Глава 13

Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком Х. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Cu, Al, Cu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения ($\approx 3.5 \cdot 10^6$ Kл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны. Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед, как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат советским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881 —1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде — Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

$$\langle u \rangle = \sqrt{8kT/(\pi m_e)},$$

которая для $T=300~\rm K$ равна $1,1 \cdot 10^5~\rm m/c$. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью c (c=3•10 8 м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Со стороны поля заряд e испытывает действие силы F=eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

$$v_{max} = eE < t >$$
.

где <*t*>—среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

$$\langle v \rangle = (v_{max} + 0)/2 = eE \langle t \rangle / (2m)$$
. (103.1)

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время < t > свободного пробега определяется средней длиной свободного пробега < l > и средней скоростью движения электронов относительно кристаллической решетки проводника, равной < u > +(v) (< u > - средняя скорость теплового движения электронов). В §102 было показано, что (v) << < u >, поэтому

Подставив значение <*t*> в формулу (103.1), получим <*v*>=eE<*l*>/(2m<u>).

Плотность тока в металлическом проводнике, по (96.1),

$$j = ne \langle v \rangle = \frac{ne^2 \langle l \rangle}{2m \langle u \rangle} E,$$

откуда видно, что плотность тока пропорциональна напряженности поля,

165

т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала

$$\gamma = \frac{ne^2 \langle l \rangle}{2m \langle u \rangle}, \tag{103.2}$$

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает

$$\langle E_{\kappa} \rangle = \frac{m v_{\text{max}}^2}{2} = \frac{e^2 \langle l \rangle^2}{2m \langle u \rangle^2} E^2. \quad (103.3)$$

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем <z> столкновений:

$$\langle z \rangle = \langle u \rangle / \langle l \rangle$$
. (103.4)

Если n — концентрация электронов, то в единицу времени происходит $n \le z >$ столкновений и решетке передается энергия

$$w=n < z > < E_{K} >$$
, (103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким

$$w = \frac{ne^2 \langle l \rangle}{2m \langle u \rangle} E^2. \tag{103.6}$$

Величина w называется удельной тепловой мощностью тока (см. §99). Коэффициент пропорциональности между w и E^2 по (103.2) есть удельная проводимость γ ; следовательно, выражение (103.6) —закон Джоуля — Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы — свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического теплового движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности (λ) к удельной проводимости (γ) для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре: $\lambda/\gamma=\beta T$,

где β — постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение β : β =3(k/e)², где k — постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил β =2(k/e)², что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная γ , должна возрастать пропорционально \sqrt{T} (в (103.2) n и <l> от температуры не зависят, а <math>< $u>\sim <math>\sqrt{T}$). Этот вывод электронной теории противоречит опытным данным, согласно которым $R\sim T$ (см. §98).

Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (103.2) получить γ , совпадающие с опытными значениями, надо принимать $\langle l \rangle$ значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.

Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти (см. $\S73$), теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна $^{3}/_{2}R$. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.

§ 104. Работа выхода электронов из металла

Как показывает опыт, свободные электроны при обычных температурах практически не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется **работой выхода.** Укажем две вероятные причины появления работы выхода:

- 1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.
- 2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям $(10^{-10} 10^{-9} \text{ м})$. Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задерживающее его электрическое поле двойного слоя. Разность потенциалов $\Delta \varphi$ в этом слое, называемая **поверхностным скачком потенциала,** определяется работой выхода (A) электрона из металла:

где e — заряд электрона. Так как вне двойного слоя электрическое поле отсутствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен $\Delta \phi$. Потенциальная энергия свободного электрона внутри металла равна — $e\Delta \phi$ и является относительно вакуума отрицательной. Исходи из этого можно

считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода A.

Работа выхода выражается в электрон-вольтах (эВ): 1 эВ равен работе, совершаемой силами поля при перемещении элементарного электрического заряда (заряда, равного заряду электрона) при прохождении им разности потенциалов в 1 В. Так как заряд электрона равен $1,6 \cdot 10^{-19}$ Кл, то $1 \cdot 9B = 1,6 \cdot 10^{-19}$ Дж.

Работа выхода зависит от химической природы металлов и от чистоты их поверхности и колеблется в пределах нескольких электрон-вольт (например, у калия Л=2,2 эВ, у платины A=6,3 эВ). Подобрав определенным образом покрытие поверхности, можно значительно уменьшить работу выхода. Например, если нанести на поверхность вольфрама (A=4,5 эВ) слой оксида щелочно-земельного металла (Ca, Sr, Ca), то работа выхода снижается до Ca эВ.

§ 105. Эмиссионные явления и их применение

Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего наблюдается явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вторичную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы

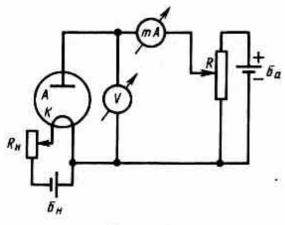
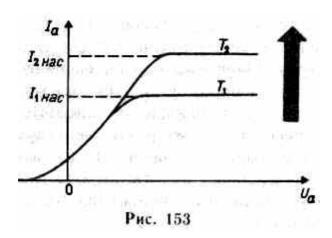



Рис. 152

Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — **вакуумного диода**, представляющего собой откачанный баллон, содержащий два электрода: катод K и анод A. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи G, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока $I_{\rm a}$ от анодного напряжения $U_{\rm a}$ — вольт-амперную характеристику (рис. 153), то оказывается, что

она не является линейной, т. е. для вакуумного диода закон Ома не выполняется. Зависимость

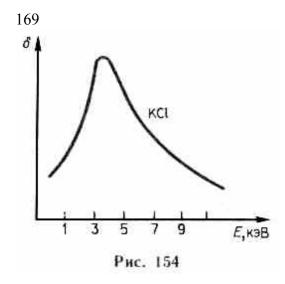
положительных значений U описывается **законом трех вторых** (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)): $I=BU^{3/2}$,

где B — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения $I_{\text{нас}}$, называемого **током насыщения.** Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

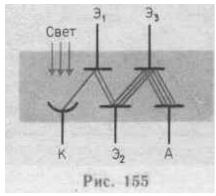
Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: $j_{\text{hac}} = CT^2 e^{-A/(kT)}$.

где A — работа выхода электронов из катода, T — термодинамическая температура, C — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, повидимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочно-земельного металла), работа выхода которых равна 1 —1,5 эВ. На рис. 153 представлены вольт-амперные характеристики для двух температур катода: T_1 и T_2 , причем $T_2 > T_1$. С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При U_a =0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля.


Явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

2. Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.

3. Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами.


Отношение числа вторичных электронов n_2 к числу первичных n_1 , вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:

Коэффициент б зависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриков б больше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторичные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.

Для примера на рис. 154 приведена качественная зависимость коэффициента вторичной электронной эмиссии б от энергии E падающих электронов для KCl. С увеличением энергии электронов б возрастает, так как первичные электроны все глубже проникают в кристаллическую решетку и, следовательно, выбивают больше вторичных электронов. Однако при некоторой энергии первичных электронов 6 начинает уменьшаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значение δ_{max} для KCl достигает ≈ 12 (для чистых металлов оно не превышает 2).

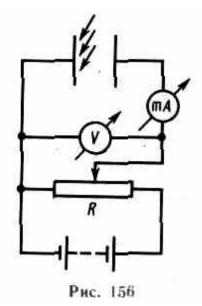
Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях (ФЭУ), применяемых для усиления слабых электрических токов. ФЭУ представляет собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов—эмиттеров (рис.155). Электроны, вырванные с фотокатода под действием света, попадают на эмиттер Θ_1 , пройдя ускоряющую разность потенциалов между К и Θ_1 . Из эмиттера Θ_1 выбивается Θ_2 электронов. Усиленный таким образом

электронный поток направляется на эмиттер 92, и процесс умножения повторяется на всех последующих эмиттерах. Если $\Phi 9$ У содержит n эмиттеров, то на аноде A, называемом **коллектором,** получается усиленный в 6" раз фотоэлектронный ток.

4. Автоэлектронная эмиссия — это эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигурация электродов которой (катод — острие, анод — внутренняя поверхность трубки) позволяет при напряжениях примерно 10^3 В получать электрические поля напряженностью примерно 10^7 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 10^5 — 10^6 В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление называется также **холодной эмиссией.** Объяснение механизма этого явления возможно лишь на основе квантовой теории.

§ 106. Ионизация газов. Несамостоятельный газовый разряд

Газы при не слишком высоких температурах и при давлениях, близких к атмосферному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух заряженный электрометр с хорошей изоляцией, то его заряд долго остается неизменным. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества, когда некоторая часть его молекул ионизуется, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (например, поднеся к заряженному электрометру пламя свечи, наблюдаем спад его заряда; здесь электропроводность газа вызвана нагреванием).


170

При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положительных ионов. Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохождение электрического тока через газы называется газовым разрядом.

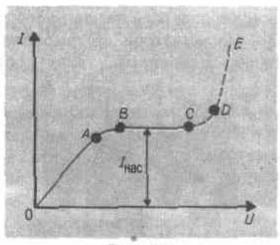
Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафиолетовое, рентгеновское и γ -излучения), корпускулярное излучение (потоки электронов, протонов, α -частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию, называемую **энергией ионизации,** значения которой для атомов различных веществ лежат в пределах 4—25 эВ.

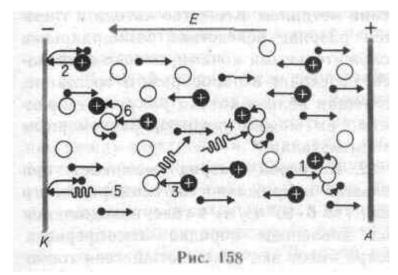
Одновременно с процессом ионизации газа всегда идет и обратный процесс — **процесс рекомбинации:** положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации.

Строго говоря, электропроводность газа нулю не равна никогда, так как в нем всегда имеются свободные заряды, образующиеся в результате действия на газы излучения радиоактивных веществ, имеющихся на поверхности Земли, а также космического излучения. Эта незначительная электропроводность воздуха (интенсивность ионизации под действием указанных факторов невелика) служит причиной утечки зарядов наэлектризованных тел даже при хорошей их изоляции. Характер газового разряда определяется составом газа, его температурой и давлением, размерами,

Рассмотрим цепь, содержащую газовый промежуток (рис.156), подвергающийся непрерывному, постоянному по интенсивности воздействию ионизатора. В результате действия ионизатора газ приобретает некоторую электропроводность и в цепи потечет ток, зависимость которого от приложенного напряжения дана на рис. 157.

На участке кривой OA сила тока возрастает пропорционально напряжению, т. е. выполняется закон Ома. При дальнейшем увеличении напряжения закон Ома нарушается: рост силы тока замедляется (участок AB) и наконец прекращается совсем (участок BC). Это достигается в том случае, когда ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. В результате получаем ток насыщения ($I_{\text{нас}}$), значение которого определяется мощностью




Рис. 157

Ток насыщения, таким образом, является мерой ионизирующего действия ионизатора. Если в режиме OC прекратить действие ионизатора, то прекращается и разряд. **Разряды,** существующие только под действием внешних ионизаторов, называются **несамостоятельными.** При дальнейшем увеличении напряжения между электродами сила тока вначале медленно (участок CD), а затем резко (участок DE) возрастает. Механизм этого явления будет рассмотрен в следующем параграфе.

§ 107. Самостоятельный газовый разряд и его типы

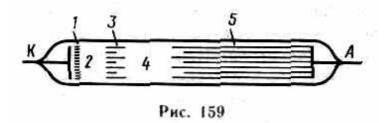
Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным.

Рассмотрим условия возникновения самостоятельного разряда. Как уже указывалось в \S 106, при больших напряжениях между электродами газового промежутка (см. рис. 156) ток сильно возрастает (участки CD и DE на рис. 157). При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны — к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD (см. рис. 157). Описанный процесс называется ударной ионизацией.

Однако ударная ионизация под действием электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Такие процессы схематически показаны на рис. 158: 1) ускоренные полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в нормальное состояние сопровождается испусканием фотона (процесс 3); 3) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называемый процесс фотонной ионизации молекул (процесс 4); 4) выбивание электронов из катода под действием фотонов (процесс 5).

Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс *6*), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин

еще и ионные, сила тока растет уже практически без увеличения напряжения (участок DE на рис. 157).


В результате описанных процессов (1—6) число ионов и электронов в объеме газа лавинообразно возрастает и разряд становится самостоятельным, т. е. сохраняется после прекращения действия внешнего ионизатора. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя.

В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.

Тлеющий разряд возникает при низких давлениях. Если к электродам, впа-

172

янным в стеклянную трубку длиной 30— 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении ж 5,3—6,7 кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении ж 13 Па разряд имеет вид,

Непосредственно к катоду прилегает тонкий светящийся слой 1 — **первое катодное свечение,** или катодная пленка, затем следует темный слой 2 — катодное темное пространство, переходящее в дальнейшем в светящийся слой 3 — **тлеющее свечение**, имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 — фарадеево темное пространство, за которым следует столб ионизированного светящегося газа 5 — положительный столб. Положительный столб существенной роли в поддержании разряда не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катодные части разряда по форме и величине остаются неизменными. В тлеющем разряде особое значение для его поддержания имеют только две его части: катодное темное пространство и тлеющее свечение. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд. При дальнейшем откачивании трубки при давлении ж 1,3 Па свечение газа ослабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положительными ионами, при таких разрежениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударяясь о стекло, вызывают его свечение, так называемую катодолюминесценцию. Поток этих электронов исторически получил название катодных лучей. Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия, проникают в пространство за катодом и образуют резко ограниченный пучок, получивший название каналовых (или положительных) лучей, названных по знаку заряда, который они несут.

Тлеющий разряд широко используется в технике. Так как свечение положительного столба имеет характерный для каждого газа цвет, то его используют в газосветных трубках для светящихся надписей и реклам (например, неоновые газоразрядные трубки дают красное свечение, аргоновые —

синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, поглощается нанесенным на внутреннюю поверхность трубки флуоресцирующим веществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напыления металлов. Вещество катода в тлеющем разряде вследствие бомбардировки положительными ионами, сильно нагреваясь, переходит в парообразное состояние. Помещая вблизи катода различные предметы, их можно покрыть равномерным слоем металла.

2. Искровой разряд возникает при больших напряженностях электрического поля (Ë=3•10⁶ B/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонко-

173

го канала, сложным образом изогнутого и разветвленного.

Объяснение искрового разряда дается на основе **стримерной теории**, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованного газа — **стримеров**. Стримеры возникают не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до очень высокой температуры (примерно 10^4 K), что приводит к его свечению. Быстрый нагрев газа ведет к повышению давления и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде — характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии, являющейся примером мощного искрового разряда между грозовым облаком и Землей или между двумя грозовыми облаками.

Искровой разряд используется для воспламенения горючей смеси в двигателях внутреннего сгорания и предохранения электрических линий передачи от перенапряжений (искровые разрядники). При малой длине разрядного промежутка искровой разряд вызывает разрушение (эрозию) поверхности металла, поэтому он применяется для электроискровой точной обработки металлов (резание, сверление). Его используют в спектральном анализе для регистрации заряженных частиц (искровые счетчики).

3. Дуговой разряд. Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным — возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до

ряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта В. В. Петровым). При атмосферном давлении температура катода приблизительно равна 3900 К. По мере горения дуги угольный катод заостряется, а на аноде образуется углубление — кратер, являющийся наиболее горячим местом дуги.

По современным представлениям, дуговой разряд поддерживается за счет высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизации молекул, обусловленной высокой температурой газа.

Дуговой разряд находит широкое применение в народном хозяйстве для сварки и резки металлов, получения высококачественных сталей (дуговая печь) и освещения (прожекторы, проекционная аппаратура). Широко применяются также дуговые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником ультрафиолетового излучения и используется в

медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления переменного тока.

4. Коронный разряд — высоковольтный электрический разряд при высоком (например, атмосферном) давлении в резконеоднородном поле вблизи электродов с большой кривизной поверхности (например, острия). Когда напряженность поля вблизи острия достигает 30 кВ/см, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул

174

катода под действием положительных ионов, в случае положительной — вследствие ионизации газа вблизи анода. В естественных условиях корона возникает под влиянием атмосферного электричества у вершин мачт (на этом основано действие молниеотводов), деревьев. Вредное действие короны вокруг проводов высоковольтных линий передачи проявляется в возникновении вредных токов утечки. Для их снижения провода высоковольтных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех.

Используется коронный разряд в электрофильтрах, применяемых для очистки промышленных газов от примесей. Газ, подвергаемый очистке, движется снизу вверх в вертикальном цилиндре, по оси которого расположена коронирующая проволока. Ионы, имеющиеся в большом количестве во внешней части короны, оседают на частицах примеси и увлекаются полем к внешнему некоронирующему электроду и на нем оседают. Коронный разряд применяется также при нанесении порошковых и лакокрасочных покрытий.

§ 108. Плазма и ее свойства

Плазмой называется сильно ионизованный газ, в котором концентрации положительных и отрицательных зарядов практически одинаковы. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде. Плазма характеризуется степенью ионизации α — отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины α говорят о слабо (α составляет доли процента), умеренно (α — несколько процентов) и полностью (α близко к 100 %) ионизованной плазме.

Заряженные частицы (электроны, ионы) газоразрядной плазмы, находясь в ускоряющем электрическом поле, обладают различной средней кинетической

энергией. Это означает, что температура T_e электронного газа одна, а ионного $T_{\rm u}$ — другая, причем $T_e > T_{\rm u}$. Несоответствие этих температур указывает на то, что газоразрядная плазма является **неравновесной,** поэтому она называется также **неизотермической.** Убыль числа заряженных частиц в процессе рекомбинации в газоразрядной плазме восполняется ударной ионизацией электронами, ускоренными электрическим полем. Прекращение действия электрического поля приводит к исчезновению газоразрядной плазмы.

Высокотемпературная плазма является равновесной, или изотермической, т. е. при определенной температуре убыль числа заряженных частиц восполняется в результате термической ионизации. В такой плазме соблюдается равенство средних кинетических энергий составляющих плазму различных частиц. В состоянии подобной плазмы находятся звезды, звездные атмосферы, Солнце. Их температура достигает десятков миллионов градусов.

Условием существования плазмы является некоторая минимальная плотность заряженных частиц, начиная с которой можно говорить о плазме как таковой. Эта плотность определяется в физике плазмы из неравенства L>>D, где L — линейный размер системы заряженных частиц, D — так называемый дебаевский радиус экранирования, представляющий собой то расстояние, на котором происходит экранирование кулоновского поля любого заряда плазмы.

Плазма обладает следующими основными свойствами: высокой степенью ионизации газа, в пределе — полной ионизацией; равенством нулю результирующего пространственного заряда (концентрация положительных и отрицательных частиц в плазме практически одинакова); большой электропроводностью, причем ток в плазме создается в основном электронами, как наиболее подвижными частицами; свечением; сильным взаимодействием с электрическим и магнитным полями; колебаниями электронов в плазме с большой частотой (~=10⁸ Гц), вызывающими общее вибрационное состояние плазмы; «коллективным» — одновременным взаимодействием громадного числа частиц (в обычных газах частицы взаимодействуют друг с другом попарно). Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее *особым, четвертым, состоянием вещества*.

Изучение физических свойств плазмы позволяет, с одной стороны, решать многие проблемы астрофизики, поскольку в космическом пространстве плазма — наиболее распространенное состояние вещества, а с другой — открывает принципиальные возможности осуществления управляемого термоядерного синтеза. Основным объектом исследований по управляемому термоядерному синтезу является высокотемпературная плазма ($\sim=10^8$ K) из дейтерия и трития (см. § 268).

Низкотемпературная плазма (< 10⁵ K) применяется в газовых лазерах, в термоэлектронных преобразователях и магнитогидродинамических генераторах (МГД-генераторах) — установках для непосредственного преобразования тепловой энергии в электрическую, в плазменных ракетных двигателях, весьма перспективных для длительных космических полетов.

Низкотемпературная плазма, получаемая в плазмотронах, используется для резки и сварки металлов, для получения некоторых химических соединений (например, галогенидов инертных газов), которые не удается получить другими способами, и т. д.