \cdot \left(\sum_{j \in C} \mu_{ij} \right) \right] / \sum_{j \in C} \mathbf{P}_{i}. \tag{10.17}$$

Так как среднее время восстановления и интенсивность восстановления системы связаны соотношением $t_B \! = \! 1/\mu_c$, то

$$t_{ij} = \frac{\sum_{j \in E_j} P_j}{\sum_{j \in E_j} P_j \cdot \left(\sum_{j \in E_j} \mu_{ij}\right)}.$$
 (10.18)

Так как

$$\mathbf{K}_{1'} = \sum_{j \in E_1} \mathbf{P}_{j}; \quad 1 - \mathbf{K}_{1'} = \sum_{j \in E} \mathbf{P}_{j},$$
 (10.19)

где Е. - подмножество всех исправных состояний, то

$$t_{ep} = \sum_{n \in I_i} P_i / \left[\sum_{n \in I} P_i \cdot \left(\sum_{n \in I_i} \mu_{i_i} \right) \right]. \tag{10.20}$$

Финальные вероятности пребывания системы в і-м состоянии можно вычислить, воспользовавшись соотношением

$$P_{i} = \lim_{s \to \infty} s P_{i}(s). \tag{10.21}$$

Соотношение (10.21) с учетом (10.7) - (10.9) примет вид

$$P_{i} = \frac{B_{n_{i}}}{A_{i}}.$$
 (10.22)

Таким образом, для вычисления финальных вероятностей достаточно определить свободные коэффициенты полиномов $\Delta_i(s)$ и $\Delta(s)$ по приведенным выше правилам.

Заметим, что для определения коэффициента вынужденного простоя или коэффициента готовности можно не искать $K_n(s)$, а находить K_r и K_Π по формуле (10.5) непосредственно из графа состояний. Из выражения (10.5) следует, что коэффициенты K_r и K_Π есть отношения вида

$$K_{\Pi} = \frac{\sum_{i=1}^{m} T_{i}}{\sum_{i=1}^{m} T_{i} + \sum_{i=0}^{r-1} T_{i}}, \quad K_{\Gamma} = 1 - K_{\Pi},$$
(10.23)

где m - число узлов графа, соответствующих отказовым состояниям системы; r=k-m - число узлов графа, соответствующих исправному состоянию системы; T_i - произведение интенсивностей переходов из всех крайних состояний графа в i-е отказовое состояние при движении в i-е состояние по кратчайшему пути в направлении стрелок; T_j - произведение интенсивностей переходов из всех крайних состояний графа в j-е исправное состояние при движении в j-е состояние по кратчайшему пути в направлении стрелок.

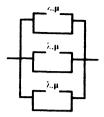
Руководствуясь установленным правилом, легко найти финальную вероятность пребывания резервированной восстанавливаемой системы в любом і-м состоянии по формуле

$$P_{i} = \frac{T_{i}}{\sum_{j=0}^{k-1} T_{j}},$$
(10.24)

где T_i , T_j - произведение интенсивностей переходов из всех крайних состояний соответственно в i-е и j-е состояния при движении по кратчайшему пути в направлении стрелок; k - число узлов графа.

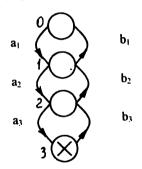
Решение типовых задач

Задача 10.1. Вычислительная система состоит из трех однородных машин (рис. 10.3), интенсивность отказа каждой из них λ , а интенсивность восстановления μ . Вычислительный процесс в системе организован таким образом, что ее отказ наступает лишь при отказе трех машин. При этом под отказом понимается такое событие, при появлении которого задача не может быть решена за заданное время. Ремонт осуществляет одна бригада обслуживания. Требуется: 1) построить граф состояний вычислительной системы; 2) определить $K_{\Pi}(s)$, $K_{\Gamma}(s)$; 3) найти K_{Γ} , K_{Π} ; 4) вычислить t_{B} , t_{cp} .



Вис. 10.3

Решение. Введем в рассмотрение состояния 0.1,2,3, т.е. k=4. Состояние 0 означает, что все три машины исправны, вычислительная система (ВС) работоспособна. Состояние 1 означает, что 1-я любая машина вышла из строя, а 2-я и 3-я машины исправны, т.е. ВС работоспособна. Состояние 2 означает, что любые две машины вышли из строя, а 3-я машина исправна, т.е. ВС работоспособна. Состояние 3 означает, что все три машины вышли из строя, т.е. ВС находится в отказовом состоянии. Отказовое состояние 3 обозначено окружностью с крестом. Граф состояний ВС приведен на рис. 10.4.



Вис. 10.4

Здесь $b_1=b_2=b_3=\mu$; $a_1=3\lambda$, $a_2=2\lambda$; $a_3=\lambda$. Формула (10.1) в рассматриваемом случае примет вид

$$K_{n}(s) = \frac{B}{s[A_{n}s^{3} + A_{1}s^{2} + A_{2}s + A_{3}]}.$$
 (10.25)

Определим коэффициенты A_0 , A_1 , A_2 , A_3 по изложенному выше правилу. Коэффициент A_0 равен 1, т.е. A_0 =1. Найдем коэффициент A_1 . Имеем

$$A_1=a_1+a_2+a_3+b_1+b_2+b_3=6\lambda+3\mu$$
.

В данном случае, как видно из графа состояний, в коэффициентах A_2 , A_3 будут отсутствовать члены, содержащие произведения вида a_1b_1 , a_2b_2 , a_3b_3 , a_2b_1 , a_3b_2 . Тогда

$$A_2 = a_1 a_2 + a_1 a_3 + a_1 b_2 + a_1 b_3 + a_2 a_3 + a_2 b_3 + a_3 b_1 + b_1 b_2 + b_1 b_3 + b_2 b_3 = 3\lambda 2\lambda + 3\lambda \lambda + 3\lambda \mu + \\ + 3\lambda \mu + 2\lambda (\lambda + \mu) + \lambda \mu + 3\mu^2 = 6\lambda^2 + 3\lambda^2 + 6\lambda \mu + 2\lambda^2 + 2\lambda \mu + \lambda \mu + 3\mu^2 = 11\lambda^2 + 9\lambda \mu + 3\mu^2;$$

 $\begin{array}{l} A_3 = a_1 a_2 a_3 + a_1 a_2 b_3 + a_1 b_2 b_3 + b_1 b_2 b_3 = 3 \lambda 2 \lambda \lambda + 3 \lambda 2 \lambda \mu + 3 \lambda \mu \mu + \mu^3 = 6 \lambda^3 + 6 \lambda^2 \mu + 3 \lambda \mu^2 + \mu^3. \end{array}$

Найдем коэффициент В по формуле (10.3):

$$B = \prod_{i=1}^{k-1} a_i = \prod_{i=1}^{3} a_i = a_1 a_2 a_3 = 6\lambda^3$$

Определим коэффициенты простоя K_{Π} и готовности K_{Γ} с использованием формул (10.5):

$$K_{\Pi} = \frac{B}{A_3} = \frac{6\lambda^3}{6\lambda^3 + 6\lambda^2\mu + 3\lambda \cdot \mu^2 + \mu^3},$$

или

$$K_{\Pi} = \frac{1}{1 + \frac{\mu}{\lambda} + \frac{1}{3} \left(\frac{\mu}{\lambda}\right)^2 + \frac{1}{6} \left(\frac{\mu}{\lambda}\right)^3},$$
(10.26)

$$K_{\Gamma} = 1 - K_{\Pi} = \frac{\frac{\mu}{\lambda} + \frac{1}{3} \left(\frac{\mu}{\lambda}\right)^{2} + \frac{1}{6} \left(\frac{\mu}{\lambda}\right)^{3}}{1 + \frac{\mu}{\lambda} + \frac{1}{3} \left(\frac{\mu}{\lambda}\right)^{2} + \frac{1}{6} \left(\frac{\mu}{\lambda}\right)^{3}}.$$
 (10.27)

Для получения вероятности Q(s) необходимо в выражении (10.25) для $K_{II}(s)$ в коэффициентах A_1 , A_2 , A_3 исключить все члены, содержащие интенсивность перехода b_3 :

$$A'_{1}=a_{1}+a_{2}+a_{3}+b_{1}+b_{2}=3\lambda+2\mu; \\ A'_{2}=a_{1}(a_{2}+a_{3}+b_{2})+a_{2}a_{3}+a_{3}b_{1}+b_{1}b_{2}=3\lambda(3\lambda+\mu)+2\lambda^{2}+\lambda\mu+\mu^{2}=11\lambda^{2}+4\lambda\mu+\mu^{2}; \\ A'_{3}=a_{1}a_{2}a_{3}=6\lambda^{3}$$

Система имеет одно отказовое состояние - состояние 3, причем переход из этого состояния в соседнее состояние 2 возможен с интенсивностью b_3 = μ . Тогда среднее время восстановления системы определяется соотношением t_B = $1/\mu$.

Определим наработку на отказ (математическое ожидание времени между соседними отказами восстанавливаемой системы) по формуле (10.12):

$$t_{cp} = K_{\rm t} t_{\rm h} / (1 - K_{\rm t})$$
или

$$t_{cp} = K_1 / (\mu K_{11})$$
,

где K_{II} и $K_{I'}$ определяются соотношениями (10.26), (10.27).

Задача 10.2. Дана система с раздельным резервированием (рис. 10.5). Все элементы системы равнонадежны и имеют интенсивность отказов λ , ремонт элемента начинается немедленно после отказа и происходит с интенсивностью μ . Требуется: 1) построить граф состояний системы; 2) определить $K_{II}(s)$, $K_{I}(s)$; 3) найти K_{II} , K_{I} ; 4) рассчитать финальные вероятности для всех состояний графа; 5) вычислить t_{B} , t_{cp} .

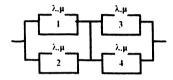


Рис. 10.5

Решение. Введем в рассмотрение состояния 0,1,2,2',3, т.е. k=5. Состояние 0 означает, что система исправна (исправны все 4 элемента системы). Состояние 1 означает, что отказал элемент 1, система исправна $(a_1=4\lambda)$. В состоянии 1 исправны оставшиеся три элемента. Состояние 2' означает, что после отказа элемента 1 произошел отказ элемента 3, система неисправна $(a_2=\lambda)$. Состояние 2 означает, что произошел отказ одного элемента из элементов 2 и 4, система исправна $(a_2=2\lambda)$. Если, например, произошел отказ элемента 4, то в состоянии 2 исправны элементы 2 и 3. Состояние 3 означает, что произошел отказ одного элемента из двух исправных элементов (например, элементов 2 и 3), система отказала и неисправна $(a_3=2\lambda)$.

В рассматриваемой задаче $b_1=b_2=h_2=b_3=\mu$. Граф состояний системы приведен на рис. 10.6.

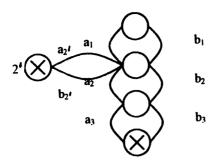


Рис. 10.6

Система имеет два отказовых состояния 2' и 3, поэтому

$$K_{11}(s) = P_{2'}(s) + P_{1}(s) = \frac{\Delta_{2'}(s) + \Delta_{3}(s)}{\Delta(s)}$$

Система может находиться в пяти состояниях, поэтому

$$\Delta(s)=s[A_0s^4+A_1s^3+A_2s^2+A_3s+A_4].$$

Найдем коэффициенты A_i по установленному правилу: $A_0=1$, $A_1=a_1+a_2+a_3+a_4+b_1+b_2+b_3+b_4=9\lambda+4\mu$. В данном случае, как видно из графа состояний, в коэффициентах A_2 , A_3 , A_4 будут отсутствовать члены, содержащие произведения вида a_1b_1 , a_2b_2 , a_3b_3 , $a_2^{\prime}b_2^{\prime}$, a_2b_1 , a_3b_2 , $a_2^{\prime}b_1$, $a_2a_2^{\prime}$. Тогда

 $A_2 = a_1 a_2 + a_1 a_3 + a_1 b_3 + a_1 b_2 + a_1 a_2 + a_1 b_2 + a_2 a_3 + a_2 b_3 + a_2 b_2 + a_3 a_2 + a_3 b_2 + a_3 b_1 + b_2 b_3 + b_3 b_2 + b_1 b_3 + b_2 b_2 + b_1 b_2$

 $\begin{array}{l} A_3 = a_1 a_2 a_3 + a_1 a_2 b_3 + a_1 a_2 b_2 + a_1 a_3 b_2 + a_1 a_3 a_2 + a_1 b_2 b_3 + a_1 b_3 b_2 + a_1 b_3 a_2 + a_1 b_2 b_2 + a_1 b_2 b_2 + a_1 b_2 a_2 + a_1 b_2 a_2 + a_1 b_2 b_3 a_2 + b_1 b_2 b_3 + b_1 b_2 b_2 + b_1 b_3 b_2 = \\ = 24 \lambda^3 + 36 \lambda^2 \mu + 17 \lambda \mu^2 + 4 \mu^2, \end{array}$

 $\begin{array}{l} A_{4} = a_{1}a_{2}a_{3}b_{2} + a_{1}a_{2}b_{3}b_{2} + a_{1}b_{2}b_{3}b_{2} + a_{1}b_{2}b_{3}a_{2} + b_{1}b_{2}b_{3}b_{2} = 16\lambda^{3}\mu + 12\lambda^{2}\mu^{2} + 4\lambda\mu^{3} + \mu^{4} \\ + \mu^{4} \end{array}$

В нашем случае k=5, а число отказавших устройств в состоянии 2' равно 2 и в состоянии 3 равно 3. Тогда полином $\Delta_2'(s)$ будет иметь степень $n_2'=k-1-1=1-3=1$, т.е.

$$\Delta_2(s) = B_0^{(2)} \cdot s^2 + B_1^{(2)} \cdot s + B_2^{(2)},$$

 $\Delta_3(s) = B_0^{(3)} \cdot s + B_1^{(3)}$

На основании сформулированного выше правила коэффициенты $B_0^{(2^{\circ})}, B_1^{(2^{\circ})}, B_2^{(2^{\circ})}$ могут быть найдены непосредственно из коэффициентов A_2, A_3, A_4 , если в них оставить только те члены, в которых присутствуют произведения a_1a_2 , т.е.

$$\begin{split} &B_0^{(2')} = a_1 a_{2'} = 4\lambda^2; \\ &B_1^{(2')} = a_1 b_3 a_{2'} + a_1 b_2 a_{2'} + a_1 a_3 a_{2'} = 12\lambda^2 \mu; \\ &B_2^{(2')} = a_1 b_3 b_3 a_3 = 4\lambda^2 \mu^2 \end{split}$$

Для определения коэффициентов $B_0^{(3)}$, $B_1^{(3)}$ на основании правила необходимо в коэффициентах A_3 , A_4 оставить только те члены, в которых присутствуют произведения $a_1a_2a_3$. В данном случае $B_0^{(3)} = a_1a_2a_3 = 16\lambda^3$, $B_1^{(3)} = a_1a_2a_3b_2 = 16\lambda^3\mu$.

Подставив в выражение для $K_{II}(s)$ полиномы и вычисленные значения коэффициентов, получим

$$\begin{split} K_{\pi}(s) &= \frac{4\lambda^2 \textbf{s}^2 + (12\lambda^2 \mu + 16\lambda^3) \textbf{s} + 4\lambda^2 \mu^2 + 16\lambda^3 \mu}{s[s^4 + (9\lambda + 4\mu\mu)^3 + (26\lambda^2 + 21\lambda 1 + 6\mu^2) s^2 + (24\lambda^3 + 36\lambda^2 \mu + 17\lambda 7^2 + 4\mu^2) s} \\ &+ \frac{(16\lambda^3 \mu + 12\lambda^2 \mu^2 + 4\lambda\lambda^3 + \mu^4)^4}{(16\lambda^3 \mu + 12\lambda^2 \mu^2 + 16\lambda^3 \mu)^4}, \end{split}$$

$$K_{\pi} &= \lim_{s \to \infty} \mathbf{s} \cdot K_{\pi}(s) = \frac{4\lambda^2 \mu^2 + 16\lambda^3 \mu}{16\lambda^3 \mu + 12\lambda^2 \mu^2 + 4\lambda\lambda^3 + \mu^4}, \end{split}$$

$$K_{\Gamma}(s) = \frac{1}{s} - K_{\Pi}(s); \quad K_{\Gamma} = 1 - K_{\Pi}.$$

Определим t_B . Так как система имеет два отказовых состояния (рис. 10.6), а интенсивности переходов из этих состояний в соседние одинаковы, т.е. $b_3 = b_2 = \mu$, то $t_B = 1/\mu$.

Величина t_{cp} находится по формуле (10.12). Определим финальные вероятности P_0 , P_1 , P_2 , P_3 , P_3 . Имеем

$$P_{0}(s) = \frac{\Delta_{0}(s)}{\Delta(s)}; \quad P_{1}(s) = \frac{\Delta_{1}(s)}{\Delta(s)}, \quad P_{2}(s) = \frac{\Delta_{2}(s)}{\Delta(s)},$$

$$P_{2'}(s) = \frac{\Delta_{2'}(s)}{\Delta(s)}; \quad P_{2'} = \lim_{s \to r'} s P_{2'}(s) = \frac{B_{2}^{(2')}}{A_{4}} = \frac{4\lambda^{2} \mu^{2}}{16\lambda^{3} \mu + 12\lambda^{2} \mu^{2} + 4\lambda\lambda^{3} + \mu^{4}},$$

$$P_3(s) = \frac{\Delta_3(s)}{\Delta(s)}; \quad P_3 = \lim_{s \to \infty} SP_3(s) = \frac{B_1^{(3)}}{A_4} = \frac{16\lambda^3 \mu}{16\lambda^3 \mu + 12\lambda^2 \mu^2 + 4\lambda\lambda^3 + \mu^4}$$

Получим n_i (i=0,1,2) по формуле (10.10)

$$n_0=k-1-l_0$$
; $n_1=k-1-l_1$; $n_2=k-1-l_2$,

где l_i - количество отказавших элементов в состоянии i.

Так как $l_0=0$, $l_1=1$, $l_2=2$, то $n_0=4$, $n_1=3$, $n_2=2$. Следовательно,

$$\begin{split} & \Delta_{0}(s) = B_{0}^{(0)} s^{4} + B_{1}^{(0)} s^{3} + B_{2}^{(0)} s^{2} + B_{3}^{(0)} s + B_{4}^{(0)}; \\ & \Delta_{1}(s) = B_{0}^{(1)} s^{3} + B_{1}^{(1)} s^{2} + B_{2}^{(1)} s + B_{3}^{(1)}; \\ & \Delta_{1}(s) = B_{0}^{(2)} s^{2} + B_{1}^{(2)} s + B_{2}^{(2)} \end{split}$$

Найдем Ро, Ро, Ро, Ро, по формуле (10.21):

$$P_0 = \frac{B_4^{(0)}}{A_4}; P_1 = \frac{B_3^{(1)}}{A_4}; P_2 = \frac{B_2^{(2)}}{A_4}.$$

 $B_2^{(2)}$ может быть получено из коэффициента A_4 , если в нем оставить только те члены, в которых присутствуют произведения a_1a_2 , т.е.

$$B_2^{(2)} = a_1 a_2 b_3 b_2 = 8 \lambda^2 \mu^2$$

Для определения коэффициента $B_3^{(1)}$ необходимо в коэффициенте A_4 оставить только те члены, в которых присутствует a_1 , т.е.

$$B_3^{(1)} = a_1b_2b_3b_2 = 4\lambda\mu^3$$

Аналогично вычисляем

$$B_{a}^{(0)}=b_{1}b_{2}b_{3}b_{2}=\mu^{4}$$

Окончательно получим

$$P_0 = \frac{\mu^4}{A}$$
; $P_1 = \frac{4\lambda \ \mu^3}{A^4}$; $P_2 = \frac{8\lambda^2 \mu^2}{A^4}$.

Задача 10.3. Условие задачи совпадает с условием задачи 10.2. Используя граф состояний задачи 10.2, требуется: 1) определить K_{II} , $K_{I'}$; 2) вычислить финальные вероятности для всех состояний графа; 3) найти t_{II} , t_{cp} .

<u>Решение.</u> Граф состояний системы приведен на рис. 10.6. Система имеет два отказовых состояния 2 и 3. Состояния 0, 1, 2 соответствуют исправному состоянию системы.

Учитывая формулы (10.19), (10.5), получим

$$\begin{split} \mathbf{K}_{11} &= \sum_{i \in E} \mathbf{P}_i = \mathbf{P}_2^{\top} + \mathbf{P}_1, \\ \mathbf{K}_{11} &= \sum_{i \in E} \mathbf{P}_i = \mathbf{P}_0^{\top} + \mathbf{P}_1^{\top} + \mathbf{P}_2^{\top} \end{split}$$

Финальные вероятности P_i , i=0,1,2,2',3 будем определять по формуле (10.22). В нашем случае k=5. Число отказавших устройств в состоянии 2' равно двум, в состоянии 3 трем, в состоянии 0 нулю, в состоянии 1 единице, в состоянии 2 двум. Следовательно,

$$l_2=2$$
; $l_3=3$; $l_0=0$; $l_1=1$; $l_2=2$.

Вычислим n_i ($i = 2^i, 3, 0, 1, 2$) по формуле (10.10):

$$n_2 = k-1-l_2 = 5-1-2=2;$$

$$n_3=k-1-l_3=5-1-3=1$$
;

no=k-1-lo=5-1-0=4:

 $n_1=k-1-l_1=5-1-1=3$;

 $n_2=k-1-l_2=5-1-2=2$.

Для определения P_i (i = 0, 1, 2, 2', 3) запишем соотношения

$$P_{2'} = \frac{B_2^{(2')}}{A_1}; \quad P_3 = \frac{B_1^{(3)}}{A_1}; \quad P_0 = \frac{B_4^{(0)}}{A_1}; \quad P_1 = \frac{B_3^{(1)}}{A_1}; \quad P_2 = \frac{B_2^{(2)}}{A_1}.$$

Найдем коэффициент A_4 по установленному правилу. В данном случае, как видно из графа состояний, в коэффициенте A_4 будут отсутствовать члены, содержащие произведения вида a_1b_1 , a_2b_2 , a_3b_3 , $a_2\cdot b_2$, a_2b_1 , a_3b_2 , $a_2\cdot b_1$, a_2a_2 . Тогда

$$\begin{array}{l} A_4 = a_1 a_2 a_3 b_2 \cdot + a_1 a_2 b_3 b_2 \cdot + a_1 b_2 b_3 b_2 \cdot + a_1 b_2 b_3 a_2 \cdot + b_1 b_2 b_3 b_2 \cdot = 16 \lambda^3 \mu + 12 \lambda^2 \mu^2 + 4 \lambda \mu^3 + \mu^4 \end{array}$$

Коэффициент $B_1^{(3)}$ на основании сформулированного выше правила может быть найден из коэффициента A_4 , если в нем оставить только те члены, в

которых присутствуют произведения $a_1a_2a_3$. В данном случае $B_1^{(3)} = a_1a_2a_3b_2 = 16\lambda^3\mu$. Коэффициент $B_2^{(2)}$ находится из коэффициента A_4 , если в нем оставить только те члены, в которых присутствуют произведения a_1a_2 , т.е. $B_2^{(2')} = a_1b_2b_3a_2 = 4\lambda^2\mu^2$ $B_2^{(2)}$ может быть получен из коэффициента A_4 , если в нем оставить только те члены, в которых присутствуют произведения a_1a_2 , т.е. $B_2^{(2)} = a_1a_2b_3b_2 = 8\lambda^2\mu^2$ Для определения коэффициента $B_3^{(1)}$ необходимо в коэффициенте A_4 оставить только те члены, в которых присутствует a_1 , т.е. $B_3^{(1)} = a_1b_2b_3b_2 = 4\lambda\mu^3$ Определим коэффициент $B_4^{(0)}$ Имеем $B_4^{(0)} = b_1b_2b_3b_2 = \mu^4$ Окончательно получим

$$P_{_{0}}=\frac{\mu^{4}}{A_{_{4}}};P_{_{1}}=\frac{4\lambda\cdot\mu^{3}}{A_{_{4}}};P_{_{2}}=\frac{8\lambda^{2}\mu^{2}}{A_{_{4}}};P_{_{2'}}=\frac{4\lambda^{2}\mu^{2}}{A_{_{4}}};P_{_{3}}=\frac{16\lambda^{3}\mu}{A_{_{4}}}.$$

Определим Ки и Кг:

$$\begin{split} & K_{11} \equiv P_{2}^{-} + P_{1}^{-} \equiv \frac{4\lambda^{2}\mu^{2} + 16\lambda^{3}\mu}{A_{4}}; \\ & K_{11} \equiv P_{0}^{-} + P_{1}^{-} + P_{2}^{-} \equiv \frac{8\lambda^{2}\mu^{2} + 4\lambda \cdot \mu^{3} + \mu^{4}}{A_{4}}. \end{split}$$

Определим t_B . Так как система имеет два отказовых состояния (см. рис. 10.6), а интенсивности переходов из этих состояний в соседние одинаковы, т.е. $b_2 \cdot b_3 = \mu$, то $t_B = 1/\mu$.

Величина t_{ср} определяется по формуле (10.12).

Определим K_{II} , K_{Γ} , P_{i} (i=0,1,2,2,3) с использованием формул (10.23), (10.24):

$$\begin{split} &T_0 = b_1 b_2 b_3 b_2 = \mu^4; \quad T_1 = a_1 b_2 b_3 b_2 = 4 \lambda \mu^3; \quad T_2 = a_1 a_2 b_3 b_2 = 8 \lambda^2 \mu^2; \\ &T_3 = a_1 a_2 a_3 b_2 = 16 \lambda^3 \mu; \quad T_2 = a_1 b_2 b_3 a_2 = 4 \lambda^2 \mu^2; \\ &A_4 = T_0 + T_1 + T_2 + T_2 + T_3. \end{split}$$

В рассматриваемом примере число узлов k=5, число отказовых состояний m=2, число исправных состояний r=3. Тогда

$$\begin{split} K_{11} &= \frac{T_2 + T_3}{A_4} = \frac{4\lambda^2 \mu^2 + 16\lambda^3 \mu}{A_4}; \\ K_{1} &= I - K_{11} = \frac{T_n + T_1 + T_2}{A_4} = \frac{8\lambda^2 \mu^2 + 4\lambda \cdot \mu^3 + \mu^4}{A_4}. \\ P_n &= \frac{T_n}{A_4} = \frac{\mu^4}{A_4}; P_1 = \frac{T_1}{A_4} = \frac{4\lambda \cdot \mu^3}{A_4}; P_2 = \frac{T_2}{A_4} = \frac{8\lambda^2 \mu^2}{A_4}; \\ P_2 &= \frac{T_2}{A_1} = \frac{4\lambda^2 \mu^2}{A_1}, P_3 = \frac{T_3}{A_1} = \frac{16\lambda^3 \mu}{A_1}. \end{split}$$

Задача 10.4. Схема расчета надежности нерезервированной вычислительной машины приведена на рис. 10.7, где приняты обозначения: n - число элементов (устройств) системы; λ_i интенсивность отказов i-го элемента (i=1,2,... n); μ_i интенсивность восстановления i-го элемента. Требуется: 1) построить граф состояний вычислительной машины; 2) определить вероятность безотказной работы P(t), среднее время безотказной работы T; 3) найти наработку на отказ t_{cy} ; 4) вычислить коэффициент готовности K_1 ; 5) рассчитать среднее время восстановления вычислительной машины.

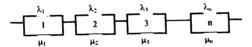
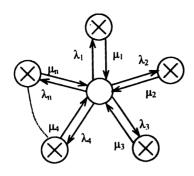


рис. 10.7

Решение. Введем в рассмотрение состояния 0, 1, 2, ..., n, т.е. k=n+1 Состояние 0 означает, что вычислительная машина исправна. Состояние i (i=1,2,...,n) означает, что отказал i-й элемент вычислительной машины, вычислительная машина неисправна. Таким образом, состояния i (i=1,2,...,n) отказовые. Машина в i-е отказовое состояние может попасть с интенсивностью отказа i-го элемента, т.е. λ_i , и может быть восстановлена (возвращена в состояние 0) с интенсивностью μ . Граф состояний вычислительной машины приведен на рис. 10.8.



Dис. 10.8

Так как вероятность P(t) и среднее время T безотказной работы характеризуют поведение ЦВМ до 1-го отказа, то для их определения в графе состояний необходимо запретить переходы из отказовых состояний в исправное состояние. Тогда

$$P(t) = \prod_{i=1}^{n} P_{i}(t) = \prod_{i=1}^{n} e^{-\lambda_{i}t} = e^{-\lambda_{i}t}; \quad T = 1/\lambda_{\hat{C}},$$

где

$$\lambda_{c} = \sum_{i=1}^{m} \lambda_{i}$$

Для определения K_1 воспользуемся формулой (10.23). В данном случае k=n+1; m=n; r=k-m=1. Определим $T_0,\,T_1,\,T_2,...,T_m$:

$$\begin{split} T_{n} &= \mu_{1} \cdot \mu_{2} \cdot ... \cdot \mu_{n} = \prod_{j=1}^{n} \mu_{j}; \\ T_{1} &= \lambda_{1} \sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} = \frac{\lambda_{1}}{\mu_{1}} \prod_{j=1}^{n} \mu_{j}; \\ T_{2} &= \lambda_{2} \prod_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} = \frac{\lambda_{2}}{\mu_{2}} \prod_{j=1}^{n} \mu_{j}; \\ T_{i} &= \lambda_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} = \frac{\lambda_{i}}{\mu_{i}} \prod_{j=1}^{n} \mu_{j}, i = 3, 4, ... \end{split}$$

Из (10.23) получим

$$K_{T} = \frac{\sum\limits_{j=0}^{i-1} T_{j}}{\sum\limits_{i=1}^{m} T_{i} + \sum\limits_{j=0}^{i-1} T_{j}} = \frac{T_{n}}{T_{n} + T_{1} + T_{2} + ... + T_{n}}.$$

Подставим в последнюю формулу T_i (i = 0, 1, 2, ..., n):

$$K_{1} = \frac{\prod_{j=1}^{n} \mu_{j}}{\left(1 + \frac{\lambda_{1}}{\mu_{1}} + \frac{\lambda_{2}}{\mu_{2}} + ... + \frac{\lambda_{n}}{\mu_{n}}\right) \sum_{j=1}^{n} \mu_{j}}$$

или

$$K_{1'} = \frac{1}{1 + \sum_{i=1}^{n} \lambda_i}.$$

Определим финальные вероятности с использованием формулы (10.24):

$$\begin{split} P_0 &= \frac{T_0}{\sum_{j=0}^{k-1} T_j} = \frac{T_0}{T_0 + T_1 + T_2 + ... + T_n} = \frac{1}{1 + \sum_{i=1}^{n} \lambda_i}; \\ P_1 &= \frac{T_1}{\sum_{j=0}^{k-1} T_j} = \frac{T_1}{T_0 + T_1 + T_2 + ... + T_n} = \frac{\lambda_1/\mu_1}{1 + \sum_{i=1}^{n} \lambda_i}; \\ P_2 &= \frac{T_2}{\sum_{j=0}^{k-1} T_j} = \frac{T_2}{T_0 + T_1 + T_2 + ... + T_n} = \frac{\lambda_2/\mu_2}{1 + \sum_{i=1}^{n} \lambda_i}; \\ P_1 &= \frac{T_i}{\sum_{j=0}^{k-1} T_j} = \frac{T_i}{T_0 + T_1 + T_2 + ... + T_n} = \frac{\lambda_1/\mu_i}{1 + \sum_{i=1}^{n} \lambda_i}, i = 3, 4, ..., n. \end{split}$$

Найдем t_{cp} по формуле (10.20):

$$\begin{split} & \sum_{j \in E_*} P_j = P_0; \qquad \sum_{i \in e_-} P_i \Biggl(\sum_{j \in e_*} \mu_{ij} \Biggr) = \sum_{i=1}^n P_i \mu_{i0} = \sum_{i=1}^n P_i \mu_i; \\ & t_{cp} = \frac{P_0}{\sum_{i=1}^n P_i \mu_i}; \ P_1 \mu_1 = \frac{\lambda_1}{1 + \sum_{i=1}^n \lambda_i}; \qquad P_i \mu_i = \frac{\lambda_i}{1 + \sum_{i=1}^n \lambda_i}; \qquad i = 2, 3, ..., n; \end{split}$$

$$t_{cp} = \frac{1}{\left(1 + \sum_{i=1}^{n} \frac{\lambda_i}{\mu_i}\right) \cdot \frac{\lambda_1 + \lambda_2 + \ldots + \lambda_{n-1}}{\left(1 + \sum_{i=1}^{n} \frac{\lambda_i}{\mu_i}\right)}},$$

или

$$t_{cp} = \frac{1}{\sum_{i=1}^{n} \lambda_{i}},$$

где t_{ср} - наработка на отказ системы (математическое ожидание времени между соседними отказами восстанавливаемой системы).

Вычислим среднее время восстановления $t_{\rm B}$ с использованием формулы (10.18):

$$\begin{split} &\sum_{j \in E} P_{j} = P_{1} + P_{2} + ... + P_{n} = \sum_{i=1}^{n} P_{i}; \\ &\sum_{i \in C} P_{i} \Biggl(\sum_{j \in C} \mu_{ij} \Biggr) = \sum_{i=1}^{n} P_{i} \mu_{i}; \\ &t_{1i} = \frac{P_{1} + P_{2} + ... + P_{n}}{\sum_{j=1}^{n} P_{j} \mu_{i}} = \frac{\frac{\lambda_{1}}{\mu_{1}} + \frac{\lambda_{2}}{\mu_{2}} + ... + \frac{\lambda_{n}}{\mu_{n}}}{\lambda_{1} + \lambda_{2} + ... + \lambda_{n}} = \frac{\lambda_{1}}{\lambda_{c}} \cdot \frac{1}{\mu_{1}} + \frac{\lambda_{2}}{\lambda_{c}} \cdot \frac{1}{\mu_{2}} + ... + \frac{\lambda_{n}}{\lambda_{c}} \cdot \frac{1}{\mu_{n}}, \end{split}$$

или

$$t_{\mathrm{B}} = \frac{\lambda_{1}}{\lambda_{\mathrm{C}}} t_{\mathrm{B}1} + \frac{\lambda_{2}}{\lambda_{\mathrm{C}}} t_{\mathrm{B}2} + ... + \frac{\lambda_{n}}{\lambda_{\mathrm{C}}} t_{\mathrm{B}n} = \sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{\mathrm{C}}} t_{\mathrm{B}i},$$

где $t_{\rm Bi}$ - среднее время восстановления і-го элемента (устройства).

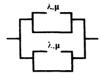
Полученные соотношения позволяют сделать следующие выводы:

- а) среднее время безотказной работы и наработка на отказ неизбыточной ЦВМ совпадают;
- б) коэффициент готовности машины не равен произведению коэффициентов готовности отдельных устройств, это объясняется тем, что отказы устройств восстанавливаемой ЦВМ нельзя считать независимыми;
- в) среднее время восстановления машины зависит не только от средних времен восстановления устройств, но также от их интенсивностей отказов. В общем случае среднее время восстановления не равно среднеарифметическому от средних времен восстановления устройств.

Задачи для самостоятельного решения

Задача 10.5. Вычислительная система состоит из двух однородных ЦВМ, интенсивность отказа каждой из них λ , а интенсивность восстановления μ . Вы-

числительный процесс в системе организован таким образом, что ее отказ наступает лишь при отказе двух ЦВМ. При этом под отказом понимается такое событие, при появлении которого задача не может быть решена за заданное время. Предполагается, что число обслуживающих бригад равно 1. Из формулировки задачи видно, что вычислительная система представляет собой дублированную систему, структурная схема которой приведена на рис. 10.9.

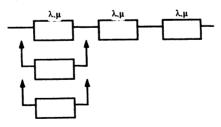


Дис. 10.9

Требуется: 1) построить граф состояний; 2) определить $K_\Gamma,\,K_\Pi;\,3)$ вычислить $t_B,\,t_{ep}.$

<u>Задача 10.6.</u> Условие задачи совпадает с условием задачи 10.5. Отличие состоит в том, что число обслуживающих бригад равно 2.

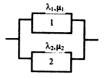
Задача 10.7. Вычислительная машина комплекса содержит пять накопителей на магнитной ленте (НМЛ), каждый имеет интенсивность отказов λ и интенсивность восстановления μ . Для решения некоторой задачи используются только три накопителя, остальные два являются резервными. Эксплуатируются накопители одной обслуживающей бригадой. Из формулировки задачи видно, что НМЛ представляют собой систему из трех последовательно соединенных устройств со скользящим резервом, образованным двумя НМЛ (рис. 10.10). Требуется: 1) построить граф состояний (число состояний должно быть равно четырем); 2) определить K_Γ K_{Π} , K_{Π} ,



Dис. 10.10

Задача 10.8. Условие задачи совпадает с условием задачи 10.7. Отличие от задачи 10.7 состоит в том, что число обслуживающих бригад равно 2. Требуется: 1) построить граф состояний (число состояний должно быть равно четырем); 2) определить K_{Γ} , K_{Π} ; 3) найти t_{cp} , t_{B} .

Задача 10.9. Вычислительная система состоит из двух неоднородных вычислительных машин и образует дублированную систему, схема расчета надежности которой приведена на рис. 10.11. Систему обслуживают две бригады. Требуется: 1) построить граф состояний (число состояний должно быть равно четырем); 2) определить K_{Γ} , K_{Π} ; 3) найти t_{cp} , t_B .



Вис. 10.11

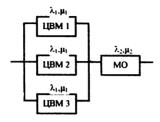
Задача 10.10. Вычислительная система состоит из двух неоднородных вычислительных машин и образует дублированную систему, схема расчета надежности которой приведена на рис. 10.11. Обслуживание осуществляется одной бригадой с прямым приоритетом. Прямой приоритет означает, что обслуживается первой та вычислительная машина, которая раньше попала в ремонт. Если вторая машина отказала позднее первой отказавшей машины, то она будет находиться в очереди на ремонт. Требуется: 1) построить граф состояний (число состояний равно 5, из них число отказовых состояний равно двум); 2) определить K_{Γ} , K_{Π} ; 3) найти t_{cp} , t_B .

Задача 10.11. Вычислительная система состоит из двух неоднородных вычислительных машин и образует дублированную систему, схема расчета надежности которой приведена на рис. 10.11. Обслуживание осуществляется одной бригадой с обратным приоритетом. Обратный приоритет означает, что обслуживается первой та вычислительная машина, которая попала в ремонт последней. Требуется: 1) построить граф состояний вычислительной системы (число состояний равно 5, из них число отказовых состояний равно двум); 2) определить K_{Γ} , K_{Π} , 3) найти $t_{\rm cp}$, $t_{\rm B}$.

Задача 10.12. Вычислительная система состоит из двух неоднородных вычислительных машин и образует дублированную систему, схема расчета надежности которой приведена на рис. 10.11. Обслуживание осуществляется одной бригадой с приоритетом 1-й вычислительной машины, т.е. 1-я машина ремонтируется первой в отказовых состояниях. Требуется: 1) построить граф состояний вычислительной системы (число состояний равно 5, из них число отказовых состояний равно двум); 2) определить K_{Γ_i} K_{Π_i} , K_{Π_i} , 3) найти t_{cp} и t_{H} .

Задача 10.13. Вычислительная система состоит из трех однородных ЦВМ и функционирует по принципу мажоритарной логики - две из трех. Структурная схема вычислительной системы приведена на рис. 10.12. Из структурной схемы следует, что при отказе мажоритарного органа (МО) вычислительная система не работает. Она не работает при отказе любой одной ЦВМ и МО или любых двух ЦВМ. Ремонт осуществляется одной бригадой с прямым приори-

тетом. Прямой приоритет означает, что обслуживается первым тот элемент, который раньше попал в ремонт. Если 2-й элемент отказал позднее 1-го элемента, то 2-й элемент будет находиться в очереди на ремонт. Требуется: 1) построить граф состояний вычислительной системы (число состояний равно 5, из них число отказовых состояний равно 2); 2) определить K_{Γ} : K_{Π} ; 3) найти $t_{\rm cp}$ и $t_{\rm B}$.



Дис. 10.12

Задача 10.14. Условие задачи 10.14 совпадает с условием задачи 10.13. Отличие от задачи 10.13 состоит в том, что ремонт осуществляется одной бригадой с обратным приоритетом. Обратный приоритет означает, что обслуживается первым то устройство, которое попало в ремонт последним. Опредёлить те же характеристики, что и в задаче 10.13.

Задача 10.15. Условие задачи 10.15 совпадает с условием задачи 10.13. Отличие от задачи 10.13 состоит в том, что ремонт осуществляется двумя бригадами, причем одна из них восстанавливает только ЦВМ, а другая - только оборудование, необходимое для осуществления мажоритарного резервирования. Определить те же характеристики, что и в задаче 10.13.

Задача 10.16. Условие задачи 10.16 совпадает с условием задачи 10.13. Отличие от задачи 10.13 состоит в том, что ремонт осуществляется двумя бригадами, каждая может восстанавливать как ЦВМ, так и МО. Определить те же характеристики, что и в задаче 10.13.

ГАСПЕР Борис Сергеевич. ЛИПАТОВ ИВЯН Николяевич

РЕШЕНИЕ ЗАДАЧ ПО КУРСУ "ПРИКЛАПНАЯ ТЕОРИЯ НАЛЕЖНОСТИ"

Учебное пособие

Лит.редектор Г.Я.ШИЛОНОСОВА Корректор С.В. ИВАНОВА

Лицензия ЛР № 020370 от 29.01.97

Подписано в печать 30.12.98.Формат 60х90/16. Печать офсетная. Набор компьютерный. Усл. печ. л. 5,75. Уч. — изд. л. 5,0. Тираж 100. Заказ 175.

Редакционно-издательский отдел и ротапринт Пермского государственного технического университета Адрес: 614600. Пермь, Комсомольский пр., 29a