

Рис. 4.2

Пример 1. Изобразить комплексные числа $z_1 = 5 - 5i$, $z_2 = -2i$; $z_3 = 5$ точками на плоскости Oxy.

Решение. Данным комплексным числам будут соответствовать точки с координатами $M_1(5,-5)$, $M_2(0,-2)$. $M_3(5,0)$ на плоскости Oxy (рис. 4.2).

Пример 2. Написать в тригонометрической форме комплексное число z = -1 + i.

Решение. Найдём модуль и аргумент комплексного числа по приведённым выше формулам $|z| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$; tg $\varphi = -1$; значит,

$$\arg z = \arctan(-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3}{4}\pi.$$

Подставим в формулу тригонометрической формы записи комплексного числа и получим $z = \sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$.

Пример 3. Представить в показательной форме комплексное число z = -1 - i.

Решение. Найдём модуль и аргумент комплексного числа

$$|z| = \sqrt{1+1} = \sqrt{2}$$
; tg $\varphi = 1$;

 $\arg z = \frac{\pi}{4} - \pi = -\frac{3}{4}\pi$, тогда показательная форма будет

$$-1 - i = \sqrt{2} e^{-\frac{3}{4}\pi i}.$$

Пример 4. Вычислить $e^{\pi i}$.

Решение. По формуле Эйлера можно представить

$$e^{\pi i} = \cos \pi + i \sin \pi = -1.$$

Пример 5. Вычислить $(2+i)\cdot(2-3i)$.

Решение. Выполним умножение комплексных чисел в алгебраической форме

$$(2+i)\cdot(2-3i) = 4-6i+2i-7i^2 = 7-4i$$
.

Пример 6. Вычислить $\frac{(2+i)}{(2-3i)}$

Решение. Выполним деление комплексных чисел в алгебраической форме

$$\frac{2+i}{2-3i} = \frac{(2+i)(2+3i)}{(2-3i)(2+3i)} = \frac{4+2i+3i+3i^2}{4-9i^2} = \frac{4+5i+3(-1)}{4-9(-1)} = \frac{1+5i}{13} = \frac{1}{13} + i\frac{5}{16}.$$

Пример 7. Вычислить $(\sqrt{3} - i)^5$.

Решение. Найдём модуль и аргумент комплексного числа

$$|z| = |\sqrt{3} - i| = \sqrt{3 + 1} = 2$$
; $\arg(\sqrt{3} - i) = \arctan(-\frac{1}{\sqrt{3}}) = -\frac{\pi}{6}$.

Преобразуем комплексное число к тригонометрическому виду

$$\sqrt{3} - i = 2\left(\cos\left(-\frac{\pi}{6} + 2k\pi\right) + i\sin\left(-\frac{\pi}{6} + 2k\pi\right)\right).$$

Затем для возведения в степень применим формулу Муавра

$$\left(\sqrt{3} - i\right)^5 = 2^5 \left(\cos\left(-\frac{5}{6}\pi + 10k\pi\right) + i\sin\left(-\frac{5}{6}\pi + 10k\pi\right)\right) =$$

$$= 32\left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right) = -16\sqrt{3} - 16i.$$

Пример 8. Найти все значения корня $\sqrt[3]{-8}$.

Решение. Найдём модуль и аргумент комплексного числа |z| = |-8| = 8; $\arg(-8) = \pi$. Далее запишем комплексное число в тригонометрической форме

$$-8 = 8(\cos(\pi + 2k\pi) + i\sin(\pi + 2k\pi)).$$

Применим формулу извлечения корня из комплексного числа

$$\sqrt[3]{-8} = 2(\cos\frac{\pi + 2\pi k}{3} + i\sin\frac{\pi + 2\pi k}{3}),$$

где k = 0;1;2.

Подставляя в неё вместо k числа 0,1,2, получим соответственно три разных значения корня:

$$(\sqrt[3]{-8})_1 = 2(\cos\frac{\pi + 2\pi \cdot 0}{3} + i\sin\frac{\pi + 2\pi \cdot 0}{3}) = 2(\frac{1}{2} + i\frac{\sqrt{3}}{2}) = 1 + i\sqrt{3};$$

$$(\sqrt[3]{-8})_2 = 2(\cos\frac{\pi + 2\pi \cdot 1}{3} + i\sin\frac{\pi + 2\pi \cdot 1}{3}) = 2(-1 + i\cdot 0) = -2;$$

$$(\sqrt[3]{-8})_3 = 2(\cos\frac{\pi + 2\pi \cdot 2}{3} + i\sin\frac{\pi + 2\pi \cdot 2}{3}) = 2(\frac{1}{2} - i\frac{\sqrt{3}}{2}) = 1 - i\sqrt{3}.$$

Задачи для самостоятельного решения

1. Выполнить действия:

1)
$$(2+3i)\cdot(2-3i)$$
; 2) $(3-2i)^2$; 3) $(2+i)^3$; 4) $\frac{1+i}{1-i}$; 5) $\frac{2i}{1+i}$.

2. Следующие комплексные числа изобразить векторами на плоскости и представить в тригонометрической форме записи:

1)
$$z = 2 - 2i$$
; 2) $z = 1 + i \cdot \sqrt{3}$; 3) $z = -\sqrt{3} - i$; 4) $z = -2$; 5) $z = -2i$.

3. Вычислить по формуле Муавра:

1)
$$(1+i)^{10}$$
; 2) $(1-i\sqrt{3})^6$; 3) $(-1+i)^5$.

4. Найти все значения корней:

1)
$$\sqrt[3]{1}$$
; 2) $\sqrt[3]{i}$; 3) $\sqrt[6]{-1}$; 4) $\sqrt[3]{-2+2i}$.

5. Решить двучленные уравнения:

1)
$$x^3 + 8 = 0$$
; 2) $x^4 + 4 = 0$; 3) $x^6 + 64 = 0$.

Ответы

1. 1)
$$z = 12 + 5i$$
; 2) $z = 5 - 12i$; 3) $z = -2 + 2i$; 4) $z = i$; 5) $z = 1 + i$.

2. 1)
$$z = 2\sqrt{2}(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4})$$
; 2) $z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$;

3)
$$z = 2(\cos\frac{5\pi}{6} - i\sin\frac{5\pi}{6})$$
; 4) $z = 2(\cos\pi + i\sin\pi)$;

5)
$$z = 2(\cos{\frac{\pi}{2}} - i\sin{\frac{\pi}{2}}).$$

3. 1) 32*i*; 2) 64; 3) 4-4*i*. **4.** 1) 1,
$$\frac{-1\pm i\sqrt{3}}{2}$$
; 2) -*i*, $\frac{i\pm\sqrt{3}}{2}$;

3)
$$\pm i, \frac{\pm\sqrt{3}\pm i}{2}$$
.

5. 1)
$$-2,1\pm i\sqrt{3}$$
; 2) $\pm 1\pm i$; 3) $\pm 2i,\pm \sqrt{3}\pm i$.

Во всех номерах выполнить задание под цифрой 1), то есть: **1.**-1); **2.**-1); **3.**-1); **4.**-1); **5.**-1). Всего 5 заданий. Это занятие №3. И прислать или на портале или как вы присылали.