ОБЩЕМАШИНОСТРОИТЕЛЬНЫЕ НОРМАТИВЫ РЕЖИМОВ РЕЗАНИЯ

Справочник в двух томах

MOCKBA
-МАШИНОСТРОЕНИЕ.

Авторы: А. Д. Локтев, И. Ф. Гущин, В. А. Батуев, О. Ф. Бабин, М. А. Бессонова, А. В. Верховский, В. Р. Гарибов, В. М. Гах, М. Х. Гольдфельд, Н. Н. Горюнова, Г. в. Гостев, В. И. Гузеев, В. С. Гузенко, Е. В. Гусев, Б. Д. Даниленко, В. И. Денисенко, А. Г. Дундук, В. И. Жилис, Ю. И. Замащиков, В. В. Зеленцов, Л. М. Зуева, Т. Г. Ивченко, В. А. Кан, С. К. Каргопольцев, Н. Н. Кирин, Г. П. Клименко, Л. В. Князева, Г. А. Коваленко, В. И. Колесников, В. П. Кольцов, В. А. Колюнов, О. Л. Коробкина, А. А. Королев, С. Н. Корчак, М. Г. Коткина, А. Л. Котликова, А. В. Кухтенкова, О. П. Лифшиц, С. М. Лобова, А. Л. Ломин, Е. М. Лузина, Р. В. Макаров, А. И. Мещеряков, Е. В. Мироненко, Э. А. Михайлюк, А. П. Момин, Е. Г. Мухина, Ю. И. Мясников, Т. М. Нахова, А. Г. Орлов, Э. Т. Орозбеков, Л. В. Павлова, И. А. Подгузова, А. И. Промлтов, В. И. Решетников, В. Д. Рыжова, Е. Г. Сидоренко, В. И. Синицын, Б. В. Соколов, Н. В. Соловьева, В. А. Стрепьцов, Г. В. Студенников, О. В. Таратынов, А. А. Теляков, В. Э. Фриц, Г. Л. Хайет, А. Ф. Черненко, Н. М. Чернышев, Ю. П. Шкурин, Э. Ф. Эйхманс, М. А. Эстерзон

Общемашиностроительные нормативы режимов резания: О-28 Справочник: В 2-х т.: Т. 1/А. Д. Локтее, И. Ф. Гущин, B. A. Батуев и др. - М.: Машиностроение, 1991. - 640 с.: ил.

ISBN 5-217-01190-4

Abstract

Нормативы предназначены для олределения оптимальных режимов резания, норм иэноса и расхода лезви ного инструмента для токарных у фрезерных работ, а также для обработки отверстий (сверление, зенкерование, развертывание). Обрабатываемый материал - стали, коррозийно-стойкие сплавы, чугуны и цветные сплавы. Приведены математические модели расчета режимов резания, которые можнс использовать при создании алгоритма расчета режимов резания на ЭВМ щли как составную часть при разработке САПР технологических процессов

Для инженерно-технических работников мадиностроительных предприяшии, отраслевых институтов и вузов.

$0 \frac{2704040000-237}{038(01)-91} 237-91$
ББК 34.63-1ヵ2

ISBN 5-217-01190-4 (T.1) (С) А. Д. Локтев, И. Ф. Гущин,

Раздел I. Токарныеи карусельные работы

ка

Условные обозначения а сокращения
Назначение нормативов и их особенности
Методические указания по использованию нормативов
Пример определения режимов
резания и расхода инструмен-
та 13
Исходные технологические данные23
Выбор инструмента 34
Режимы резания при обтачи- вании и подрезании. Черно- вая обработка 58
Режимы резания при раста-чивании. Черновая обработ-
Режимы резания при об́тачи-вании, подрезании и растачи-вании. Чистовая обработка.Режимы резания при фасон-ном точении130
Режимы резания при отреза- нии и прорезании 133
Расход инструмента 145
Приложение 1. Группы и марки обрабатываемых материа- лов 154
Приложение 2. Виды СОЖ, при-
меняемых при точении 161
Приложение 3 . Соответствие ма- рок отечественных твердых сплавов международной классификации 161
Приложение 4. Резцы со смен- ными пластинами, серийно -изготовляемые в СССР 163
Приложение 5. Частота враще- ния шпинделя, допускаемая конструкцией станка 164111118
Приложсние 6. Длины подвода, врезания и перебега 168
Приложсние 7. Отношение ос- новного времени к штуч- ному 168
Приложение 8. Учет требова- ний производства при назна- чении режимов резания 169
Приложение 9. Математические модели, используемые при выборе режимов резания и расчете расхода инструмен- та 170
Раздел II. Фрезерные ра- боты 191
Условные обозначения' и со- кращения 191
Назначение нормативов, их структура и особенности 192
Общие указания по расчету режимов резания 193
Методические указания 198
Пример определения режимов резания и расхода инстру- мента 198
Торцовые фрезы твердосплав- ные и быстрорежущие 204
Торцовые фрезы из сверх- твердых материалов 209
Торцовые фрезы, оснащенные пластинами из минералокера- мики 209
Цилиндрические фрезы 235
Концевые фрезы 246
Дисковые трехсторонние фре- зы 293Дисковые прорезные (шли-цевые), отрезные и пазовыефрезы316
Фасонные фрезы 330
Шпоночные фрезы 336
Фрезы для сбработки Т-об- разных пазов 339

Фрезы для обработки пазов типа «Ласточкин хвост»
Фрезы для обработки пазов сегментных шпонок
Дисковые сегментные пилы .
Приложение 1. Длины подвода, врезания и перебега инструмента
Приложение 2. Основные зависимости, использованные при разработке нормативов по режимам резания
Приложение 3. Основные зависимости для определения расхода фрез

Раздел III. Обработка отверстий
Условные обозначения и сокращения
Методичесие указания . 412
Примеры исполказания .-
Примеры использования нор-
мативов
Режимы резания
Корректирование режимов резания
Приложение 1. Маршруты обработки отверстий
Приложение 2. Рекомендуемые марки твердых сплавов для обработки отверстий
Приложение 3. Рекомендуемые марки быстрорежущей стали для обработки отверстий. .
Приложение 4. Глубина резання t_{T} при обработке отверстий
Приложение 5. Стойкость $T_{\text {н }}$ при одноинструментальной обработке
Приложение 6. Стойкость инструмента $T_{\text {ф }}$ для многошпиндельных станков
Приложение 7. Стойкость $T_{\text {в }}$ мелкоразмерных сверл
Приложение 8. Рекомендуемые марки СОЖ (диаметр инструмента 4-100 мм
Приложение 9. Длины подвода l_{1}, врезания l_{8} и переGera l_{8}

346
353
Приложение 10. Математиче- ские модели (диаметр ин- струмента 0,4-3 мм) 518
Приложение 11. Математиче- ские модели (диаметр ин- струмента 4-100 мм) 519
Приложение 12. Средний допу- стимый износ режущей части инструмента 530
Приложение 13. Нормы расхода мелкоразмерных сверл 531
Приложение 14. Нормы износа и расхода сверл диаметром более 3 мм 532
Приложение 15. Нормы износа, среднего периода стойкости и расхода зенкеров и раз- вертокПриложение 16. Нормы стой-кости, переточек и расходазенковок540
Р а здел IV. Обработка глу- боких отверстий 542
Условные обозначения и сб- кращения 542
Методические указания 543
Примеры расчетов режимов резания и расхода инстру- мента 546
Режимы резания 549
Приложение 1. Способы обра- ботки глубоких отверстий 603
Приложение 2. Схемы обра- ботки 604
Приложение 3. Требования к станку и оснастке 605
Приложение 4. Типаж станков для обработки глубоких от- верстий 607
Приложение 5. Перечень твер- досплавных инструментов для обработки глубоких отвер- стий. 609
Приложение 6. Основные рас- четные зависимости 614
Предметный указатель к раз- делу I. 624
Предметный указатель к раз- делу II 626
516 Прецметный указатель к раз- делу III. 631
Предметный указатель к раз- делу IV 633

РАЗДЕл I

ТОКАРНЫЕ И КАРУСЕЛЬНЫЕ РАБОТЫ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

Параметры станка и заготовки: D_{c} - наибольший диаметр обрабатываемой заготовки над станиной для токарных станков и на планшайбе для карусельных - основной размерный параметр станка, мм;
Q_{c} - наибольшая масса обрабатываемой заготовки - параметр станка, т; D_{8} - наибольший диаметр заготовки, мм;
L_{8} - длина заготовки, мм;
$D_{\min }$ - наименьший диаметр при подрезке и отрезке;
D - диаметр обрабатываемой поверхности, мм;
L - длина обрабатываемой поверхности, мм;
НВ - твердость обрабатываемого материала по Бринеллю;
HRC_{3} - твердость обрабатываемого материала по Роквеллу;
σ_{B} - временное сопротивление обрабатываемого материала при растяжении, МПа;
$R z$ - зысота неровностей профиля обработанной поверхности, мкм;
$R a$ - среднее арифметическое отклонение профиля обработанной поверхности, мкм;
КВ - квалитет;
РУ - ручное управление;
ЧПУ - числовое программное управление;
ОЦ - обрабатывающий центр.
Конструктивные параметры инструмента:
H - высота державки резца или оправки, мм;
B - ширина державки резца или оправки, мм;
l_{p} - вылет резна;
$d_{\text {оп }}$ - диаметр или сторона оправки, mм;
$l_{\text {оп }}$ - вылет оправки, мм;
$l_{\text {п }}$ - вылет ползуна, мм;
h - толщина режущей пластины, мм;
b - ширина режущей пластины или ширина среза, мм;
l - длина режущей кромки, мм;
z - число граней многогранных пластин.

Инструментальные материалы:
ТС - твердый сплав;
PK - режущая керамика;
СТМ - сверхтвердые материалы;
БРС - быстрорежущая сталь;
АСПК - алмаз синтетический поликристаллический;
$\sigma_{\text {и }}$ - предел прочности на изгиб инструментального материала, МПа.

Геометрические параметры лезвия инструмента:
α - задний угол, ... ${ }^{\circ}$;
α_{1} - вспомогательный задний угол, ... ${ }^{\circ}$;
γ - передний угол, ... ${ }^{\circ}$;
γ_{f} - передний угол на фаске, расположенный вдоль главной режущей кромки, ...ㅇ;
λ - угол наклона кромки, ... ${ }^{\circ}$;
φ - главный угол в плане, ... ${ }^{\circ}$;
φ_{1} - вспомогательный угол в плане, ... ${ }^{\circ}$;
ε - угол при вершине в плане, ... ${ }^{\circ}$;
r - радиус вершины, мм;
f_{0} - длина переходной режущей кромки, мм;
ρ - радиус скругления режущей кромки, мм;
f - ширина фаски вдоль главной режущей кромки, мм.

Элементы режима резания:
t - глубина резания, мм;
$t_{\min }$ - глубина резания, минимально допустимая по точности детали, мм; $t_{\text {max }}$ - глубина резания, максимально

допустимая по виброустойчивости технологической системы, мм;
S_{T} - табличная подача на оборот (без учета поправочных коэффициентов) по критерию прочности инструмента, мм/об;
$S_{\mathrm{T}_{\boldsymbol{R}}}$ - табличная подача на оборот для заданной шероховатости поверхности, мм/об;
$S_{T_{T}}$ - табличная подача на оборот для заданной точности детали, мм/об; S - подача на оборот с учетом поправочных коэффициентов, мм/об;
$\boldsymbol{U}_{\text {т }}$ - табличная скорость резания (без учета поправочных коэффициентов), м/мин;
v - скорость резания с учетом поправочных коэффициентов, м/мин;
n - частота вращения шпинделя в минуту;
$K_{t_{\text {min }}}$ - поправочный коэффициент на глубину резания, допустимую по точности;
$K_{t_{\text {max }}}$ - поправочный коэффициент на глубину резания, допустимую по виброустой чивости;
K_{S} - поправочный коэффициент на подачу;
K_{0} - поправочный коэффициент на скорость резания.

Усилия и мощность резания:
P_{z} - главная составляющая силы резания, H ;
P_{x} - осевая составляющая силы резания, H;
N - мощность резания, кВт;
$K_{P_{z}}, K_{P_{x}}$ - поправочные коэффициенты на составляющие сил резания; K_{N} - поправочный коэффициент на мощность резания.

Надежность и расход инструмента:
T - средний период стойкости, мин;
k - среднее число периодов стойкости инструмента;
q - доля поломок инструмента;
ΣT - полный средний период стойко-
сти инструмента, мин;
$\gamma \%$ - гамма-процент (вероятность безотказной работы инструмента в течение периода T_{γ}, умноженная на 100); R - расход инструментд;
K_{T} - поправочный коэффициент на период стойкости инструмента;
K_{R} - поправочный коэффициент на расход инструмента;
$T_{\boldsymbol{\gamma}}$ - период регламентированной смены инструмента (\%-ный период стойкости), мин;
\widehat{T}_{γ} - средний период стойкости при наличии регламентированной смены инструмента с периодичностью T_{0}, мин; v_{T} - коэффициент вариации стойкости;
$T_{\text {у }}$ - установленный период стойкости (при котором γ близок к 100%), мин.

Сокращения:
прил. или П - приложение;
K — карта; *
п. - пункт;

Эск. - эскиз;
РУ - ручное управление.

НАЗНАЧЕНИЕ НОРМАТИВОВ И ИХ ОСОБЕННОСТИ

Нормативы предназначены для технического нормирования труда и расхода инструмента, составления управляющих программ для станков с ЧПУ и организации рациональной эксплуатации резцов при обработке деталей общемашиностроительного применения на" универсальном металлорежущем оборудовании с ручным управлением и с ЧПУ при серийном и мелкосерийном производстве. Нормативы могут быть использованы для разработки САПР ТП.

Нормативы охватывают наиболее распространенные операции (карта 1), выполняемые при обработке широко распространенных конструкционных материалов (прил. 1) на станках: токарных с наибольшим диаметром обрабатываемой заготовки над станиной $D_{\mathrm{c}}=320 \div 4000$ мм и карусельных с наибольшим диаметром обрабатываемой заготовки на планшайбе $D_{\text {с }}=$ $=1250 \div 12500$ мм (см. карту 1).

Нормативы предусматривают:
широкое использование современных инструментальных материалов (вольфрамсодержащих сплавов новых марок, в том числе с износостойкими покрытиями, безвольфрамовых TC, режущей керамики, СТМ и т. д);

переход в большинстве случаев с напаянных резцов на сборные, учет конструкций этих резцов при назначении режимов резания;

учет типоразмеров станка, жесткости и виброустойчивости технологической системы при выборе инструмента и режимов резания;

учет ограничений на режимы резания, связанных с надежностью инстру-

мента , требованиями эргономики и конструктивными особенностями станков;

возможность выбора режимов резания по критериям минимальных приведенных затрат, максимальной производительности и минимальных затрат при заданном расходе инструмента;

получение данных по расходу инструмента с учетом вероятности его разрушения;

возможность быстрого выбора стартовых режимов резания по небольшому числу основных таблиц наряду с возможностью анализа большого числа факторов по вспомогательным таблицам и математическим моделям.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИСПОЛЬЗОВАНИЮ
 НОРМАТИВОВ

Последовательность выбора инструментов и режимов резания в различных условиях приведена в алгоритме (рис. 1).

Анализ условий и требований производства. По чертежу детали устанавливают ее форму, жесткость, точность, твердость и другие свойства обрабатываемого материала, а по технологической документации - характер поверхности, размер и способ получения заготовки.

По паспорту уточняют параметры станка и, если известно, на каком конкретном станке будет проводиться обработка, оценивают его, фактическое состояние и жесткость.

Выбор инструмента и режимов резания по нормативам выполняется в соответствии с основным размерным параметром станка D_{c} (наибольшим диаметром обрабатываемой заготовки), который является усредненным комплексным показателем жесткости и виброустойчивости технологической системы. Жесткость этой системы в значительной мере определяется также на токарных станках диаметром заготовки D_{3} или отношением D_{3} / D_{c}, а на карусельных станках - вылетом ползуна $l_{\text {п. }}$. От параметров D_{3} и $l_{\text {п }}$ зависит группа жесткости технологической системы (см. карту 1).

Карты нормативов рассчитаны на среднюю жесткость системы универсальных станков с ручным управлением. Если известно, что выбранный станок по своим конструктивным пара-

метрам или по своему состоянию имеет пониженную жесткость, то выбирают станок с меньшим $D_{\text {с }}$ (по карте - для соседнего станка слева); при повышенной жесткости станка - для станков с большим $D_{\text {с }}$ (по карте - соседнего станка справа).

По чертежу детали и техническим условиям устанавливают необходимые точность размеров детали и качество ее поверхностей. В зависимости от точности (квалитета) заготовки и детали определяют число стадий обработки (см. карту 2).

Затем по карте 3 выбирают минимально необходимую глубину резания $t_{\min }$, учитывая при этом шероховатость поверхности и толщину дефектного слоя на предшествующем рабо чем ходе (проходе), а также допуск на предшествующем и выполняемом рабочих ходах. В соответствии с картой 3 это делается на отделочной, чистовєй и получистовой обработке. Затем определяют часть припуска, оставшуюся на черновую обработку и по карте 4 для конструкционной стали проверяют, не превышает ли эта часть максимально допустимую по виброустойчивости технологической системы глубину резания $t_{\text {max }}$. Если указанная часть припуска больше, ее делят в соотношении примерно 0,7 и $0,3(0,7-$ на первый рабочий ход, чтобы вершина резца по возможности оставалась в металле).

При обработке чугуна и цветных металлов виброустойчивость резко ограничивает глубину резания. В некоторых случаях (чаще всего у перетачиваемых пластин) проверяют глубину резания, чтобы она не была больше глубины, обусловленной длиной главной режущей кромки.

Наличие особых требований x обработке устанавливают по производительности и расходу инструмента. Особые гребования по производительности могут быть в том случае, если операция является лимитирующей по производительности; особые требования к расходу инструмента - при существенной нехватке инструмента данного типоразмера.

Уточняют требования к периоду стойкости - важному показателю надежности инструмента (см. карту 5).

Использование в нормативах в качестве основных средних периодов стойкости является экономически вы-

Рис. 1. Алгоритм пользования нормативами

годным (соответствует минимуму приведенных затрат) при работе на средних станках и эргономически целесообразным (обусловливается психофизиологическими возможностями рабочего) при работе на тяжелых станках. При последующих расчетах найденные значения стойкости могут измениться в связи с внесением поправочных коэффициентов на пӧдачу и ско-

рость резания, учитывающих особые требования производства к производительности или расходу инструмента, а также в связи с учетом различных ограничений, обусловленных, например, кинематикой или динамикой станка.

При обработке больших поверхностей, если для этого требуется небольшое изменение рекомендованной стой-

кости (до $20-30 \%$), принимают стойкость, равную основному времени данного перехода или равную $1 / 2$ или $1 / 8$ основного времени.

Анализируют необходимость учета требований к уровню надежности режушего инструмента, показателем которого является значение гамма̀-процента ($\gamma \%$). Если нужно обеспечить только среднюю стойкость инструмента, $\gamma \%=40 \div 50$. Это значит, что лишь в $40-50 \%$ случаев стойкость резцов будет не ниже заданной средней стойкости. Если этого недостаточно, задаются определенной величиной $\gamma \%$ (см. карту 5). При высоких требованиях к надежности используют не средний, а $\gamma \%$-ный период стойкости T_{γ} (за этот период не отказывает более $\gamma \%$ инструмента).

По карте 6 выбирают СОЖ.
Выбор инструмевта. Выбор материала инструмента осуществляют по карте 7 с учетом выполняемых операций, обрабатываемого материала, характера припуска и поверхности заготовки, глубины резания. Для ТС, PK и СТМ (см. с. 34-42 карты 7) первый столбец соответствует предпочтительным инструментальным материалам.

При высокой жесткости технологической системы или необходимости уменьшения подачи и соответственно роста скорости резания целесообразно использовать для инструмента материалы повышенной износостойкости. При пониженной жесткости технологической системы, необходимости повышения подачи и надежности инструмента целесообразно выбирать инструментальные материалы повышенной прочности.

Так, например, в автоматизированном производстве при высоких требованиях к надежности инструмента для чистовой обработки стали рекомендуется не сплав ТЗ0K4, а более прочный - T15K6 или соответствующий ему по ISO (P10).

Кроме марок твердых сплавов, укаванных в карте нормативов, могут применяться и другие марки, соответствующие тем же группам твердых сплавов по ISO. Таблица соответствия материалов дана в прил. 3.

Некоторые рекомендуемые марки БРС даны в карте 7.

В зависимости от решаемых технологических задач выбирают зид резца в плане, форму пластины в плане, учи-

пнвают необходимые углы φ и φ_{1} (см. карту 8).

Так как в промышленности используют большое число конструктивных вариантов сборного инструмента, в карте 9 регламентирован только тип конструкции, обусловливающий форму пластины в сечении и схему ее крепления, рекомендуемый для заданных условий. Соответствующие им конструкции, наиболее распространенные в нашей стране, даны в прил 4.

Если целесообразно использование одного и того же инструмента на нескольких переходах, то его выбирают по наиболее трудоемкому переходу, но следят, чтобы он был допустимым по остальным переходам. Переход от рекомендуемого типа конструкции резцов с СМП к допустимому обычно требует введения поправочных козффициентов на величину подачи, но мало отражается на скорости резания.

Резцы с механическим креплением пластин, используемые в рекомендованных нормативами условиях, имеют бо̀льшую (в среднем на 15\%) производительность, чем напаянные резцы. Такие резцы могут быть применены при меньшей подаче, но, во всех случаях при большой скорости резания, что обеспечивает рост производительности. Эти резшы при высоком качестве изготовления обеспечивают меньшее рассеяние стойкости, поэтому их применение предпочтительно при работе на автоматизированных станках. В случае необходимости обеспечения высокой надежности ($\gamma=90 \%$) рост производительности процесса резания для резцов с механическим креплением пластин достигает 25%.

Размеры державки резца выбирают максимально допустимыми согласно паспорту станка. Для тяжелых станков при $H=50$ мм желательно, а при $H>50$ мм обязательно использование резцов, состоящих из державки и блока, что облегчает смену инструмента и дает экономию материала, расходуемого на изготов.тение инструмента.

В карте 10 в зависимости от свойств обрабатываемого материала рекомендованы схема установки пластины в державке и форма ее передней поверхности, определяющие геометрические параметры инструмента в глзвной секущей плоскости.

Более подробно геометрические параметры режущей части напаянных резцов и резцов с механически закрепляемыми, но перетачиваемыми пластинами выбирают по карте 11 , в которой значения параметров усреднены для соответствующих условий (например, линейные параметры даны для среднестатистических значений подач, с которыми работают резцы соответствующего размера). Для достаточно больших партий деталей или часто повторяющихся деталей уточняют геометрические параметры резцов применительно к конкретным условиям (например, к определенным значениям подач), используя формулы прил. 7.

Выбор режимов резания начинают с глубины резания, определяемой припуском на обработку с учетом рекомендаций карт 2-4.

Выбор подачи при черновой обработке, экономически целесообразной по прочности режущей части, осуществляют в зависимости от факторов, влияющих:

на прочность режущей части (материал инструмента, форма и размеры режущей пластины, тип конструкций инструмента и др.);

на среднюю нагрузку (сила резания и напряжения в инструменте, зависящие от свойств обрабатываемого материала, глубины резания и других параметров);

на прочность через виброустойчивость технологической системы и колебания нагрузки (типоразмер станка, вылет ползуна, конструкция и размеры инструмента).

Подачу для чистовой обработки выбирают в зависимости от требуемой точности, а также шероховатости (последняя непосредственно обусловлена технологической документацией или связана с заданной точностью обработки) (см. карту 19). Из этих двух подач выбирают наименьшую.

Для инструментов из таких малопрочных инструментальных материалов, как СТМ, керамика, ТС марок TH-20, T30K4 и некоторых других материалов, проводят проверку условия, при котором эта подача не должна превышать подачу, рекомендуемую по прочности режущей части.

Выбранные по таблицам подачи корректируют с піомощью поправочных коэффициентов на подачу $K_{S_{0}}$, свя-

ванных с обрабатываемым материалом и видом обработки.

По известным глубине́ резания и подаче при обработке деталей с большими сечениями среза проверяют соблюдение следующего условия: суммарные значения осевых $\left(\sum P_{X}\right)$ и тангенциальных ($\sum P_{Z}$) составляющи х сил резания не должны превышать предельные значения этих составляющих $\sum P_{X_{\max }}$ и $\sum P_{z_{\max }}$, допускаемых для станка.

Значения сил резания могут быть рассчитаныы по формулам прил. 7, а значения $\sum P_{X_{\max }}$ и $\sum P_{Z_{\max }}$ принимают по паспорту станка. Если $\sum P_{X}>\sum P_{X_{\max }}$ или $\sum P_{Z}>\sum P_{Z_{\max }}$, то подачу уменьшают.

После учета всех поправок и проверок уточняют подачу по паспорту станка.

По листам карт «Скорость резания...» выбирают значения скорости резания с учетом основных поправочных коэффициентов $K_{v_{0}}$, приведенных непосредственно за этими таблицами.

При чистовой обработке; а также обработке цветных сплавов необходимо установить, что скорость резания не превышает скорость v_{p}, допустимую с учетом требований эргономики (психофизиологических возможностей рабочего). Так, скорость на станках с ручным управлением обычно составляет $250-500$ м/мин и должна уточняться применительно $к$ конкретным условиям работы на основании изучения фактических режимов и утомляемости рабочего. В некоторых случаях возможности рабочего накладывают ограничение на основное время $t_{0} \geqslant t_{\mathrm{op}_{\mathrm{p}}}$. В этих случаях стойкость резцов будет существенно выше рекомендованной в нормативах.

Далее необходимо проверить мощность резания, которая не должна превышать эффективную мощность главного привода станка. Если $N>$ $>N_{9}$, уменьшают скорость резания.

После расчета частоты вращения детали находят ее ближайшие значения по паспорту станка, причем для тяжелых станков n не должно превышать максимального значения, допускаемого конструкцией станка для соответствующих массы детали и способа крепления. детали на станке (см. прил:
5). Если $n>n_{Q}$, уменьшают частоту врацения и, соответственно, скорость резания.

При обработке поверхностей достаточно большого диаметра и при больших сечениях среза (особенно при многосуппортной обработке) проверяют, не превышает ли крутящий момент допускаемого значения в соответствии с паспортом станка. Если $M_{\text {кр }}>M_{\text {кр }}$ max , уменьшают скорость резания и, соответственно, - частоту вращения.

Выбранные режимы резания корректируют для измененных условий обработки, используя поправочные ко* эффициенты.

Если возникает необходимость использования нескольких поправочных коэффициентов, то обобщенный коэффициент определяют путем анализа механизма действия всех частных коэффициентов. Может быть рекомендовано следующее упрощенное правило.
Перемножают основные коэффициенты $K_{S_{0}}$ и $K_{v_{0}}$, учитывающие свойства обрабатываемого материала и вид обработки, на соответствующие групповые коэффициенты $K_{S_{\text {и }}}$ и $K_{v_{\text {и }}}$ на свойства инструмента, $K_{S_{H}}$ и $K_{v_{\mathrm{H}}}$ на виброустойчивость и колебание нагрузки и $K_{S_{P}}$ и $K_{v_{P}}$ на уровень надежности.

Коэффициенты $K_{S_{\text {й }}}$ и $K_{v_{\text {и }}}$ учитывают частные коэффициенты: на материал режущей пластины $K_{S_{1}}$ и $K_{v_{1}}$, форму резца в плане $K_{s_{2}}$ и $K_{v_{2}}$, его конструкцию $K_{S_{y}}$, размеры пластины и державки $K_{S_{4}}$.

Коэффициенты $K_{S_{\mathrm{H}}}$ и $K_{\boldsymbol{v}_{\mathrm{H}}}$ учитывают частные коэффициенты: на наличие перерывов в резании, связанных с видом припуска $K_{v_{3}}$, жесткость детали $K_{S \text { s }}$ и $K_{v_{4}}$ и способ ее крепления K_{S}.

Коэффициенты $K_{S_{P}}$ и $K_{v_{P}}$ учитывают частные коэффициенты: на среднюю стойкость, долю поломок, гаммапроцент $K_{S_{7}}$ и $K_{v_{\theta}}$, крихерий затупления. Гамма-процент учитывают введением одного из поправочных коэффициентов: при черновой обработке - на подачу, при чистовой - на скорость резания.

Если частные коэффициенты действуют на групповой коэффициент в од-

ном направлении (все коэффициенты увеличивают режимы резания или все уменьшают их), то групповой коэффициент приравнивают к наибольшему или наименьшему частному. Если действие частных коэффициентов различно, то групповой коэффициент принимают равным единице.

Приведенный полный алгоритм выбора инструмента и режимов резания используют лишь в некоторых случаях - в начале работы с нормативами, при низкой квалификации технологов и др.

Детализованные поправочные коэффициенты важны при отладке технологического процесса, так как с их помощью можно учесть влияние многих факторов на режимы резания. Они необходимы также в специфических случаях, резко отличающихся от наиболее распространенных, например при обработке трансмиссионных валов, когда не учитывать низкую жесткость детали невозможно.

Предполагается, что в большинстве случаев технолог-нормировщик или непосредственно рабочий будет пользоваться только несколькими основными листами карт, которые расположены друг за другом, и таблицами по выбору подач и скоростей. В этих основных таблицах приведены марки материалов инструмента, типы конструкций резцов, а также основные поправочные коэффициенты. Скорости резания даны в зависимости от группы обрабатываемого материала и его твердости. Поэтому пользоваться поправочными коэффициентами не обязательно.

После определения режимов резания находят длину рабочего хода (длины подвода, врезания и перегиба даны в прил. 8) и основное время t_{0}. По отдельным нормативам определяют вспомогательное и подготовительнозаключительное время и устанавливают штучное время $t_{\text {IIT }}$, которое можно приблизительно определить по прил. 7.

Определение расхода инструмента. Нормативные числа периодов стойкости, полные периоды стои́кости резцов и их расход за 1000 ч основного времени приведены в картах 27-30. В них (в зависимости от обрабатываемого материала, характера обработки и операции) выделены шесть случаев обработки, отличающихся структурой отказа инструмента (процент поломок,

1. Критерии ватупления (износ) инструмента по заднеи поверхности

контактных и других разрушений, износа).

В картах учтено, что многогранные пластины, не имеющие значительных разрушений и большого износа, целесообразно подвергать перешлифовке.

Для укрупненного расчета расхода

инструмента можно использовать данные о среднем отношении основного времени к штучному (прил. 7).

Предполагается, что при повышенных требованиях к надежности инструмента применяют регламентированную замену инструмента после ис-
2. Выполняемые на операции переходы

Номер перехода	Содержание переходє	Длина обра ботки	Припуск
		мм	
1	Черновое точение $\varnothing 232$ до $\varnothing 230-0,8$	45	8
2	Чистовое точениет $\varnothing 2300_{-0,8}$	45	2
3	Черновое точение $\varnothing 181$ до $\varnothing 1800,15$	42	9
4	Подрезка торца - размер 95-0,1	25	5
5	Подрезка торца - размер $42_{-0,1}$	30	1,5
6	Черновое растачивание отверстия $\varnothing 130^{+0,1}$ до $\varnothing 137$	100	7

течения времени, равного $\gamma \%$-ному периоду стойкости.

В других случаях может быть использован технологический критерий sатупления (потеря точности или увеличение шероховатости поверхности) или косвенный показатель затупления (искрение, появление блестящей полосы на обработанной поверхности, изменение звука и формы стружки и др.). Периодически необходимо проверять размеры изношенной поверхности лезвия инструмента. Так, износ по задней поверхности не должен превышать значений, приведенных в табл. 1.

ПРИМЕР ОПРЕДЕЛЕНИЯ РЕЖИМОВ РЕЗАНИЯ И РАСХОДА ИНСТРУМЕНТА

Исходные данные: деталь - фланец (рис. 2) из стали 40 X ; заготовка штамповка IT17; объем партии 1000 шт.

Операция 020 - токарная (табл. 2 и 3): обработать деталь под термообработку; используется трехкулачковый патрон, закрепленный консольно.

Рис. 2. Фланец
3. Этапы работы при использовании нормативов в случае изготовления фланца

$\begin{aligned} & \text { g } \\ & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Элемент определяемв на этапе		Значение выбранного параметра для перехода	Прнмечание
			1 2 3 4 5	
1	Аналия условий и требований проияводства, определение исходных технологических данкых			
1.1	Форма и размер детали и требования к ней	-	$\frac{L_{3}}{D_{3}}=\frac{105}{240}=0,44 ; \text { материал детали - сталь } 40 \mathrm{X}, 190 \mathrm{HB} ;$ припуск непрерывный; обработка по корке	-
1.2	Параметры и жесткость станеа	-	Задан станок мод. $16 \mathrm{~K} 20, D_{\text {с }}=400$ мм, $N=11 \mathrm{\kappa BT}, N_{\mathrm{g}}=$ $=8 \mathrm{kBr}$; резец: $H=25 \mathrm{mм}, B=25 \mathrm{mм}$	-
1.3	Группа: операций жесткости rexнологической системы	K1	Обтачивание \quad Подрезание $\quad \begin{gathered}\text { Растачи- } \\ \text { вание }\end{gathered}$	-
			$\frac{D_{3}}{D_{\mathrm{c}}}=\frac{240}{400}=0,6$; система жесткая; группа жесткости станка 2 , подгруппа 63	-
	обрабатываемых материалов	Пи2, ${ }_{\text {п }}$	Группа 1.4 - легированная конструкционная хромистая сталь	-

Продолжение табл. 8

	Элемент, определяемви на этапе		Звачение выбранного параметра для перехода						Примечание
$\begin{aligned} & \text { 若 } \\ & \text { 定 } \end{aligned}$			I	2	3	4	5	6	
1.6	Уровень надежности инструмента	K5	$\gamma=.40 \div 50 \%$						Для черновой и получистовой обработки надежность соответствует среднему периоду стойкости
1.7	Смазочно-охлаждающие жидкости	K6	5\%-ный Укрннол-1, 5%-ный Аквсл-1						-
2	Выбор инструмента								
2.1	Материал режу-. щей части	K7	T14K8	T30K4	T14K8	T14K8	T15K6	- T14K8	-
2.2	Вид резца	K8	' Прох	0и, $H=$	mm		ной, мм	(${ }_{\text {Расточ }} \begin{gathered}\text { ной, } \\ l_{\text {оп }}= \\ =150 \mathrm{mм}, \\ H= \\ =25 \mathrm{mм}\end{gathered}$	-
2.3	Тип конструкции резца	K9	P	P	P	P	P	S	-

Продолжение табл. з

Поправочные коэффици-
енты учитывают: $K_{v_{0}}$ енты учитывают: б $_{v_{0}}$ -
обрабатываемый материал (при точении конструкционной легированной стали $K_{\nu_{0}}=0,86$; при подрезании $K_{\nu_{0}}=0,86 \times$ $\times 1,2=1,03, \quad$ если $\left.\frac{D_{\min }}{D_{3}}>0,35\right) ; \quad K_{v_{1}}-$ марку инструментального материала ($K_{v_{1}}=1$); $K_{v_{3}}$ - угол $\varphi ; K_{v_{3}}$ - способ получения заготовки (при чистой корке $K_{v_{3}}=$ $=0,9) ; K_{0_{4}}$ - жесткость детали ($K_{v_{4}}=1$); $K_{v_{5}}-$ наличие СОЖ ($K_{v_{5}}=1,2$); $K_{v_{1}}=1$ для Т 30 K 4

	Өлемент определяемы а этапе		Значение выбранного параметра для перехода						Примечание
$\begin{aligned} & \text { O} \\ & \text { oz } \\ & \text { a } \end{aligned}$			1	2	3	4	5	6	
3.7	Фактическая ско рость резания v_{Φ}, м/мин	-	93,3	370	72,4	83,5	185	130	$v=\frac{\pi D n}{1000}$
3.8	Длина подвода, врезания, перебега y, мм	$\Pi 6$	8 -	6	8,5	9	6	7	-
3.9	Длина рабочего хода $L_{\mathrm{p} . \mathrm{x}}$, мм	-	$\begin{aligned} & L_{\mathrm{p} .} . \mathrm{xI}= \\ & = \\ & +8=53 \end{aligned}$	$\begin{aligned} & L_{\mathrm{p} . \mathrm{x}_{2}}= \\ & \overline{=}+6=+51 \end{aligned}$	$\stackrel{L_{\mathrm{p}} . \mathrm{x}_{3}}{ }=$ $+8,5=$ $=50,5$	$\begin{aligned} & L_{\mathrm{p} .} \cdot \mathrm{xa}^{=} \\ & =225+ \\ & +9=34 \end{aligned}$	$\begin{aligned} & L_{\mathrm{p} . \mathrm{x5}}= \\ & =30+36 \\ & +6=36 \end{aligned}$	$\begin{gathered} L_{\mathrm{p} .} .10 \\ =100+ \\ +7=107 \end{gathered}$	$L_{\text {p. }}=L_{\mathrm{p}}+\mathrm{g}$
3.10	Основное время t_{0}, мин	-							$t_{0}=\frac{L_{\text {p. }}}{n s}$

ИСХОДНЫЕ ТЕХНОЛОГИЧЕСКИЕ ДАННЫЕ

Группы жесткости мелких и средних станков
Основной размер токарного станка (наибольший диаметр обрабатываемой ваготовки) D_{c}, мм

320 1		400	1	630	1	800

Соответствующий по жесткости основной размер карусельного станка (наибольший диаметр обрабатываемой заготовки на планшайбе) D_{c}, мм

Соответствующая станку высота резца H, мм
20 1 $25032 \quad 1 \quad 10$
Соответствующая толщина h (мм) пластины (в числителе - расположенной горизонтально, в внаменателе - расположеннов вертикально или специальной для тяжелого резания)

Отношение наибольшего диаметра заготовки D_{3} к D_{c} тожарного станка
$0,1 \quad \mid \quad 0,2$ |
$\mathrm{C}_{\mathrm{B}} \mathbf{0 , 4}$
$0,1 \quad \mid$
$0,2 \quad \mid$
Св. 0,4
0,1

- 0,2
$|\mathrm{Ce}, 0,4|$
0,1
0,2
Св. 0,4

Соответствующий по жесткости вылет ползуна $R_{\text {пi }}$ (мм) карусельного станха

Подгруппа жесткости станка

1.3

2.1	2.2	2.3	

$3.1|3.2|$
3.3
4.1
4.2
4.3

Толщина пластинв h (мм) (в числителе - расположенной горизонтально, в знаменателе - расположенной вертихально или специальной при тяжелых условиях резания)

8/12*-14		10/14*-17		0/17 *-20 для ков с $D_{\mathrm{c}}=1600$ для остальных ста		12/17*		12/17*-20
Группа жесткости станка (в порядке возрастания жесткости)								
5	1.	6	,	7	,	8	1	9

$0,1|0,2|$
Св. $0,4|0,1| 0,2$
Св. 0,4
$0,1 \mid 0,2$
| Св. 0,4 | 0,1 | 0,2
Св. $0,4|0,1|$
0,2
Св. 0,4

* Меньшее вначение - для чугуна, коррозионно-стойкой и конструкционной стали при $t \leqslant 25$ мм и $S \leqslant 1,5$ мм $/$ об; большие - для конструкционных сталей при $t>25$ мм и $S>1,5$ мм/об.

Стадии обработки						Карта 2			
	Обрабатываемые заготовки	Квалитет детали							
			14		3-12		1-10		0-7
		требуемые стадии обработкн							
		Номер стадин	Нанмено- вание	Номер стадин	Наимено- вание	$\underset{\text { стадии }}{\substack{\text { Номе }}}$	$\begin{aligned} & \text { Наимено- } \\ & \text { вание } \end{aligned}$	номер стадии	Нанмено" вание
17	Отливки: стальные и чугунные III класса точности, кокильные из цветных металлов и сплавов. Заготовки, полученные горячей ковкой и штамповкой. Прокат обычной точности	I	Черновая	II	Черновая Получистовая	$\begin{array}{r} \text { I } \\ \text { II } \\ \text { III } \end{array}$	Черновая Получистовая Чистовая	$\begin{array}{r} \text { I } \\ \text { II } \\ \text { III } \\ \text { IV } \end{array}$	Черновая Получистовая Чистовая Отделочная
16	Отливки: стальные III класса точности; из цветных металлов II класса точности и в кокиль. Прокат обычной и повышенной точности. Штампованные стальные заготовки (горячая штамповка)	1	Черновая	$\stackrel{\text { II }}{ }$ III	$\begin{gathered} \text { Черновая } \\ \text { Пооу- } \\ \text { पистовая } \\ \text { Чистовая } \end{gathered}$	II III	Черновая Получистовая Чистовая	$\begin{array}{r} \text { I } \\ \text { II } \\ \text { III } \\ \text { IV } \end{array}$	Черновая Получистовая Чистовая Отделочная
15	Отливки: стальные II класса точности и кокильные, чугунные II класса точности; из цветных сплавов II қласса точности, кокильные или полученные по выплавляемым моделям. Кованые стальные заготовки (горячая ковка). Прокат повышенной точности	I	Черновая	II	Получистовая	$\begin{array}{r} \text { II } \\ \text { III } \end{array}$	Получистовая Чистовая	$\begin{array}{r} \text { II } \\ \text { III } \\ \text { II } \end{array}$	Получистовая Чистовая Отделочна

	Обрабатываемые заготовки	Квалитет детали							
		14		13-12		11-10		9-7	
		Требуемые стадии обработки							
		Номер стадии	Наименование	Номер стадии	$\begin{gathered} \text { Наимено- } \\ \text { вание } \end{gathered}$	Номер стадив	Наимекование	Номер стадии	$\begin{gathered} \text { Накмено- } \\ \text { вание } \end{gathered}$
14	Отливки: стальные II класса точности, кокильные или полученные в оболочковых формах; чугунные I класса точности; из цветных металлов и сплавов, полученные в оболачковых формах по выплавляемым моделям, под давлением и в кокиле	-	-	II	Получистовая	II III	Получистовая Чистовая	$\begin{array}{r} \text { II } \\ \text { III } \\ \text { IV } \end{array}$	Получистовая Чистовая Отделочная
13	Отливки: стальные и чугунные I класса точности или полученные в оболочковых формах по выплавляемым моделям; из цветных металлов и сплавов, полученные в оболочковых формах, to выплавляемым моделям, под давлением и в кокиле	-		II	Получистовая	III	Чистовая	$\begin{gathered} \text { III } \\ \text { IV } \end{gathered}$	Чистовая Отделочная
12	Отливки: стальные I класса точности или полученные в оболочковых формах и по выплавляемым моделям; чугунные, полученные в оболочковых формах; из цветных металлов и сплавов, отлитых под давлением. Калиброванные прутки	-	-	-	-	III	Чистовая	$\begin{gathered} \text { III } \\ \text { IV } \end{gathered}$	Чистовая Отделочная

	Обрабатываемые заготовкн	Квалитет деталв							
		14		13-12		11-10		9-7	
		Требуемые стадня обработки							
		Номер стадии	Намменование	Номер стадии	Наименование	Номер стадив	$\begin{gathered} \text { Нанмено- } \\ \text { вание } \end{gathered}$	Номер стадин	Наименование
11	Отливки: стальные, полученные в оболочковых формах или по выплавляемим моделям; чугунные, полученные по выплавляемым моделям. Калиброванный пруток	-	-	-	-	III	Чистовая	IV	Отделочная

Примечание. Выбор режимов резания при черновой обработке (стадий I и II) дан в картах 12-18; при чистовой обработке (стадия III и IV) - в картах 19-23.

Глубина резания в зависимости от точности детали
Карта 3

Чистовая обработка						Резцы ия ТС и БРС					
Диаметр заготовкиD_{3}, MM	Глубина резания $t_{\min }^{(\text {(заготовки })} \boldsymbol{\text { (мм }}$ для китета детали					Диаметр заготовки$D_{3}, ~ м м ~$					
	12 (14)	11 (13)	10 (12)	9 (11)	8 (10)		12 (14)	11 (13)	10 (12)	9 (11)	8 (10)
18	0,81	0,55	0,36	0,22	0,15	400	2,5	1,7	1,1	0,68	-
50	1,2	0,79	0,52	0,32	0,19	630	2,9	2,0	1,3	0,80	-
120	1,6	1,1	0,71	0,44	0,26	1000	3,5	2,3	1,5	0,80	-
250	2,1	1,4	0,92	0,57	0,34	1600	4,1	2,8	-	-	-

[^0] квалитета $-K_{t_{\min }}=0,8$.

Глубина резания в вависимоств от виброустойчивоств системв									Карта 4			
Черновая обработка конструкционно区 стали						Резцы из TС и БРС			Твердость поверхности заготовки 210 HB			
Мелкиеисредниестанви												
$\begin{gathered} L_{3} / D_{3} \\ t_{\mathrm{OK}}^{\text {घли }} / d_{\mathrm{oII}} \end{gathered}$	Гаубина резанвя $t_{\text {max }}$ (мм, не более) для технологических систем разлвчных групп жесткояти											
	$D_{\text {c }}$ (мм) для токарного (в числителе) и карусельного (в знаменателе) станков											
	320/-			400\% -			630/1250			800/1600, 2000		
	$D_{\text {а }}$ (мм) для токарного (в числителе) и $t_{\text {П }}$ (мм) для карусельного (в знаменателе) станков											
	30/-	60/-1	120/-	40/-	801-	160/-	60/500	120/400	250/до 200	80/500	160/400	320/до 200

Обтачивание и подрезание

$\begin{gathered} L_{3} / D_{\mathrm{a}} \\ t_{\mathrm{or} \pi} / d_{\mathrm{od}} \end{gathered}$												
	1000/2500			1250/3200, 4000			1600/5000, 6300			2000/8000		
	$\frac{100}{1500}$	$\frac{200}{1000}$	$\frac{\mathrm{CB}}{\text { Lo } 400}$	$\frac{125}{1500}$	$\frac{250}{1000}$	Ca. 500	$\frac{160}{1700}$	$\frac{320}{1100}$	C8. 650	$\frac{200}{1700}$	$\frac{400}{1100}$	CB. 800
Обтачивакие и подреэание												
510	1815106	201715-	$\begin{aligned} & 25 \\ & 20 \\ & 17 \\ & - \end{aligned}$	2017128.	252017-	302520-	$\begin{aligned} & 25 \\ & 20 \\ & 17 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & 25 \\ & - \end{aligned}$	30 25 20 12	$\begin{aligned} & 35 \\ & 30 \\ & 25 \\ & - \end{aligned}$	403530-
20												
40												
Растачивание												
$\begin{aligned} & \text { До } 5 \\ & \text { Св. } 5 \end{aligned}$	9			11			12			14		
				8			9			10		

Поправочные коэффициенты на глубину резания $\boldsymbol{K}_{\boldsymbol{t}_{\max }}$

Твердасть обрабатываемого материала HB $K_{t_{\text {max }_{1}}}$	130 $-\quad 1,3$	170 1,15	210 1,0	240 0,9	300 0,75	400 0,6

$K_{t_{\text {max }}}$ в вависимости от выполняемой операцип: для обтачивания $K_{t_{\text {max }}}=1,0$; для подрезания $K_{t_{\text {max }}}=0,8$
$K_{t_{\text {max }_{3}}}$ в вависимости от материала режущей пластинв: для $\mathrm{TC} K_{t_{\text {max }}}=1,0$; для БРС $K_{t_{\mathrm{max}_{5}}}=1,2$

$K_{t_{\text {max }}}{ }^{\text {в зависимости }}$ от угла в плане φ						
Угол в плане φ. ... ${ }^{\circ}$	Обтачивание		Подрезание		Растачивание	
	Станки					
	мелкие и средние	крупные и тпжелые	мелкие и средние	крупные и тяжелые	мелкие, средние, крупные и тяжелве	
					$l_{\text {OII }} / d_{\text {OII }} \leqslant 5$	
45	0,8	0,9	0,7	0,85	0,85	0,8
60, 75	0,9	1,0	0,8	1,0	1,0	1,0
90	1,0	1,1	1,0	1,2	1,2	1,25

$K_{t_{\text {max }}}$ в зависимости от способа крепления заготовки

Способ крепления заготовки (мелкие и средние станки)	$K_{t_{\text {max }}}$	Способ крепления заготовки $\underset{\text { станки) }}{\text { (крупные и тяжелве }}$	$K_{t_{\text {max }}}$
В центрах с поводком; трехкулачковый патрон консольно ($L_{3} \geqslant 1,5 D_{3}$)	0,6	В кулачках планшайбы передней бабки консольно ($L_{3} \leqslant 0,8 D_{3}$)	0,8

Способ хрепления аяготовки（мелкие п средвие ставки）	$\boldsymbol{K}_{\boldsymbol{t}_{\text {max }}}$	Способ крепления ааготовки（крупнне и тяжелве	$K_{t_{\text {maxa }}}$
В четырехкулачковом патроне ковсольно $\left(L_{3} \geqslant 1,5 D_{3}\right)$	0，8	В кулачках планшайбы передней бабки с поджа－ тием центром	1，0
В трехкулачковом патроне с поджатием центром； в четырехкулачковом патроне вонсольно（ $1,5 D_{8} \geqslant$ $\left.\geqslant L_{3} \geqslant D_{3}\right)$	1，0	В кулачках планшайбы передней бабки и откры－ том роликовом люнете или закрытом люнете с подушками скольжения	1，2
В четырехкулачковом патроне с поджатием цен－ тром	1，2	В кулачках передней п задней бабок с разгруз－ кой люнетами	1，4

Надежность ивструмента															Карта 5							
皆	Cпособ закреп． ленй пласти－ ны		Мелкве х средние станки										Крупные в тяжелье станки									
			Py					чпу					py					чпу，оц				
			T.	v_{T}	\％	$T_{q} \mid$	T_{y}	T	v_{T}	γ.	r_{γ}	$T_{\text {y }}$	T	v_{T}	$\%$	T_{p}	T_{y}	T	v_{T}	γ.	T_{γ}	T_{y}
						мин					мин					мин				\％	м	
Чep-новая	Механи－ ческий	TC	20	0，4	50	19	－	20	0，3	70	17	2	40	0，5	50	38	－	40	0，4	70	31	－
	Пайка	TC	30	0，5	50	29	－	30	0，4	70	23	－	60	0，6		54	－	60	0，5	70	42	－
	Наварка	EPC																				
$\begin{aligned} & \text { Чи- } \\ & \text { сто- } \\ & \text { вая } \end{aligned}$	Механи－ ческий	TC	60	0，2	80		2	60	0，15	80	52	3	90	0，25	$\begin{gathered} 80, \\ 90 \text { * } \end{gathered}$		2	90	0，2	$\begin{gathered} 80, \\ 90^{*} \end{gathered}$		3
		EPC														61 ＊					67 ＊	
		PK		0，5		33	－		0，4		39	－		0，6		${ }_{27}^{42-}$	－		0，5		$\stackrel{50}{55}$	－

Продолжение картьц 5

皆	Cпособ закрепления ны		Мелкие и средние станки										Крупные и тяжелые станки									
			Py					чпу					PY					чпу, Оц				
			$T \text { M }{ }_{\text {MH }}$	${ }^{v} T$	\%	T_{ν}		T	v_{T}	\%	T_{ν}	$T_{\text {y }}$	T	v_{T}		T_{γ}	$T_{\text {y }}$	T	v_{T}	\%	$\frac{T_{\gamma}}{\text { mh }}$	$T_{\text {y }}$
$\begin{gathered} \text { Чи- } \\ \text { стовая } \end{gathered}$	Пайка	TC	60	0,25	80	47	1	60	0,2	80	50	2	90	0,3	$\begin{gathered} 80 \\ 90^{*} \end{gathered}$	$\begin{gathered} 67 \\ 55^{*} \end{gathered}$	9	90	0,25	80,	71,	2

* Чистовая обработка больших поверхностей ответственных деталей, когда смена инструмента до окончания прохода запрещена.

Примечание. При многорезцовой обработке на станках с ЧПУ: для двух резцов $\gamma=70 \%$, для трех-четырех резцов $\gamma=80 \%$ и для пяти резцов $\gamma=90 \%$.

Смазочно-охлаждающие жидкости (СОЖ)	Карта 6
Группа обрабатываемых материалов	Рекомендуемые марки СОЖ
1.1, 1.2. Конструкционная углеродистая сталь	5\% ;ный Укринол-1; 5%-ный Аквол-11
1.3. Конструкционная легированная сталь 1.4. Легированная (кроме инструментальной) сталь	5\%-ный Укринол-1; 5%-ный Аквол-11
2. Коррозионно-стойкая сталь 1.4. Џнструментальная легированная сталя	5-8\%-ный Укринол-1; 5%-ный Аквол-2; 5--8\%-ный РЗ-СОЖ8; 5%-ный Аквол-11; МР-і; МР-4
3. Чугун	3%-ный Укринол-1; 5\%-ный Аквол-10; 5\%-пый Аквол-11
4.1, 4.2. Медные сплавы	2-3\%-ный Укринол-1; МР-2y
4.3. Алюминиевые сплавы	3%-ный Укринол-1, МР-2у; МР-4

Материал режущё̆̆ пластины				Резцы из	и СTM	Карта 7
Условия эксплуфтации			Материал пластины			
Обработка	Припуск	Глубина резания t, мм		рекомендуемый усредненных условй	$\begin{aligned} & \text { повыш } \\ & \text { износост } \end{aligned}$	повыменной прочности

Обтачиваниеи подрезание

1. Конструкционные, подшипниковые и инструментальные стали (110—330 НВ)
1.1. Мелкие и средние станки

Черновая	Henpeрывный	1,5-3	T15K6, MC111	BOK-60, B3, TH20, KHT16, ВП1195	T14K8. MC2210, MC2215, ВП1255. ВП। 325
		Св. 3 до 7	T14K8, MC2210, MC2215, МС121, ВП1255, ВП1325	T15K6, KHT16, MC111	T5K10. MC1460, MC1465
		Св. 7 до 15	$\begin{aligned} & \text { T5K10, MC131, MC1460, } \\ & \text { MC1465 } \end{aligned}$	T14K8, MC2215, MC2210, ВП1255, ВП1325	T5K12, MC146
	Прерывистый	1,5-3	T14K8, MC2210, MC2215, ВП1255, ВП1325	T15K6, MC111, ВП1195	T5K10, MC1460
		Св. 3 до 7	T5K10, MC1460, MC1465	T14K8, MC2210, MC2215; ВП1255, ВП1325	T5K12, MC146
		Св. 7 до 15	T5K12, MC146	T5K10, MC1460, MC1465	TT7K12
Чистовая	Непрерывный	До 1	BO-13, BU-75, BOK-71	Композит 10	T30K4, TH20
		Св. 1 до 3	T30K4	BO-13, ВШ-75, BOK-71	TH20, TT5K6

N

Условия эксплуатации	Материал пластины				
Обработка	Припуск	Глубина резания t, мм	рекомендуемый для усредненных условий	повышенной износостоикости	повышенной прочности

1.2. Қрупные и тяжелые станки

Черновая	Henpeрывный	3-7	T14K8, MC2215, MC2210, $\mathrm{B} \Pi 1255, \mathrm{~B} \Pi 1325$	T15K6, MCl11	T5K10, MC1465, MC1460
		Св. 7 до 15	T5K10, MCl465, MC1460	T14K8. MC2215, MC2210, ВП11255, ВП1325	T5K12, MCl46
		Св. 15 до 45	T5K10	-	TT7K12, T5K12
	Прерывистый	3-7	$\begin{aligned} & \mathrm{T} 5 \mathrm{~K} 10, \mathrm{MC131,} \mathrm{T14K8,} \\ & \mathrm{MC121} \end{aligned}$	$\begin{aligned} & \text { T15K6, MC2215, MC2210. } \\ & \text { MC111 } \end{aligned}$	MC1465, MCJ 460
		Св. 7 до 15	T5K10, MCl31, MCl 465, MC1460	Т14К8, ВП11255, ВП1325, MC121	T5K12, MC146
		Св. 15 до 45	T5K12	T5K10	TT7K12
Чистовая	Henpeрывный	До 2	BOK-60, B3	Композит 10	T30K4. TH20, T15K6
		Св. 2 до 7	T30K4	BOK-60, B3	T15K6

2. Коррозионно-стоикая сталь ($\left.\sigma_{\mathrm{B}}=600 \div 1000 \mathrm{MПа}\right)$
2.1. Мелкие и средние станки

Черновая и чистовая	Непрерывный	1,5-3	BK6-M	BK10-OM, TT8K6, BK3-M, T15K6, MC2210	$\mathrm{BK} 10-\mathrm{OM}, \mathrm{MC} 221$ $\text { TTIOK } 8-\mathrm{E}$
		Св. 3 до 7	BK10-OM, MC221, TT10K8-5	- BK6-M, TT8K6, BK6-OM	BK10-XOM
		Св. 7 до 15	BK10-XOM	BK10-OM, MC221, TT10K8-5	BK15-XOM, BK8

Условия эксплуатадия			Материал плястмры		
Oбработка	Припуск	Глубина резания t, мм	рекомендуемы для усреднениых условин	$\begin{gathered} \text { Повышендсй } \\ \text { взносогтоикости } \end{gathered}$	повыпенной прочнасти
Черновая и чистовая	Прерывистый	1,5-3	$\begin{aligned} & \mathrm{BK} 10-\mathrm{OM}, \mathrm{MC} 221, \\ & \text { TT10K8-Б } \end{aligned}$	BK6-M, BK6-OM	BK10-XOM
		Св. 3 до 7	BK10-XOM	$\mathrm{BK} 10-\mathrm{OM}, \mathrm{MC} 221 \text {, }$ TT10K8-E	BK15-XOM. BK8
22. Крупные и тяжелые станки					
Черновая и чистовая	Непрерывный	$3-7$	BK10-OM, MC-221, TT10K8-E	$\text { BK } 6-M, B K 6-O M$	BK10-XOM
		Св. 7 до 15	BK10-XOM	BK10-OM, MC221, TT10K8 6	
		Св. 15 до 30	BK15-XOM, BK8	BK10-XOM	-
	Прерывистый	3-7	BK10-XOM	$\begin{aligned} & \mathrm{BK} 10-\mathrm{OM}, \mathrm{MC} 221, \\ & \text { TT10K8-E } \end{aligned}$	BK15-XOM, BK8
		Св. 7 до 15	BK15-XOM, BK8	BK10-XOM	-
3. Чугун (110-270 HB) и'медные сплавы високой твердости (100-140 HB)3.1. Мелкие и средние станкя					
Черновая	Henpeрывный	1,5-3	BK6.M. BП3115, MC3210, MC3215	ВК3-М, ВК6-ОМ, ТТ8К6, TH20, BOK-71, BOK-60, B3, OHT-20	ВК6, ВП3325
		Св. 3 до 7	BK6, BП3325	BK6-M, BK6-OM, TT8K6, MC3210, MC3215	BK8
		Св. 7 до 15	BK3	ВК6, ВП3325, ВК6-M	-

Продолжение карты 7

Условия эксплуатации			Материал плас"ины		
Oбработка	припуск	Глубина резания t, мм	рекомендуемы для усредненных условий	повышенной износостойкости	товышеннож прочностя
Чериовая	Прерывистый	1,5-3	ВК6, ВП3325	$\begin{aligned} & \text { BK6-M, BK6-OM, TT8K6, } \\ & \text { BK3-M, TH20 } \end{aligned}$	BK8
		Св. 3 до 7	BK8	ВК6, ВП3325, ВК6-M	-
		Св. 7 до 15	BK8	В ${ }^{6} 6$, ВП3325	-
Чистовая	Henpeрывный	До 1	Композит 10	Композит 05, Композит 01	BOK-60, B3, OHT20, BW75
		3.2. Крупные и тяжелые станки			
Черновая	Henpeрывный	3-7	ВК6, ВП3325	BK6-M, BK6-OM, TT8K6, ВП13115, МС3210, MC3215, BK3-M	BK8
		Св. 7 до 15	BK8	ВК6. ВП3325, В $66-M$	-
		Св. 15 до 45	BK8	ВК6, ВП3325	--
	Прерывистый	3-7	BK8	ВК6, ВП3325, ВК6-M, ВК6-OM, ТТ8K6, ВП3115, MC3210, MC3215	-
		Св. 7 до 15	BK8	В $66, ~ В \Pi 13325 ~$	-
		Св. 15 до 45	BK8	В ${ }^{6} 6, ~ В П 3325 ~$	-
Чистовая	Непрерывный	До 1,5	$\begin{aligned} & \text { BOK-71, BOK-60, B3, } \\ & \text { OHT- } 20, \mathrm{BO}-13 \end{aligned}$	Композит 10	BK3-M, BK3. TH20
		Св. 1,5 до 3	$\begin{aligned} & \text { BK3-M, BK3, TH20, } \\ & \text { BK6-OM } \end{aligned}$	$\begin{aligned} & \text { BOK-71, BOK-60, B3, } \\ & \text { OHT-20, BO- } 13 \end{aligned}$	BK6 M

Условия эксплуатапии			Материал пластины		
Обработка	Припуск	Глубина резания t, мм	рекомендуемый дла усредненных условий	повышенной износостойкости	повы пенноя прочности

4.2. Крупные и тяжелые станки '

Черновал	Непрерывный, прерывистый	3-7	BK6-M	BK3-M, BK6-OM	BK6, BK4
		Св. 7 де 15	BK6, BK4	BK6-M, TT8K6	BK8
		Св. 15 до 45	BK8	BK6	- -
Чистовая	Henpeрывный	До 1,5	B3, OHT-20, BOK-60	-	ВК3-M, BK3
		Св. 1,5 до 3	BK3-M, BK3	B3, OHT-20, BOK-60	BK6-M, KHT16

5. Закаленная сталь, отбеленный чугун *і

Условия эксплуатации				Материал пластины		
Твердость обрабатываемого материала HRC_{3}	Обработка	Припуск	Глубина резания t, мм	рекомендуемый для усредненных	повышенной износостойкости	повьшенной прочности
	Чистовая	Непрерывный	5.1. Мелкие До 0,5	средние станки Композит 10	Композит 05	$\begin{aligned} & \mathrm{BOK}-60, \mathrm{~B} 3, \mathrm{BOK}-71, \\ & (\mathrm{~T} 30 \mathrm{~K} 4) * 2 \end{aligned}$
35-50			Св. 0,5 до 1,5	Композит 10	Қомпозит 05	$\begin{aligned} & \mathrm{BOK}-60, ~ \mathrm{B3}, \mathrm{BOK}-71, \\ & (\mathrm{~T} 30 \mathrm{~K} 4) \times 2 \end{aligned}$
			Св, 1,5 до 3	BOK-60, BOK-71	Композит 10	$\begin{aligned} & \text { BK6-M, BK6-()M } \\ & (\mathrm{T} 15 \mathrm{~K} 6) * 2,(\mathrm{~T} 30 \mathrm{~K} 4) * 2 \end{aligned}$
Св. 50			До 0,3	Композит 05	Композит 01	$\begin{aligned} & \text { Коміозит 10, BoK-60, } \\ & \text { В()K-71 } \end{aligned}$
			Св. 0,3 до 1	Композит 05	Композит 01	Композит 10, В()K-60, B()K-71, (T30K4) *2
35-50	Чистовая	Непрерывный	5.2. Крупные и тяжелые станки До $0,75$. \| Композит 10		Композит 05	BOK-60, BOK-71
			Св. 0,75 до 1,5	BOK-60, BOK-71	Композит 10	T30K4
			Св. 1,5	T30K4	BOK-60, BOK-71	T15K6
Св. 50			До 0,5	Композит 10	Композит 05	BOK-60, BOK-71
			Св. 0,5 до 2	BOK-60, BOK-71	Композит 10	T30K4

*1 При твердости $\mathrm{HRC}_{3} \geqslant 60$ применять преимущественно сплав ВК6-М.
*2 Дспользуется только для стали.

> Отрезание и прорезание. Растачивание
> (мелкие, средние, крупные и тяжелые станки)

Условия эксплуатации		Марка материала пластины	
$\frac{D_{\text {min }}}{D_{3}}$	Жесткость при растачивании	рекомендуемая	повышенной износостойкости

1. Конструкционная, подиипниковая и инструментальная стали

Св. 0,9	$i_{\mathrm{OH}} / d_{\mathrm{OII}} \leqslant 0,8$	T14K8	T15K6
До 0,9	$i_{\mathrm{oII}} / d_{\mathrm{OII}}>0,8$	T5K10	T14K8

2. Сталь корровионно-стойкая

Св, 0,9	$l_{\text {OH }} / d_{\text {OII }} \leqslant 0,8$	BK10-OM, BK10-XOM, TT10K8-E	BK6-M	BK15-XOM, BK8
До 0,9	$l_{\text {OII }} / d_{\text {OI }}>0,8$	BK15-XOM, ВК'8	BK10-OM, BK10-XOM, TT10K8-E	-

3. Чугун, медные и алюминиевые сплавы

Cв. 0,9	$l_{\text {Oп }} / d_{\text {Oп }} \leqslant 0,8$	BK6	BK6-M	BK8
До 0,9	$l_{\text {OII }} / d_{\text {oп }}>0,8$	BK8	BK6	-

Фасонноеточение
(мелкие, средние, крупные и тяжелые станки)

Условия эктплуатацик	Марка материала		
Mирина резца B, мм	рекомендуемая для усредненных условий	повышенной износостойкости	повыиенноп прочности

1. Конструкционная, подиципниковая и инструментальная стали

$10-25$	T14K8	T15K6	T5K10
$25-100$	T5K10	T14K8	-

2. Корровионно-стойкая сталь

$10-25$	BK10-OM, BK10-XOM	BK6-M	BK15-XOM, BK8
$25-100$	TT10K8-Б, BK15-XOM, BK8	BK10-OM, BK10-XOM, TT10K8-G	-

3. Чугун, медные и алюниниевье сплавь

$10-25$	BK6	BK6-M	BK8
$25-100$	BK8	BK6	-

Группы обрабагываемых материалов	Обработка	Марка материала пластины
Қонструкционная сталь	Черновая	P6M5
	Чистовая	P6M5Ф3
Коррозионно-стойкая сталь	Черновая	\rightarrow P9M4K8, P9K5, P18
	Чистовая	P1293
Чугун, цветные металлы и сплавы	Черновая и чистовая	P6M5

Продолжение картьє 8

Форма резцов в плане	22 23 24 25					Kapra 8
Перехода	$\boldsymbol{\beta}_{\mathbf{K}^{\circ}}$	Номер эскиза резца				
		21	22	23	24	25
		Главны угол в плане $\varphi, . .{ }^{\circ}$				
		45	75	90	95	93

Резць, используемьие при растачивании

* Только для твердосплавных пластин.

Тип хонструкции резца

Карта 9

Условия sхсилуатадия																
Orepagiz	Обрабатвваемвия матервал	Oбра－ ботка	Принуск	Глубина резания t ，мм	мелких \＃средних						крупных и тяжелых					
					P	S	M	c	E	r	R	D	w	H	r	B
					Номер эсквза резиа											
					1	$?$	3	4	5	6	7	8	9	10	6	11
Оо́тачива－ ние и под－ резание	Конструкдионная сталь	Черно－ вая	Henpe－ рывный	$\begin{array}{r} 1,5-3 \\ \text { Cs. } 3 \text { до } 7 \\ 7 \% 15 \\ >15 \geqslant 45 \end{array}$	5 5 3 -	二	4 4 4 -	－	二	$\frac{\square}{3}$	－	$\frac{-}{3}$	$\bar{\square}$ 5 3	- 4 5	$\frac{-}{3}$	－
			Преры－ вистый	$\begin{array}{r}1,5-3 \\ \text { Cb．} \\ 8 \\ 70 \\ 7 \\ * \quad 15 \\ \hline\end{array}$	5 4 -	二	4 5 3 -	二	二	－	－	－	－	\square 4 5 5	二	- 4 3
	Коррозионно－стой－ кая сталь		Непре－ рывный		4 4 -	二	$\begin{array}{r}3 \\ 3 \\ \hline- \\ \hline\end{array}$	二	二	－	－	－	- 4	- 3 4	二 3	三－
			Преры－	$\begin{array}{r}1,5-3 \\ \text { Cв．} \quad 3 \text { до } \\ \cdots \\ \times 15 \\ \times 15 \\ \hline\end{array}$	4 3 -	二	3	－	二	－	－	－	－	- 4 4	－	二

Условия эксплуатации					Оденка в батлах＊1 типа конструкций＊2 при работе											
	Обракатываемых материал	O6ра-ботка	припуск	$\begin{gathered} \text { Глубина } \\ \text { резани.. } t \text {, мм } \end{gathered}$	мелких и средних						крупных и тяжелых					
					P	S	M	C	E	「	R	D	w	H	Γ	B
					Номер эскиза резиа											
					1	2	3	4	5	6	7	8	9	10	6	11
Обтачива－ ние и под－ резанье	Чугун，медные сплавы высокой твердости	Черно－ вая	Herpe－ рывный		3 3 -	二	4 5 4	5 4 3 -	－	- 	5 3 -	7 5 5	二	－	- 4 3	－
			Преры－ вистый		3 3 -	二	5 5 3 -	4 4 -	二	- 3 3	－	\square 4 5 4	二	－ 	－	$\frac{\square}{\text { 二 }}$
	Медные сплавы низкой твердости и алюминиевые сплавы		Непре－ рывный， преры－ вистый	$\begin{array}{cccc} & 1,5-3 & \\ \text { Cb. } & 3 & \text { до } & 7 \\ \# & 7 & & 15 \\ \# & 15 & \geqslant & 45 \end{array}$	－	二	$\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & \hline \end{aligned}$	5 5 5	二	- 4 -	$\begin{aligned} & \overline{5} \\ & 3 \\ & \hline \end{aligned}$	- 5 5	－	－	- 4	二
	Закаленная сталь， отбеленный чугун	Чисто－ вая	Непре－ рывный		5 4 -	－	二	5 4 -	二	$\frac{-}{3}$	5 4	\square 5 4	－	－	－	二
	Стали，чугуны и другие материалы	Чисто－ вая＊3		До 4	4	－	－	5	－	－	5	4	－	－	3	－

Условия эксплуатации					$\begin{aligned} & \text { Оценка в баллах *1 типіа конструкции *2 при работе } \\ & \text { на станках } \end{aligned}$											
Операция	Обрабатываемый материал	Обработка	Припуск	Глубина резания t ，мм	мелких и средних						крупных и тяжелых					
					P	S	M	C	E	Γ	R	D	w	H	Γ	B
					Номер эскиза резца											
					1	2	3	4	5	6	7	8	9	－ 10	6	11
Растачива－ ние	Стали，чугуны и другие материалы	Черно－ вая， чистовая	Непре－ рывный	До 15	－	5	－	3	－	3	－	－	－	－	3	－
Контурное точение				$\begin{array}{lllr}\text { До } & \\ \text { Св．} & & \\ \text { до } & \\ \text { 》 } & 7 & 7 & 15\end{array}$	5 4 -	－	二	－	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\frac{-}{3}$	5	－	$\overline{4}$ 5	－	－	二
Фасонное точение＊4				－	－	－	－	4	－	3	－	4	－	－	3	－
Отрезание и прореза－ ние		Черно－ вая		$B<25$ мм $B \geqslant 25$ мм	－	－	－	4	二	3	－	4	－	$\overline{5}$	3	$\overline{4}$

＊1 Рексмендуемые типы резцов 5 и 4 ，допустимый тип резца 3.
＊2 $H=20$ мм только у резцов типов S, M и C ；шестигранная пластина только у резцов типов M и D ．
＊3 PK используется только для резцов типов C, D и P ；СТМ－для резца типа С или Г．
＊${ }^{4}$ Галтели S．
\qquad

Условия эксплуатации				Форма резца при типе кокструкции*1		
Операция	Обрабатываемый мवेтериал	$\begin{gathered} \text { Гвердость } \\ \mathrm{HB}\left(\mathrm{HRC}_{3}\right) \end{gathered}$	Обработка	P, R, M, S	C, D, E	w, H
*	Конструкционная сталь	До 240	Черновая	I	V	II
		240-330		IV	IV	IV
	Закаленная сталь	(35-50)	Чистовая	IV	IV	-
		(До 50)		IV	IV	-
Обтачивание и подрезание	Коррозионно-стойкая сталь	-	Черновая	II	III	II
	Чугун, медные сплавы высокой твердости	До 100		I	V	II
	Медные сплавы низкой твердости, алюминий	Св. 100		II	III	-
	Все материалы	Св. 240	Чистовая	II	V	-
		До 240		IV	IV	-
Растачивание		Св. 240	Черновая, чистовая	I	V	-
		240-330		IV	IV	-

Условия экеплуатации				Форма резца при типе конструкцин *i		
Операция	Обрабатываемыя материал	твердость $\mathrm{HB}\left(\mathrm{HRC}_{3}\right)$	Обработка	P, R, M, S	C, D, E	W, H
Отрезание прорезание	Все материалы	Cb. 240 $-240-330$	二	-	IV	IV

Обозначение формы передней поверхности пластины

Положение пластины в державке	Со стандартнои канавкой *	Со специально заточенной канавкоп **	С плоской переднеа поверхнсстью	С котрицательнои» подточкой
Отрицательное	KIE	II	IV	VI \square
Положительное	-	III		-

*1 Приведены в карте 9.
*2 При использовании широкого диапазона подач применять двойные канавки.

Геометрические параметры

Oneрация	Обрабатываеммй материал		Обработка	Припуск	α, α_{1}	ν	ν_{f}	Пара
	Гpynua	Твердость			...			

Твердосплав

* При высоких требованиях к точности $\alpha=5 \div 8^{\circ}$.

85, 32	40,50	63, 80	16, 20	25, 32	40, 50	63, 80	16, 20	25, 32	40, 50	63. 80
17			ρ				$r=f_{0}$			

ыерезцы

,0,8	$\begin{gathered} 0,8 \\ 1,2 \end{gathered}$	$\begin{gathered} 1,2 \\ 1,4 \end{gathered}$	$\begin{array}{r} 0,02 \\ 0,03 \end{array}$	$\begin{array}{r} 0,04- \\ 0,05 \end{array}$	$\begin{gathered} 0,06- \\ 0,07 \end{gathered}$	$\begin{gathered} 0,08-1 \\ 0,1 \end{gathered}$	$\begin{gathered} 0,8 \\ 1,0 \end{gathered}$	$\frac{1,0}{1,2}$	1,2	$\begin{aligned} & 1,8- \\ & 2,4 \end{aligned}$
-	-	-	0,03-0,	$0,05-$ 0,06	$0,07-$ 0,08	0	0,8-1,	1,0-2	1,2	1,8-
8, 0 ,	$\begin{gathered} 0,5-6 \\ 0,6 \end{gathered}$	$\begin{gathered} 0,6-8 \\ 0,8 \end{gathered}$	$\begin{gathered} 0,02- \\ 0,03 \end{gathered}$	$\begin{gathered} 0,03- \\ 0,04 \end{gathered}$	$\begin{gathered} 0,04- \\ 0,05 \end{gathered}$	$\begin{gathered} 0,05 \\ 0,06 \end{gathered}$	$\begin{array}{\|c} 0,6-8 \\ 0,8 \end{array}$	$\begin{array}{r} 0,8 \\ 1,2 \end{array}$	$\frac{1,2}{1,6}$	$\begin{aligned} & 1,6-0 \\ & 2,0 \end{aligned}$
4,5	$\begin{gathered} 0,6 \\ 0,8 \end{gathered}$	$\frac{0,8}{1,0}$	$\begin{gathered} 0,02 \\ 0,03 \end{gathered}$	$\begin{gathered} 0,03- \\ 0,04 \end{gathered}$	$\begin{array}{r} 0,04- \\ 0,05 \end{array}$	$\begin{gathered} 0,05 \\ 0,06 \end{gathered}$	$\begin{gathered} 0,6- \\ 0,8 \end{gathered}$	$\frac{0,8}{1,2}$	$1,2-6$	$\frac{1,6-}{2,0}$
4	-	-	0,03 0,04	$\stackrel{0,04-}{0,05}$	$0,06-$ 0,07	0,08-	$\stackrel{0,8-}{1,0}$	$\stackrel{1,0-}{1,2}$	$\stackrel{1,2-}{1,8}$	$\frac{1,8}{2,4}$
\%2, ${ }^{2}$	$\begin{gathered} 0,3- \\ 0,4 \end{gathered}$	$\begin{array}{r} 0,4-5 \\ 0,5 \end{array}$	$\begin{gathered} 0,02 \\ 0,03 \end{gathered}$	$\begin{gathered} 0,03- \\ 0,04 \end{gathered}$	$\begin{gathered} 0,04- \\ 0,05 \end{gathered}$	$\begin{gathered} 0,05- \\ 0,06 \end{gathered}$	$\begin{gathered} 0,6- \\ 0,8 \end{gathered}$	$\begin{array}{r} 0,8 \\ 1,0 \end{array}$	$\frac{1,0-6}{1,6}$	$\begin{aligned} & 1,6 \\ & 2,0 \end{aligned}$
${ }_{6}^{6}$	$0,6-$ 0,8	0,8-	-	-	-	-	0,8-	1,0	1,2 1,6	$\begin{aligned} & 1,6- \\ & 2,0 \end{aligned}$
$\frac{2}{3}$	0,3-4	0,4-5	-	-	-	-	0,4 0,6	$\begin{gathered} 0,6- \\ 0,8 \end{gathered}$	0,8-1,0	$\begin{aligned} & 1,0 \\ & 1,2 \end{aligned}$
105	$\left\lvert\, \begin{gathered} 0,06 \\ 0,08 \end{gathered}\right.$	1,0-2	-	-	-	-	0,8-1,	$1,0-$	$\frac{1,2}{1,6}$	$\begin{aligned} & 1,6-0 \\ & 2,0 \end{aligned}$
4	-	-	-	-	-	-	0,6-8	$\stackrel{0,8}{1,0}$	1,0 1,2	$\begin{aligned} & 1,2-6 \\ & 1,6 \end{aligned}$
4	-	-	-	-	-	-	0,8-1,	$1,0-$	$\frac{1,2}{1,4}$	$\begin{aligned} & 1,6-0 \\ & 2,0 \end{aligned}$
42	-	-	-	-	-	-	$0,6-1$ $.0,8$	$\frac{0,8}{1,0}$	1,0-2	$1,2-$
$\frac{8}{4}$	-	-	-	-	-	-	$0,4-$ 0,6	$\begin{gathered} 0,6 \\ 0,8 \end{gathered}$	0,8-1,	$\begin{aligned} & 1,0- \\ & 1,2 \end{aligned}$

One. рация	Обрабатываеме月 материал		Oбра:ботка	Прапуск	α	γ	ν_{f}	$\frac{\text { Mapa }}{16,20}$
	Группа	твердость				... ${ }^{\circ}$		
	Все материалы		Черновая	Прерыв.	8	$\frac{5}{15}$	-	-
			Чистовая	Hempeрывный	8	0	-	-
	Конструкционная сталь	240 HB и менее	-	-	6	15	-5	$0,3 \ldots$ 0,4
		240-330 HB	-	-	8	10	-5	$\begin{gathered} 0,2 \\ 0,3 \end{gathered}$
	Коррозионно-стойкая сталь		-	-	8	15	--3	$\left\lvert\, \begin{gathered} 0,1 \ldots \\ 0,2 \end{gathered}\right.$
	Чугун, медные сплавы высокой твердости		-	-	6	8	-	-
	Медные сплавы низкой твердости и алюминий		-	-	8	30		
	Конструкционная, инструментальная и подшипниковая стали	240 HB	Черновая	Непрерывный	6	25	0	$\begin{array}{r} 0,4 \\ 0,5 \end{array}$
				Прерывистый	6	20	0	$\begin{array}{r} 0,8 \\ 1,0 \end{array}$
			Чисто- вая	Непрерывный	12	20	-	\cdots
		240-330 HB	Чисто- вая		8	20	-	\cdots
	Коррозионно-стойкая сталь		Черновая		8	15	0	$\begin{gathered} 0,4 \\ 0,5 \end{gathered}$
			Чистовая		10	20	-	\cdots
	Чугун, медные сплавы высокой твердости		Черновая		6	12	. 0	$\begin{array}{\|c} 0,4 \\ 0,5 \end{array}$
			Чисто- вая		8	20	--	-
	Сплавы медные низкой твердости, алюминиевые		Черновая, чистовая		8	30	-	\cdots

安етры тезвия, мм, при высоте резца H , мм

25, 32	40, 50	66. 80	16, 20	25, 32	40, 50	63, 80	16, 20	25, 32	40, 50	63, 80
\% 1			ρ				$r=f_{0}$			
\%	\cdots	-	-	-	-	-	-	-	-	--
\%	-	\cdots	-		-	--	\cdots	-	-	\cdots
$\begin{array}{r} 10,4 \\ 0,5 \end{array}$	$\begin{gathered} 0,6 \\ 0,7 \end{gathered}$	$\frac{0,8}{1,0}$	$\begin{gathered} 0,02 \\ 0,03 \end{gathered}$	0,04 0,05	$\frac{0,06}{0,07}$	$\begin{gathered} 0,08- \\ 0,09 \end{gathered}$	$\begin{gathered} 0,4 \\ 0,6 \end{gathered}$	$\begin{gathered} 0,6 \\ 0,8 \end{gathered}$	0,8	$1,0-2$
$\int, 1,3-$	$\frac{0,5}{0,6}$	$\begin{gathered} 0,6-2 \\ 0,8 \end{gathered}$	$\begin{gathered} 0,02 \\ 0,03 \end{gathered}$	$\begin{gathered} 0,03 \ldots \\ 0,04 \end{gathered}$	$\begin{gathered} 0,04 \\ 0,05 \end{gathered}$	$\begin{gathered} 0,05- \\ 0,06 \end{gathered}$	$\begin{array}{r} 0,18 \\ 0,10 \end{array}$	$1,0-2$	$1,2-$	$\begin{aligned} & 1,6-0 \\ & 2,0 \end{aligned}$
$0,2$	$\begin{gathered} 0,3 \\ 0,4 \end{gathered}$	$\begin{gathered} 0,4 \\ 0,5 \end{gathered}$	\cdots	-	-	-	0,4 0,6	0,6 0,8	0,8 1.0	$1,0 \ldots$
$\sqrt{4}$	-	-	-	--	-	-	0,6-8	0,8-1	1,0-2	1,2-1
	-	-	-	-	\bigcirc	-	0,6 0,8	0,8-	1,0-2	$1,2-4$ 1,4

муцие рездн

46	$0,8-$ 0,9	0,9 1,0	---m	\cdots	-	-	1,0-	1,2-1,4	1,4-1	1,6-1,
\% 0^{0}	1,2-4	1,4-8	-	-	-	\cdots	$1 \begin{gathered}1,0 \\ 1,2\end{gathered}$	$\frac{1,2}{1,4}$	$\xrightarrow{1,4,6}$	$1,6-$ 1,8
	-	-	-	\cdots	-	-	0,4-6	$\begin{gathered} 0,6 \\ 0,8 \end{gathered}$	0,8-1,	1,0 1,2
	--	-	-	-	-	-	0,4 0,6	$\begin{gathered} 0,6 \\ 0,8 \end{gathered}$	$\begin{array}{r} 0,8- \\ 1,0 \end{array}$	$\begin{aligned} & 1,0 \\ & 1,2 \\ & \hline \end{aligned}$
6	0,6 0,7	0,7 0,8	--	-	-	-	1,0 1,2	1,2	$\begin{array}{r}1,4 \\ 1,6 \\ \hline\end{array}$	1,6 1,8
4-	-	--	-	-	-	-	$\begin{array}{r}0,4 \\ 0,6 \\ \hline\end{array}$		0,8 1,0	1,0 1,2
${ }^{6}+6$	0,6 0,7	0,7 0,8	-	-	-	-	1,0-2	1,2 1,4	1,4,	$1,6-8$ 1,8
魏	-	-	--	-	-	-	0,6 0,8	[0,8-1,0	1,0 1,2	$\begin{aligned} & 1,2- \\ & 1,6 \\ & \hline \end{aligned}$
	\cdots	-	-	\cdots	-	-	1,0 1,2	1,2-4	1,4,	$1,6-$

етры лезвия, мм, при высоте резца H, мм

5,32	40,50	63,80	16,20	25,32	40,50	63,80	16,20	25,32	40,50	63,80
	-	-	-	-	-	-	-			

One. рация	Обрабатываемыи материал		Oбработка	Припуск	${ }_{\sim}^{\alpha}{ }_{1}$	γ	ν_{f}	$\frac{\text { Пара }}{16,20}$
	Группа	твердость				$\ldots{ }^{\circ}$		

	Сталь кон-струкционная, инструмен. тальная и подшипгниковая	240 HB и менее $240-330 \mathrm{HB}$.			5-7	-(5)	$\|$-10 -15
		35-50 HRC9					-20
历ix	зак	50-65 HRC ${ }_{3}$	вая	рывный			-30
	Чугун серый и высокопрочный	150-300 HB			5-7	-7 -	-15
8	Чугун отбеленный	$400-600 \mathrm{HB}$.		-30
		35-50 HRC_{3}			$\begin{gathered} \mathrm{Pe} \\ \|6-12\| \end{gathered}$	$\begin{aligned} & 3 \text { ц ы } \\ & -(6-12) \end{aligned}$	3 cb -15
	закаленная	50-65 HRC			$\|6-12\|$	-	-20
	Серый и высокопрочный чугун	450-300 HB	Чистовая	рывный	6--12	-(6-	-15
	Отбелен. ный чугун	400-600 HB					-30

Резцы из синтетических

	Медные и алюминиевые сплавы	20-60 HB	Чисто вая

ітры лезвия, мм, при высоте реяца H, мм

ердых материалов

$\text { (} 0,1-0,15$	20-30	0,8-1,0
$0,15-0,2$	20-30	$\cdots \quad 0,8-1,0$
$0,15-0,2$	20-30	0,8-1,0
$2-0,3$	20-30	0,8-1,0

和нкристаллических алмазов

	-	0,1-0,6

РЕЖИМЫ РЕЗАНИЯ ПРИ ОБТАЧИВАНИИ И ПОДРЕЗАНИИ. ЧЕРНОВАЯ ОБРАБОТКА

Черновая обработка конструкционной стали	Резцы из ТС	Карта $\mathbf{1 2}$

Мелкие и средние станки

Резец типа $P, \varphi=90^{\circ}$ (см. эск. 1 , карту 9).
Пластина из Т15K6 (MC111). Припуск непрерывный

Lo 2 2	0,55	0,65	0,75	0,60	0,70	0,80	0,70	0,85	1,0	0,75	0,90	1,10
3	0,46	0,55	0,65	0,50	0,60	0,70	0,60	0,70	0,85	0,65	0,80	0,95
4	0,39	0,47	0,55	0,43	0,50	0,60	0,50	0,60	0,75	0,55	0,65	0,80

Резец типа $P, \varphi=90^{\circ}$ (см. эск. 1, карту 9).
Пластина из T 14 K 8 (MCl 21). Припуск непрерывный

3	0,50	0,60	0,70	0,55	0,65	0,80	0,65	0,80	0,95	0,75	0,85	1,05
4	0,43	0,50	0,60	0,47	0,55	0,65	0,55	0,65	0,80	0,60	0,75	0,90
6	0,35	0,41	0,49	0,38	0,45	0,55	0,45	0,55	0,65	0,50	0,60	0,70
8	-	0,35	0,42	0,32	0,38	0,46	0,39	0,46	0,55	0,43	0,50	0,60

Резец типа $\mathrm{R}, \varphi=90^{\circ}$ (см. эск. 7 , карту 9).
Пластина из Т5К10 (MC131). Припуск непрерывный

6												
8	0,41	0,48	0,60	0,45	0,55	0,65	0,55	0,65	0,75	0,60	0,70	0,85
12	-	0,41	0,49	0,38	0,45	0,55	0,46	0,55	0,65	0,50	0,60	0,70
15	-	-	-	-	-	0,36	-	0,43	0,50	0,40	0,50	0,60

Резец типа $P, \varphi=75^{\circ}$ (см. эск. 1, карту 9).
Пластина из Т14K8 (MC121). Припуск прерывистый

До 2	0,48	0,55	0,7	0,5	0,6	0,75	0,65	0,75	0,9	0,7	0,85	1,0
3	0,41	0,48	0,6	0,48	0,55	0,65	0,55	0,65	0,8	0,6	0,75	0,85
4	0,36	0,43	0,5	0,39	0,48	0,55	0,48	0,55	0,65	0,5	0,6	0,75

Резец типа $\mathrm{R}, \varphi=75^{\circ}$ (см. эск. 7 , карту 9).
Пластина из Т5K10 (МС131). Припуск прерывистый

3	0,48	0,55	0,65	0,5	0,6	0,7	0,6	0,75	0,85	0,65	0,80	0,95
4	0,39	0,47	0,55	0,42	0,50	0,60	0,50	0,60	0,75	0,55	0,65	0,75
6	-	0,39	0,43	0,34	0,40	0,48	0,40	0,48	0,55	0,43	0,50	0,65
8	-	-	0,38	-	0,34	0,42	0,34	0,42	0,48	0,38	0,48	0,55

Резец типа $R, \varphi=75^{\circ}$ (см. эск. 7, карту 9). Пластина из ТТ7K12 (Т5K12, МС146). Припуск прерывистый

6	0,39	0,48	0,55	0,42	0,50	0,60	0,50	0,60	0,75	0,55	0,70	0,75
8	-	-	-	0,36	0,43	0,50	0,43	0,50	0,60	0,48	0,55	0,70
12	-	-	-	-	-	-	-	-	0,48	-	0,48	0,55

Поправочный коэффициент на подачу $K_{S_{0}}$, учитьвающий твердость обрабапьваежого материала

HB	130	150	170	190	210	240	270	300	330
$K_{S_{0}}$	1,3	1,2	1,15	1,1	1,0	0,90	0,80	0,75	0,70

При подрезании K_{S} дополнительно умножить на 0,8 при $D_{\min } / D_{\mathbf{a}} \leqslant 0,35$ или на 0,9 при $D_{\min } / D_{8}>0,35$.

Глубина резания t. MM	Скорость резания v_{r} (м/мин) при обработке стали: повышенно月 обрабатываемости с твердостью 200 НВ, конструкционной углеродистой с 170 НВ, конструкционной легированной с 150 HB для подачи S, мм/об									
	до 0,20	0,25	0,30	0.40	0.50	0.60	0,80	1.0	1.2	1.5

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из T 15 K 6 ($\mathrm{MCl111}$). Припуск непрерывный

До 2	275	260	250	235	210	200	175	160	145	125
3	260	245	235	220	200	185	165	150	135	-
4	250	235	225	210	190	180	160	145	-	-

Резец типа $\mathrm{P} ; \varphi=90^{\circ}$. Пластина из T 14 K 8 (MCl 21$)$. Припуск непрерывный

3	230	215	205	190	175	160	145	130	120	105	
4	215	205	195	185	165	155	140	125	115	-	
6	205	195	185	170	155	145	130	120	-	-	
	8	195	185	175	165	150	140	125	-	-	-

Глубина резания	шениой обрабатьваемости с 200 НВ, конструкционнои углеродистой 									
	AC 0,20	0.25	0	0.40	0,50	0.60	0.80	1.0		1.3

Резед типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина нз Т5K10 (MCl 31). Припуск непрерывный

6	180	170	160	150	135	125	115	105	95	-
8	170	160	155	145	130	120	110	100	-	-
12	160	155	145	135	125	115	105	-	-	-
15	155	150	140	130	120	110	-	-	-	-

Резец типа $P, \varphi=75^{\circ}$. Пластина из Т14К8 (МС121). Припуск прерывистый

До 2	200	190	185	170	155	145	130	120	105	95
3	190	180	170	160	145	135	120	110	100	90
4	185	170	165	155	140	130	115	105	95	-

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина ия Т丂К10 (МС131). Припуск прерывистый

3										
4	165	155	150	140	125	120	105	95	85	75
6	160	150	145	135	120	115	100	90	82	-
8	150	140	135	125	115	105	95	85	-	-

Резец тыпа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из $\mathrm{T} T 7 \mathrm{~K} 12$ (МС146). Припуск прерывнстый

6	130	125	115	100	100	95	82	75	67	-
8	125	115	110	105	95	88	80	72	65	-
12	110	110	105	95	90	85	75	70	-	-

Попразочний колффициент на скороспь резания $K_{v_{0}}$ в зависимости от твердости обрабапиьнаемого мапериала

Tpynua"	1.1. Повыненио obpactatazaemocta			1.2. Конетруппионая углерсдиетая			1.3. Конструкционная легироетнная		
HB	170	190	210	150	170	190	150	170	190
$K_{v_{0}}$	1,10	1,05	0,95	1,1	1,0	0,95	1,0	0,90	0,85

При подрезании $K_{v_{0}}$ дополнительно умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ или на 1,2 при $D_{\text {min! }} / D_{9}>0,35$.

* Группы сталей см. в прил. 1.

Глубина резания t, MM	Скорость резания $\boldsymbol{v}_{\mathrm{T}}$ (м/мин) при обработке заготовок из стали: конструкционной углеродистой с 210 HB , конструкционной легированной с 190 HB , легированной с 150 HB для подачи S, мм/об									
	до 0,20	0,25	0,30	0,40	0,50	0,60	0,80	1,0	1,2	1.5

Резец типа $\mathrm{P}, 甲=90^{\circ}$. Пластина из Т 15 K 6 (МСІІ1). Припуск непрерывный

До 2	240	225	215	200	185	170	155	140	125	110
3	225	215	205	190	175	160	145	130	120	-
4	215	205	195	180	165	155	140	125	-	-

Продолжение карть

Глубина резания	Схорость резания δ_{T} (м/мнв) при обработке яаготовок из стали: конструкциоииой углеродистои с 210 НВ, конструкционной легированнои 190 НВ, легированной о 150 HB для подачи S, мм/об									
t, Mm	до 0,20	0,25	0,30	0.40	0,50	0,60	0.80	1,0	1.2	1.5

Резед типа $\mathrm{P}, 甲=90^{\circ}$. Пластина из T14K8 (MC121). Припуск непрерывный

3	195	185	180	165	150	140	125	115	105	90
4	190	180	170	160	145	135	120	110	100	-
6	175	165	160	150	135	125	115	105	-	-
8	170	160	155	140	130	120	110	-	-	-

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина из T 5 K 10 (MCl 31). Припуск непрерывный

6	155	145	140	130	120	110	100	90	80	-
8	150	140	135	125	115	105	95	86	-	-
12	140	135	125	120	105	100	88	-	-	-
15	135	130	120	115	105	97	-	-	-	-

Резец типа $\mathrm{P}, \varphi=75^{\circ}$: Пластина из $\mathrm{T} 14 \mathrm{~K} 8(\mathrm{MCl} 21)$. Припуск прерывистый

До 2	175	165	160	145	135	125	110	100	91	80
3	165	155	150	140	125	115	105	96	86	-
4	160	150	145	130	120	110	100	92	82	-

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 31)$. Припуск прерывистый

3	145	135	130	120	110	105	91	83	74	65
4	135	130	125	115	105	98	87	80	71	-
6	130	125	120	110	100	92	82	75	-	-
8	125	120	115	105	95	88	78	-	-	-

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из TT 7 K 12 (МС146). Припуск прерывистый

6										
8										
12	105	105	100	94	86	80	71	65	58	-
	100	95	91	90	82	76	68	62	-	-

Поправочньй коэффициеніп на скорость ревания $K_{v_{0}}$ в вависимости от твердости обрабатьваемого материала

группа стали	1.2. Kонструкдонная углеродистая		1.3. Конструкиоонная легированная		1.4. Легированная			
HB	190	210	240	170	190	210	190	210
$K_{v_{0}}$	1,10	1,0	0,85	1,03	1,0	0,9	0,9	0,8

При подрезании $K_{0_{0}}$ дополнительно умножить на 1,25 при $D_{\operatorname{man}} / D_{8} \leqslant 0,35$ или на 1,2 при $D_{\min } / D_{a}^{\circ}>0,35$.

[^1]| Глубина резания | Скорость резания v_{τ} (м/мин) при обработке заготовок из стали: конструкционной углеродистой с 270 HB конструкционной легированной с 250 HB ; легированной с 240 HB для подачи S, мм/об́ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | до 0,2 | 0,25 | 0,30 | 0,40 | 0,50 | 0.60 | 0,80 | 1,0 | 1,2 | 1,5 |

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из Т 15 K 6 ($\mathrm{MCl111}$). Припуск непрерывный

Дo $_{0} 2$	175	160	155	145	130	125	110	100	90	79
3	165	155	145	135	125	115	105	94	85	-
4	155	150	140	130	120	110	99	91	-	-

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из $\mathrm{T} 14 \mathrm{~K} 8(\mathrm{MCl} 21)$. Припуск . непрерывный

3	140	135	130	120	110	100	90	82	74	65
4	135	130	120	115	105	97	86	79	71	-
6.	125	120	115	105	98	91	81	74	-	-
8	120	115	110	100	94	87	-	-	-	-

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 31)$. Припуск непрерывный

6	110	105	100	94	85	79	70	64	58	-
8	105	100	96	89	81.	76	68	62	-	-
12	100	95	91	84	76	71	-	-	-	-
15	98	92	89	82	-	-	-	-	-	-

Резец типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из $\mathrm{T} 14 \mathrm{~K} 8(\mathrm{MCl} 21)$. Припуск прерывистый

До் 2	125	120	115	105	96	90	80	73	65	58
3	120	110	105	99	91	85	76	69	62	-
4	115	105	100	95	87	81	72	66	59	-

Резед типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из T 5 K 10 (MCl 131). Припуск прерывистый

3	105	98	93	86	79	73	66	60	53	47
4	99	94	89	83	76	71	63	58	51	-
6	93	88	84	78	71	66	59	54	-	-
8	89	84	81	74	68	63	56	-	-	-

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из ТТ7K12 (МС146). Припуск прерывистый

6	79	76	72	68	62	58	51	47	42	-
8	77	72	70	65	59	55	49	45	-	-
73	68	66	60	55	52	46	-	-	-	

Поправочный коэффициент на скорость резания $K_{v_{0}}$ в вависимости от твердости обрабатьваемого материала

$\underset{\text { стали }}{\text { Групиа }}$	1.2. Конструкционная углеродистая			1.3. Конструкцнонная легированная		1.4. Легированная		
HB	240	270	300	240	270	210	240	270
K_{v}	1,2	1,0	0,93	1,09	0,9	1,15	0,97	0,8

При подрезании $K_{v_{0}}$ дополнительно умножить на 1,25 при $D_{\min }^{\prime} / D_{8} \leqslant 0,35$ или на 1,2 при $D_{\min } / D_{\mathbf{3}}>0,35$.

* Группы сталей см. в прил. 1.

Глубина резания	Скорость резания v_{τ} (м/мин) при обработке заготовки из стали: конструкционной углеродистой с 330 HB ; конструкционной легированной с 300 HB для подачи S, мм/об								
	до 0,20		0,25	0,30	0,40	0,50	0.60	0,80	1,0

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из T 15 K 6 ($\mathrm{MCl11}$). Припуск непрерывный

До 2	130	122	120	110	100	95	85	75
3	125	115	110	105	95	90	80	-
4	115	110	105	100	90	85	-	-

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из Т14K8 (MC121). Припуск непрерывный

3								
4								
6	105	100	95	90	80	75	70	62
8	95	95	90	85	79	73	65	-
90	90	85	80	75	70	-	-	

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 31)$. Припуск непрерывный

6	85	80	75	70	65	60	55	-
8	80	75	73	65	60	57	-	-
12	75	72	70	64	58	-	-	-
15	74	70	65	60	-	-	-	-

Резец типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из $\mathrm{T} 14 \mathrm{~K} 8(\mathrm{MCl} 21)$. Припуск прерывистый

До 2	95	90	85	80	75	70	60	55
3	90	85	80	75	70	65	57	-
4	85	80	75	70	65	60	55	-

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 31)$. Припуск прерывистый

3								
4	80	75	70	65	60	55	50	45
6	75	70	67	62	57	53	47	-
8	70	65	65	60	55	50	-	-
65	64	60	55	50	48	-	-	

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из ТТ7K12 (MC146). Припуск прерывистый

6								
8		60	60	55	50	47	45	40
12		58	55	53	49	45	40	-
.	55	50	50	45	40	39	-	-

 от твердости обрабатьваемого материала

Группа стали	1.2. Конструкционная углеродистая	1.3. Конструкционная легированная	
HB	300	330	300
$K_{v_{0}}$	1,18	1,0	1,05

При подрезании $K_{v_{0}}$ дополнительно умножить на 1,25 при $D_{\min } / D_{8} \leqslant 0,35$ или на 1,2 при $D_{\min } / D_{3}>0,35$.

* Группы сталей см. в прил. 1.

Крупныеи гяжелыестанки

Глубина́ резания t, MM	Подача S_{T} (мм/об) для различных групп жесткости технологическои системы. Твердость заготрвки 210 НВ											
	D_{C} (мм) для токарного (в чкслителе) и карусельного (в знаменателе) станков											
	1000/2500			1250/3200, 4000			1600/5000, 6300			2000/8000		
	D_{3} (мм) для токарного станка (в числителе) и $l_{\text {пи }}$ (мм) для станка (в знаменателе)											
	8	818	¢	NㅡN	앙ㅇㅇㅇ응		- ${ }^{8}$	잉ㅇ	P10 0 8 0 M	,	$\stackrel{8}{+} 18$	会\|c

Резец типа $\mathrm{R}, \varphi=45^{\circ}$ (см. эск. 7, карту 9).
Пластина из Т14K8. Припуск непрерывный

До 4	1,1	1,3	1,5	1,4	1,7	2,0	1,7	2,0	2,3	1,9	2,2	2,5
6	0,95	1,1	1,3	1,2	1,5	1,7	1,4	1,7	2,0	1,6	2,0	2,3
8	0,85	1,0	1,2	1,1	1,3	1,6	1,3	1,5	1,8	1,5	1,8	2,1

Резец типа $W, \varphi=60^{\circ}$ (см. эск. 9, карту 9). Пластина из Т5K10 (MC131). Припуск непрерывный

6	1,2	1,4	1,6	1,5	1,8	2,2	1,8	2,1	2,5	2,0	2,4	2,5
8	1,0	1,2	1,4	1,3	1,6	1,9	1,6	1,9	2,2	1,8	2,1	2,5
12	0,8	1,0	1,2	1,1	1,3	1,5	1,3	1,5	1,8	1,4	1,7	2,0
15	0,7	0,9	1,0	0,95	1,1	1,4	1,1	1,3	1,6	1,3	1,5	1,8
20	-	0,75	0,9	0,8	1,0	1,2	0,95	1,1	1,3	1,1	1,3	1,5

Резец типа $\mathrm{H}, \varphi=60^{\circ}$ (см. эск. 10 , карту 9).
Пластина из T5K10 (MC131). Припуск непрерывный

15	0,90	1,05	1,2	1,1	1,4	1,6	1,3	1,6	1,9	1,5	1,8	2,1
20	-	0,9	1,1	1,0	1,2	1,4	1,1	1,3	1,6	1,3	1,5	1,8
30	-	-	0,85	-	0,95	1,1	0,9	1,1	1,3	1,0	1,2	1,5
40	-	-	-	-	-	-	-	-	1,1	-	1,1	1,3

Резец типа $\mathrm{W}, \varphi=60^{\circ}$ (см. эск. 9 , карту 9).
Пластина из Т5К10 (MC131). Припуск прерывистый

До 4	1,1	1,3	1,5	1,4	1,7	2,0	1,6	1,9	2,3	1,8	2,2	2,5
6	0,9	1,1	1,3	1,2	1,4	1,7	1,4	1,7	2,0	1,6	1,9	2,3
8	0,8	0,95	1,1	1,1	1,3	1,5	1,2	1,5	1,7	1,4	1,7	2,0

Резец типа $\mathrm{H}, \varphi=60^{\circ}$ (см. эск. 10 , карту 9).
Пластина из Т5К10 (МС131). Припуск прерывистый

6	1,0	1,2	1,4	1,3	1,6	1,9	1,6	1,9	2,2	1,8	2,1	2,5
8	0,9	1,1	1,3	1,2	1,4	1,7	1,4	1,6	1,9	1,6	1,9	2,2
12	0,75	0,85	1,0	0,95	1,1	1,3	1,1	1,3	1,5	1,3	1,5	1,8
15	0,65	0,8	0,9	0,85	1,0	1,2	1,0	1,2	1,4	1,1	1,3	1,6
20	-	0,65	0,8	0,7	0,85	1,0	0,85	1,0	1,2	1,0	1,1	1,3

Резец типа $\mathrm{H}, \varphi=60^{\circ}$ (см. эск. 10, карту 9).
Пластнна из TT7K12 (T5K12, MC146). Припуск прерывистый

15	0,9	1,1	1,3	1,2	1,4	1,7	1,4	1,7	2,0	1,6	1,9	2,2
20		-	1,1	1,0	1,2	1,4	1.2	1,4	1,7	1,4	1,6	1,9
30	-	-	-	-	-	-	-	1,1	1,3	1,1	1,3	1,5

Поправочный кояффициент на подачу $K_{s_{0}}$ в вависимости от твердости обрабатьввемого материала

HB	130	150	170	190	210	240	270	300	330
$K_{S_{0}}$	1,3	1,2	1,15	1,1	1,0	0.90	0,80	0,75	0,70

При подрезании $K_{S_{0}}$ дополнительно умножить на 0,8 при $D_{\min } / D_{3} \leqslant 0,35$ или на 0,9 при $D_{\min } / D_{3}>0,35$.

Глубина резания t, мм	Скорость резания $v_{\mathbf{T}}$ (м/мин) при обработке заготовок из стали: повышенной обрабатываемости ${ }^{\text {с }} 200 \mathrm{HB}$. конструкционной углеродистой с 170 HB , конструкционной легированной с 150 HB для подачи S, мм/об									
	до 0.4	0.5	0.6	0.8	1.0	1.2	1.5	2.0	2.5	3.0

Резец типа R, $\varphi=45^{\circ}$. Пластина из T14K8. Припуск непрерывный

До 4	185	170	155	140	125	115	100	85	75	65
6	170	160	145	130	120	105	95	80	70	60
8	165	150	140	125	115	100	90	75	65	59

Резец типа $\mathrm{W}(\mathrm{H}, \mathrm{D}), \varphi=60^{\circ}$. Пластина из T 5 K 10 (МС131). Припуск непрер.

6	145	135	125	110	100	95	80	70	60	55
8	140	130	120	105	95	85	75	65	55	50
12	130	120	112	100	90	82	70	60	53	47
15	128	115	110	98	89	80	69	59	52	-
20	125	114	105	95	85	75	65	55	-	-

Глубина резания t, мм	Скорость резания $\boldsymbol{\sigma}_{\text {. (м/мин) при обработке заготовок из стали: повышен- }}^{\text {п }}$ по ной обрабатываемости с 200 HB , конструкционной углеродистой с 170 HB , конструкционнои легированной с 150 НВ для подачи S, мм/об									
	до 0.4	0.5	0.6	0.8	1.0	1,2	1,5	2,0	2,5	3,0

Резец типа $H, \varphi=60^{\circ}$. Пластина из Т5К10 (МС131). Поипуск непрерывный

15	130	120	110	100	90	80	70	60	52	46
20	125	115	105	95	85	77	68	57	50	-
30	120	110	100	90	80	75	65	55	-	-
40	115	105	99	88	81	70	64	-	-	-

Резец типа $\mathrm{W}, \varphi=60^{\circ}$: Пластина из T 5 K 10 ($\mathrm{MC131}$). Припуск прерывистый

До 4	125	115	105	95	85	75	70	60	50	45
6	115	105	100	90	80	70	65	55	46	42
8	110	100	95	85	75	69	60	50	45	40

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина нз Т5К10 ($\mathrm{MC131}$). Припуск прерывистый

6	120	105	100	90	80	70	65	55	46	42
8	110	102	95	85	77	69	60	50	45	40
12	105	100	89	80	75	65	57	49	42	-
15	102	95	88	79	70	64	55	47	-	-
20	100	90	85	75	69	60	54	-	-	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из ТТ7К12 (Т5K12, МС146).
Припуск прерывистый

15	92	85	80	70	65	60	50	45	40	35
20	90	83	77	69	62	55	49	40	37	-
30	87	80	75	65	60	54	45	39	-	-

Поправочньй кояффициент на скорость резания $К_{\nu_{0}}$ в вависимости от теердости обрабатываемого материала

Группа стали	1.1. Повышеннои обрабатываемости			1.2. Конструкционная углеродистая			1.3. Конструкционная легированная		
HB	170	190	210	150	170	190	150	170	190
$K_{v_{0}}$	1,10	1,05	0,95	1,09	1,0	0;95	0,98	0.90°	0.86

При подрезании $K_{v_{0}}$ дополнительно умножить на 1.25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 при $D_{\min } / D_{3}>0,35$.

Глубина резания t, MM	Скорость резания v_{π} (м/мин) при обработке заготовок из стали: конструкционной углеродистой с 210 НВ, конструкционной легированной с 190 HB , легированной с 150 НВ для подач S, мм/об									
	до 0,4	0.5	0.6	0,8	1,0	1,2	1,5	2,0	2,5	3,0

Резец тила $R, \varphi=45^{\circ}$. Пластина из Т14K8. Припуск непрерывный

До 4	160	145	135	120	110	100	86	73	63	57
6	150	135	125	115	105	92	81	68	60	53
8	140	130	120	110	100	88	77	65	57	-

66

Глубнна резания	Скорость реяания v_{7} (м/мян) при обработке заготовок из стали: конструкционвои углеродистой с 210 НВ, конструкционной легированнсА с 190 НВ, легированнои с 150 HB для подачи S, мм/טб									
	до 0,4	0.5	, 6	. 8	0	2	1.5	2,0	2,5	3,

Резец типа $\mathrm{W}, \varphi=60^{\circ}$. Пластина ия $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl31})$. Припуск непрерывный

6	125	115	107	96	87	81	69	58	50	46
8	120	110	102	91	84	75	66	55	48	44
12	115	105	97	86	79	71	61	52	46	-
15	110	100	95	85	77	69	60	51	45	-
20	105	98	92	82	74	67	59	49	-	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 131)$. Припуск непрерывный

15	111	101	95	85	77	69	60	51	45	-
20	108	99	92	82	74	67	59	49	43	-
30	103	95	88	78	72	64	57	47	-	-
40	100	92	86	76	70	62	55	-	-	-

Резец типа $\mathrm{W}, \varphi=60^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 31)$. Припуск прерывистый

До 4	105	98	91	81	74	67	59	49	43	38
6	100	92	86	76	70	62	55	47	40	36
8	97	88	82	73	67	60	52	44	39	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10(\mathrm{MCl} 31)$. Припуск прерывистый

6	100	92	86	76	70	62	55	47	40	36
8	97	88	82	73	67	60	53	44	39	35
12	91	84	77	69	63	57	49	42	36	-
15	88	81	76	68	61	55	48	41	-	-
20	86	79	73	65	60	54	47	-	-	

Резед типа $H, \varphi=60^{\circ}$. Пластина из ТТ7K12 (Т5К12, МС146). Припуск прерывистый

15	80	73	70	61	56	50	44	37	33	29
20	78	72	67	60	54	48	42	35	32	-
30	75	69	64	57	52	47	41	34	-	-

Поправочньй кояффпциент на скорость резания $K_{v_{0}}$ в вависимости от твердости обрабатываемого материала

групия сталн	1.2. Конструкционная углеродистая			1.3. Конструкционная легированная		1.4. легированная		
HB	190	210	240	170	190	210	190	210
$K_{v_{0}}$	1,10	1,0	0,85	1,03	1,0	0,9	0,9	0,8

При подрезанни $K_{\tau_{0}}$ дополнительно умножиъъ на 1,25 при $D_{\min } / D_{\mathbf{s}} \leqslant 0,35$ или на 1,2 при $D_{\min } / D_{\mathrm{a}}>0,35$.

* Группи стали см. з прил. 1.

Продолжение картьт 12

Глубина реаания t, MiM

Скорость резания v_{T} (м/мин) пр́и обработке заготонок из стали: конструкционной углеродистой с 270 HB , констрикционной легированной с 250 HB , легированной с 240 НВ для подачи S, мм/об

no 0.4	0.5	0.6	0.8	1.0	1.2	1.5	2.0	2.5	3.0

Резеи тина R, $\varphi=45^{\circ}$. Пластина из T14K8. Припуск непрерывный

До 4	115	105	97	86	79	71	62	53	45	41
6	105	99	91	81	74	66	58	49	43	38
8	100	94	87	78	71	63	55	47	41	-

Резед типа $W, \varphi=60^{\circ}$. Пластина из T 5 K 10 (МС131). Припуск непрерывный

6	91	83	77	69	63	58	50	42	36	33
8	87	80	73	66	60	54	48	40	35	32
12	81	75	70	62	57	51	44	37	33	-
15	80	73	68	61	55	50	43	36	32	-
20	78	71	66	59	53	48	42	35	-	-

Резец типа $Н, \varphi=60^{\circ}$. Пластина из T 5 K 10 ($\mathrm{MC131)}$. Припуск непрерывный

15	80	73	68	61	55	50	43	36	32	-
20	78	71	66	59	53	48	42	35	31	-
30	74	68	63	56	52	46	41	34	-	-
40	72	66	62	55	50	45	40	-	-	-

Резед типа $\mathrm{W}, ~ \varphi=60^{\circ}$. Пдастина из T 5 K 10 (МС131). Припуск прернвистьй

104	77	71	66	58	63	48	42	35	31	27
6	73	66	62	55	50	45	40	34	29	26
8	70	68	59	53	48	43	37	32	28	-

Резец типа Н. $q=60^{\circ}$. Пластина из T 5 K 10 (МС131). Припуск прерывистый

6	73	66	62	55	50	45	40	34	29	26
8	70	63	59	53	48	43	38	32	28	25
12	66	60	55	50	45	41	35	30	36	-
15	63	58	54	49	44	40	34	29	-	-
20	62	57	53	47	43	39	33	-	-	-

Резед типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из ТТ7K12 (T5K12, МС146).

Припуск препывистый

15	58	53	50	44	40	36	32	27	24	21
20	56	52	48	43	39	35	30	25	23	-
30	54	50	46	41	37	34	29	24	-	-

Поправочньй коэффиииент на скооость резания $K_{v_{0}}$ в всвисимоспи от твердости обрабатьваелого материала

$\begin{gathered} \text { Группа } \\ \text { стали } \end{gathered}$	1.2. Конструкционная углеродистая			1.3. Конструкционная легированная		1.4. Легированная		
HB	240	270	300	240	270	210	240	270
$K_{v_{0}}$	1,2	1,0	0,93	1,09	0,9	1,15	0,97	0,8

При подрезании $K_{v_{0}}$ пополнительно умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ หли ви 1,2 при $D_{\text {min }} D_{3}>0,35$.

* Группн стай см. в прил. 1.

Глубина реэatия $f_{8} \mathrm{Mm}$	Скорость резанин б $_{T}$ (м/мин) прн обработке заготовок из этали: конструкдионной углеродистой с 330 HB , конструкционной легированной с 300 HB для подачи S. mm/об								
	00.4	0.5	0.6	0,8	i, 0	1.2	1.5	2.	2,5

Резец типа $\mathbb{R}, \varphi=45^{\circ}$. Пластина из $T 14 \mathrm{~K} 8$. Принуск непоерывный

До 4	85	80	75	65	60	55	50	40	35
6	80	75	70	61	55	50	45	37	-
8	75	70	65	60	54	48	42	-	-

Резед тииа $\mathrm{W}, \varphi=60^{\circ}$. Пластина из T 5 K 10 (MCl 31). Припуск непрерывныа

6.	70	62	60	50	47	45	40	31	30
8	65	60	55	49	45	40	35	30	26
12	61	57	53	47	43	39	33	28	-
15	60	55	52	46	42	38	32	-	-
20	59	54	50	45	40	35	-	-	-

Резеи типа $\mathrm{H}, \varphi=60^{\circ}$. Пиастина ия T 5 K 10 (MCl 31). Припуск непрерывннй

15	60	55	52	46	42	40	33	-	-
20	59	54	50	45	40	36	-	-	-
30	56	52	48	42	39	-	-	-	-
40	55	50	45	40	-	-	-	-	-

204	60	53	50	45	40	35	32	30	25
6	55	50	47	41	38	34	30	25	-
8	53	45	45	40	35	30	25	-	-

Резец типа $\mathrm{H}, ~ \varphi=60^{\circ}$. Пластина чз 75 K 10 (МСІЗ). Припуск прерывистый

6	65	50	47	41	40	35	30	-	-
8	53	48	45	40	35	33	29	-	-
12	50	45	42	38	34	31	-	-	-
15	48	44	41	37	33	30	-	-	-
20	45	43	40	35	32	-	-	-	-

Резеп типа $\mathrm{H}, \underline{\omega}=60^{\circ}$. Пластина ия ТТ7К12 (Т5K12, MC146).
Припуск прерывистьй

15	45	40	38	35	30	27	25	-	-
20	42	39	36	33	29	26	23	-	-
30	40	35	35	30	25	25	-	-	-

При подреэаиин $K_{0_{0}}$ дополнительно умножитв на :, 25 при $D_{\text {тии }} / D_{8} \leqslant 0,35$ нли на 1,2 при $D_{\text {min }} / D_{3}>0,35$.

- Групns craли см。в прил. 1.

Поправочнье коэффициенты на подачу K_{S} для ивмененных условий работы

Мелкие и средниестанки

Условия яксплуатации		K_{S} ，для марки материала инструмента						
Припуск	Глубина реаания t_{g} MM	荷		¢ 気 ES			O゙ロ	
Непрерывный	До 3 Св． 3 до 7 Св． 7	$\begin{array}{r}0,9 \\ \hline\end{array}$	$\begin{aligned} & 1,0 \\ & 0,9 \\ & 0,65 \end{aligned}$	1,0 0,9 0.7	1,1 1,0 0,85	1,1 1,0	1,15 1,0	－
Прерывистый＇	До 3 CB .3 до 7 CB .7	二	0，85	0,9 0,7	1,0 0.85 0.6	1,1 1,0 0.8	\square 1,05 0,8	1,15 1,0

Для сплавов по ГОСТ 3882－74 в случае нанесения износостойкого покры－ тия $K_{S_{1}}$ умножить на 0,85 ．

Крупнвеитяжелыостанки

Условия яксплуатации		$K_{S_{1}}$ для марки．материала инструмента						
припуск	Глубина резания t ．MM	든		気	－			
Непрерывный	До 7 Св． 7 до 15 Св． 15	0，7	0,85 0,65	0,9 0,75	1,0 0,85	1,1 1,0 1,0	1，05	1,1 1,2
Прерывистый	До 7 Св． 7 до 15 Св． 15	－	0，65	0，75	0,85 0,8	1,0 1.0 6,7	1,05 1,0	1,1 1,2 1,0

Для сплавов по ГОСТ 3882-74 в случае нанесения износостойкого покрытия $K_{S_{1}}$ умножить на 0,85 .

Форма пластины в плане

Δ					\bigoplus		D	$\{$	\pm	O 15
Исполь. зуемые станкн	K_{S}, для угла $\varphi, \ldots{ }^{\text {, }}$									
	45		60.75				90			-
	Номер эскиза пластины									
	$1 / 2$	3, 4 *	5,6*1	7	8	9	10	11, 12*	13, 14	15
Мелкие и средние	1.2 1,3	1,4	1,15	1,25			0,95	1,0	-	1,5
Крупные и тяжелые	1,0 1,1	1,2	1,0	1.05	0.95	1,0		,70	0,75	1,4

* Напайные резцы.

Условия яксплуатации		$\dot{K}_{S_{s}}$ для резца конструкций типа (мелкие и средние станки)			
Припуск	Глубина реза- ния t. мм	c	P	M, R	E, Г
Непрерывный		1,0 0,9	1,0 1,0 0,9	1,0 1,0 1,0	1,0 1,1 1,1
Прерывистый	1,5-3 Св. 3 до Св. 7	0,9	1,0 0,9	1,0 1,0 1,0	1,0 1,1 1,2
Условия эксплуатации		$K_{S_{3}}$ для резца конструкций типа (крупные и тяжелые станки)			
Припуск	Глубина реза ния t. мм	M, R	D, E, 「	W, B	H
Непрерывныя	$\begin{aligned} & \quad 3-7 \\ & \text { Св. } \quad 7 \text { до } 15 \\ & \text { Св. } 15 \text { до } 40 \end{aligned}$	1,0 0,8	1,1 0,9 0,7	1,2 1,0 0,8	1,2 1,1 1,0
Прерывистый	Cв. ${ }^{3-7} 7$ Cв. 15 до 15 40	0.8	0,9 0,7	1,0 0,8 0,75	1,1 1,0 1,0

Высота резца H. MM	C, P, R, N, D, E, Γ								
	3	4	5	. 6	7	1. 8	10	12	14
20	0,75	0.90	1,0	1,05	-	\cdots	-	-	-
25	--	0,75	0.90	1,0	1,05	-	-	-	-
32	-	-	0,75	0.90	1,0	1,05	-	-	-
10. 50	--	-	-	0,75	0.90	1,0	1.05	-	--
63	-	-	\cdots	-	0,75	0.90	1.0	1,05	-
80	-	-	-	-	-	0,75	0.90	1.0	1,05
Bacora pesца H, mi	W, H. B) *								
	10		12	14		17	20		24
40,50	0,75		0.90	1,0		1.05	-		-
63	-		0,75	0.90		1,0	1.05		\cdots
80	-		-	0.75		0.90	1,0		1.05

В случае уменьшення высоты резца на один размер по сравнению с рекомендуемыми в карте подана должна быть снижена на 10%. В случае бесконсольного крепления (на токарных станках с пластинчатыми резпелержателями) донолнительно ввестн $K_{s_{4}}=1,25$.

* Меньшие значения h - при обработке коррозионно-стойкой и конструкционной сталей и дугуна ($t \leqslant 25 \mathrm{mм}, S \leqslant 1.5 \mathrm{~m} /$ /об); большие - при обработве конструкционной стали ($t>25 \mathrm{mм}, S>1.5$ мм/об).

D_{3} / D_{c}	$K_{S_{5}}$ при отношении длины заготовки х ее диаметру L_{3} / D_{3}					
	5	10	15	20	30	40
0,1	1,0	0.90	0,80	. 0.65	0.50	0,40
0,2	1,0	0,92	0,82	0,75	0,60	-
0,3	1,0	0,95	0,85	0,78	-	-
0,4	1,0	6,97	0.92	-	-	-

$K_{S_{6}}$ для различных спосоо́ов крепления заготовки

Поправичное коэффициентои ма скоростьь резания K_{0} для измененньіх условий раб̈отьь

Условия эксплууатация		$K_{\nu_{1}}$ для маркя инструментального матернала						
Припуск	Глубина резания t, MM			解吅				
Мепкие и средтие спитка								
Непрерывный	До 3 Cb. 3 до 7 Cв. 7	1,0 1,15 1,25	0,95 1,05 1,2	0,9 1,0 1,2	$\begin{aligned} & 0,8 \\ & 1,0 \\ & 1,15 \end{aligned}$	0, 1,1	-1.8 1,0	0,75
Прерывистый	До 3 Св. 3 до 7 Св. 7	1,15.	1,05 1,2	1,0 1,2	1,0	0,95 1,1 1,2	0,8 1,0 1,15	0,8 1,0

Для сплавов по ГОСТ $3882-74$ в случае нанесения изиосостоикого покрытия $K_{v_{1}}$ умнинить на 1,3 .
\qquad

Крупные и тяжелье станки

Непрерывный	До 7	1,15	1,1	1,05	1,0	0,9	0,85	-
	Св. 7 до 15	1,2	1,15	1,1	1,1	1,1	1,0	0,8
	Св. 15	-	-	-	1,05	-	1,0	0,85
Прерывистый	До 7	1,2	1,15	1,15	1,1	1,05	1,0	0,8
	Св. 7 до 15	-	1,1	1,1	1,1	1,05	1,0	0,85
	Св. 15	-	-	-	-	-	1,1	1,0

Для сплавов по ГОСТ 3882-74 в случае нанесения износостойкого покрытия $K_{v_{1}}$ умножить на 1,3 .

Используемые станки	$K_{\nu_{2}}$ тіри угле $\varphi, \ldots{ }^{\circ}$							
	45		60, 75		90			-
	Форма пластины в плане (см. с. 71); номер эскиза пластины							
	1,2	3, ${ }^{*}$	5, 6*,7	8, 9	10	11, 12 *	13, 14	15
Мелкие и средние	1,15	1,2	1,1	-	0,95	1,0	-	1,4
Крупные и тяжелые	1,05	1,1	1,0			0,9		1,3

* Напаянные резцы ($K_{v_{2}}$ дополнительно умножить на' 0,85).

Условия эксплуатации		$K_{v_{3}}$ на видд заготовок		
Припуск	Состояние поверхности заготовки	Прокат	Поковка	Отливка
Непрерывный	Без корки Чистая корка Заковы, грязная корка	1,05 0,95 0,7	1,0 0,9 0,8	$\begin{aligned} & 0,95 \\ & 0,8 \end{aligned}$

Условия эксплуатации		$K_{v_{3}}$ на вид sаготовок		
Припуск	Состояние поверхности заготовки	Прокат	Поковка	Отливка
	Без корки, чистая корка	-	0,8(1,0) *	0,7 (0,9) *
Преры-	Заковы, грязная корка	-	0,7 (0,9)*	0,6 (0,75) *
вистый	Резкий вход и выход	-	0,6 (0,75) *	0,5 (0,65) *

* Поправки на значения v_{τ}, приведенные в таблицах для прерывистго припуска.

Отношение длины заготовки к ее диаметру (вал) L_{3} / D_{3} или толщине (втулка) L_{3} / δ_{3}						$K_{V_{4}}$ в зависимости от жесткости деталей типа							
		До					1,0 $0 ; 75$ 0,65 0,6 0,5 0,45 -					- , 7 0,6 0,4 0,3	
$K_{\boldsymbol{v}_{5}}$ в зависимости от применення смазочно-охлаждающих жидкостей (СО													
4	Тверд загот	ость	при использовании СОЖ										
				Черновая обработка			Чистовая обработка				без СОж		
17 До 270				1,2			-				1,0		
W2 270 и более				1,3			1,2						
$K_{v_{5}}$ в зависимости от стойости T для станков													
мелких и средних							хрупных у тяжелых						
T, мин													
45	20	30	40	60	90	120	20	30	40	60	90	120	180
\%6. $K_{v_{6}}$													
1.10	1,0	0,90	0,80	0,70	0,65	0,55	1,20	1,10	1,0	0,85	0,70	0,65	0,60

Мелкие, средние,крупныептяжелыестанки

Мощность резамия $N(к B T)$ в зависимости от глубины резания, подачи и скорости резания

Подача S (мм/об) для глубии реэания t, мм														Мощность резания N (кВт) при скорости резания v, м/мин							
2	2,5	3,1	3.9	4,9	6,1	7.6	9,5	11,9	14,9	18,6	23,3	29,1	36.4	30	39	51	66	86	111	145	188
0,2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,2	1,5	1,9	2,4
0,27	0,2	-	-	-	\pm	-	-	-	-	-	-	-	-	-	-	-	1,2	1,5	1,9	2,4	3,0
0,36	0,27	0,2	-	-	-	-	-	-	-	-	-	-	-	-	-	1,2	1,5	1,9	2,4	3,0	3,7
0,49	0.36	0,27	0,2	-	-	-	-	-	-	-	-	-	-	-1	1,2	1,5	1,9	2,4	3,0	3,7	4,6
0,66	0,49	0,36	0,27	0,2	-	-	-	-	-	-	-	-	-	1,2	1,5	1,9	2,4	3,0	3,7	4,6	5,8
0,88	0,66	0,49	0,36	0,27	0.2	2	-	-	-	-	-	-	-	1,5	1,9	2,4	3,0	3,7	4,6	5,8	7,2
1,19	0,88	0,66	0,49	0,36	0,27	0,2	-	-	-	-	-	-	-	1,9	2,4	3.0	3,7	4,6	5,8	7,2	9.1
1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,2	-	-	-	-	-	-	2,4	3,0	3,7	4,6	5,8	7,2	9,1	11
2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,2	-	-	-	-	-	3,0	3,7	4,6	5,8	7,2	9,1	11	14
2,91	2,16	1,60	1,19	0,88	0.66	0,49	0,36	0,27	0,2	-	-	-	-	3,7	4,6	5,8	7,2	9,1	11	14	18
2,	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,2	-	-	-	4,6	5.8	7,2	9.1	11	14	18	22
-	,	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,2	-	-	5,8	7,2	9,1	11	14	18	22	28
-		,	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,2	-	7,2	9,1	11	14	18	22	28	34
-	-	-	2,91	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,2	9,1	11	14	18	22	28	34	43
-	-	-	-	-	2,91	2,16	1,60	1,19	0.88	0,66	0,49	0,36	0,27	11	14	18	22	28	34	43	54
\cdots	-	\cdots	-	-	, 91	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	14	18	22	28	34	43	54	67
-	-	-	-	-	-	-	2,91	2,16	1,60	1,19	0,88	0,66	0,49	18	22	28	34	43	54	67	-
-	-	-	-	-			,	2,91	2,16	1,60	1,19	0,88	0,66	22	28	34		54	67	-	-
	$\stackrel{\rightharpoonup}{-}$	龶	-	-	-	-		-	2,91	2,16	1,60	1,19	0,88	28	34	43	54	67	-	-	-
	\cdots	-	-	-	-	-	-	-	-	2,91	2,16	1,60	1,19	34	43	54	67	-	-	-	-
			-	-	-	-	-	-	-	-	2,91	2,16	1,60	43	54	67		-	-	-	-
				-				-	-	-	-	2,91	2,16	54	67		-	-	-	-	-

Поправочный коэффициент на мощность резания $K_{N_{0}}$ в вависимости от твердости обраоатываемого материала

HB	130	150	170	190	210	240	270	300	330
$K_{N_{0}}$	0,85	0,90	0,92	0,95	1,0	1,05	1,10	1,15	1,20

При одновременной раб́оте несколькими суппортами мощность резания суммировать, при работе резцами, угол φ которых превышает 60°, дополнительно ввести поирдвку 0,9 .

Черновая обработка конструкционной стали
Резцы из БРС
Қарта 13
Мелкие и средние станки

Глубина t, мм	Подача $S_{\text {т }}$ (мм/об) для рязличных груип жесткости технологической системы Твердосгь заготовки 210 HB												
	D_{c} (мм) длุя токарного (в числителе) и карусельного (в знаменателе) ставков												
	3201-			400/-			630/1250			1800/1600, 2000			
	D_{3} (мм) для токарного станка (в числителе) и $l_{\text {п }}$ (мм) для карусельного станка (в знамендтеле)												
	잉1	: 11	이츼	O 11	\%		¢ 8	䀎宗		210	이웅	\|c	cos

Резец тина Г, $\varphi=90^{\circ}$ (см. эск. 6, карту 9).
Пластина из Р6М5. Припуск непрерывный

До 3	0,6		-	0,65	-	-			-			-
	0,55	0,65	-	0,6	0,7	-	0,7		-		-	
6	0,45	0,55	-	0,5	0,6	-	0,6	0,75		0,7		
8		0,5	-	0,45	0,55	-	0,55	0,65		0,6	0,75	
12					0,45	-	0,45	0,55	-	0,5 0,45	0,6 0,5	

Резец типа Г, $\varphi=75^{\circ}$ (см. эск. 0, карту 9).
Пластина из Р6М5. Припуск прерывистый

До ${ }^{3}$	0,55	0,7	0,8	0,65	0,75	0,9	-	-	-			
4	0,5	0,6	0,7	0,55	0,65	0,8	0,65	0,8	0,95	0,75	0,9	,- 05
6	0,45	0,55	0,65	0,5	0,6	0,7	0,6	0,7	0,8	0,65	0,75	0,9
8	-	0,5	0,55	0,45	0,55	0,6	0,55	0,65	0,75	0,6	0,7	0,8
12	-	-	-	-	-	-5	-	0,5	0,6	0,45	0,55	0,65
15	-	-	-	-	-	-			0,5	-	0,5	0,6

Поправочный коэффициент на подачу $K_{S_{0}}$ в вависимости от твердости өбрабатьввемого материала

$H B$	130	150	170	190	210	240	270	300	330
$K_{S_{0}}$	1,3	1,2	1,15	1,1	1,0	0,90	0,80	0,75	0,70

При подрезании $K_{S_{0}}$ дополнительно умножить на 0,8 при $D_{\operatorname{man}} / D_{\lrcorner} \leqslant 0,35$ аия на 0,9 при $D_{\text {min }} / D_{3}=0,35 \div 0,65$.

	Скорость резания U_{T} (м/мин) для подач S, мм/об									
t t. мм	До 0,20	0,25	0,30	0,40	0,50	0,60	0,80	1,0	1.2	1.5

Резед типа Г, $\varphi=90^{\circ}$. Пластина из Р6М5. Припуск непрерывный

До 3	73	63	56	47	40	36	29	25	23	20
4	68	59	52	43	37	33	28	24	21	19
6	61	53	47	39	33	31	25	21	19	16
8	57	49	44	36	32	28	23	20	17	-
12	52	44	40	33	28	25	21	19	-	-
15	49	43	37	31	27	24	20	-	-	-

Резцы типа $\Gamma, \varphi=75^{\circ}$. Пластина из Р6М5. Нрипуск прерывистый

До 3	58	50	45	37	32	29	24	20	18	16
4	54	47	42	35	30	27	22	19	17	15
6	49	42	38	31	27	24	20	17	15	13
8	46	39	35	29	25	22	19	16	14	-
12	41	36	32	26	23	20	17	14	-	-
15	39	34	30	25	21	19	16	-	-	-

Поправочный кояффициент на скорость резания $K_{v_{0}}$ в вависиности от твердости обраоатьваемого материала

	1.1. Повышенной обрабатываемости		1.2. Конструкционная углеродистая					1.3. Конструкцион. ная легированная			1.4. Лe-гированная		1.5. Бы строре жущая
HB	130	170	130	170	210	270	330	170	210	270	170	210	270
K_{00}	2,4	1,6	2,0	1,35	1,0	0,7	0,5	1,1	0,8	0,55	0,95	0,7	0,4

При подрезании $K_{v_{0}}$ дополнительно умножить на 1,25 прй $D_{\text {min }} / D_{3} \leqslant 0,35$ или на 1,2 при $D_{\min } / D_{3}>0,35$.

* Группы сталей см. в прил. 1.

Крупныеитяжелыестанки

Глубина резания t, мм	Подача S_{T} (мм/об) для различных групп жесткостн технологической системы. Твердость заготовки 210 HB											
	D_{c} (мм) для токарного (в числнтеле) н карусельного (в знаменагеле) станков											
	1000/2500			1250/3200, 4000			1600/5000, 6300			2000/8000		
	D_{3} (мм) для токарного станка (в числи:еле) н $l_{\text {п }}$ (мм) для карусельного (в знаменателє)											
		- 8		$\stackrel{\sim}{\sim}$	윳응		앙			앗융	888	
Резец типа $\Gamma, \varphi=60^{\circ}$ (см. эск. 6, карту 9). Пластина из Р6М5. Припуск непрерывный												
До 4	1,55 1,35	1,85 1,6	-	1,75 1,55	2,0 1,85	-	2,05 1,8	2,45 2,1	\square	2,35 2,05	2,8 2,45	

Глуоина резания t, Mм	```Подача }\mp@subsup{S}{T}{}\mathrm{ (мм/об) для различных группп жесткости технологической```													
	D_{c} (мм) для токарного (в числителе) и карусельного (в знаменателе) станков													
	1000/2500			1250/3200, 4000			1600/5000,6300			2000/8000				
	D_{3} (мм) для токарного станка (в числителе) и $t_{\text {п }}$ (мм) для карусельного (в знаменателе)													
	\bigcirc	응으응	(\%\|c		$\stackrel{\sim}{\sim}$	응응	砣侣		응응	웅\|c		융윤	8 악응	
8	1,25	1,5	-	1,4	1,7:	-	1,65	1,95		1,9	2,25			
12	1,0	1,2	-	1,15	1,35	-	1,3	1,55	-	1,5	1,8			
15	0,9	1,05	-	1,0	1,2	-	1,15	1,4	-	1,35	1,6			
20		0,9	-	0,85	1,0	-	1,0	1,2	-	1,15	1,35			
30	-	-			0,8	-	0,8	0,95	-	0,9	1,1	-		
40			-	-		-			-1		0,9			
Резец типа $\Gamma, \varphi=60^{\circ}$ (см. эск. 6, карту 9). Пластина из Р6М5. Припуск прерывистый														
До 4		1,55		1,5			1,75	2,05	2,45	2,0	2,35	2,8		
6	1,15	1,35	1,6	1,3	1,55	1,85	1,5	1,8	2,15	1,7	2,05	2,45		
8	1,05	1,25	1,5	1,2	1,45	1,7	1,4	1,7	2,0	1,6	1,9	2,3		
12	0,85	1,0	1,2	0,95	1,15	1,35	1,15	1,35	1,6	1,3	1,55	1,8		
15	0,75	0,9	1,05	0,85	1,0	1,2	1,0	1,2	1,4	1,15	1,35	1,6		
20	0,75	0,75	0,9	0,75	0,85	1,05	0,85	1,0	1,2	0,95	1,15	1,4		
30	-	0,75	0,75	0,75	0,7	0,85	0,7	0,8	0,95	0,8	0,95	1,1		

Поправочный коэффициентт на пооаиу $K_{S_{0}}$ в вависиности от твердости обрабатьнаемого натериала

HB	130	150	170	190	210	240	270	300	330
$K_{S_{0}}$	1,3	1,2	1,15	1,1	1,0	0,90	0,80	0,75	0,70

При подрезании $K_{S_{0}}$ дополнительно умножить на 0,8 при $D_{\min } / D_{3}<0,35$ или на 0,9 при $D_{\min } / D_{3}=0,35 \div 0,6$.

Глубина резания t, MM	Скорость резания $v_{\text {т }}$ (м/мин) для подачи S, мм/об									
	до 0,4	0,5	0,6	0,8	1,0	1,2	1.5	2,0	2,5	3.0

Резцы типа $\Gamma, \varphi=60^{\circ}$. Пластина из Р6М5. Припуск непрерывный

До 4	30	26	23	19	16	14	12	10	9	8
6	27	23	20	17	15	13	11	9	8	7
8	25	21	19	16	14	12	10	8,7	7,5	6,7
12	22	19	17	14	12	11	9,5	7,9	6,8	6
15	21	18	16	13	11	10	9	7,4	6,4	-
20	20	17	15	12	11	9,7	8,4	6,9	-	-
30	18	15	14	11	9,8	8,7	7,6	-	-	-
40	17	14	13	10	9	8	7	-	-	-

Резцы типа $\Gamma, \varphi=60^{\circ}$. Пластина из Р6М5. Припуск прерывистый

До 4	24	21	18	15	13	11	9,6	8	7,2	6,4
6	22	18	16	14	12	10	8,8	7,2	6,4	5,6

Глубина резания t, MM		Скорость резания $v_{\text {т }}$ (м/мин) для подачи S, мм/об											
		до 0,4	0,5	0,6		0,8	\| 1,0		1,2	1,5	2,0	2,5	3,0
8		20	17	15		13	11		9,6	8		6	5,4
12		18	15	14		11	9,6		8,8	7,6	6,3	5,4	4,8
15		17	14	13		10	8,8		8	7,2	5,9	5,1	
20		16	13	12		9,6	8,8		7,8	6,7	5,5	-	-
30		14	12	11		8,8	7,8		7	6	-		-
40		13	11	10		8	7,2		6,4	5,6	-		
Поправочный			коэффициент ка скорость резания $K_{\boldsymbol{v}_{0}}$ е вависимости от твердости обраоатьваемой стали										
	1.1. Повышеннои обрабатываемости		1.2. Конструкцнонная углеродистая					1.3. Кон-струкционная леги: рованная			1.4. Лeгирован. вая		1.5. Бы строрежущая
HB	130	170	130	170	210	270	3301	170	210	270	170	210	270
$K_{v_{0}}$	2,4	1,6	2,0	1,35	1,0	0,7	0,5	1,1	0,8	0,55	0,95	0,7	0,4

При подрезании $K_{v_{0}}$ дополнительно умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ или на 1,2 при $D_{\min } / D_{\mathrm{a}}>0,35$.

* Группы сталеи см. в прил. 1.

Поправочные коэффициентьи K_{S} и $K_{v_{1}}$ алля измененньх условий работьє

| Используемые
 станки | K_{S} для угла $\varphi, \ldots \circ$ | | |
| :--- | :---: | :---: | :---: | :---: |
| | 45 | $60 ; 75$ | 90 |
| | Форма пластиныв плане; номер эсхиза (см. карту 12, с. 71) | | |
| | 4 | 6 | 12 |
| Мелкие к средние | 1,4 | 1,15 | 1,0 |
| Крупные и тяжелые | 1,2 | 1,0 | 0,7 |

Поправочные коэффициенты K_{S}, с помощью которых учитывают отношение длины заготовки к ее диаметру (L_{3} / D_{3}) и способ крепления заготовки, см, в карте 12, с. 73 и 74.

. Используечые станки	$K_{0,}$ для угла $\varphi . \ldots{ }^{\circ}$		
	45	60, 75	90
	Форма пластины в плане; номер эскиза (см. карту 12, с. 71)		
	4	6	12
Мелкие и средние	1,2	1,1	1,0
Крупные и тяжелые	1,1	1,0	0,9

В случае применения СОЖ $K_{v}=1,25$.
Поправочные коэфф்ициенты K_{z}, учитывающие способ получения заготовки и ее жесткость, стойкость и надежность инструмента см. в карте 12.

Мелкие, средние, крупныентяжелыестаики

Мощность резания $N(к В т)$ в зависимости от глубины резания, подаяи и скорости резания

Подача S (мм/об) при глубине резання t, мм														Моиность резания N (кВт) при скорости резания v, м/мнн										
2	2,5	3,1	3,9	4,9	6,1	7,6	9,5	11.9	14,9	18,6	23.3	29,1	36,4	6	7,5	9.4	11.7	14,6	1.8.3	22.9	28,6	35.8	44,7	55,9
0,20		-	-																					,
0,27	0,20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,1	1,
0,36	0,27	0,20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,1	1,3	1,7
0,49	0,36	0,27	0,20	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	1,1	1,3	1,7	2,1
0.66	0.49	0,36	0,27	0,20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,1	1,3	1,7	2,1	2,6
0,88	0,66	0,49	0,36	0,27	0,20			-	-	-	-	-	-	-		-	-	-	1,1	1,3	1,7	2.1	2,6	3,3
1,19	0,88	0,66	0,49	0,36	0,27	0,20		-		-		-	-	-	-	-	-	1, k	1,3	1,7	2,1	2,6	3,3	4,1
1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	- 2		-		-	-		-	-	1,1	1,3	1,7	2,1	2,6	3,3	4,1	5,1
2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	-	-	-	-	-	-	1,1	1,3	1,7	2,1	2,6	3,3	4,1	5,1	6,4
2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20		-	-	-	-	1,1	1,3	1,7	2,1	2,6	3,3	4,1	5,1	6,4	8,0
	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	- 2	-		1,1	1.3	1,7	2,1	2,6	3,3	4,1	5,1	6,4	8,0	1,0
-	-	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	-	1,3	1,7	2,1	2,6	3,3	4,1	5,1	6,4	8,0	10	12
		-	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	1,7	2,1	2,6	3,3	4,1	5,1	6,4	8,0	10	12	15
		-		2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	2,1	2,6	3,3	4,1	5,1	6,4	8,0	10	12	15	19
	-			-	2,91	2,16	1,60	1,19	0,88	0,66	0.49	0,36	0,27	2,6	3,3	4,1	5,1	6,4	8,0	10	12	15	19	24
	-	-		-	--	2,91	2,16	1,60	1,19	0,88	0,66	0,49	0,36	3,3	4,1	5,1	6,4		10	12	15	19	24	30
							2,91	2,16	1,60	1,19	0,88	0,66	0,49	4,1	5,1	6,4	8,0	10	12	15	19	24	30	
	-							2,91	2,16	1,60	1,19	0,88	0,66	5,1	6,4	8,0	10	12	15	19	24	30	-	
									2,91	2,16	1,60	1,19	0,88	6,4	8,0	10	12	15	19	24	30		-	
									-	2,91	2,16	1,60	1,19		10	12	15	19	24	30		-	-	
					-	-		-	-	-	2,91	2,16	1,60	10	12	15	19		30	--		-		-
												2,91	2,16											

Подача S (мм/об) при глубине резання t, мм

Поправочный коэффициент на моцность ревания K_{N} в вависимости от твердости обрабатьваемого матприала

HB	130	150	170	190	210	240	270	300	330
$K_{N_{0}}$	0,78	0,84	0,9	0,95	1,0	1,09	12	1,29	1,38

При одновременной работе несколькими суппортами мощность резания суммировать.

При работе резцами с углом $\varphi>60^{\circ}$ дополнительно ввести поправочный коэффициент 0,9 .

Черновая обработка коррозионно-стойкой стали	Резцы из ТС и БРС	Карта 14

Мелкие и средние станки

Резед типа $\mathrm{P}, \varphi=90^{\circ}$ (см. эск. 1 , карту 9).

- Пластина из ВК6-М. Припуск непрерывный

До 2	0,35	0,45	0,55	0,45	0,5	0,55	0,5	0,65	0,75	0,6	0,7	0,8
3	0,3	0,4	0,45	0,35	0,45	0,50	0,45	0,5	0,65	0,5	0,55	0,7
4	0,3	0,35	0,4	0,3	0,35	0,45	0,4	0,45	0,55	0,4	0,5	0,55

Резец типа $P, \varphi=90^{\circ}$ (см. эск. 1, карту 9). Пластина из ВК10-OM (MC221). Припуск непрерывный

3	0,35	0,45	0,5	0,4	0,45	0,53	0,47	0,53	0,64	0,51	0,64	0,74
4	0,3	0,35	0,45	0,35	0,4	0,45	0,41	0,48	0,59	0,44	0,52	0,54
6	0,25	0,3	0,35	0,25	0,3	0,35	0,32	0,38	0,46	0,35	0,42	0,52
8	-	0,25	0,3	0,22	0,25	0,3	0,28	0,33	0,38	0,3	$-0,36$	0,43

Резец типа $R, \varphi=90^{\circ}$ (см. эск. 7 , карту 9).
Пластина из ВК10-ХОМ. Припуск непрерывный

6												
8	0,27	0,31	0,38	0,29	0,36	0,42	0,35	0,43	0,51	0,39	0,46	0,51
12	-	0,27	0,33	0,25	0,29	0,35	0,31	0,36	0,43	0,33	0,41	0,48

Резец типа $\mathrm{P}, \varphi=75^{\circ}$ (см. эск. 1 , карту 9).
Пластина из ВК10-OM (МС221). Припуск прерывистый

До 2	0,25	0,29	0,34	0,27	0,32	0,37	0,32	0,37	0,45	0,36	0,41	0,49
3	0,21	0,25	0,37	0,23	0,28	0,33	0,28	0,33	0,41	0,31	0,37	$0,4$.
4	0,18	0,22	0,25	0,19	0,24	0,28	0,25	0,36	0,34	0,26	0,31	03

резец типа $R, \varphi=75^{\circ}$ (см эск 7, карту 9)
Пластина из ВК10-ХОМ. Припуск прерывистый

$\mathbf{3}$	0,23	0,28	0,33	0,25	0,31	0,37	0,31	0,37	0,45	0,34	0,41	0,49
$\mathbf{4}$	0,2	0,24	0,28	0,22	0,26	0,31	0,26	0,31	0,37	0,29	0,34	0,41
$\mathbf{6}$	-	0,19	0,22	0,17	0,21	0,25	0,21	0,25	0,3	0,23	0,28	0,33
$\mathbf{8}$	-	-	0,19	-	0,18	0,21	0,18	0,22	0	25	0,19	0,23

Поправочный коэчфициент на группу обрабатьнаемого жатериала

$\underset{\text { стали }}{\text { Групна }}$			2312 X 18 H 10 T после аустенитизации ($\sigma_{\mathrm{B}}>$ $>550 \mathrm{MRa})$ и др	
K_{S}	См карту 12, лист 1	1,2	1,0	0,8

Прм подрезании K_{S}, дополнительно умножить на 0,8 при $D_{\min } / D_{3} \leqslant 0,35$ ни на 0,9 при $D_{\text {min }} / D_{3}>0,35$.

* Группы стали см. в прил 1.

Тлубина	Скорость резания v_{1} (м/мин) при пбработке заготлвок из стали 12×13 после ядкллки и отпуска ($\sigma_{\text {в }} \geqslant 600$ МПа) и других сталей группы 22 длт подач S, мм/об									
t, MM	So 0,2	0.25	0,30	0,40	0,50	0,60	0,80	1,0	1,2	1.5

Резец тниа $P(R, M), \varphi-90^{\circ}$. Пластина из ВК6-M (T15K6) Припуск непрерывный

Дo 2	165	155	150	135	125	115	100	89	79	69
3	155	150	145	130	115	105	96	82	74	-
4	150	145	135	122	112	103	91	79	-	-

Резец типа $\mathrm{P}(\mathrm{R}, \mathrm{M}), \varphi=90^{\circ}$.
Пластина нэ ВК10-OM (TT10K8-6, МС221). Припуск непрерыенып

3	135	130	125	110	100	94	82	72	65	-
4	130	125	120	105	97	90	79	69	-	-
6	120	115	110	100	91	85	74	65	-	-
8	115	110	105	96	88	81	72	-	-	-

Глубина	Скорость резания $v_{т}$ (м/мин) при обработке заготовок из стали 12×13 после закалки и отпуска ($\left.{ }^{\circ} \geqslant \geqslant 600 \mathrm{MDa}\right)$ и других сталей группи 2.2 дляя подач S, мм/сб									
t, mm	до 0,2	0,25	0,30	0.40	0,50	0,60	0,80	1,0	1,2	1,5

Резец типа $\mathrm{R}(\mathrm{P}, \mathrm{M}), \varphi=90^{\circ}$. Іластина из ВК10-ХОМ.
Припуск непиерывный

6	110	105	100	90	84	77	68	59	-	-
8	105	100	97	88	79	74	65	-	-	-
12	100	95	92	82	77	70	-	-	-	-

Резец типа $\mathrm{P}(\mathrm{K}), \varphi=75^{\circ}$. Пластина из $\mathrm{BK10-OM}$ (ТТ10К8-В, MC 221). Припуск прерывистый

До 2	115	110	105	94	86	79	70	62	-	-
3	110	105	100	89	81	76	66	57	-	-
4	105	100	96	85	78	73	63	-	-	-

Резец тина $\mathrm{R}(\mathrm{P}), \varphi=75^{\circ}$. Пластина из ВК10-ХОМ.
Припуск прерывистый

3	99	94	90	81	74	69	61	53	-	-
4	95	90	86	77	70	66	58	-	-	-
6	89	85	81	73	66	62	-	-	-	-
8	85	81	78	70	63	-	-	-	-	-

При подрезании $v_{\text {т }}$ умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 при $D_{\min } / D_{3}>0,35$.

Глубина резания t, MM	Скорость резания $\boldsymbol{v}_{\text {т }}$ (и/мин) при обработке заготовок из стали $12 \times 18 \mathrm{H} 10 \mathrm{t}$ после аустенитизапия (σ_{B}. 550 MDa) и других материалов группы 2.3 (см. прал. 1) для подач S, мм/об									
	до 0,2	0,25	0,30	0,40	0,50	0,60	0,80	1,0	1.2	1,5

. Резец тина $\mathrm{P}, \varphi=90^{\circ}$. Пластина из ВК6-М (ТІ5К6).
Припуск непрерывный

До 2	120	115	110	100	92	85	75	66	59	51
3	115	110	105	95	86	80	71	61	55	48
4	110	105	100	91	83	77	68	59	33	-

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина из ВК10-ОМ (ТТ10К8-Б, МС221).
Припуск неперывный

3	100	96	92	82	75	70	61	53	48	42
4	96	92	88	79	72	67	59	51	45	-
6	90	86	83	74	68	63	55	48	-	-
8	86	83	80	71	65	60	53	-	-	-

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина из $\mathrm{BK} 10-\mathrm{XOM}$. Припуск вепрерывный

6	82	78	76	67	62	57	50	44	-	-
8	79	75	72	65	59	55	48	-	-	-
12	74	71	68	61	56	52	-	-	-	-

Резец тина $\mathrm{P}, \varphi=75^{\circ}$. Пластина пз ВК10-ОМ (ТТ10К8-Б, МС221). Припуск прерывистый

IIo 2	85	81	78	70	64	59	52	46	41	36
3	80	76	74	66	60	56	49	42	39	-
4	77	73	71	63	58	54	47	41	-	-

Реаен тип $P, \varphi=90^{\circ}$. Пластина из BK6. М (T15K6).
Припуск непрерывный

1022	73	70	68	60	55	51	45	39	-	-
3	69	66	64	57	52	48	43	-	-	-
4	66	64	60	55	49	46	-	-	-	-

Peзеп типа $P, \Phi=90^{\circ}$. Пласпина из ВК10-OM (TT10K8-В, МС221). Припуск непрерывный

3	60	58	55	49	45	42	37	32	-	-
4	58	55	53	47	43	40	-	-	-	-
6	54	52	49	44	41	37	-	-	-	-
8	52	49	48	43	39	-	-	-	-	

Резец типа $\mathrm{R}_{\mathrm{t}} 甲=90^{\circ}$. Пластина из ВК10-ХОМ. Припуск непрерывный

6	49	47	46	40	37	34	30	\square	-	-
8	47	45	43	39	35	33	-	\square	-	-
12	44	42	41	37	34	-	-	-	-	-

Резед типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из $\mathrm{BK} 10-\mathrm{OM}$ (ТТІОК8-Б, МС-221).
Припуск прерывистынй

L10 2	51	49	47	42	38	35	-	-	-	-
3	48	46	44	39	36	34	-	-	-	-
46	44	43	37	35	-	-	-	-	-	

Резец тина $R, ~ 甲=75^{\circ}$. Пластина из ВК10-XOM. Припуск прерывистый

3	44	42	40	36	33	31	-	-	-	-
4	42	40	38	34	31	-	-	-	-	-
6	39	37	36	32	29	-	-	-	-	-
8	38	36	35	31	-	-	-	-	-	

При подрезании $v_{\text {т }}$ умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ или на 1,2 при $\rho_{\min } / D_{3}>0,35$.

Крупныеитяжелыестанки

Глубина резания t, MM	Подача S_{T} (мм/об) для различных групп жесткости технологической												
	$\begin{gathered} D_{c} \text { (мм) для токарного (в числителе) и карусельного (в знаменателе) } \\ \text { станков } \end{gathered}$												
		000/25		1250	0/3200,	4000	1600	0/5000,	6300		000/80		
) -	$\begin{aligned} & \text { ток } \\ & \text { кар } \end{aligned}$	рног	стан го сх	218	ислите знам	$\begin{aligned} & \text { ie' и } \\ & \text { нател } \end{aligned}$	(mм)			
	\bigcirc	8	(\%)\|c		-	앙으응		\bigcirc	이아응	呺\|	$\stackrel{8}{\circ} \mathrm{C}$	$\stackrel{1}{+1} \stackrel{8}{=}$	

Резец типа $\mathrm{R}, \varphi=45^{\circ}$ (см. эск. 7, карту 9).
Пластина из ВК10-ОМ. Припуск непрерывный

До 4	0,90	1,1	1,3	1,2	1,4	1,7	1,4	1,6	1,9	1,6	1,9	2,2
6	0,85	1,0	1,2	1,1	1,3	1,5	1,3	1,5	1,8	1,5	1,7	2,0
8	0,75	0,85	1,0	0,95	1,1	1,3	1,1	1,3	1,6	1,3	1,5	1,8

Резеи типа $W, \varphi=60^{\circ}$ (см. эск. 9 , карту 9).
Пластина из ВК10-ХОМ (ТТ10K8-Б). Припуск непрерывный

6	0,80	0,95	1,1	1,0	1,3	1,4	1,2	1,5	1,7	1,4	1,6	1,9
8	0,70	0,80	0,95	0,90	1,1	1,3	1,1	1,3	1,5	1,2	1,4	1,7
12	0,55	0,65	0,80	0,75	0,9	1,0	0,9	1,0	1,2	0,95	1,2	1,4
15	0,50	0,60	0,70	0,65	0,75	0,95	0,75	0,95	1,1	0,9	1,0	1,2
20	-	0,5	0,6	0,55	0,65	0,8	0,65	0,75	0,95	0,75	0,9	1,0

Резеп типа $\mathrm{H}, \varphi=60^{\circ}$ (см. эск. 10, карту 9).
Пластина из ВК8 (ВК15-XOM). Припуск непрерывный

15	0,55	0,65	0,75	0,7	0,9	1,0	0,9	0,95	1,2	0,95	1,1	1,3
20	-	0,55	0,65	0,60	0,75	0,9	0,75	0,9	1,0	0,8	1,0	1,2
30	-	-	-	-	-	0,7	-	0,7	0,8	0,65	0,75	0,95

Резец типа $W, \varphi=60^{\circ}$ (см. эск. 9 , карту 9).
Пластина из ВК10-ХОМ (ТТ10K8-Б). Прйпуск прерывистый

До 4	0,50	0,75	0,85	0,80	0,95	1,1	0,95	1,1	1,3	1,1	1,3	1,5
6	0,55	0,65	0,75	0,70	0,85	1,0	0,80	0,95	1,1	0,95	1,1	1,3
8	0,46	0,55	0,65	0,60	0,75	0,85	0,70	0,85	1,0	0,80	0,95	1,1

Резец тина $\mathrm{H}, \underline{\varphi}=60^{\circ}$ (см. эск. 10, карту 9).
Пластина из ВК8 (ВК15-XOM). Припуск прерывистый

6	0,70	0,80	0,95	0,9	1,1	1,3	1,1	1,3	1,5	1,2	1,4	1,7
8	0,60	0,7	0,85	0,8	0,95	1,1	0,9	1,1	1,3	1,1	1,3	1,5
12	0,45	0,6	0,7	0,65	0,75	0,9	0,75	0,85	1,0	0,95	1,0	1,2
15	-	0,5	0,6	0,55	0,65	0,8	0,65	0,75	0,9	0,75	0,85	1,1
20	-	-	0,5	0,45	0,6	0,7	0,55	0,65	0,8	0,65	0,75	0,9
30	-	-	-	-	-	0,50	0,40	0,45	0,60	0,45	0,55	0,65

Поправочньий кояффициент на групnу обрабатьваемого материала

「pynna стали	$\begin{gathered} \text { 2.1. } 34 \mathrm{XH3M} \\ \text { nocле отжигa } \\ \left(\sigma_{\mathrm{B}}=600 \div 800 \text { MПа }\right) \\ \text { и др. } \end{gathered}$	$\begin{gathered} \text { 2.2. } 12 \times 13 \\ \text { после } \\ \text { закалки } \\ \text { итпуска } \\ \left(\sigma_{\mathrm{g}} \geqslant\right. \\ \left.\geqslant 60 \mathrm{M}_{\mathrm{MlI}}\right) \\ \text { и др. } \end{gathered}$	$\begin{gathered} \text { 2.3. } 12 \text { X. } 18 \text { HI0T } \\ \text { после аусrени. } \\ \text { тизаиии (} \sigma_{\text {B }}^{>}> \\ >550 \text { МПа) } \\ \text { идр. } \end{gathered}$	$\begin{gathered} \text { 2.4. } 30 \times 13 \\ \text { мосле закалки } \\ \text { иотпуска }\left(\sigma_{B}=\right. \\ =1100 \div \\ 1400 \mathrm{M} \Pi \mathrm{a}) \\ \text { н др. } \end{gathered}$
$K_{S o}$.	Cm. кapty 12, лист 1	1,2	1,0	0,8

При подрезании $K_{S_{0}}$ дополнительно умножить на 0,8 при $D_{\min } / D_{3} \leqslant 0,35$ и на 0,9 при $D_{\text {mии }} / D_{3}>0,35$.

* Групиы стали см. в прил. 1.

Крупныеи тяжелыестанки

Глубина резания t, MM	Скорость резання о $_{T}$ (м/мин) при обработке заготовок из стали 12×1 после закалки и отпуска ($\sigma_{\mathrm{B}} \geqslant 600 \mathrm{MПа}$) и других материалов группы 2.2 (см. прил. 1) для подач S, мм/об									
	до 0,4	0.5	0,6	0,8	1,0	1,2	1,5	2,0	2,5	3,0

Резец типа $\mathrm{R}, \varphi=45^{\circ}$. Пластина из ВК10-ОМ (TT10K8-Б). Припуск непрерывный

До 4	105	97	90	79	69	62	54	46	41	36
6	100	92	85	74	65	58	51	43	38	34
8	96	88	81	72	62	57	49	42	36	32

Резец типа $\mathrm{W}, \varphi=60^{\circ}$. Пластина из ВК10-XOM. Припуск непрерывный

6	85	78	73	63	55	50	43	36	32	28
8	81	74	69	61	53	47	42	35	31	27
12	77	70	65	57	50	45	39	32	28	-
15	74	69	63	55	49	43	38	31	-	-
20	73	66	62	54	47	42	36	-	-	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из ВК8 (ВК15-XOM).
Припуск непрерывный

15	61	55	51	46	39	35	31	26	23	-
20	59	54	50	45	38	35	30	24	-	-
30	57	51	49	42	36	34	28	24	-	-

Резец типа $\mathrm{D}, \uparrow=60^{\circ}$. Пластина из ВК10-ХОМ. Припуск прерывистый

Д० 4	73	66	61	54	47	42	36	31	27	-
6	68	62	58	51	45	39	35	29	26	-
8	65	60	55	49	43	38	34	28	-	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из ВК8 (ТТ10К8-Б).
Припуск прерывистый

6	65	59	55	48	42	38	36	28	24	22
8	62	57	53	46	41	36	32	27	23	-
12	58	53	49	46	41	36	31	27	-	-
15	57	53	48	43	38	34	30	24	-	-
20	55	52	47	42	36	32	28	-	-	-
30	53	49	44	39	35	31	-	-	-	-

При подрезании $\dot{v}_{\text {т }}$ умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 при $\lambda_{\min } / D_{3}>0,35$.

Глубина резания t, мм	Сяорость резаняя v_{τ} (м/мни) при обработке заготовок из стали $12 \times 18 \mathrm{H} 10 \mathrm{~T}$ после аустенитизации (${ }_{\mathrm{H}}>550 \mathrm{M}$ Ма) и другнх материалов группи 2.2 (сан. прил. 1) для подая $S, \mathrm{~mm} /$ об									
	до 0,4	0,5	0,6	0,8	1,0	1,2	1,5	2,0	2,5	3,0

Резец типа $\mathrm{R}, \varphi=45^{\circ}$. Пластина из ВК10-OM (TT10K8-Б). Припуск непрерывный

Дo	79	72	67	59	51	46	40	34	30	27
6	74	68	63	55	48	43	38	32	28	25
8	71	65	60	53	46	42	36	31	27	24

Резец типа $W, \varphi==60^{\circ}$. Пластина из BK10-XOM. Припуск непрерывный

6	63	58	54	47	41	37	32	27	24	21
8	60	55	51	45	39	35	31	26	23	20
12	57	52	48	42	37	33	29	24	21	19
15	55	51	47	41	36	32	28	23	20	-
20	54	49	46	40	35	31	27	23	-	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из ВК8 (ВК15-ХОМ).
Припуск непрерывный

15	45	41	38	34	29	26	23	19	17	15
20	44	40	37	33	28	26	22	18	16	-
30	42	38	36	31	27	25	21	-		-

Резец типа $D, \varphi=60^{\circ}$. Пластина из $\mathrm{BK} 10 \cdot \mathrm{X} O M$. Припуск прерывистый

$L 104$	54	49	45	40	35	31	27	23	20	18
6	50	46	43	38	33	29	26	22	19	17
8	48	44	41	36	32	28	25	21	18	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из BK 8 (ТТ10К8-Б).
Припуск прерывистый

6	48	44	41	36	31	28	27	21	18	16
8	46	42	39	34	30	27	24	20	17	15
12	43	39	37	34	30	27	23	20	17	-
15	42	39	36	32	28	25	22	18	-	-
20	41	38	35	31	27	24	21	-	-	-
30	39	36	33	29	26	23	-	-	-	-

При подрезании v_{T} умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 прй $D_{\min } / D_{3}>0,35$.

Глубина резания t, MM	Скорость реяания 0_{0} (м/мнн) при обработке заготовок из стали 30×13 после закалки и отпуска ($\sigma_{\mathrm{B}}=1100 \div 1400 \mathrm{Mn7a}$) и других материалов группы 2.4 (см. прял. 1) для подач S м мм/об									
	до 0.4	0,5	0.6	0.8	1.0	1.2	1,5	2,0	2,5	3,0

Резец типа $k, \varphi=45^{\circ}$. Пластина из ВК10-ON (ТТ10К8-Б). Прнпуск непреривный

До 4	47	43	40	35	31	28	24	20	18	-
6	44	41	38	33	29	26	23	19	-	-
8	43	39	36	32	28	25	22	18	-	-

Резец типа $W, \varphi=60^{\circ}$. Пластина иа ВК10-ХОМ. Припуск непрерывный

6	38	35	32	28	24	22	19	16	14	-
8	36	33	31	27	23	21	18	15	-	-
12	34	31	29	25	22	20	17	14	-	-
15	33	31	28	24	22	19	17	-	-	-
20	32	29	27	24	21	18	-	-	-	-

Резец типа $\mathrm{H}, \varphi=60^{\circ}$. Пластина из В $К 8$ ($\mathrm{BK} 15-\mathrm{XOM}$). Припуск непрерьвный

15	27	25	23	20	17	16	14	11	-	-
20	26	24	22	20	17	16	13	-	-	-
30	25	23	22	10	16	15	-	-	-	-

Резеп тииа $\mathrm{D}, \varphi=60^{\circ}$. Пластина из ВК10-ХОМ. Припуск прерывистый

До 4	32	29	27	24	21	19	16	14	-	-
6	30	28	26	23	20	17	16	13	-	-
8	29	26	25	22	19	17	15	-	-	-

Резед тапа $H, \varphi=60^{\circ}$. Пластиня из ВК8. Припусх прерывистыи

6	29	26	25	22	19	17	16	13	-	-
8	28	25	23	20	18	16	14	12	-	-
12	26	23	22	20	18	16	14	-	-	-
15	25	23	22	19	17	15	13	-	-	-
20	25	23	21	19	16	14	-	-	-	-
30	23	22	20	17	-	-	-	-	-	-

При подрезанки $v_{\text {м }}$ умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 при ${ }_{2 \min } / D_{3}>0,35$.

Попраөочнье кояффициентья на подпии $K_{\text {я }}^{\text {для измененных условий работы }}$

Условия эксплуатаиии		$K_{S_{1}}$ для марки материала инструмента							
При． nyck	$\begin{aligned} & \text { Глубияя } \\ & \text { резания } \\ & \text { мм } \end{aligned}$	免			¢				

Мелкие и средние станки

Henpe－ рывньй	До 3 CB． 3 до 7 Св． 7 до 15	$0,85$	$0,9$	$\begin{aligned} & 0.95 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 0.9 \\ & 0,75 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 0,9 \end{aligned}$	1,1 1.0	1.05	1,45 1,35 1,25
Преры：－	До 3	－	\cdots	0，85	0,9	1，0	1，1	\square	1，35
вистый	Св． 3 до 7		\cdots	－－	0，75	0，9	1.0	1.05	1，25

Для сплавов по ГОСТ 3882－74 в случае нанесения износостойжого покрь． тия $K_{S_{1}}$ умножить на 0,85 ．

Условия эксплуатации		$K_{S_{1}}$ для марки материала инструмента						
При． nyck	Глубина резания t ，мм	告	n 0 0 0 0 0	号			蓉	
Крупнье и тяжелые станки								
Hempe－ рывный	До 7 Св． 7 до 15 Св． 15 до 30	0，8	0.85 0.7	0,9 0.75 0,65	$\begin{aligned} & 1,0 \\ & 0,9 \\ & 0,8 \end{aligned}$	1,1 1,0 0,9	1,05 1,0	1,35 1,25 1,2
Преры－ вистый	$\begin{array}{llll}\text { До } & 7 & \\ \text { Cb．} & 7 & \text { до } & 15 \\ \text { Cb．} & 15 & \text { до } & 30\end{array}$	－	0，7	0,75 0.65	0,9 0.8	1,0 0,9 1,0	1,05 1,0 1,0	1,25 1,2 1,2

Для сплавов по ГОСТ $3882-74$ в случае нанесения износостойкого покряя тия $K_{S_{1}}$ умножить на 0,85 ．

Условия 9ксплуатации		$K_{S_{s}}$ для типа коиструкцй резца	
Прнпуск	Глубияа резания t ，	P，M，R	E，Γ

Мелкие и средние станки

Непрерывнвй	Св． 1,5 до 3	1,0	1
	Св． 7 до 15	1,0	1,0
	1，0	1,1	

Условия эксплуатачии		K_{S}, для тила копструкции рсзща			
Припуск	Глубина резания t. мм	R	D, 「	W, ${ }^{\text {a }}$	
Крупнье и тяжелве станки					
Непрерывный	Cв. $\quad \stackrel{3-7}{7}$ до 15	1,0	1,0 0,9	1,0	1,1
	Св. 15 до 30	-	0,8	0,9	$\cdot 1,0$
Прерывистый	3-7	-	1,0	1,1	\cdots
	Cb. 7 до 15	-	0,8	0,9 0,8	1,0
	Св. 15 до 30	--	$\underline{-}$	0,8	1,0

Остальные поправочные коэффициенты см, в карте 12.
Поправочные коэр்фициенть на скорость ревания K_{v} для измененных условий работьь

Условия эксплуатаиии									
Припуск	Глубина резания t, MM	きenen				$\begin{aligned} & x \\ & 0 \\ & x \\ & \dot{x} \\ & \underset{x}{x} \end{aligned}$		$\begin{gathered} \text { P6M4K8, } \\ \text { PGK5. } \end{gathered}$	
								$\begin{array}{cc}S & < \\ <0.4\end{array}$	S \geqslant

Мелкие и средние станки

Henpeрывный	До. 3 Св. 3 до 7 Св. 7	1,35	1,2 1,3	1,0 1,15 1,2	1,0 1,1	1,0	0,95	0,38 0,4 0,45	0,25 0,27 0,3
Преры:	До 3	-	1,3	1,15	1,0	-	\bigcirc	0,4	0,27
*вистый	Св. 3 до 7			1,2	1,1	1,0	0.95	0,45	0,3

Для сплавов по ГОСТ 3882-74 в случае нанесения износостойкого покры-
ая K_{v} умножить на 1.3. Остальные поправочные коэффициенты см. в карте 12.

Крупные и тяжелье станки

Heпреытвный	До Св. Св. Св. ¢	1,3	1,15 1,2	1,0 1,1 1,15	1,0 1,05	0,95 1,0	0,35 0,38 0,4	0,22 0,25 0,25
рерыдстый	До 7	-	1,2	1,1	1,0	0,95	0,38	0,25
	Св. 7 до 15	-	-	1,15	1,05	1,0	0,4	0,25
	Св. 15	-	-	-	1,05	1,0	0,4	0,25

Для сплавов по ГОСТ 3882-74 в случае нанесения износостойкого покры-
$K_{v_{1}}$ умножить на 1.3. Остальные поправочные коэффициенты см. в карте 12.

Мелкие, средние, крупныеитяжелыестанки

Подача S (мм/бб) при глубнне резания t, мм \quad Моиность резания N (кВт) при скорости резания v, м/мии

2	3.1	3,9	4,9	6.1	7.6	9,5	11.9	14.9	18,6	23,3	29,1	20	25	31	39	49	61	76	95	119	149	186
0.20																						
- 20																			,			
0,27	0,20	-	-	-	\longrightarrow	-	-	-	-	-	-	-	-	-	1,2	1,5	1,9	2,4	3,0	3,7	4,6	5,8
0,36	0,27	0,20	-	-	-	-	-	-	\cdots	-	-	-	-	1,2	1,5	1.9	2,4	3.9	3.7	4,6	5,8	7,2
0,49	0,36	0,27	0,20	\square	-	-		-	-	-	-	-	1,2	1,5	1,9	2,4	3,0	3,7	$\frac{1}{2}, 6$	5,8	7,2	9,0
0,66	0,49	0,36	0,27	0,20		-	-	-	-	-	-	1,2	1,5	1,9	2,4	3,0	3,7	1, 6	5,8	7,2	9,0	11
0,88	0,66	0,49	0,36	0,27	0,20	-	-	-	-	-	-	1,5	1,9	2,4	3,0	3,7	4,6	58	7,2	9.0	11	14
1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	-	-	-	-	1,9	2,4	3,0	3,7	4,6	5,8	7.2	9,0	11	14	18
1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20		-	-	-	2,4	3.0	3.7	4,6	5,8	7,2	9,0	11	14	18	22
2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	-	-	3,0	3,7	4,6	5,8	7.2	9,0	11	14	18	22	28
	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	-	3,7	4,6	5,8	7,2	9,0	1^{1}	14	18	22	28	34
		2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	-	4,6	5,8	7.2	9,0	11	14	18	22	28	34	$\underline{+}$
		2,16	2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	0,20	5,8	7.2	9.0	11	14	18	22	28	34	34	
				2,16	1,60	1,19	0,88	0,66	0,49	0,36	0,27	7.2	9.0	11	14	18	22	28	34	\bigcirc		
					2,16	1,60	1,19	0,88	0,66	0,49	0,36	9,0	11	14	18	22	28	34	-	-_		\rightarrow
		-			,	2,16	1,60	1,19	0,88	0.66	0.49	11	14	18	22	28	34	-	-	-		
			-		-		2,16	1,60	1,19	0.88	0,66	14	18	22	28	34	+	-	$-$		-	
			ـ	,	-	,		2,16	1,60	1.19	0,88	18	22	28	34		,	$-$	-			-
		-	-	-	-	-	-	-	2,16	1,60	1,19	22	28	34	-	\cdots	-		-	-		ـ
		-		-	-	-	-	-		2,16	1,60	28	34			-	-		-	-		
			-	-	\cdots	-	-		-	-	2,16	34	-		-	-	-	-	-			-

Іри одновременной работе несколькими суппортами мощности резания суммировать.

Поправочный кояффициент ка мощмость реяанил $K_{N_{0}}$ в зависимости от ариппн обрабатыааемого материала

「рупma* стали	$\begin{gathered} 21 \begin{array}{c} 34 \text { XH3M после } \\ \text { отжита н } 2 \mathrm{p} \\ \left(\sigma_{\mathrm{B}}=600-90 \cap \mathrm{MH} \mathrm{\eta}\right) \end{array} \end{gathered}$	$\begin{aligned} & 22.12 \times 13 \\ & \text { после } 92- \\ & \text { калки } \\ & \text { отпуска } \\ & \text { и } 4 \mathrm{p} \\ & \left(\sigma_{\mathrm{B}}>\right. \\ & >600 \mathrm{M} \mathrm{\Pi a}) \end{aligned}$	$2.3 \quad 12 \times 18 \mathrm{H} 10 \mathrm{~T}$ после аустенитньацин и др. $\left(\sigma_{B}>\right.$ $>550 \mathrm{MMa})$	$\begin{gathered} 2430 \times 13 \text { посли } \\ \text { яакалки и } \\ \text { отпуска } \quad \text { д } p \\ \left(\sigma_{B}=1100-\right. \\ 1400 \mathrm{MMa}) \end{gathered}$
$K_{N_{0}}$	Cm. kapry 12	0,7	1,0	1,3

При работе резцами с углами $\varphi>60^{\circ}$ дополнительно ввести поправку 0,9 .

* Группы стали см. в прил. 1.

Черновая обработка чугуна медных сплавов высокой твердости

Резцы из ТС и БРС
Kapra 15

Мелкиеисредниестанки

Подача S_{-}(мм/об) для пазлитннк групп жесткости технологической											
$D_{\text {с }}$ (мм) для токярного (в числителе) и карусельного (в знаменателе) станков											
320/-			400/-			630/1250			800/1600, 2000		
$\begin{gathered} D_{\mathrm{B}} \text { (мм) для токарного станка (в числителе) } l_{\mathrm{II}} \text { (мм) } \\ \text { для карусепьного (в янаменателе) } \end{gathered}$											
$\frac{1}{0}$	$\frac{1}{8}$	$\frac{1}{\circ}$ ¢ ¢ ¢	$\frac{1}{8}$	$\frac{1}{8}$	1 8 8	84	으앙		88	818	

Резеи типа $\mathrm{C} . \varphi=90^{\circ}$ (см. эск. 4, карту 9).
Пластина из ВК6-М (ВПЗ325). Поипуск непрерывный

0,65	0,75	0,9	0,7	0,85	1,0	0,85	1,0	1,2	0,9	1,1	1,3
0,55	0,65	0.8	0,6	0,7	0,85	075	0,85	1,0	0,8	0,95	1,1
0,45	0,55	0.65	0,5	0,6	0,75	0,6	0,75	0,9	0,7	0,8	0,95

Резец типа $\mathrm{R}, \varphi=90^{\circ}$ (см. эск. 7, карту 9).
Пластина из ВК6. Припуск непрерывный

0,6	0,75	0,85	0,65
0,5	0,6	0,75	0,55
0,4	0,5	0,55	0,45
-	0,4	0,5	0,4

0,8	0,95	0,8
0,7	0,8	0,7
0,55	0,65	0,55
0,45	0,55	0,45

0,95	1
0,8	0
0,65	0
0,55	0,6

$\left\lvert\, \begin{aligned} & 1,2 \\ & 0,95 \\ & 0,75 \\ & 0,65\end{aligned}\right.$

0,9	1,1	1,3
0,75	0,9	1,1
0,6	0,75	0,85
0,5	0,6	0,75

Глубина ретания t, vo	Поддча S_{T} (ны/об) для раллиұных групп жесткости техвслогінеской системы											
	O. (мм) для токарного (в числителе) и карусельноіо (в энаменателе) станков											
	3201 -			400/-			630/1250			800/6600. 2000		
	D_{3} (мм) для токарного стынка (в числителе) и $l_{\text {II }}$ (мм) для карусельчого (в знаменателе)											
	$\frac{1}{0}$	$\frac{1}{c}$	$\begin{aligned} & \frac{1}{3} \\ & \underset{\sim}{2} \\ & 0 \end{aligned}$	$\frac{1}{\circ}$	$\frac{1}{0}$		818			8	\%	
Резец типа $\mathrm{R}, \varphi=90^{\circ}$ (см. зск 7 , карту 9). Пластина из ВК8 Припуск непрерывный												
	0,45					0,7				065	0,8	0,9,
8		0,45	0,55	0,45	0,5	0.6	0,5	0,6	0,75	0,55	0,65	0,8
12			-	-	-	0,5	-	0,5	0,55	0,45	0,55	0,6
Резеи типа $P, \varphi=75^{\circ}$ (см. эск. 1 , карту 9). Пластина из ВК6 Припуск прерывистый												
Ln 2	0,45	0,55	0,65	0,45	0,55	0,65	0,6	0,65	0,85	0,55	0,75	0,9
3	0,35	0,45	0,55	0,4	0,5	0,6	0,5	0,6	07	0,55	0,65	0,75
1	0,35	0,4	0,45	0,35	0,4	0,5	0,4	0.5	0,6	0,45	0.55	0,65
Резец типа $\mathrm{R}, \varphi=75^{\circ}$ (см эск 7 , карту 9). Пластина из ВК8 Припуск прерывнстый												
3	0,45	0,55	0,65	0,5	0,6	\|0,75	0,6	0,75	085	0,65	0,8	0,9
1	0,4	0,45	0,55	0,45	0,5	0,65	0,5	0,6	0,75	0,55	0.65	0,8
6	0,3	0,35	045	0,35	0,4	0,5	0,4	0,5	0,6	045	055	0,0
8		0,3	0,4	0,3	0,35	0,45	0.35	045	0,5	0,4	0,45	0,5-
12	-		-	-	,	\|0,35	-	0,35	0,4	0,3	0,35	0,4

Поправочныи коэффициент на подачу $K_{S_{0}}$ в аависимостии от твердости обрабатыьаемого маппериила

$\begin{gathered} \text { Грyma } \\ \text { мde } \\ \text { риала } \end{gathered}$	31 Cepant 4ytya								
HB	150	170		190	210		240	270	300
$K_{\text {s }}$	1,1	1,05		1,0	0,95		0,9	0,8	0,75
Группа мате- риала	32 Ковкй чугун							$\begin{aligned} & 1 \text { Sронза } \\ & \text { и латунь } \end{aligned}$	
HB	130	150	170	190	210	240	270	80	120
K_{S} 。	1,05	1,0	0,95	0,9	0,85	0,8	0,7	1.0	0,7

При подрезанни $K_{S_{0}}$ дополнительчо умножить на 0,8 при $D_{\text {пии }} / D_{\mathrm{a}} \leqslant 0$ и на 0,9 при $D_{\min } / D_{3}>0,35$.

[^2]| Глубина | Cкорость резания $\boldsymbol{v}_{\mathrm{T}}$ (м/мин) при обработке заготовок из серого чугуна с 150 НВ и ковкого чугуна с 130 НВ для подач S, мм/об | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t, mm | до 0.2 | 0.25 | 0,30 | 0,40 | 0,50 | 0,60 | 0,80 | 1,0 | 1,2 | 1,5 |

Резец типа $\mathrm{C}, \varphi=90^{\circ}$. Пластина из ВК6-М (ТН-20). Припуск непрерывный

До 2	270	255	240	225	205	190	170	155	140	120
3	250	240	230	210	195	180	160	145	130	115
4	240	230	220	205	185	170	155	140	125	110

Резец типа Р. $\varphi=90^{\circ}$. Пластина из ВК6. Припуск непрерывный

3	200	190	185	170	155	145	130	120	105	92
4	195	185	175	160	150	140	120	110	100	88
6	180	170	165	155	140	130	115	105	95	-
8	175	165	155	145	135	125	110	100	91	-

Резеп типа $\mathrm{R}, \varphi=90^{\circ}$. Пласгина из BK8. Припуск непрерывный

6	160	150	140	135	120	110	100	92	83	71
8	150	140	135	125	115	110	95	85	78	-
12	140	135	120	115	110	100	91	83	-	-

Резец типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из ВК6. Припуск прерывистый

До 2	185	175	170	160	145	135	120	110	99	86
3	180	170	160	150	135	125	115	105	94	-
4	170	160	155	145	130	120	110	100	-	-

Резец типа R, $\varphi=75^{\circ}$. Плястина из ВК8. Припуск прерывистый

3	150	145	135	125	115	110	96	88	78	69
4	145	135	130	120	110	100	93	84	76	-
6	135	130	120	115	105	97	86	79	-	-
8	130	120	120	110	100	95	83	-	-	-
12	115	110	105	97	89	84	75	-	-	-

Поправояный кояффициент на скорость ревания Кv $^{v_{0}}$ в вависимости от твердости обрабатываемого материала

4 Группа ${ }^{*}$ * материала	31 Cepan qyrya		32 Ковкий чугун		
HB	150	170	130	150	170
梅 K v_{0}	1,0	0,95	1,0	0,9	0,85

При подрезании $K v_{0}$ дополнительно умножить на 1,25 при $D_{\min } / D_{9} \leqslant 0,35$ на 1,2 при $D_{\min } / D_{3}>0,35$.

* Группы материалов см. в прил. 1.

Глубина резания t. MM	Скорость резания $v_{\text {. (м/мин) при обработке зяготовок из серого чугуна }}$ с 190 HB , ковкого чугуна с 170 HB . бооняы и латуни с 80 НВ для подач S, mm/Oठ									
	до 0,2	0,25	0,30	0.40	0.50	0.60	$0,80 *$. 0	1.2	1.5

Резец типа $\mathrm{C}, \varphi=90^{\circ}$. Пластина из ВК6-М.
Припуск непрерывный

До 2										
3										
4	215	205	195	180	165	155	140	125	115	100
4	195	185	185	170	155	145	130	120	105	94

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из ВК6. Припуск непрерывный

3	165	155	150	135	125	115	105	96	86	75
4	155	150	140	130	120	110	100	91	81	72
6	145	140	135	125	115	105	93	86	77	-
8	140	135	125	120	110	100	90	82	-	-

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластнна из ВК8. Припуск непрерывный

6	130	120	115	110	100	91	81	75	67	-
8	125	115	110	105	95	88	78	71	-	-
12	115	110	100	94	89	82	74	67	-	-

Резец типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из ВК6. Припуск прерывистый

Io 2	165	155	150	140	125	120	105	97	86	-
3	155	150	140	130	120	110	100	91	-	-
4	150	140	135	125	115	105	94	87	-	-

Резец типа $\mathrm{R}, ~ \varphi=75^{\circ}$. Пластина из В К8. Припуск прерывистый

3	110	105	100	94	86	80	71	65	58	-
4	105	100	97	90	82	76	68	62	56	-
6	100	95	91	85	77	73	64	59	-	-
8	96	91	87	81	74	69	61	-	-	-
12	90	86	84	76	69	65	-	-	-	

Поправочный коэффициент на скорость резакия $K_{v_{0}}$ в эависимости от твердости обрабатываемого материала

「pynna* материала	3.1. Серый чугун			3.2. Ковкий чугун			4.1. Броня и латунь
HB	170	190	210	150	170	190	80
$K v_{0}$	1.1	1,0.	0,85	1,05	1,0	0,9	1,0

При подрезании $K v_{0}$ дополнительно умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 при $D_{\min } / D_{3}>0,35$; при прерывистом резаний $K_{v_{0}}=0,9$.

* Группы материалов см. в прил. 1.

Глубина резания $t_{\text {t }}$ мм

Сєорость резания $\boldsymbol{v}_{\mathrm{T}}$ (м/мин) при обработке заготовок из серого чугуна с 240 HB , ковкого чугуна с 210 HB , бронзы и латуни с 120 НВ для подач S, мM/oб

до 0,2	0,25	0,30	0,40	0,50	0,60	0,80	1,0	1,2	1,5

Резец типа $\mathrm{C}, \varphi=90^{\circ}$. Пластина из ВК6-М (ТН20). Припуск непрерывный

До 2	110	105	98	92	84	78	69	64	57	50
3	105	98	93	86	79	74	66	60	54	47
4	98	94	89	82	76	70	63	58	52	-

Резец типа $\mathrm{P}, \varphi=90^{\circ}$. Пластина из ВК6. Припуск непрерывный

3	83	78	75	70	63	58	52	48	43	38
4.	79	75	72	66	61	56	50	46.	41	36
6	74	70	67	63.	57	53	47	43	38	-
8	72	67	64	60	55	51	45	41	-	-

Резец типа $\mathrm{R}, \varphi=90^{\circ}$. Пластина из BK 8 . Припуск непрерывный

| 6 | 64 | 61 | 58 | 54 | 50 | 46 | 41 | 38 | 34 | - |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| 8 | 61 | 58 | 56 | 52 | 47 | 44 | 39 | 36 | - | - |
| 12 | 58 | 55 | 50 | 50 | 45 | 41 | 37 | - | - | - |

Резец типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из ВК6. Припуск прерывистый

До 2	78	72	70	65	60	55	50	45	-	-
3	73	69	66	61	56	52	47	43	-	-
4	69	66	63	58	54	50	44	-	-	-

Резец типа $\mathrm{R}, \varphi=75^{\circ}$. Пластина из BK 8 . Припуск прерывистый

3	62	58	55	52	47	44	39	36	32	-
4	59	56	54	50	45	42	38	34	-	-
6	55	52	50	47	43	40	35	-	-	-
8	53	50	48	45	41	38	-	-	-	-
12	47	45	43	40	36	34	-	-	-	-

Поправочный коэффициент на скорость резания K_{0} для твердости обрабатьваемого материала

「рупna* материала	3.1. Серый тугун			3.2. Kовкй ¢yrym			4.1. Бронза и латунь
4: HB	210	240	270	190	210	240	120
4x $K v_{0}$	1,15	1,0	0,8	1,2	1,05	0,9	0,8

При подрезании $K v_{0}$ дополнительно умножить на 1,25 при $D_{\operatorname{mnn}} / D_{3} \leqslant 0,35$ на 1,2 при $D_{\min } / D_{3}>0,35$.

* Группы материалов см. в прил. 1.

Крупныеитяжелыестанки

Глубина резания t, мм	Подача S_{T} (мм/об) для ралличныд групп жесткости технологической системы											
	D_{c} (мм) для токарного (ь тислителе) и карусельного (в знаменателе) станков											
	1000/2500			1250/3200, 4000			1600/5000,6300			2000/8000		
	$\begin{aligned} & D_{\text {a (мм) для токарного станка (в числителе) и } l_{\text {II }} \text { (мм) }}^{\text {для карусельного станка (в янамевателе) }} \end{aligned}$											
	잉유응	잉ㅇㅇ응		$\stackrel{\sim}{\sim}$	이으응		이융	융응	呺\|	융	\% $0^{\circ}{ }^{\circ}$	

Резец типа $\mathrm{R}, \varphi=45^{\circ}$ (см. эск. 7, карту 9).
Пластина из ВК6-М (ВПЗ325). Припуск непрерывный

До 4	1,4	1,7	2,0	1,9	2,2	2,6	2,2	2,5	2,9	2,5	2,9	3,0
6	1,2	1,5	1,7	1,6	1,9	2,3	1,9	2,2	2,6	2,1	2,5	3,0
8	1,1	1,3	1,5	1,4	1,7	2,0	1,7	1,9	2,3	1,9	2,2	2,7
Резец типа $D, \varphi=60^{\circ}$ (см. эск. 8, карту 9). Пластина из ВК6. Припуск непрерывный												
6	1,37	1,6	1,9	1,8	2,2	2,6	2,1	2,5	2,9	2,4	2,8	3,0
8	1,2	1,4	1,7	1,6	1,9.	2,2	1,8	2,2	2,6	2,1	2,5	2,9
12	0,95	1,2	1,4	1,3	1,5	1,8	1,5	1,8	2,1	1,7	2,0	2,4
15	0,85	1,0	1,2	1,1	1,3	1,6	1,3	1,6	1,9	1,5	1,8	2,1
20		0,86	1,0	0,95	1,2	1,4	1,1	1,3	1,6	1,3	1,5	1,8

Резед типа $D, \varphi=60^{\circ}$ (см. эск. 8, карту 9). Пластина из ВК8. Припуск непрерывный

15	1,0	1,2	1,4	1,3	1,6	1,9	1,5	1,8	2,2	1,8	2,1	2,5
20	-	1,0	1,2	1,1	1,4	1,6	1,3	1,6	1,9	1,6	1,8	2,1
30	-	-	0,9	-	1,1	1,3	1,1	1,3	1,5	1,2	1,4	1,7

Резед типа $\mathrm{R} ; 甲=60^{\circ}$ (см. зск. 7, карту 9). Пластина иэ ВК6. Припуск прерывистый

Дo 4	1,3	1,6	1,9	1,7	2,1	2,5	2,0	2,4	2,9	2,3	2,8	3,0
6	1,2	1,3	1,6	1,5	1,8	2,1	1,7	2,1	2,4	2,0	2,4	2,8
8	1,0	1,2	1,5	1,3	1,6	1,9	1,6	1,8	2,2	1,8	2,1	2,5

Резец типа $D, \varphi=60^{\circ}$ (см. эск. 8, карту 9). Пластина ия ВК8. Припуск прерывистыи

6	1,2	1,4	1,6	1,5	1,8	2,2	1,8	2,1	2,4	2,0	2,4	2,9
8	1,0	1,2	1,4	1,3	1,6	1,9	1,6	1,9	2,2	1,8	2,1	2,5
12	0,8	0,9	1,2	1,1	1,3	1,5	1,2	1,5	1,8	1,2	1,7	2,0
15	0,7	0,9	1,0	0,9	1,1	1,4	1,1	1,3	1,6	1,3	1,5	1,8
20	-	0,7	0,9	0,8	0,9	1,1	0,9	1,1	1,3	1,1	1,3	1,5

Резец типа $\mathrm{H}, \varphi=60^{\circ}$ (см. эск. 10 , карту 9). Пластина из ВК8. Припуск прерывистыя

15	0,9	1,1	1,4	1,3	1,5	1,8	1,5	1,7	2,1	1,7	1,9	2,4
20	-	-	1,2	1,1	1,3	1,5	1,2	1,5	1,7	1,4	1,7	2,0
30	-	-	-	-	-	-	-	1,2	1,4	1,1	1,4	1,6

Поправочный коэффициент на подачу $K_{\text {Sо в вависитости }}$ от твердости обрабатываемого материала

Группа* материала	3.1. Серый чугун								
HB	150			190	210		240	270	300
K_{S}	1,1			1,0	0.95		0,9	0,8	0,75
「руппа* материала	3.2. Ковкй чугун							4.1. Броняа и латунь	
HB	130	150	170	190	210	240	270	80	120
$K S_{0}$	1,05	1,0	0,95	0,9	0.85	0,8	0,7	1,0	0,7

При подрезании $K_{S_{0}}$ дополнительно умножить на 0,8 при $D_{\min } / D_{\mathbf{a}} \leqslant 0,35$ и на 0,9 при $D_{\min } / D_{3}>0,35$.

Г Группы материалов см. в прил. 1.

Глубина	Скорость резания v_{T} (м/мин) при обработке заготовок из серого чугуна c 150 HB и ковкого чугуна с 130 HB для подач S, мм/об									
	до 0,4	0,5	0,6	0,8	1,0	1,2	1,5	2,0	2,5	3,0

Резец типа $\mathrm{R}, \varphi=45^{\circ}$. Пластина из ВК6-М (ТН20).
Припуск непрерывный

До 4	180	160	150	135	125	110	97	82	71	63
6	170	155	140	125	115	105	92	77	68	61
8	160	145	135	120	110	100	88	74	65	58

Резец типа $\mathrm{D}, \varphi=60^{\circ}$. Пластина из ВК6. Припуск непрерывчый

6	135	120	115	100	92	83	74	61	54	48
8	130	115	110	97	88	79	69	58	51	46
12	120	110	105	91	84	75	65	55	49	43
15	120	109	100	89	82	74	63	54	48	42
20	115	105	97	86	78	70	62	53	46	41

Резец типа $\mathrm{D}, \varphi=60^{\circ}$. Пластина из BK 8 . Припуск непрерывный

15	100	92	85	76	69	62	54	46	41	35
20	97	89	83	74	68	61	53	44	40	34
30	94	85	79	70	65	58	50	43	37	33

Резец типа $\mathrm{R}, \varphi=60^{\circ}$. Пластина из ВК6. Припуск прерывистый

До 4	120	110	100	91	83	75	65	54	48	43
6	110	100	96	85	79	70	61	.51	44	41
8	105	99	92	83	75	68	58	49	43	40

Глубнна резания t, MM	Скорость ретания σ_{T} (м/мнн) при обрабі тке заготовок вя серого тугуна - 150 HB и ковково чугуна (130 HB для поддч S, мм/об									
	до 0,4	05	0,6	',8	1,0	1,2	1,5	2.0	2,5	3,0
Резец типт: $\mathrm{D}, 4=60^{\circ}$				Ппастине из ВК8 Припуск прерывистый						
6	100	94	86	77	70	63	54	45	41	36
8	97	89	33	75	68	61	53	44	39	35
12	92	84	78	69	63	57	50	42	36	33
15	89	83	76	68	62	55	49	41	35	32
20	86	82	75	67	61	53	48	39	34	-
30	84	77	71	63	60	51	45	37	33	-

По лрогочнв й пояффициентп на скорость резания Кшо б завиинит ти от тьердости обрабатььаемого натєриала

「pynnd * материала		「yn	32 Ковикй qyтун		
HE.	100	170	130	150	170
$K \nu_{0}$	1,0	0,95	1,0	0,9	0,85

 и на 12 при $D_{\min } D_{3}>0,35$

* Гриппы материалпв см в прил 1

Резец типа $R, \varphi=45^{\circ}$ Пластима из ВК6 M (TH20).
Ірипуск непрерывный

Д0 4.	185	170	155	140	130	115	100	84	74	66
6	175	160	145	130	120	105	95	79	70	63
8	165	150	140	125	115	100	91	76	67	60

Резед типа D, q - 60° Пластина пз ВК6 Припуск непрерывныи

6	135	123	115	105	94	81	74	62	55	48
8	130	120	110	100	89	81	70	59	52	47
12	120	110	105	92	85	76	66	56	49	44
15	120	110	100	92	83	74	65	55	48	43
20	115	105	99	88	80	72	63	54	47	41

Глубина	Скорость резания " (м/мия) при обработке заготовок из серого чугуна c 190 HB , коця ого чугуна с 170 HB бр пзы и латуни с 80 HB для подач S $m м / о$ б									
t, Mm	до 0,4	0,5	0%	0, 3	1,0	1,2	15	90	2,5	3,0

Резец типа $\mathrm{D} \varphi=60^{\circ}$ Пласпина из BK 8 Припуск непрегьвный

15	100	92	85	76	69	62	54	46	41	35
20	97	89	83	74	68	61	53	44	40	34
30	94	85	79	70	65	58	50	43	37	33

Резец типа $\mathrm{R}, \varphi=60^{\circ}$. Пластина из BK6 Припуск преғ ывистый

Дo 4	110	100	94	84	77	69	60	50	44	40
6	105	95	89	79	73	65	57	48	41	38
8	100	92	86	77	69	63	54	45	40	36

Резец типа $\mathrm{D}^{\prime}, \varphi=60^{\circ}$ Плстина из ВК8 Припуск преривисгый

	6	94	87	81	72	55	59	52	43	38	34
7	8	91	83	77	69	63	57	49	41	36	33
r	12	86	78	73	64	59	53	47	39	34	30
15	83	77	71	63	58	52	45	38	33	-	
	20	81	76	69	62	57	50	44	36	-	-
30	78	72	67	59	54	48	43	36	-	-	

Поправочный коэффпциент на скорость резания $K_{v_{0}}$ в вависи мости от твердпсти обрабатььваемого материила

	31 Серып̆ чугун						$4 \underset{\text { и датунь }}{ }$
1 HB	170	190	210	150	170	190	80
${ }^{4}{ }^{3} v_{0}$	1,1	1,0	0,85	1,05	1,0	0,9	1,0

При потрезании $K v_{0}$ д(п) ін ельно vмножинь на 125 при $D_{\pi и} / D_{3} \leqslant 0,35$体а 1,2 при $D_{\min } / L_{3}>035$

* Групиы материалов (и и пгил 1

Глубина резания t, мм	Скорость резания v_{τ} (м/мин) при обработке заготовок из серого пугуна с 240 HB , ковкого чугуна с 210 HB , бронзы и латуни о 120 HB для подач S, мм/об									
	до 0,4	0,5	0.6	0,8	1.0	1,2	1,5	2,0	2,5	3.0

Резец типа R, $\varphi=45^{\circ}$. Пластина из ВК6-M (ТН-20). Припуск непрерывный

До 4	73	67	62	55	51	45	40	33	$\cdot 30$	30
6	69	63	58	52	47	43	38	32	27	25
8	66	61	56	49	46	41	36	29	27	23

Резец типа $\mathrm{D}, \varphi=60^{\circ}$. Пластина из BK 6 . Припуск непрерывный

6	55	49	46	41	38	34	30	25	22	19
8	52	47	45	40	36	32	28	24	21	18
12	49	45	42	37	34	30	27	23	20	18
15	48	44	41	36	33	30	26	22	19	-
20	47	43	40	35	32	29	25	21	18	-

Резец типа $\mathrm{D}, \varphi=60^{\circ}$. Пластина из BK 8 . Припуск непрерывный

15	41	38	35	31	28	26	22	19	17	15
20	40	37	34	30	27	25	21	18	16	-
30	38	35	32	29	27	24	21	18	-	-

Резец типа $\mathrm{R}, \varphi=60^{\circ}$. Пластина из BK6. Припуск прерывистый

До 4	49	45	41	37	34	30	27	22	19	18
6	46	42	39	35	32	29	25	21	18	17
8	44	41	38	34	30	27	24	20	18	-

Резец типа $\mathrm{D}, \varphi=60^{\circ}$. Пластина из BK8. Припуск прерывистый

6	41	38	35	32	29	26	23	19	17	15
8	40	37	34	30	27	25	21	18	16	14
12	38	35	32	28	26	23	21	17	15	-
15	37	34	31	27	25	23	20	16	14	-
20	35	33	30	26	24	22	19	15	-	-
30	35	32	29	26	23	21	18	15	-	-

Поправочный кояффициент на скорость резания $К v_{0}$ в вависимости от твердости обрабатьваемого материала

「рутпа＊ материала	3.1 Cepat пугун			3．2．Ковкий чугун			4.1 Бронза и латунь
HB	210	240	270	190	210	240	120
$K v_{0}$	1，15	1，0	0，8	1，2	1，05	0，9	0，8

При подрезании $K v_{0}$ дополнительно умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ на 1,2 при $D_{\min } / D_{3}>0,35$ ．
＊Группы материалов см．в прил． 1.

Поправочные коэффициентьь на подачу K_{S} для измененных условий работьь

Мелкие и средние станки

Henpe－ 涫ывный		0，75	$\begin{aligned} & 0,85 \\ & 0,75 \end{aligned}$	$\begin{aligned} & 0,9 \\ & 0,85 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 0,9 \\ & 0,8 \end{aligned}$	1，0 0,9	1，0	1,4 1,25 1,2
\％	1，5－3	0，5	0，65	0，75	0，9	1，0	1，15	1，35
杨реры－	Св． 3 до 7		－		0，8	0，9	1，0	1，2
жистый	Св． 7 до 15	－	－	－	0，75	0，8	1，0	1，2

Для сплавов по ГОСТ 3882－74 в случае нанесения износостойкого покры－ $K_{S_{2}}$ умножить на 0,85 ．

Условня	эксплуатацаи	$K_{S_{1}}$ для марки матеркала инструмента					
＋							
Првпуск	Глубина резания $t_{\text {，мм }}$			边	$\%$	$\underset{\sim}{\infty}$	\sum_{0}^{∞}

Крупные и тяжельье станки

Henpe－ рывный	$\begin{aligned} & 3-7 \\ & \text { Св. } \quad 7 \text { до } 15 \\ & \text { Св. } 15 \text { до } 30 \\ & \hline \end{aligned}$	$\stackrel{0,75}{-}$	$\begin{aligned} & 0,85 \\ & 0,7 \end{aligned}$	0,9 0,8 0,7	1,0 0,9 0,85	1,0 1,0	1,25 1.2 1,2
	3－7	－	0，7	0，8	0，9	1，0	1，2
Преры－	Св． 7 до 15	－	－．	0，7	0，85	1，0	1，2
вистый	Св． 15 до 30	－	－	－	0，75	1，0	1，2

Для сплавов по ГОСТ $3882-74$ в случае нанесения износостойкого покры－ тия $K_{S_{1}}$ умножить на 0,8 ．

Условия эксплуатацйи		$K_{S_{3}}$ для тнпа конструкдии резда		
Hpunyck	Глубина резания $\boldsymbol{t}_{\text {¢ }}$	C	－P	M，R， r

Мелкие и средние станки

Непрерывный	$\begin{aligned} & 1,5-3 \\ & \mathrm{CB} .3 \text { до } \\ & \mathrm{CB} .7 \\ & \mathrm{Co} \\ & \hline \end{aligned}$	1,0 1,0	1,0 1,0	1,0 1,0 1,0
Прерывистый	$1,5-3$ С． 3 до Св． 7	1,0 0,9	1,0 1,0	1,0 1,0 1,0
Условия эксплуатации		$K_{S_{3} \text { для тиша конструкция резиа }}$		
Припуск	Глубина резания $t_{\text {．}}$ мм	R	D．Γ	H

Крупнье и тяжелье станки

Непрерывный	$\begin{aligned} & \quad 3-7 \\ & \text { Св. } \quad 7 \text { до } 15 \\ & \text { Св. } 15 \text { до } 30 \end{aligned}$	1，0	1,1 1,0 1,0	$\overline{1,1} \overline{1,2}$
Прерывистый		1，0	$\begin{aligned} & 1,1 \\ & 1,0 \\ & 0,75 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{1,2} \\ & 1,0 \end{aligned}$

Остальные поправочные хоэффициенты см．в карте 12.

Поправочный кояффициент на скорость резания K_{0} для иянененных усаовий работы

Условия эксплуатаиии		$\chi_{0_{2}}$ для марки материала ннструмента								
									P6M5	
принуск	Глубина резания $t_{\text {. }}$ m M	$\underset{\sim}{\infty}$				\cdots		$\underset{\sim}{\infty}$	$\dot{3}$ V e	$*$ 0 0 -

Мелкие и средние станки

Непре- рывный	$\begin{aligned} & \text { До } 3 \\ & \text { Св. } 3 \text { до } 7 \\ & \text { Св. } 7 \end{aligned}$	1,2 1,25	1,1 1,2	1,0 1,1 $1 ; 25$	0,9 1,05	$\begin{aligned} & 0,8 \\ & 1,0 \\ & 1,15 \end{aligned}$	$\begin{aligned} & 0,95 \\ & 1,1 \end{aligned}$	1,0	$\begin{aligned} & 0,32 \\ & 0,36 \\ & 0,4 \end{aligned}$	$\begin{aligned} & 0,25 \\ & 0,27 \\ & 0,3 \end{aligned}$
	До 3	1,25	1,2	1,1	-	1,0	-	-	0,36	0,27
Преры-	Св. 3 до 7	1,25	1,3	1,25	-	1,15	1,1	1,0	0,4	0,3
ชвистый	Св. 7	-	-	--	-	1,1	1,05	1,0	0,4	0,3

Для сплавов по ГОСТ 3882-74 в случае нанесения износостойкого покры1я $K v_{1}$ умножить на 1,3 .

Крупнье и тяжельи станки

	До 7	1,4	1,3	1,2	1,1	1,0		-	0,34	0,25
Genpe-	Св. 7 до 15	-	-	1,1	$\underline{-}$	1,0	0,95	0,85	0,36	0,27
зввный	Св. 15	-	-	-	-	1,15	1,1	1,0	0,4	0,3
		-	-	1,1	1,05	1,0	0,95	0,85	0,36	0,27
1реры-	Св. 7 до 15		-			1,15	1,1	1,0	0,4	0,3
新стый	Св. 15		-			1,1	1,05	1,0	0,4	0,3

Для сплавов по ГОСТ 3882-74 в случае нанесения износостойкого покры$K_{v_{1}}$ умножить на 1,3 . Остальные поправочные коэффициенты см. в карте 12.

Мелкие, средние, крупнп
Мощность резания N (кВт) в зависимости от глубии

Подача S (мм/об) при глуөине резания t, мм

2	2,5	3.1	3,9	4,9	6,1	7.6	9,5	11,9	14,9	18,6	23,2	29.
0,30	-	-	-	-	-	-	-	-	-	-	-	--
0,40	0,30	-	-	-	-	-	-	-	-	-	-	-
0,54	0,40	0,30	-	-	-	-	-	-	-	-	-	-
0,73	0,54	0,40	0,30	-	-	-	-	-	-	-	-	-...
0,99	0,73	0,54	0,40	0,30	-	-	-	-	-	-	-	\cdots
1,33	0,99	0,73	0,54	0,40	0,30	-	-	-	-	-	-	\cdots
1,79	1,33	0,99	0,73	0,54	0,40	0,30	-	-	-	-	-	--
2,41	1,79	1,33	0,99	0,73	0,54	0,40	0,30	-	-	-	-	-
3,24	2,41	1,79	1,33	0,99	0,73	0,54	0,40	0,30	-	-	-	-
-	3,24	2,41	1,79	1,33	0,99	0,73	0,54	0,40	0,30	-	-	
-	-	3,24	2,41	1,79	1,33	0,99	0,73	0,54	0,40	0,30	-	\cdots
-	-	-	3,24	2,41	1,79	1,33	0,99	0,73	0,54	0,40	0,30	-
-	-	-	-	3,24	2,41	1,79	1,33	0,99	0,73	0,54	0,40	0,30
-	-	-	-	-	3,24	2,41	1,79	1,33	0,99	0,73	0,54	0,40
-	-	-	-	-	-	3,24	2,41	1,79	1,33	0,99	0,73	0,
-	-	-	-	-	-	-	3,24	2,41	1,79	1,33	0,99	0,73
-	-	-	-	-	-	-	-	3,24	2,41	1,79	1,33	0
-	-	-	-	-	-	-	-	-	3,24	2,41	1,79	1,3
	-	-	-	-	-	-	-	-	-	3,24	2,41	1,
-	-	-	-	-	-	-	-	-	-	-	3,24	2,

Поправочный коэффициент на мощность резания

HB	150	170	190
$K_{N 0} \cdot$	0,9	0,95	1,0

При одновременной работе несколькими суппортами мощности резания коэффициент 0,9.

Мощность резания N (кВт) при скорости резания v, м/мин

210	240	270	300
1,05	1,1	1,15	1,2

ся. При работе резцами с углом $\varphi>60^{\circ}$ дополнительно ввести поправочный

Мелкие, средни

Мощность рездния N (квт) в зависимост;

Подача S (мм/об) при глубине резания t, мм

2	2,5	3,1	3,9	4,9	6,1	7.6	9,5	11,9	14,9	18,6	23,2	29
0,30	-	-	-	-	-	-	-	-	-	-	-	-
0,42	0,30	-	-	-	-	-	-	-	-	-	-	
0,60	042	0,30	-	-	-	-	-	-	-	-	-	
0,84	0,60	0,42	0,30	-	-	-	-	-	-	-	-	
1,18	0,84	0,60	0,42	0,30	-	-	-	-	-	-	-	
1,67	1,18	0,84	0.60	0,42	030	-	-	-	-	-	-	
2,35	1,67	1,18	0,84	0,60	0,42	0,30	-	-	-	-	-	
3,32	2,35	1,67	1,18	0,84	0,60	0,42	0,30	-	-	-	-	
-	3,32	2,35	1,67	1,18	0,84	0,60	0,42	0,30	-	-	-	-
-	-	3,32	2,35	1,67	1,18	0,84	060	0,42	0,30	-	-	
--	-	-	3,32	2,35	1,67	1,18	0,84	0,60	0,42	0,30	-	
-	-	-	-	3,32	2,35	1,67	1,18	034	0,60	0,42	0,30	
-	-	-	-	-	3,32	235	1,67	1,18	0,81	0,60	0,42	\checkmark
-	-	-	-	-	-	3,32	2,35	1,67	1,18	0,84	0,60	n
-	-	-	-	-	-	-	3,32	2,35	1,67	1,18	0,84	0
-	-	-	-	-	-	-	-	3,32	2,35	1,67	1,18	1)
-	-	-	-	-	-	-	-	-	3,32	2,35	1,67	1
-	-	-	-	-	-	-	-	-	-	3,32	2,35	1
-	-	-	-	-	-	-	-	-	-	-	3,32	2

вны резания, подачи д окорости резания

Моцность резания N (кВт) при скоростя реэання $v, ~ м / м и н$
(ири одновременной работе несколькими суппорт ми мощно ть редания суммируется)

\%	31	39	49	61	76	95	119	149	186	233
4	-	-	-	-	-	-	-	1,2	1,5	1,8
4,4	-	-	-	-	-	-	1,2	1,5	1,8	2,3
\cdots	-	-	-	-	-	1,2	1,5	1,8	2,3	2,8
\%	-	-	-	-	1,2	1,5	1,8	2,3	2,8	3,6
*	-	-	-	1,2	1,5	1,8	2,3	2,8	3,6	4,4
4	--	-	1,2	1,5	1,8	2,3	2,8	3,6	4,4	5,6
\%	-	1,2	1,5	1,8	2,3	2,8	3,6	4,4	5,6	6,9
29	1,2	1,5	1,8	2,3	2,8	3,6	4,4	5,6	6,9	8,7
4	1,5	1,8	2,3	2,8	3,6	4,4	5,6	6,9	8,7	11
\%	1,8	2,3	2,8	3,6	4,4	5,6	69	8,7	11	13
\%	2,3	2,8	3,6	4,4	5,6	6,9	8,7	11	13	17
	2,8	3,6	4,4	5,6	6,9	8,7	11	13	17	21
\%	3,6	4,4	5,6	6,9	8,7	11	13	17	21	26
	4,4	5,6	6,9	8,7	11	13	17	21	26	33
	5,6	6,9	8,7	11	13	17	21	26	33	-
4	6,9	8,7	11	13	17	21	26	33	-	-
	8,7	11	13	17	21	'26	33	\cdots	-	-
	11	13	17	21	26	33	-	-	-	-
㐋	13	17	21	26	33	-	-	--	--	--

Поправочные кояффициенты на мощность резания $K_{N_{0}}$ в зависимости от твердости обрабатываемого материала

HB	150	$\cdot 170$	190	210	240	270	300
$K_{N_{0}}$	0,9	0,95	1,0	1,05	1,1	1,15	1,2

При работе резцами с углом $\varphi>60^{\circ}$ дополнительно ввести поправочный коэффициент 0,9 .

Черновая обработка медных сплавов низкой твердости и алюминиевых сплавов	Резцы из ТС и БPC	Карта 16

Мелкиеи средниестанки

Глубина резания t, мм	Подача $S_{T}(м м / о б)$ для групп жесткости технологической системы											
	$D_{\text {c (мм) }}$ для токарного (в числителе) и карусельного (в знаменателе) станков											
	320			400			630/1250			$\text { Cв. } \begin{aligned} & 800 / 1600, \\ & 2000 \end{aligned}$		
	D_{3} (мм) для токарного станка (в числителе); $l_{\text {п }}$ (мм) для карусельного станка (в знаменателе)											
	-	8	윾	8	∞	- - ¢	이아앙	이앙\|		이잉	-18	

Резец типа $C, \varphi=90^{\circ}$ (см. эск. 4 , карту 9).
Пластина из ВК6. Припуск непрерывный

$\mathbf{2}$	1,0	1,19	1,42	1,11	1,33	1,58	1,32	1,5	1,5	1,5	1,5	1,5
4	0,57	0,69	0,86	0,63	0,80	0,92	0,80	0,92	1,09	0,86	1,04	1,27
$\mathbf{8}$	-	-	-	0,46	0,52	0,63	0,52	0,63	0,75	0,57	0,69	0,86
16	-	-	-	-	-	-	-	-	-	0,41	0,49	0,58

Поправочный коэффициент на подачу $K_{S_{0}}$ є вависимости
от твердости обрабатьваемого материала от твердости обрабатьваемого материала

Группа материала	4.2. Медные сплавы низкой твердости		4.3. Алюминиевые сплавы	
HB	35	60	35	35 и более
$K s_{0}$	1,0	0,9	1,0	1,25

При подрезании $K_{S_{0}}$ дополнительно умножить на 0,8 при $D_{\min } / D_{\mathrm{a}} \leqslant 0,35$ и на 0,9 при $D_{\min } / D_{3}>0,35$; при прерывистом припуске - на 0,8 .

* Группы материалов см. в прил. 1.

Мелкие, средние, крупныестанки

Глубина резания t. MM	Скорость резания $\sigma_{т}$ (м/мин) при обработке заготовок из бронзы, меди, алюминяевых сплавов а 35 НВ для подачи S, мм/об									
	до 0,2	0.25	0,30	0,40	0,50	0,60	0,80	1,0	1.2	1,5

Резец типа		$C, \varphi=90^{\circ}$.		Пластина из$296 \mid 266$		К6. Припуск непрерывный				
2	353	334	319			248	221	202	181	158
4	310	300	280	260	240	220	200	182	162	144
8	280	270	250	240	220	200	180	164	147	129
16	258	244	234	217	195	181	161	148	132	116

Поправочный коэффициент на скорость резания $K_{v_{0}}$ в зависимости от твердости обрабатьваемого материала (группь материалов см. в прил. 1)

Группа материєла	4.2. Медные сплавя вкзкои твердостн		4.3. Алюминиевве сплавя	
HB	35	60	35	Св. 35
$K_{v_{0}}$	1,0	0,7	1,0	2,5

При подрезании $K_{v_{0}}$ дополнительно умножить на 1,25 при $D_{\min } / D_{3} \leqslant 0,35$ и на 1,2 при $D_{\min } / D_{3}>0,35$, при непрерывном резании - на 0,9 .

Поправочные коэффициенты на подачу и скорость резания для измененных условий работы см. в карте 15.

РЕЖИМЫ РЕЗАНИЯ ПРИ РАСТАЧИВАНИИ. ЧЕРНОВАЯ ОБРАБОТКА

Черновая обработка конструкционной и коррозионно-стойкой сталей	Резцы из ТС и БРС	Карта 17

Мелкиеи средниестанки.
Резец типа $S, \varphi=75^{\circ}$ (см. эск. 2, карту 9)

Глубина резания t. ma	подача $S_{\text {T }}$ (мм/об) при диаметре оправки $d_{\text {оп }}$ или сторове квадрата H, мм						
	25			40			
	Вылет оправки $l_{\text {опи }}$, мм						
	100	150	200	200	300	500	800
	Пластина из T14K8*					Пластина ия ${ }^{\text {T5 K }} 10$ *	
До 2	0,65	0,50	0,45	0,75	0,60	5	-
3	0,55	0,45	-0,40	0,65	0,50	0,50	0,40
$\checkmark 4$	0,45	0,35	0,30	0,55	0,45	0,45	0,33
\% 6	0,38	0,30	0,25	0,45	0,40	0,36	0,30
- 8	0,36	0,28	0,24	0,40	0,34	0,33	0,25
\% 12	,	,	0,24.	0,40	0,3	0,28	,

- При обработке коррозионно-стойких сталей вместо пластин из Т14К8 исользуют пластины из $\mathrm{BK} 10-\mathrm{OM}$; вместо пластин из Т5К10 - пластины из 9K15-XOM єли ВК8.

Поправочный коэффициент на подачу $K_{S_{0}}$ в вависимости от твердости НВ и группы обрабатываемых сталей и материала инструмента

Для твердоснлавных резцов $K_{S}=1,0$; для быстрорежущих - по отношению к T5K10 $K_{S}=1,3$. Остальные коэффициенты см. в карте 12.

Мелкиеисредниестанки. Твердость заготовки 210 HB

Резец типа $S, \varphi=75^{\circ}$. Пластина из T 14 K 8 (МС121)

До 3	160	150	145	135	120	115	100	90
4	155	145	135	130	115	110	95	-
6	140	135	130	120	110	100	-	-
8	135	130	125	115	105	-	-	-

Резец типа $\mathrm{S}, \varphi=75^{\circ}$. Пластина из T 5 K 10 (MCl 131)

6	125	120	115	105	95	90	80	70
8	120	115	110	100	90	85	75	-
12	115	110	100	95	85	80	-	-

При обработке коррозионно-стойких сталей вместо пластин из Т14K8 используют пластины из BK10-OM, вместо пластин из Т5К10 - пластины из BK15-XOM, или ВК8.

Поправочниӑ кояффициент на скорость реэания *1 $K_{0_{0}}$ в зависимости от обрабатываеного катериала и материала инструмента

$\stackrel{*}{g_{\\|}}$	1.1. तo. вышенной обра-батываемости		1.2. Конструкижпиая углеродистяя					1 3. Конструкцнониая леги. рованная			$\begin{gathered} 14 \text { JТА. } \\ \text { гиоо } \\ \text { вануая } \end{gathered}$		$\begin{aligned} & 15 \text { Бы- } \\ & \text { строре- } \\ & \text { жущая } \end{aligned}$
HB	130	170	130	170	210	270	330	170	210	270	170	10	270.
$\%_{0}$	1,5	1,25	1,35	1,15	1,0	0,7	0,55	1,05	0,9	0,65	0,	, 8	0,5

Для резцов из БРС по отноиенню к ТБК10 $K_{0}=0,45$ для $S<0,4$ мм/об $K_{0}=0,3$ для $S \geqslant 0,4 \mathrm{~mm} / \mathrm{oб}$.
${ }^{* 1}$ При обработке коррознонно-стойкнх сталей $K_{v_{0}}=0,5$. Остальные по-

*2 Группы сталей см. в прил. 1.

Крупныеитяжелыестанки. Резед типа $\mathrm{M}_{\text {, }}$ $\varphi=75^{\circ}$ (см. эск. 3 , карту 9)

	60				100					200				
	Вилет оправкк $l_{\text {оп, }}$, им													
צббина ${ }_{6}$	\%	8	-	$\stackrel{8}{\mathbf{0}}$	-	8	8	$\stackrel{\text { O}}{-}$	80	$\stackrel{8}{8}$	8	8	8	8
	- Maтернал пластины													
	1 0 3 \vdots				T14K8*8					T14K8*				$\%$ 0 0 \vdots 0 0
44	0,90	0,70	0,65	0,55	1,40	1,10	0,85	0,90	0,80	1,80	1,45	1.10	0,95	1,00
46	0,75	0,60	0,55	0,45	1,20	0,95	0,70	0.80	065	1,60	1,25	0,95	0,80	0,90
-88	0,70	0,55	0,50	0,40	1,10	0,80	0,60	0,65	-	1,45	1,10	0,90	0,70	,
42	0,60	0,50	0,45	-	0,90	0,70	0,55	-,	-	1,20	0,30	0,70	-	-
45	0,55	0,40	-		0,80		-		-	1,10	0,85	-	-	-
箷	-1	-1	-1	-1									-	-

Для коррозионно-етойкой стали ВК10-OM.
То же, ВК15•XOM или ВК8.

Поправочный коэффичиент на подачу*1 Ks 。в вависимости от твердости, группь обрабатьваемого щатериала и матприала инструмента

	1.1.'1.2. Ковструкционная									Коррозионно-стоикая			
HB	130	150	170	190	210	240	270	300	330	-	-	-	-
$K s$ 。	1,3	1,2	1,15	1,1	1,0	0,9	0,8	0,75	0,7	0,9	0,85	0,7	0,55

Для резцов из ТС $K_{S_{0}}=1,0$, из БРС по отношению к $\mathrm{T} 5 \mathrm{~K} 10 K_{S_{0}}=1,3$.
*1 Остальные коэффициенты см. в карте 12.
Группы сталей см. в прил. 1.

Крупныеи-тяжелыестанки. Твердость заготовки 210 HB

Глубина резания t, MM	Скорость резания v_{T} (м/мин) для подач S, мм/об							
	0,4	0,5	0,6	0,8	1,0	1.2	1,5	2,0
Резец типа $M, \varphi=75^{\circ}$. Пластина ия $\mathrm{T} 14 \mathrm{~K} 8{ }^{\text {*1 }}$ ($\mathrm{MCl21}$)								
До 4	130	115	105	95	85	80	75	60
6	120	110	100	90	80	75	70	55
8	110	100	95	85	75	70	65	50
12	100	95	90	80	70	65	60	-
15	95	90	85	75	65	60	-	-
20	90	85	80	70	60	-	-	-
Резец типа $M, \varphi=75^{\circ}$. Пластина из $\mathrm{T} 5 \mathrm{~K} 10{ }^{* 2}$ (MC131)								
6	100	95	90	80	72	65	55	47
8	95	90	85	77	68	60	53	45
12	90	85	80	75	65	57	50	40
15	85	80	75	70	63	53	48	-
20	80	75	70.	65	60	50.	-	-

[^3]Поправочный коэффициент на скорость резания ${ }^{* 1} K_{v_{0}}$ в заєисимости от твердости, группы обрабатываемого материала и материала инструментпа

			1.2. Конструкиионная углеродистая					1.3. Конструкционная легированная					
1. HB	130	170	130	170	210	270	330	170	210	270	170	210	270
${ }^{-1} K_{v_{T}}$	1,5	1,25	1,35	1,15	1,0	0,7	0,55	1,05	0,9	0,65	0,9	0,8	0,5

При обработке коррозионно-стойкой стали $K_{v_{0}}=0,5$.

- Для резцов из БРС по отношению к Т5K10 $K_{v_{0}}=0,4$ для $S<0,6$ мм/об $K_{v_{0}}=0,25$ для $S \geqslant 0,6 \mathrm{~mm} / \mathrm{oб}$.
*1 Остальные. поправочные коэффициенты см. в карте 12.
*2 Группы сталей см. в прил. 1.

Черновая обработка чугуна, медных и алюминиевых сплавов

Резцы из ТС и БРС
Карта 18

Мелкиеисредниестанки. Резец типа С, $\varphi=75^{\circ}$ (см. эск. 4 , карту 9)

Подача S_{T} (мм/об) для различных групп жесткости оправок
Диаметр оправки $d_{\text {оп }}$ или сторона квадрата $B=H$, мм

езуания		25					
\%) мм			Вы	равк			
1	100	150	200	200	300	500	800
14.			на из			Пласти	BK8
4\% 2	0,80	0,60	0,55	0,90	0,70	-	-
4, 3	0,65	0,55	0,50	0,75	0,60	0,60	0,45
W4	0,55	0,40	0,35	0,65	0,50	0,50	0,40
4.6	0,45	0,35	0,30	0,50	0,45	0,42	0,35
48	0,40	0,33	0,28	0,45	0,40	0,38	0,30
W12	-	-	-	-	-	0,32	

Поправочный коэффициент на подачу *1 $K s_{0}$ в вависимости от твердости и группо обрабатьваемого материала

Групиа ${ }^{2}$ материала	3.1. Серый чугун									
HB	150		170		190	210		240	270	300
$\cdot K s_{0}$	1,1		1,05		1,0	0,95		0,9	0,8	0,75
Tpynna*2 материала	3.2. Ковкй чугуя						Медные сплавы			4.3. Алю миниевые сплавы
							4.1	4.2		
HB	150	170	190	210	240	270	35°	80	Св. 120	50-70
$K s$ 。	1,0	0,95	0,9	0,85	0,8	0,7	1,2	1,0	0,7	1,3

*1 Остальнье K_{S} см. в картах 15 и 19.
*2 Группы материалов см. в прил. 1.
Мелкие и средние станки

Глубина резания	Скорость резания $\boldsymbol{y}_{\text {т }}$ (м/мин) при обработке заготовок твердостью 190 HB для серого чугуна, 170 НВ для ковкого чугуна, 80 HB для бронзы и							
	До 0,2	0,25	0,30	0,40	0,50	0,60	0,80	1,0

Резец типа С, $\varphi=75^{\circ}$. Пластина из ВК6

До 2	159	150	144	134	120	112	99	91
3	150	141	135	126	113	105	94	86
4	143	136	129	120	108	101	90	82
6	135	127	122	113	192	95	84	-
8	129	122	117	109	98	91	81	-

Резец типа С, $\varphi=75^{\circ}$. Пластина из ВК8

6	114	108	103	96	89	82	73	67
8	109	103	99	92	85	79	70	-
12	103	97	93	87	80	74	-	-

Поправочнбй коэффициежт на скорость резания *1 $K_{\mho_{0}}$ для твердости обрабатьнаемого материала

Группа*z материала	3.1. Серн чугун				3.2. Ковкии qугу:			Медные сплавы				4.3. Алю миниевые сплавыт			
					4.1	4.2									
HB	150	190	240	300				150	190	240	35	60	80	Св. 120	50-70
$K v_{0}$	1,3	1,0	0,7	0,5	1,15	0,9	0,65	2,0	1,4	1,0	0,6	5,0			

[^4]Крупныеитяжелыестанки. Резец типа P, $\varphi=75^{\circ}$ (см. эск. 1, карту 9)

дубина резания 4. MM	Подача S_{χ} (мм/об) для различных групп жесткости оправок													
	Диаметр оправкн $d_{\text {опи }}$ или сторона квадрата $B=H$, мм													
	60				100					200				
	Вылет оправки $t_{\text {оп, }}$, мм													
	$300 \mid$	500	800	1200	300	500	800	1200	1500	300	500	800	1200	1500
娄	Материал пластины													
4	BK6		BK8		BK6			BK8		BK6				BK8
20 4	1,0	0,80	0,75	0,65	1,65	1,30	1,0	1,05	0,95	2,10	1,70	1,30	1,10	1,2
+6	0,90	0,70	0,65	0,55	1,40	1,10	0,80	0,95	0,75	1,90	1,45	1,10	0,95	1,05
-8	0,80	0,65	0,60	0,45	1,30	0,95	0,70	0,75	,	1,70	1,30	1,05	0,80	,
12	0,70	0,60	0,55	-	1,05	0,80	0,65		-	1,40	1,05	0,80	-	-
15	0,65	0,45	-	-	0,95	0,75	-	-	-	1,30	1,00	-	-	-
20		-	--	-	0,80	-	-	-	-	1,20	0,80	-	-	-
+														

Поправочный коэффициент на подачу *1 $K S_{0}$ в зависимости от твердости обрабатываемого материала

труппа *: материала	3.1. Серый пугун									
4 HB	150		170	190		210	240		270	300
$4 K s_{0}$	1,1		1,05	1,0		0,95	0,9		0,8	0,75
"руппа * атериала	3.2. Ковкий чугуп						Медные сплавы			4.3. Алю миниевые сплавы
							4.1	4.2		
14 HB	150	170	190	210	240	270	35	80	Св. 120	50-70
	1,0	0,95	0,9	0,85	0,8	0,7	1,2	1,0	0,7	1,3

${ }^{* 1}$ Остальные K_{S} см. в карте 15 .
*2 Группы материалов см. в прил. 1.

Крупные итяжелые станки

Глубина резания t, MM	Скорость резания v_{τ} (м/мин) при обряботке заготовок твердостью 190 НВ из серого чугуна, 170 HB из ковкого чугуна, 80 HB из бронзы и латуни для подач S, мм/об								
	0,4	0,5	0,6	0,8	1,0	1,2	1,5	2,0	2,5
Резец типд $\mathrm{P}, \varphi=75^{\circ}$. Пластина из ВК6									
4	114	105	98		80	71	62	52	46
6	108	99	92	82	75	67	59	49	43
8	103	95	88	78	72	64	56	47	41
12	97	89	82	74	67	60	53	44	39
15	95	86	80	72	66	59	51	43	-
20	92	84	78	70	64	57	50	-	-
Резец типа $\mathrm{P}, \varphi=75^{\circ}$. Пластина из BK 8.									
8	87	79	74	66	60	54	47	40	35
12	81	74	69	62	57	51	44	37	33
15	80	73	68	61	56	50	44	37	-
20	78	71	66	59	54	48	42	-	--

Поправочные коэффициенты на скорость резания *1 K_{v} в зависимости от твердости обрабатьваемого материала

Груп-пахтериала	31. Серый чугун				32. Ковкии чугун			Медные сплавы				4.3 Алюми ниевые сплавы			
					4.1	4.2									
HB	150	190	240	300				150	190	240	35	60	80	120	50-70
$K \nu_{0}$	1,3	1,0	0,7	0,5	1,15	0,9	0,65	2,0	1,4	1,0	0,6	5,0			

${ }^{* 1}$ Остальные K_{v} см. в карте 15.
*2 Группы материалов см. в прил. 1.

РЕЖИМЫ РЕЗАНИЯ ПРИ ОБТАЧИВАНИИ, ПОДРЕЗАНИИ И РАСТАЧИВАНИИ. ЧИСТОВАЯ ОБРАБОТКА

Чистовая обработка различных материалов	Резцы из ТС, БРС и РК	Карта 19

Подача при заданных точности детали и шероховатости ее поверхности
Квалитеты размера

5	6	7	8	9	10

Шероховатость $R a$ (мкм, не более) на последнем проходе

0,1	0,2	0,8	0,8	3,2	3,2

Шероховатость $R a$ (мкм, не более) на предпоследнем проходе

0,8	0,8	3,2	3,2	12,5	12,5

		Подача S_{R} (мм/об) при требуемой шероховатости поверхности, мкм											
		$R 2=40$			$R z=20$			$R a=2.5$			$R a=1,25$		
		ОбрабатываемыЯ материал											
				$\underset{\text { 䍖 }}{ }$			$\sum_{\substack{\text { a }}}^{\text {a }}$		$\begin{aligned} & \text { op } \\ & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { ², }}{\substack{\text { a }}}$			
	0,5	0,51	0,29	0,44	0,34	0,20	0,29	0,21	0,12	0,19	0,13	0,09	
	0,8	0,60	0,34	0,52	0,39	0,24	0,34	0,24	0,14	0,22	0,15	0,11	0,1
	1,2	0,69	0,41	0,61	0,45	0,38	0,39	0,29	0,17	0,27	0,18	0,13	0,1
	1,6	0,77	0,46	0,58	0,50	0,32	0,44	0,31	0,19	0,29	0,1	0,14	0,1
	2,0	0,82	0,50	0,71	0,55	0,35	0,47	0,34	0,21	0,31	0,21	0,16	0,2
	2,5	0,90	0,55	0,77	0,59	0,38	0,51	0,37	0,23	0,34	0,23	0,17	0,22
	6,0				0,80		0,69	0,50		0,45	0,32		0,30
	9,5	-	-	-	0,91	-	0,81	0,57	-	0,53	0,37	-	0,35
	11	-	-	-	1,0	-	0,85	0,63	-	0,56	0,42	-	0,37

Поправочнье коэффициенты на подачу Кs для измененных условий работьь

Глубиня резанкя t © M										
	10 квалите\%					8 квалитет				
	Диаметр детали D, мм									
	18	50	180	500	$\begin{gathered} \mathrm{Ca} . \\ 1600 \end{gathered}$	13	50	180	500	C8. 1600
0,15	-	-	-	-	-	0,02	0,04	0,08	-	-
0,20	-	-	-	-	-	0,02	0,04	0,08	0,15	0,29
0,30	0,07	0,13	0,28	-	-	-	0,04	0,08	0,14	0,28
0,40	0.07	0,12	0,26	0;47	0,92	-	-	-	-	-
0,60	-	0,11	0,23	0,42	0,83	-	\cdots	-	-	-
0,90	-	-	0,21	0,38	0,74	-	-	-	-	-
1,5	-	-	0,18	0,33	0,65	-	-	-	-	-

Поправочные коэффичиенть на подаиу K_{S} для иэмененных условий работьь

$K S_{0}$ на вид обработки $|$| 1,0 при обтачивании и подрезании; 0,8 при растачи |
| :--- |
| вании |

$K S_{3}{ }^{\text {в }}$ зависимости от применения $\quad 1,0$ обработка без СОЖ; 1,1 с СОЖ

Tвердость HB	130	170	210	270	330
$K s_{2}$	0,7	0,85	1,0	1,2	1,4
L_{3} / D_{3}	5	.	10	15	Св. 15
$K s_{3}$	1,0	0,9	0,8	0,7	
Квалитет размера	10	11	9	8	7
$K s_{4}$	1,0	1,2	1,2	1,0	$0,85$.

Мелкие, средние, крупные и тяжелые станки

* Для коррозионно-стойкой стали ВК6-М.
 обрабатываєянх матерналоя

Обрабатываемый материал

Конструкционная сталь при твердости НВ

Коррознонно-стойкая сталь групп

Коэффициент $K s_{0}$

$$
-4-1
$$

$$
1111+1
$$

0,9	0,85

0,7	0,55

При растачивании $K s_{0}$ дополнительно умножить на 0,75 .

Мелкие и средние станки

Глубина							
резания ${ }_{\text {d, мм }}$	До 0,10	0,12	0,15	0.20	0.25	0.30	0,40

Резец типа $\mathrm{P}, \varphi=45^{\circ}$. Пластина из ТЗ0K4 *1

До 0,4	395	385	375	355	335	315	290
0,8	355	345	335	320	300	285	260
1,5	325	315	305	295	275	260	240
3,0	295	285	275	265	245	235	215

Поправочный кояффцицинт на скорость резания $K_{v_{0}}$ в зависимости от твердости обрабатываемого материала

	1.1. По-вышенной 06 pa сатывае мости			Конструкционная углеродистая				1.3. Конструкдионная легированная			1.4. Легированная		1.5. Быстрорежущая я корро стоикая
HB	130	170	130	170	210	270	330	170	210	270	170	210	270
$K v_{0}$	1,5	1,25	1,35	1,15	1,0	0,7	0,55	1,05	0,9	0,65	0,9	0,8	0,5

При растачивании $K_{v_{0}}$ дюполнительно умножить на 0,8 .
*1 Для коррозионно-стойкой стали ВК6-М.
*2 Группы сталей см. в прил. 1.

Крупные и тяжелые станки

Глубина	Скорость резания $\boldsymbol{v}_{\text {т }}$ (м/мин) для подач S, мм/об						
t, M	до 0,15	0,20	0,25.	0,30	0,40	0,50	0,6i

Резец типа $\mathrm{P}(\mathrm{C}), \varphi=45^{\circ}$. Пластина из ТЗОК4*

До 0,4	345	330	310	295	270	250	246
0,8	310	295	280	265	240	225	216
1,5	285	270	255	240	220	205	16
3,0	255	245	230	215	200	185	175

[^5]Поправочный кояффичиент на скорость резания $K_{v_{0}}$ в зависимости от твердости обрабатьваемого материала

	1.1. По-вышенной обра-батываемост		1.2. Конструкционная углеродистая					1.3. Конструкдионная легированная			$\begin{aligned} & \text { 1.4. Ле- } \\ & \text { rиро- } \\ & \text { ванная } \end{aligned}$		1.5. Бы-строрежущая зионностойкая
HB	130	170	130	170	210	270	330	170	210	270	170	210	270
$K_{v_{0}}$	1,5	1,25	1,35	1,15	1,0	0,7	0,55	1,05	0,9	0,65	0,9	0,8	0,5

При растачивании $K_{v_{0}}$ дополнительно умножить на 0,8 .

* Группы сталей см. в прил. 1.

Поправочные коэффициенты на подачу K_{S} для измененных условий работь

Обрабатываемая сталь	Глубина резания t, мм		Мелкие и средние станки				Крупные и тяжелые стзнки				
			${ }_{S_{S_{1}} \text { для марки материала инструмента }}$								
			T30K4	TH20		T15K6	T30K4		TH20	T15K6	
конструк ционная	До 4,0		1,0	1,15		1,3	1,0		1,2	1,35	
	Мелкие и средние станки							Крупные и тяжелые станки			
	Глубина резания t, мм	$K_{S_{1}}$ для марки материала инструмента									
			辰	去	¢		$\begin{aligned} & \stackrel{0}{i} \\ & \stackrel{\leftrightarrow}{F} \end{aligned}$				
oppo-тонноойкая	До 4,0	0,85	0,90	0,95	1,0	1,05	0,90	0,95	1,0	1,1	1,2

$K s_{\text {s }}$ и $K s_{\mathbf{6}}$ см. в карте 12.

Поправочные козффициенты на скорость резания K_{v} для измененных условий работы

Обрабатываемая сталь.	Глубина резания t, Mм	Мелкие и средние станки				Крупные и тяжелые станки		
		$K_{0_{1}}$ для маркн материала инструмента						
		T30K. 4	TH20	T15K6	T30K4		TH20	T15K6
Конструкционная	До 4,0	1,0	0,9	0,75		1,0	0,9	0,8
Обрабатываемая сталь	Глубнна резания $t_{\text {, MM }}$	Мелкие и среднне станки			Крупные и тяжелые станки			
		$K_{V_{1}}$ для марки материала инструмента						
								cos
Коррозионно-стойкая.	До 4,0	1,35	1,2	1,0	1,15	5 1,0.	0,85	0,80

$K_{v_{s}}$ см. в карте 12.

Условия эксплуатации			$K_{0 .}$ для уровия надежности $\%$. \%			
Средние	Крупные и тяжелые станки	Коэффициент вариации стойкости V_{T}				
станки			50	70	80	90
Стойкость T, мин						
15	20	0,2	1,58	1,52	1,49	1,43
		0,5		1,4	1,29	1,16
20	30	0,2	1,44	1,39	1,35	1,3
		0,5		1,27	1,18	1,06
30	40	0,2	1,31.	1,27	1,23	1,19
		0,5		1,16	1,08	0,96
40	60	0,2	1,15	1,10	1,08	1,04
		0,5		1,01	0,94	0,84
60	90	0,2	1,0	0,96	0,94	0,91
		0,5		0,88	0.82	0.73
90	120	0,2	0,91	0,88	0,86	0,82
		0,5		0,8	0,74	0,67

Условия эксплуатации			$K_{\nu, ~ д л я ~ у р о в н я ~ н а д е ж н о с т и ~} \gamma, \%$			
Средние	Крутные и тяжелые сганкн	Коэффипиент вариации стойKocta V_{T}				
станки			50	70	80	90
Стойость T, мнн						
120	180	0,2	0,8	0,77	0,75	0,72
		0,5		0,7	0,65	0,58

*1 Подача при чистовой обработке не завксит от прочности режуцей части нстр умента.

Поправочжые коэффициенты на подачу $K s_{0}$ в асвисиности от твердости обрабатьяаемого материсяа

(pyma*: материала	3.1. Cepsill \ddagger тгу						
4 HB	150	170	190	210	240	270	300
\% Kso	1,1	1,05	1,0	0,95	0.9	0,8	0,75

*2 Группы материалов см. в прил. 1.

Продольсение карты 2

Группа* матернала	3.2. Ковкй тугуи							Медные сплавы			4.3. Алюминиевыне сплавы
								4.1		4.2	
HB	130	150	170	190	210	240	270	35	80	Cb. 120	50-70
$K s_{0}$	1,06	1,0	0,95	0,9	0,85	0,8	0,7	1,2	1,0	0,7	1,3

При растачивании $K s$ 。 дополнительно умножить на 0,75 .

* Группы материалов см. в прил. 1.

Мелкие и средние станки. Твердость заготовки 190 HB

Глубина резания t, MM							
	до 0,10	0,12	0,15	0,20	0,25	0,30	0,40

Резец типа $\mathrm{C}, \varphi=45^{\circ}$. Пластина из ВКЗ-М

До 0,8	355	345	335	320	300	285	260
1,5	325	315	305	290	270	260	235
3,0	290	285	275	260	245	230	215
4,0	280	270	260	250	235	225	205

Поправочный коэффициент на скорость резания $K_{v_{0}}$ в зависимости от твердости обрабатьваемого материала

Группа мйтериала -	3.1. Серый чугун				3.2. Ковкии чугун			Медные сплавы				4.3. Ал: мини евые сплав			
					4.1	4.2									
HB	150	170	240	300				150	190	240	35	60	80	120	50-70
K_{0}	1,3	1,1	0,7	0,5	1,15	0,9	0,65	2,0	1,4	1,0	0,6	5,0			

При растачивании $K_{v_{0}}$ дополнительно умножить на 0,8 .

* Группы материалов см. в прил. 1.

Крупные и тяжелые станки. Твердость заготовки 190 HB

Глубина резания t, MM	Скорость резания $v_{\text {т }}$ (м/мин) для подач S, мм/об						
	до 0,15	0.20	0.25	0,30	0.40	0.50	0,6
Резец типа С, $\varphi=45^{\circ}$. Пластина из ВК3-М							
До 0,8	310	295	280	265	240	225	218
1,5	280	270	255	240	220	205	19
3,0	250	240	230	215	200	185	17
4,0	240	230	220	205	190	180	176

Поправощный коэффициент на скорость ревания $K_{\nu_{0}}$ в вависимости от твердости обрабатываемого материала

Группе тернала 	3.1. Чyryr cepas				3.2. Чугув ковкия			Медняе сплавв				4.3. Алюминиевые сплавы			
					4.1	4.2									
HB	150	190	240	300				150	190	240	35	60	80	120	50-70
$K v_{0}$	1,1	1,0	0,7	0,5	1,15	0,9	0,65	2,0	1,4	1,0.	0,6	5,0			

При растачивании $K_{v_{0}}$ дополнительно умножить на 0,8 .

* Группы материалов см. в прил. 1.

Поправочные кояффициенть на подачу K_{S} для измененных условий работы

	Мелкие и средняе станки		Крупные к тяжелые станки			
MM	$K_{S_{1}}$ для матернала инструмента марки					
	TH20	BK3-M	TH20	BK3-M	BK6-OM	BK6-M
До 5,0	0,9	1,0	0,85	1,0	1,2	1,3

$K s_{\mathbf{s}}-K s_{\mathbf{a}}$ см. карту 12.

Поправочные коэффициенты на скорость резания K_{0} для измененных условий работы

絠	Мелкие п среддние станки		Крупные и тяжелые станки			
	$K_{\nu_{1}}$ для материала внструмента марки					
6	TH20	BK3-M	TH20	BK3-M	BK6-OM	B K6-M
1o 5,0	0,9	1,0	0,6	1,0	0,8	0,7

$K_{v_{0}}-K v_{0}$ см. карту $12 ; K_{v_{0}}$ см. карту 20.

Чистсвая пбработка конструкционных сталее. закаденных сталей а чугунов	Резцы ня PK	Kapta 22

Мелкие, средние к крупные станки

$\begin{gathered} \text { Глубина } \\ \text { реллиия } \\ \text { мм } \end{gathered}$	Подана S_{T} (мм/об) прре D_{c} токарного станка, мм					
	320-630	800-1006	1250-1600	320-630	800-1000	1250-1601
$\begin{aligned} & 0,4 \\ & 0,8 \\ & 1,5 \\ & 3 \end{aligned}$	Салл. конструкционная, $160-320 \mathrm{HB}$			Чугун серый высокоирочный,$150-300 \mathrm{HB}$		
	Резнц типа $C, \varphi=45-90^{\circ}$(см эск i_{1} карту 9) Пластинаиз ВО-13(BII-75, EOK-71)			Резец типа С, $\varphi=45 \div 90$ (гм эск 4, карту 9) Пластина из BOK-60 (BOK-71, B3, ВШ-75)		
	0,33	0,39	0,40	0,42	0,50	0,50
	0,30	0,33	0,34	0,35	0,40	0,44
	0,18	0,19	0,21	0,29	0,31	0,40
		,	,	0,22	0,29	0,35
	Сталь конструкционная, 35-50 HRC_{5}			Чугун отбеленный, 400-600 H		
	Резрц типа $C, \varphi=45-90^{\circ}$ (с'л Зск 4, карту 9) Пластина из BOK 60 и BOK-71			Резец типа С, $\varphi=45 \div 90^{\circ}$ (см. эск 4, карту 9) Пластин из BOK-60, BOK-71		
0,2	029	0,30	0,35	0,21	0,24	0,24
0,4	0,20	0,22	0,24	0,15	0,18	0,18
0,8	0,15	, 0,18	0,20	0,12	0,12	0,14
1,5	-	-	-	0,10	0,11	0,13
	Сталь закалеяная, $50-65 \mathrm{HRC}_{6}$					
	Резец типа С, $\varphi=45-90^{\circ}$ (см эск 4, карту 9) Пластина из ВОК-60, ВОК-71			При подрезании S_{T} умножи на 0,85, а при растачинании на 0,7		
0,12	0,08	0,08	0,09			
0,20	0,07	0,08	0,08			
0,40	0,03	0,06	0,06			

Мелкие，средние и крупные станки

Глубина резания t ，Mм	Скорость резания $v_{\text {т（мм／мин）для подач }}$ ，м м $/$／об $^{\text {（ }}$									
	0，05	0，10	0，15	0.20	0，30	0.05	0，10	0，15	0.20	0，30
	Сталь конструкционная， $160-320 \mathrm{HB}$					Чугув герық к писскопрочныа， $150-00 \mathrm{HB}$				
	Резец типа С，$\varphi=45-90^{\circ}$ （см эск 4，карту 9）Пластина из ВО－13，ВШ－75，ВОК－71					Feseи типа C．$\varphi=45{ }^{\circ} 90^{\circ}$ （см з七к 4，фрту 9）Глластина н3 BOK 50 BOK $71, \mathrm{BIL} 75, \mathrm{~B} 3$				
0，4	550	490	425	385	335	540	480	4.50	375	325
0，8	545	430	370	335	290	530	415	360	325	285
1，5	480	380	330	295	255	470	365	320	290	250
3		－	－	－	－	410	320	280	250	220
	Сталь закаленная，35－50 HRC？					Чугун отбеленныи， $400-600 \mathrm{HB}$				
	Резец типа С，$\varphi=45-90^{\circ}$ （см эск 4，карту 9） Пластина из ВОК－60，ВОК－71					Резец типа С，$\varphi=45-90^{\circ}$ （см．эск 4，каргу 9）Пластина из ВОК－60，ВОК－71				
0，2	355	285	255	235	205	175	140	123	115	100
0，4	295	240	215	195	175	145	120	105	95	85
0，8	250	205	180	165	145	120	100	90	80	70
1，5		－	－	－	－	105	85	75	70	60
Сталь закаленная，50－65 HRC_{3}						При полрезании $v_{\text {т }}$ vмножить на 1,2 ，а при растачивании－на 0,8 ． Поправочные коっффициенты на твердость загоговки ориенти－ ровочно см в картау 20 и 21				
8	Резец типа $C, \varphi=45-90^{\circ}$ （см эск．4，карту 9） Пластина из BOK－60，BOK－71									
0，12	124	101	89	82	72					
0，20	109	89	78	72	64					
－0，40	92	75	66	61	54					

Чистовая обработка конструкционных сталей，涫акаленных сталей，чугунов，алюминиевых и медныд сплавон
Резда из СТМ и АСПК
Мелкиє，гредвие и крупные станка
Закаленные стали，50－65 HRC_{3}
Резец типа $\mathrm{C}, \varphi=45^{\circ}$（см．эск 4，карту 9）
Пластина из композита 05 （01，10Д）

Гдубина резания t ，мм	Подача S ，мм／об	Скорость ррзания v，мм／об
$0,05-1,0$	$0,03-0,20$	$50-180$

5 А．Д．Локтев

Чуауныс серье и высокопрочньее, 150-300 НВ

Резцы типа С, $\varphi=45^{\circ}$ (см. эск. 4, карту 9). Пластина из композита $05(01,10 Д)$		
t	s	0
0,05-2,0	0,03-0,20	300-1000

Чугун отбеленный, 400-600 НВ
Резец типа $C, \varphi=45^{\circ}$ (см. эск. 4, карту 9).
Пластина из комнозита 05 (01,10 Д)

t	s	0
$0,05-1,0$	\ddots	$0,03-0,10$

Алюминий и алюминиевье сплавьь, $20 \rightarrow 60$ НВ
Резец $\mathrm{C}, \varphi=15 \div 55^{\circ}$ (см. эск. 4, карту 9). Пластина из АСПП

t	s	v
$0,15-0,8$	$0,1-0,3$	$200-900$

Медь и меднье сплаеьь, 30-бо. НВ
Резец $С$ С, $\varphi=15 \div 55^{\circ}$ (см. эск. 4, карту 9). Пластина из АСПК

t	s	v
$0,05-1,0$	$0,03-0,3$	$300-1000$

РЕЖИМЫ РЕЗАНИЯ ПРИ ФАСОННОМ ТОЧЕНИИ
Обработка конструкционноа и коррозионно-стойкой стале»

Резцы из ТС и БРС
Карта ${ }^{2}$ 4

Мелкие и средние станки					
Ширина резда B, мм	Подача S_{x} (мм/об) дляя заготовок диаметром D_{8}, мм				
	10-20	20-30	30-50	50-70	70-100

Резцы типа Г (см. эск. 6 , карту 9). Пластина из Т14К8 *д

10	0,04	0,05	0,07	-	-
12	0,04	0,05	0,07	-	-
15	0,03	0,05	0,06	-	-
20	0,03	0,04	0,06	0,07	-
25	0,03	0,04	0,05	0,06	-
30	0,03	0,04	0,05	0,06	0,07

Ширина резца B, мм					
	10-20	20-30	30-60	50-70	$70-100$
Резцы типа Γ (см. өск, 6, карту 9). Пластина из Т5K10*2					
20	0,04	0,05	0,07	0,09	-
25	0,04	0,05	0,06	0,08	-
30	0,03	0,04	0,06	0,07	0,09
40	0,03	0,04	0.05	0,07	0,08
50	0.03	0,04	0,05	0,06	0,08
60	-	0,03	0,04	0,06	0,07
80	-	-	0,04	0,05	0,06
100	-	-	-	0,05	0,06

Поправочный кояффициеніп на подаиу $K S_{8}$ в вивисиностии от твердости и єруппо ооррабапььваемьых материилов

Конструкщионная сталіь при твердости HB

Коррозионно-стойкая сталь группия

$\begin{gathered} 2.1 \\ 34 \times \mathrm{H} 3 \mathrm{M} \\ \text { и др. } \end{gathered}$	$\begin{aligned} & 2.2 . \\ & 12 \times 13 \\ & \text { и др. } \end{aligned}$	$\begin{gathered} 2.3 . \\ 12 \times 18 \mathrm{H} 10 \mathrm{~T} \\ \text { н др. } \end{gathered}$	$\begin{aligned} & 2.4 . \\ & 30 \times 13 \\ & \text { и др. } \end{aligned}$

$K s_{0}$

*1 Для коррозионно-стойких сталей сплав BK10-OM.
*2 Для коррозионно-стойких сталей сплав BK8.

$\begin{aligned} & \text { Ширина } \\ & \text { резца } B \text {, мм } \end{aligned}$			Скорость резания v_{γ} (м/мин) длл подач S, мм/об										
			0,01		0,02		0,03		0,04		0.06		
Попрсвочный кояффициент на скорость резания *1 К $_{\nu_{0}}$ в зависижости от твердости обрабатььаемого материала													
			1.2. Конструкдионяая углеродистая					1.3. Конструкционная леги. рованная			$\begin{aligned} & \text { 1.4. } \\ & \text { Јегиро- } \\ & \text { занная } \end{aligned}$		Еыстрорежу дцая
HB	130	170	130	170	210	270	330	170	210	270	17,0	210	270
\%o	1,5	1,25	1,35	1,15	1,0	0,7	0,55	1,05	0,9	0,65	0,9	0,8	0,5

Для резцов тила С дополнительно ввести поправку 1,15 .
${ }^{* 1}$ При обработке коррозионно-стойкой стали $K_{v}=0,6$.
*я Группы сталей см. в прил. 1.

Поправочные кояффициеттье на подачу K_{S} для иямененных условий работьь

Обрабатываемый материял			$K_{S_{1}}$ для марки материала инструмента				
		T15K6	T14K8	T5K10	P6M5		
Конструкционная сталь			Св. 10 до 25	0.9	1,0	1,15	1,3
		Св. 25 до 100	-	0,8	1,0	1.2	
Условия эксплуатации		$K_{S_{1}}$ для марки материяла ияструмента					
Обрабатываемыя материал	$\begin{gathered} \text { ШШичияа } \\ \text { резца } b, \text { м } \end{gathered}$	$\mathrm{BK} 10-\mathrm{OM}$ $\mathrm{TT} 10 \mathrm{~K} 8-\mathrm{E}$	BK10.XOM		$\underset{\text { BK8 }}{\substack{\text { BK15-XOM, }}}$	P6M5	
Коррозионностойкая сталь	Св. 10 до 25	1,0	1,05		1.15	1,3	
	Св. 25 до 100	0.8		, 9	1,0	1,2	
Форма профиля детали в плане		Простая			Сложная		
$K s$,		1.0			0,8		
Тип резца		Γ			C		
$K s_{3}$		1,0			0.9		

Поправочный коэффициент Ks . на уровень надежности см. в карте 12.

Поправочныр коэффициентьи на скорость ревания $K_{\text {о }}$ для измененньх условий					
Обрабатываемый материал	$\begin{gathered} \text { Ширина } \\ \text { резца } b, \text { мм } \end{gathered}$	$K_{v_{1}}$ для марки материала инструмента			
		T15K6	T14K8	T5K10	P6M
Конструкционная сталь	Св. 10 до 25	1,1	1,0	0.85	0.4
	Св. 25 до 100	-	1,1	1,0	0.5
Обрабатываем曰и материал	$\begin{aligned} & \text { Шиирина } \\ & \text { резца } \end{aligned}$	$K_{v_{1}}$ для маркп матерпала инструмента			
		BK10.OM	BK10. XOM	$\underset{\text { BK8 }}{\text { BK15-XOM, }}$	P6M ${ }^{\text {c }}$
Коррозионностойкая сталь	Св. 10 до 25	1,0	0,9	0,85	0,4
	Св. 25 до 100	1,1	1,05	1,0	0,

Поправочный коэффициент $K_{v_{6}}$ на стой кость и уровень надежности " в карте 20.

РЕЖИМЫ РЕЗАНИЯ ПРИ ОТРЕЗАНИИ И ПРОРЕЗАНИИ

Обработка конструкционной и коррозионно-стойкой сталей					Резцы ия TС и БРС				Kapra 25		
$\begin{gathered} \text { Отношение } \\ \frac{D_{\text {min }}}{D_{g}} \end{gathered}$		Ширинарезиа \boldsymbol{b}_{8} резиа ${ }^{\text {b }}$ MM	Подача S_{T} (мм/об) для различных групп жесткости технологической системы								
			D_{c} (мм) для токарного (в числителе) и карусельвого (в знаменателё) станков								
			$\frac{320}{12}$		$\frac{800}{1600}$	2500		- -6.600	2000	$\frac{-2500}{12500}$	
			$D_{\mathrm{s}} / D_{\mathrm{c}}$ для токарного станка (в числителе) и t_{g} (мм) для карусельного (в знаменателе)								
						+\|c	r	+10			+
0,1-0,9			Резец С (см. эск. 4 , карту 9). Пластина из Т5К10*				Резеп D (см. эск. 4. карту 9). Пластина из T5K10*				
		3	0,06	0.09	-		-	-	-		
		5	0,11	0,14	0,13	0,17			--	-	
		8	0,17	0,23	0,21	0,27	0,23	0,29	-		
		12	0,20	0,25	0,22	0,29	0,24	0,32	0,28	0,36	
		17	,	,	0,24	0,31	0,26	0,34	0,29	0,38	
		24	-	-	-	-	0,28	0.35	0.30	0,40	
Св. 0,9			Резец С (см эск. 4, карту 9). Пластина из Т14К8* Резец D (см. эск. 4, карту 9). Пластина из T14K8*								
		3	$0,08\|0,11\|-\|-\|-$								
		5	0,14	0,17	0,16 0,26 0,28 0,30 -	0,210,340,370,39--	-0,290,310,330,350,37	\square0,370,410,430,450,47	--0,350,370,380,40	$\begin{gathered} \overline{-} \\ 0,45 \\ 0,48 \\ 0,50 \\ 0,52 \end{gathered}$	
		8	0,22	0,29							
		12	0,25	0,32							
		17	-	-							
		24		-							
		40	-	-							
IIоправочные коэффициенты на подач ${ }^{*} K s_{0}$ в вависимости от твердости обрабатьваемого материала											
HB	130	150	170	190	210	240		270	300	330	
$K s_{0}$	1,3	1,2	1,15	1,1	1,0	0,90		0,80	0,75	0,70	

* При обработке коррозионно-стойкой стали $K_{S_{0}}=0,75$; твердые сплавы м. в карте 7.

Поправочный кояффиииент на скорость рєвания $K_{v_{0}}$ в вависиности от твердости обпабатььвемого материала

${ }^{\%}$	1.1. Повв:менной обрабатываемостн		1.2. Конструкмионная углеродистая					1.3. Конструкщионная леги рованная			1.4. Легированнал		1.5. Быстро режущая
HB	130	170	130	170	210	270	330	170	210	270	170	210	270
K_{0}	1,45	1,25	1,35	1,15	1,0	0,7	0,55	1,05	0,9	0,65	0,9	0,8	0,5

При обработке коррознонно-стойкой стали $K_{0_{0}}=0,5$; твердые сплавь см. в карте 7.
*2 Группы сталей см, в прил. 1.

Поправочнье козффияиенть на подачу K_{S} дла цомененнвхх условиа работья

$K s_{5}-K s_{8}$ см. в карте 12.

Поправочные коэффиичентьи на скорость ревания K_{v} для измененньх усповий работья

Сталь	$b_{\min } / D_{\mathrm{a}}$	К $_{v_{1}}$ для мархи матеркала инструмента					
		T15K6	T14K8		T5K10.	P6M5	
						$s<0,2$	$S \leq 0.2$
Конструкционная	$\begin{gathered} 0,1(\text { (до } 0,4) \\ \text { Св. } 0,9 \end{gathered}$	$\overline{1,1}$	$\begin{aligned} & 1,05 \\ & 1,0 \end{aligned}$		1,0 0,9	$\begin{aligned} & 0,4 \\ & 0,36 \end{aligned}$	$\begin{aligned} & 0,3 \\ & 0,27 \end{aligned}$
Сталь	$D_{\text {min }} / D_{\mathrm{a}}$	К $_{\nu_{1}}$ для марки материала кнструменха					
		¢				P9Nisk8, P9K5	
						$s<0,2$	$s>0,2$
Коррозионностойкая	$\begin{gathered} 0,1 \text { (до } 0,9) \\ \text { Св. } 0,9 \end{gathered}$	$\overline{1,1}$	1,1 1,0	1,05 0,9	1,0 0,85	0,5 0,42	$\begin{aligned} & 0,4 \\ & 0,34 \end{aligned}$

$K v_{4}-K v_{8}$ см. в карте $12 ; K v_{6}-$ в карте 20.

Черновая обработка констоукдионной стали

Мелкне, сдедния
Модность резаиня N (хВл) в завинимости
Подача S (мм/об) для глубины редания t, мм

| 3 | 3,7 | 4,7 | 5,9 | 7,3 | 9,1 | 11,4 | 14,3 | 17,9 | 22,3 | 27,9 | 34, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0,05 | - | - | - | - | - | - | - | - | - | - | - |
| 0,06 | 0,05 | - | - | - | - | - | - | - | - | - | |
| 0,07 | 0,06 | 0,05 | - | - | - | - | - | - | - | - | |
| 0,09 | 0,07 | 0,06 | 0,05 | - | - | - | - | - | - | - | - |
| 0,11 | 0,09 | 0,07 | 0,06 | 0,05 | - | - | - | - | - | - | - |
| 0,14 | 0,11 | 0,09 | 0,07 | 0,06 | 0,05 | - | - | - | - | - | |
| 0,17 | 0,14 | 0,11 | 0,69 | 0,07 | 0,06 | 0,05 | - | - | - | - | |
| 0,20 | 0,17 | 0,14 | 0,11 | 0,09 | 0,07 | 0,06 | 0,05 | - | - | - | |
| 0,25 | 0,20 | 0,17 | 0,14 | 0,11 | 0,09 | 0,07 | 0,06 | 0,05 | - | - | |
| 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 0,11 | 0,09 | 0,07 | 0,06 | 0,05 | - | |
| 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 0,11 | 0,09 | 0,07 | 0,06 | 0,05 | |
| 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 0,11 | 0,09 | 0,07 | 0,06 | 0 |
| 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 0,11 | 0,09 | 0,07 | n |
| 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 011 | 0,09 | 0 |
| - | 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 0,11 | 1 |
| - | - | 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0,14 | 0 |
| - | - | - | 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 0,17 | 0 |
| - | - | - | - | 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 0,20 | 1 |
| - | - | - | - | - | 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 0,25 | 1 |
| - | - | - | - | - | - | 0,68 | 0,56 | 0,45 | 0,37 | 0,30 | 1 |
| - | - | - | - | - | - | - | 0,68 | 0,56 | 0,45 | 037 | |
| - | - | - | - | - | - | - | - | 0,68 | 0,56 | 0,45 | |
| - | - | - | - | - | - | - | 0,68 | 0,56 | 1 | | |

Поправочквй пофффциент на моцность ревания

HB	130	150	170
$K_{N_{0}}$	0,85	0,90	0.92

Резцы ия ТС и БС								Kapra 25						
упные и тяжелые станки														
ы релания, подаяи и скорости														
Мощноиь резания N (кВт) дтя скорости резания 0 , м														
	23	28	32		45	52	6.	72	85	100	117	13	161	

[^6]| 190 | 210 | 240 | 270 | 300 | 330 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10,95 | 1,0 | 1,05 | 1,10 | 1,15 | 1,20 |

Мелкие, средние, крупные т тяжелыестанки
Мощность резания N (кВт) в зависимости от глубнны резания, подачи н скорости резания
Подача S (мм/об) для глубины резания t, мм
Мощность резання N (кВт) для скарости резания v, м/мин

3	3,7	4.7	5,9	7,3	9,1	11.4	14,3	17,9	22,3	27,9	34,9	20	25	31	39	49	61	76	95	119	149	186
0,05	-	-	-	-	-	-	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	1,0	1,3	1,6
0,06	0,05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,0	1,3	1,6	2,0
0,08	0,06	0,05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,0	1,3	1,6	2,0	2,5
0,10	0,08	0,06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,0	1,3	1,6	2,0	2,5	3,2
0,12	0,10	0,08	-0,06	0,05	-	-	-	-	-	-	-	-	-	-	-	1,0	1,3	1,6	2,0	2,5	3,2	3,9
0,15	0,12	0,10	0,08	0,06	0,05	-	-	-	-	-	-	-	-	-	1,0	1,3	1,6	2,0	2,5	3,2	3,9	4,9
0,19	0,15	0,12	0,10	0,08	0,06	0,05	-	-	-	-	-	-	-	1,0	1,3	1,6	2,0	2,5	3,2	3,9	4,9	6,2
0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05	-	-	-	-	-	1,0	1,3	1,6	2,0	2,5	3,2	3,9	4,9	6,2	7,7
0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05	-	-	-	1,0	1.3	1,6	2,0	2,5	3,2	3,9	4,9	6,2	7,7	9,6
0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05	-	-	1,3	1,6	2,0	2,5	3,2	3,9	4,9	6,2	7,7	9,6	12
0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05	-	1,6	2,0	2,5	3,2	3,9	4,9	6,2	7,7	9,6	12	15
0,58	0,47	-0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05	2,0	2,5	3,2	3,9	4,9	6,2	7,7	9,6	12	15	19
0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	2,5	3,2	3,9	4,9	6,2	7,7	9,6	12	15	19	23
-	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	3,2	3,9	4,9	6,2	7,7	9,6		15	19	23	29

Мощность резания N (кВт) в зависимости от глубины резания, подачи и скорости резания

Подача S (мм/об) для глубины резания t, мм												Мощность резания N (кВт) для скорости резания v, м/мин										
3	3,7	4.7	5,9	7,3	9,1	11,4	14,3	17,9	22,3	27,9	34,9	20	25	31	39	49	61	76	95	119	149	186
-	-	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	3,9	4,9	6,2	7,7	9,6	12	15	19	23	29	37
-	-	-	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	4,9	6,2	7,7	9,6	12	15	19	23	29	37	-
-	-	-	-	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	6,2	7,7	9,6	12 -	15	19	23	29	37	-	-
-	-	-	-	-	0,73	0,58	0,47	0,37	0,30	0,24	0,19	7,7	9,6	12	15	19	23	29	37	-	-	-
-	-	-	-	-	-	0,73	0,58	0,47	0,37	0,30	0,24	9,6	12	15	19	23	29	37	-	-	-	-
-	-	-	-	-	-	-	0,73	0,58	0,47	0,37	0,30	12	15	19	-23	29	37	-	-	-	-	-
-	-	-	-	-	-	-	-	0,73	0,58	0,47	0,37	15	19	23	29	37	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	0,73	0,58	0,47	19	23	29	37		-	-	-	-	-	-

Поправочньй коэффичент на мощность ревания $K_{N_{0}}$ в аависияости от групп обрабатьваемого материала

Группа * стали	2.1. $34 \mathrm{XH} 3 М$ после отжига и др. $\left(\sigma_{\mathrm{B}}=600 \div 800 \mathrm{MПа}\right)$	2.2. 12 X 13 после закалки и отпуска и др. ($\sigma_{\mathrm{B}}>600 \mathrm{M}$ Па)	23. 12 X 18 H 10 T после аустенитизации и др. ($\sigma_{\mathrm{B}}>550$ МПа)	2.4. 30 X 13 после закалки и отпуска и др. $\left(\sigma_{\mathrm{B}}=1100 \div 1400 \mathrm{M}\right.$ Па)
K_{N}	См. в карте 12	0,7	1,0	1,3

[^7]| Обработка чугуна, медных и алюминиевых сплавов | | | | Резцы из TC и БРС | | | | Карта 26 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Отношение$\frac{D_{\text {min }}}{D_{3}}$ | Ширина pesd b, MM | $\begin{gathered} \text { Подача } S_{T} \text { (мм/об) для разлиqных групп жесткости техно- } \\ \text { логическон системы } \end{gathered}$ | | | | | | | |
| | | $D_{\text {c }}$ (мм) для токарного станка (в числителе) и карусельного (в знаменателе) | | | | | | | |
| | | $\frac{320-630}{1250}$ | | $\frac{800-1000}{1600-2500}$ | | $\frac{1250-1600}{3200-6300}$ | | $\frac{2000-12500}{8000-12500}$ | |
| | | $D_{3} / D_{\text {с }}$ для токарного станка (в числителе) и $l_{\text {п }}$ (мм) для карусельного станка (в знаменателе) | | | | | | | |
| | | 0
 0
 0
 0 | | | | | | | |
| 0,1 | $\begin{array}{r} 3 \\ 5 \\ 8 \\ 12 \\ 17 \\ 24 \end{array}$ | Резец С (см. зск. 4, карту 9). Пластина из BK 8 | | | | Резец D (см. эск. 4, карту 9). Пластина из BK 8 | | | |
| | | 0,09 | 0,12 | - | - | - | - | - | - |
| | | 0,15 0,24 | 0,19 0,31 | 0,18 0,30 | 0,24 0,38 | $\overline{0,33}$ | - -42 | - | - |
| | | 0,26 | 0,34 | 0,33 | 0,41 | 0,35 | 0,45 | 0,39 | 0,50 |
| | | - | - | 0,34 | 0,44 | 0,38 | 0,49 | 0,42 | 0,53. |
| | | - | | | | 0,40 | 0,51 | 0,44 | 0,55 |
| | | Резец С (см. эск. 4, карту 9). Пластина из BK 8 | | | | Резец D (см. эск. 4, карту 9). Пластина из BK8 | | | |
| 0,9 | 3 | 0,10 | 0,13 | | | - | - | - | - |
| | 5 | 0,17 | 0,21 | 0,20 | 0,26 | - | - | - | - |
| | 8 | 0,27 | 0,34 | 0,33 | 0,42 | 0,36 | 0,46 | - | - |
| | 12 | 0,29 | 0,38 | 0,36 | 0,45 | 0,39 | 0,50 | 0,43 | 0,55 |
| | 17 | - | - | 0,38 | 0,49 | 0,42 | 0,54 | 0,46 | 0,5,3 |
| | 24 | - | - | , | - | 0,44 | 0,56 | 0,48 | 0,6 |
| | 40 | - | - | - | - | 0,46 | 0,59 | 0,51 | 0,65 |

Поправочньй коэфрициент на подачу $K_{S_{0} \text { в вависимости }}$ от твердости обрабатываемого материала

Tpyntia обрабаты. ваемого материала	3.1. Серый тугуп						
HB	150	170	190	210	240	270	300
K_{s}	1,1	1,05	1,0	0,95	0,9	0,8	0,75

ПІ родолжение карть

Группа порапагываемого материала	3.2. Ковки\# чугун						Медные сплавы			4.3. Алю-миниевые сплавы
							4.1	4.2		
HB	150	170	190	210	240	270	35	80	120	50-70
$K_{S}{ }_{0}$	1,0	0,95	0,9	0,85	0,8	0,7	1,2	1,0	0,7	1,3

* Группы материалов см. в прил. 1.

Отношение $\frac{D_{\text {min }}}{D_{3}}$	Ширина pesa b, MM	Мелкие и среднис станки \| Крупные и тяжелые станки									
		Скорость резамия $v_{\text {т }}$ (м/мин) дла подач S, мм/об									
		0,06	0,10	0,15	0,20	0,30	0,20	0,30	0,40	0,50	0,60
0,1		Резец С (см. эск. 4, карту 9). Пластина из ВK8					Резец D (см. эск. 4, карту 9). Пластина нз BK8				
		158	130	108	97	-	82	-	-	-	-
	3	151	124	103	93	78	78	66	63	57	53
	8	144	118	98	89	74	75	62	56	51	47
	12	138	113	94	85	71	71	60	54	49	45
	24	133	109	91	82	69	69	58	52	47	44
		-	-	-	80	67	67	56	50	46	42

		Резец С (см. эск. 4, карту 9). Пластина из BK8					Резец D (см. эск. 4, карту 9). Пластина из ВК8				
	3	126	104	86	78	-	66	-	-	-	-
	5	121	99	82	74	62	62	53	50	46	42
	8	115	94	78	71	59	60	50	46	41	38
0,9	12	110	90	75	68	57	57	48	43	39	36
	17	106	87	73	66	55	55	46	42	38	35
	24	-	-	-	64	54	54	45	40	37	34
	40	-	-	-	-	-	-	42	38	35	32

Поправпиные кояффициктьs на скорость резанил $K_{v_{0}}$ в вависимости оп писрдости обрабатьєаемого материала											
「рyrrra* обрабаты. ваемого мдгериала	3.1. Серыӓ пугух										
HB	150		170	190		210		240	270		300
K_{00}	1,15		1,1		1,0	0,85		0,75	0,65		0,55
Групппа* обрабатввалмого маєериала	32. Kовкқiz syrys						Медные стлазы				4.3. Алюминиевы сплавы
							4.1		4.2		
HB	150	170	190	210	240	270	35	60	80	120	50-70
$K_{v_{0}}$	1,15	1.0	0,9	0,75	0,65	0,55	2,0	1,4	1,0	0,6	5,0

* Группы материалов см. в прил. 1.

Обработка чугуна, медных и алюминиевых сплазов

Резды из ТС и БРС
Карта 26

Поправочнье ноэффициентьь на побачу K_{S} для измененных условии работьь

Othometre $D_{\min } / D$	$K_{S_{1}}$ дпя зарки материала инструмента		
	BK6-M	BK6	BK8
01 (до 0,4)	-	0,8	1,0
, Св. 0,9	0,85	1,0	1,5
$K_{S_{3}}-K_{S,}$ см. в карге 12.			

Поправочаые коэффициентьь на скорогть резания K_{v} для измененньл условий работья

$D_{\min /}$ D	$K_{\text {у }_{1}}$ для марки материала инсирумента			
	BK6-M	BK6	BK8	P6M5
0.1 (д0 0,4)	-	1,05	1,0	0,5
Св. 0,9	1,1	1,0	0,9	0,45

$K_{v_{6}}-K_{0_{0}}$ см. в карте $12 ; K_{0_{6}}$ - в карте 20,

Подача S												Мошность резания N (хВт) для скорости резания v, м, мин									
3	3.7	4,7	5,9	7,3	9.1	11,4	14,3	17.9	22,3	27,9	34,9	20	25	31	39	49	61	76	95	119	149
0,05			-	-	-	-	-	-	-					\cdots		-	-			-	
0,06	0,05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
0,08	0,06	0,05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.
0,10	0,08	0,06	0,05	-	-	-	-	-		-		-	-		\cdots	-	-	-	-	1,1	1,4
0,12	0,10	0,08	0,06	0,05		-	-	-		-		-	-	-	-	-		-	1,1	1,4	18
0,15	0,12	0,10	0,08	0,06	0,05		-	-	-			-	-	-	-	-	-	1,1	1,4	1,8	,
0,19	015	0,12	0,10	0,08	0,06	0,05	-	-			-	-	-	-	\sim	-	1,1	1,4	1,8	2,2	2,
0,24	0,19	0,15	0,12	0,10	0,08	0.06	0,05		-	-			-		-	1,1	1,4	1,8	2,2	2,7	3,
0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0.05		-					1,1	1	1,8	2,2	2,7	3,4	4.3
0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05		-	-	-	1,	1,4	1,8	2,2	2,7	3,4	4,3	$5,4$
0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	0,05		-	1,1	1,4	1,8	2,2	2,7	3,4	4,3	5,4	6,7
0,58	0,47	0,37	0,30	0,24	0,19	0,15	0.12	0,10	0,08	0,06	0,05	1,1	1,4	1,8	2,2	2,7	3,4	4,3	5,4	6,7	
0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	0,08	0,06	1,4	1,8	2,2	2,7	3,4	4,3		6,7	8,4	10
	0,73	0,58	0,47	0,37	0,30	024	0,19	0,15	0,12	0,10	0,08	1,8	2,2	2,7	3,4	4,3	54	6,7	8,4	10	13
	,	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10	2,2	2,7	3,4	4,3	5,4	6,7	8,4	10	13	16
		-,	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	0,12	2,7	3,4	4,3	5.4	6,7	8,4	10	13	16	20
			-	0,73	0,58	0,47	0,37	0,30	0,24	0,19	0,15	3,4		5,4	6,7	8,4	10	13	16	20	26
		-	-	,	0,73	$0,58$	0,47	0,37	0,30	0,24	0,19	4,4	5,4	6,7	8,4	10	13	16	$2 G$	26	32
					0,73	0,73	0,58	0,47	0,37	0,30	0,24	5,4	6,7	8,4	10	13	16	20	26	32	$-$
							0,73	0,58	0,47	0,37	0,30	6,7	8,4	10	13	16	20	26	32		
				-			,	0,73	0,58	0,47	0,37	8,4	10	13	16	20	26	32			
							-	-7	0,73	0,58	0,47		13	16	20	26	32	-			
										0,73	0,58	13	16	20	26						

Мелкие, среднне, хрупныептяжелыестанки
Мошноств резания N (кВт) в зависимости от гпу5ины резаиня, подачи и схорости резання

Поправочный коэффициент на мощность резания $K_{N_{0}}$ в вависимости от твердости обрабатьввеного материала

HB	150	170	190	210	240	270	300
$K_{N_{0}}$	0,9	0,95	$\cdot 1,0$	1,05	1,1	1,15	1,2

Сменные многогранные пластины						Резцы из ТС				Карта 27				
Мелкие и средние станки														
	\pm	I	Обрабатываемый »атериал											
	$\begin{aligned} & z \\ & \approx \\ & z \end{aligned}$	＊	Конструкционная сталь				Коррозионно－стойкая и закаленная стали，чугун				Цветные металлы и сплавы			
Форма пластины	$\begin{aligned} & \text { 䍔 } \\ & \text { 皆 } \end{aligned}$		Число k	Полныи	Pacx sa 1 m		Число kпериодов стой－ кости		$\begin{aligned} & \text { Расход } R \\ & \text { sa } 1000 \mathrm{q}, \\ & \text { שr. } \end{aligned}$		Число k периодов стой кост	Полный период стойко－сти ΣT ． мин	$\begin{aligned} & \text { Расход } R \\ & \text { sa } 1000 \text { ч, } \\ & \text { шт. } \end{aligned}$	
		$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { 㽞 } \\ & \text { a } \end{aligned}$	периодов стой кости											
（1）	3,2 4,8 6,4	20	1，6	32	1875	1563	1，7	34	1765	1309^{-}	${ }^{\text {－}} 1,8$	36	1667	980
Δ	$\begin{aligned} & 3,2 \\ & 4,8 \\ & 6,4 \end{aligned}$	20	2.4	48	1250	1042	2，6	52	1153	854	2，8	56	1071	630
\square	3,2 4,8 6,4 7,9	20	3，2	64	938	781	3,5	70	857	635	3，7	74	811	477

форма мластиня			Обрабатываемый материал											
			Конструкдионная сталь				Коррозионно-стойкая и закаленная стали, чугув				Цветные металлы а сплавь			
			Число $\dot{\text { в }}$ периодов сто月кости	Полный период стойко сти Σ гT 4 4	$\begin{aligned} & \text { Pacxca } R \\ & \text { sa } \frac{1000}{} \text { qur. } \end{aligned}$		Число * периодов стост кост	Полчы период стойо-сти ΣT. мим	$\begin{aligned} & \text { Расход } R \\ & \text { 3а } 1000 \text { घ, } \\ & \text { wir. } \end{aligned}$		Число-в зернодов стой кост	Полиык стойко crin ΣT, мин	$\begin{aligned} & \text { Facxom } \\ & \text { sa } 1000 \\ & \text { wis } \end{aligned}$	
Θ	$\begin{aligned} & 4,8 \\ & 6,4 \end{aligned}$	20	4,0	80	750	625	4,3	86	698	517	4,5	90	667	392
\square	$\begin{aligned} & 4,8 \\ & 6,4 \end{aligned}$	20	4,8	96	625	521	5,2	104	577	427	5,6	112	536	315
0	3,2 4,8 6,4	20	5,6	112	536	446	6,1	122	492	364	6,5	130	462	271

Крупныеитяжелыестанки

Формапластины	$\begin{aligned} & \text { Высота } \\ & \text { резца } \\ & H, \text { мм } \end{aligned}$	Период стойT, мин\qquad	Обрабатываемы\# материал								
			Конструкционная сталь			Коррозионно-стойкая и закаленная стали, чугун			Цветные металлы и сплавы		
			Число k периодов стойкости	Полный период croă$\stackrel{\text { коети }}{\Sigma T, \text { мин }}$	$\begin{aligned} & \text { Расход } \\ & R \quad 32 \\ & 10004, \\ & \text { wr } \end{aligned}$ шт.	$\begin{gathered} \text { Число } k \\ \text { периодов } \\ \text { стой- } \\ \text { кости } \end{gathered}$	Полны период стойкости ΣT, мин	$\begin{aligned} & \text { Расход } \\ & R \text { за } \\ & 1000 \cdot \mathbf{4}, \end{aligned}$	Число k периодов кости	Полный период стойкости ΣT, мин	
4	$\begin{aligned} & 50 \\ & 63 \\ & 80 \end{aligned}$	40	5 6 6	$\begin{aligned} & 200 \\ & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 7 . \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 280 \\ & 320 \\ & 320 \end{aligned}$	$\begin{aligned} & 214 \\ & 188 \\ & 188 \end{aligned}$	8 9 9	$\begin{aligned} & 320 \\ & 360 \\ & 360 \end{aligned}$	188 167 167
	$\begin{aligned} & 50 \\ & 63 \end{aligned}$	40	1,6	64	938	1,7	68	882	1,8	72	833
(0)	50 63	40	1,6 3,2	64 128	938 469	1,7 3,5	$\begin{array}{r} 68 \\ 210 \end{array}$	$\begin{aligned} & 882 \\ & 286 \end{aligned}$	1,8 3,7	$\begin{array}{r} 72 \\ 148 \end{array}$	$\begin{aligned} & 833 \\ & 405 \end{aligned}$
	50 63 80	40	- ${ }^{3,2}$	128	469	3,5	210	286	3,7	148	405

$\begin{gathered} \text { Форма } \\ \text { пластины } \end{gathered}$	Толщина h, мм	Мелкие и с'редние станки					Крупные и тяжелве станки				
		$\begin{gathered} \text { Период } \\ \text { стоности } \\ \text { Tрезнов, } \\ \text { мия } \end{gathered}$	Число kпериодов стойкости	Полныи $\underset{\text { сторкости }}{\text { сия }}$ ΣT, мнн			$\begin{array}{\|c\|c\|} \substack{\text { Сериодд } \\ \text { стойости } \\ T \text { резнов, } \\ \text { мино }} \end{array}$	Число k периодов стоикост	$\left.\begin{array}{\|c\|c\|} \text { Полный } \\ \text { пернод } \\ \text { стойости } \\ \Sigma T, \text { мин } \end{array} \right\rvert\,$		
					без пефовки	$\begin{gathered} \text { с одной } \\ \text { перешлй } \\ \text { фовкой } \end{gathered}$				бes ne фовки	$\begin{gathered} \text { с оноя } \\ \text { переенли. } \\ \text { фовкой } \end{gathered}$
\rangle	$\begin{aligned} & 4,8 \\ & 6,4 \end{aligned}$	60	4,8	288	208	116	-	-	-	-	-
0	$\begin{aligned} & 4,8 \\ & 6,4 \end{aligned}$	60	5,8	348	173	96	90	5,2	468	128	73
	$\begin{aligned} & 3,2 \\ & 4,8 \\ & 6,4 \end{aligned}$	60	6,7	402	150	83	- 90	6,1	549	109	62
B	$\begin{array}{r} 6 \\ 8 \\ 8 \end{array}$	-	-	-	-	-	90	1,8	162	370	212

Чериовал в чистовая обработка					Kарта 29
Долговечносте дегалеа сборных деацов		Резцы из TC и PK			
Мелкие и средние станки					
Деталь сборного резца	Форма пластины				
	(1)	\triangle	\square	\bigcirc	\bigcirc

Число депалей на один корпус при черновой обработке

Режущая пластика	106	66	50	40	34
Опорная пластина	20	12	10	8	6
Крепежный винт	3	-3	3	2	2
Прижимная планка	6	5	5	4	4

Число дсталей на один корпус при чистовой обработке

Режущая пластина	210	130	100	80	70
Опорная пластина	5	3	2	2	2
Крепежный винт	3	2	2	2	2
Прижимная пламка	3	2	2	2	2

Крупныеитяжелыестанки

Деталь сборного резца	Резец	$\begin{gathered} \text { Высота } \\ \text { державки } \\ H, \text { мм } \end{gathered}$	Чнсло деталей	
			на одну державку блочного образца	на одну держақку или блоквставку с непосредственным креплением пластины
Режуций злемєнт Опорный элемент Блок-вставка	Сборный	50-60	300 75 15	20 5 -
	С напайной вставкой		100	1

Деталь сборного резца	Резец	Высота державки H, мм	Число деталей	
			на одну державку блочного образца	на одну держав ку или блок. вставку с непосредственным креплением пластины

Число деталей на оӧин корпус при чистовой обработке

Режущий элемент Опорный элемент	Сборный С четырехгранной пластиной (квадрат, ромб)	50-80	$1200 / 2400$ $150 / 250$	$\begin{gathered} 40 / 80 \\ 4 / 6 \end{gathered}$
Блок-вставка	C двухгранной пластиной (параллелограмм, ромб)	50-80	30/50	-
	С напайной вставкой		200	1

Черновая обработка										Карта 30	
Напаянные пластины					Резцы из ТС						
Резды			Обрабатываемыи материан								
			Конструкционная сталь			Коррозионностойкая сталь, чугун			Цветные металлы и сплавы		
Токарные проходные подрезные	20					7	210	286	8	240	250
	25					8	240	250	9	270	222
	32	30	5	150	400	8	240	250	10	300	200
	40					9	270	222	11	330	182
	50								11	660	91
	63	60	6	360	167	9	540	111	12	720	83
										720	
Токарные асточные 4 -									7	210	286
	20								7	210	286
	25	30	5	150	400	6	180	333	8	240	250
	32								8	240	250
	40								9	270	222

Резцы			Обрабатываемы甘 материал										
			Конструкционная сталь			Коррозионностойкая сталь, чугун			Циетные металлы и сілыавы				
											\%		
Токарные отрезные и прорезные	$\begin{aligned} & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$	30	4	120	500	5	150	400	$\begin{aligned} & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	150 150 180 180	$\begin{aligned} & 400 \\ & 400 \\ & 3.3 \\ & 333 \end{aligned}$		
	50 63 80	60	5	300	200	6	360	167	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	420 480 540	$\begin{aligned} & 149 \\ & 126 \end{aligned}$		
-													
Чистовая обраӧотка			Резцы из ТС с напаянными пластинами							Kapra 31			
	Высота державки резца H, мм		$\begin{gathered} \text { Период } \\ \text { стойкости } \\ T \underset{\substack{\text { резцов } \\ \text { мин }}}{ } . \end{gathered}$		Bce обрабатываемые материалы								
			Число k периодов стойкости	Полный период стойкости ΣT, мин			$\begin{gathered} \text { pacxop } R \\ \text { sa } 1000 \\ \text { mit. } \end{gathered}$						
Токарные, проходные и подрезные	$\begin{aligned} & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$				60		$\begin{array}{r} 9 \\ 11 \\ 12 \\ 12 \end{array}$		540660720720			$\begin{array}{r} 111 \\ 91 \\ 83 \\ 83 \end{array}$	
	$\begin{aligned} & 50 \\ & 63 \\ & 80 \end{aligned}$		90		$\begin{aligned} & 12 \\ & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & 1080 \\ & 1170 \\ & 1170 \end{aligned}$			$\begin{aligned} & 56 \\ & 51 \\ & 51 \end{aligned}$			
Токарные, расточные	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$		60		$\begin{array}{r} 8 \\ 9 \\ 9 \\ 10 \\ 11 \end{array}$		$\begin{aligned} & 480 \\ & 540 \\ & 540 \\ & 600 \\ & 660 \end{aligned}$			$\begin{aligned} & 125 \\ & 111 \\ & 111 \\ & 100 \\ & 100 \end{aligned}$			

Резия			Обрабатываемый материал								
			Копструкдионная сталь			Коррозионно. стойкая сталь			Цветные металлв и сплавы		
Токарные	20	30	5	150	400	6	180	333	7	210	286
проходные	25		6	180	333	. 7	210	286	9	270	222
¢ $\varphi=-=45$ и	32		7	210	286	. 9	270	222	11	330	182
60°; подрез-	40		8	240	250	10	300	200	12	360	167
ходные	50	60	9	540	111	11	660	91	13	780	77
упорные	63		10	600	100	12	720	83	15	900	67
отогнутые ${ }^{\text {c }} \boldsymbol{\text { c }}$ ¢ 90°	80		11	660	91	13	780	77	16	960	63
Токарные	16	30	3	90	667	4	120	500	5	150	400
расточные	20		4	120	500	5	150	400	7	210	286
5.	25		5	150	400	6	180	333	8	240	250
,	32		5	150	400	7	210	286		270	222
	40		6	180	333	8	240	250	10	300	200
Токарные отрезные, пластинчатые	20	30	5	150	400°	6	180	333	8	240	250
	25		5	150	400	7	210	286	9	270	222
	32		6	180	333	8	240	250	10	300	200
	40		7	210	286	9	270	222	11	330	182
	63	60	8	480	125	10	600	100	12	720	83
	80		9	540	111	11	660	91	13	780	77

Чистовая обработка			Резцы из БРС		Карта 33
Резцы	Высота державки резща H, m	Период стоико мин ми	Все обрабатываемые материалы		
			Число k периодов стойкости	Полный период стойкости ΣT, мин	$\begin{gathered} \text { Расход } R \\ \text { за } 1000 \text { ч, шт. } \end{gathered}$
вкарные проход- 4 е с $\varphi=45$ и 60°; дрезные, ото- утые с $\varphi=45^{\circ}$;	$\begin{aligned} & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$	60	$\begin{array}{r} 8 \\ 10 \\ 12 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 480 \\ & 600 \\ & 720 \\ & 780 \\ & \hline \end{aligned}$	$\begin{array}{r} 125 \\ 100 \\ 83 \\ 77 \\ \hline \end{array}$
$\text { c } \varphi=90^{\circ}$	$\begin{aligned} & 50 \\ & 63 \\ & 80 \\ & \hline \end{aligned}$	90	$\begin{aligned} & 17 \\ & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & 153 \\ & 162 \\ & 180 \end{aligned}$	$\begin{aligned} & 392 \\ & 370 \\ & 333 \end{aligned}$
окарные, расточHe	16 20 25 32 40	60	6 8 9 10 11	$\begin{aligned} & 360 \\ & 480 \\ & 540 \\ & 600 \\ & 660 \end{aligned}$	$\begin{array}{r} 167 \\ 125 \\ 111 \\ 100 \\ 91 \end{array}$

Приложение 1
ГРУППЫ И МАРКИ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Группа，подгруппа		Номер ГОСТа на материал	Состояние поставки по ГОСТу	Марки	Механические свойства	
Номер группы и под－ группы，наименова－ ние материала	Разновидности материала в подгруппе				Твердость по Бринеллю HB	Временное сопротивление σ_{B}, M Па

1．1．Повышенной об－ рабатываемости	1．Конструкционная，подшипниковая и инструментальная сталь					
	－	1414－75	Горячекатаная， без ТО	$\begin{aligned} & \text { A11, A12 } \\ & \text { A20, A30 } \\ & \text { A35, А40Г } \end{aligned}$	三	$\begin{gathered} 420 \\ 460,520 \\ 520,600 \end{gathered}$
1．2．Конструкцион－ ная углеродистая	Обыкновен－ ного качества	380－71	Горячекатаная и холоднокатаная без ТО	CT1 Cr2 Cr3 CT4 CT5 CT5	二	$\begin{gathered} 310-340 \\ 330-450 \\ 370-500 \\ 410-550 \\ 500-600 \\ 600 \text { и более } \end{gathered}$
	Качественная	1050－74		$08,10,15$ 20，25， 30 35，40， 45 50，55， 58 60，65， 70 $75,80,85$ 601，65Г， 70Γ	$131,143,149$ $163,170,179$ $207,217,229$ $241,255,255$ $255,255,269$ $285,285,302$ $269,285,285$	二
	Качественная литая		Без TO Закалка п отпуск 6ез TO	$\begin{aligned} & 25 \mathrm{~J}, 35 \mathrm{~J} \\ & 35 \mathrm{~J} \\ & 45 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 125,140 \\ & 220 \\ & 190 \end{aligned}$	-
1．3，Конструкцион－ ная легирован－ ная	Хромистая	4543－71	Горячекатаная и кованая（отож－ женная илй под－ bertayteg berg－	$\begin{aligned} & 15 \mathrm{X}, 15 \mathrm{XA}, 20 \mathrm{X} \\ & 30 \mathrm{X}, 30 \mathrm{XPA} \\ & 35 \mathrm{X}, 38 \mathrm{XA}, 40 \mathrm{X} \end{aligned}$	179 187,241 $197,207,217$ 209	－

		4 Wem			197, 207, 207 207, 229,229 197, 207 207,217 227,229 255	-
	Хромомарганцовистая	y			$\begin{gathered} 187,229 \\ 217,197 \\ 217 \\ 229 \\ 207 \end{gathered}$	-
	Хромокремнистая			$\begin{aligned} & 33 \mathrm{XC}, 38 \mathrm{XC} \\ & 40 \mathrm{XC} \end{aligned}$	$\begin{gathered} 241,255 \\ 255 \\ \hline \end{gathered}$	-
	Хромомолибденовая, хро-момолибденованадиевая			$\begin{aligned} & \text { 15XM, 20XM } \\ & \text { 30XM, 30XMA } \\ & \text { 35ХM, 38XM } \\ & \text { 30Х } 3 М Ф, ~ 40 Х М Ф А ~ \end{aligned}$	$\begin{gathered} 179 \\ 229 \\ 241 \\ 229,269 \end{gathered}$	-
	$\begin{aligned} & \text { Хромована- } \\ & \text { диевая } \end{aligned}$			$\begin{aligned} & 15 \mathrm{X} \Phi \\ & 40 \mathrm{X} \Phi \mathrm{~A} \end{aligned}$	$\begin{aligned} & 187 \\ & 241 \end{aligned}$	-
	\qquad			$15 \times 2 \mathrm{M}$ (15HM)	197	-
	Хромоникелевая, хромониа келевая с бромом			$\begin{aligned} & 20 \mathrm{XH}, 40 \mathrm{XH} \\ & 55 \mathrm{XH}, 50 \mathrm{H} \\ & 12 \mathrm{XH2}, 12 \mathrm{XH} 3 \mathrm{~A} \\ & 20 \times \mathrm{HSA} \\ & 12 \times 2 \mathrm{HA}, \\ & 20 \times 2 \mathrm{H} 4 \mathrm{YA}, 30 \times 1 \mathrm{BA} \end{aligned}$	$\begin{gathered} 197,207 \\ 207 \\ 207,217 \\ 255^{\circ} \\ 269 \\ 269,241 \\ \hline \end{gathered}$	-
¢	Инструментальнал углеродистая	1435-74		$\begin{aligned} & \text { Y7, V7A, Y8 } \\ & Y 8 A, y 8 \Gamma, Y B R A \\ & Y 9, Y 9 A, Y 10 \\ & Y 10 A, Y 11, Y 11 A \\ & Y 12, y 12 A \\ & Y 13, y 13 A \end{aligned}$	187 187 $192,192,207$ 212 212 217	二

Группа, подгруппа		Номер ГОСГана материал	Состояние поставки по ГOCTy	Марки	Механяческие свойста	
Номер группы и под группы, нанменование материала	Разновидности материала в подгруппе				Твердость по Бринеллю HB	Временное сопротивление $\sigma_{B}, М П а$
1.4. Легированная	Хромокремнемарганцевая и хромокремне-марганцовоникелевая	4543-71	Горячекатаная и киваная (отожженная или подвергнутая высокому отпуску)	$\begin{aligned} & \text { 20XГСА, } 25 \mathrm{X} \mathrm{\Gamma СА} \\ & 30 \mathrm{X} \Gamma \mathrm{C}, 30 \times \Gamma \mathrm{CA} \\ & 30 \mathrm{X} \Gamma \mathrm{CH} 2 \mathrm{~A} \\ & 35 \mathrm{X} \Gamma \mathrm{CA} \end{aligned}$	$\begin{gathered} 207,217 \\ 229 \\ 255 \\ 241 \end{gathered}$	-
	Хромомарганцовоникелевая и хромомар-ганцовоникелевая с титаном и бором			$\begin{aligned} & \text { 15XГH2TA } \\ & 20 \mathrm{X} \Gamma \mathrm{HP} \\ & 38 \mathrm{X} \Gamma \mathrm{H} \end{aligned}$	269 197 229	-
	Хромоникельмолибденовая			$\begin{aligned} & \text { 14X2H3MA } \\ & \text { 20XH2M } \\ & \text { 30XH2MA } \\ & \text { 40XH2M } \\ & \text { 38X2H2MA } \\ & \text { 40X2H2MA } \\ & \text { 38XH3MA } \\ & \text { 18X2HIMMA } \\ & \text { 25X2H4MA } \\ & \hline \end{aligned}$	269 229 241 269 269 255 269	-
	Хромоникель-молибденованадиевая, хромоникельванадиевая			$\begin{aligned} & \text { 30ХН2МФА } \\ & \text { 36Х2Н2МФА } \\ & \text { 38ХНЗМФА } \\ & \text { 45ХН2МФА } \\ & \text { 20ХН4ФА } \end{aligned}$	269	-
	Хромоалюминиевая. хро-			$\begin{aligned} & 38 \times 2 Ю \\ & 38 \times 2 \mathrm{M} \mathrm{~A} \end{aligned}$	229	-

Группа，подгруппd		$\begin{aligned} & \text { Номер } \\ & \text { ГОСТа на } \\ & \text { материал } \end{aligned}$	Сосгояние поставки ne ГOCTy	Марки	Механические свойства	
Номер группы и под－ гғуипы，наименова－ ние материала	Разчслидности матениала в под八руппе				Te：pдocts mo Брннеллю HB	Временное сопротивление $\sigma_{B}, ~ М П а ~$

2．1．Теплостойкая	－	5632－72	－	$\begin{aligned} & 34 \times \mathrm{X} 3 \mathrm{M}, 34 \mathrm{XH} \mathrm{H} \text { MФ } \\ & \text { 15X5M, 15X6СЮ } \\ & 25 \mathrm{X} 13 \mathrm{H} 2 \end{aligned}$	$\begin{gathered} 600-800 \\ 650 \text { и более } \\ 700 \text { —1000 } \end{gathered}$	—
2．2．Коррозионно－ стойкая повы－ шенной обраба－ тываемости	，		Закалка и от－ пуск	$\begin{aligned} & \text { 12X13 } \\ & 11 \mathrm{X} 11 \mathrm{H} 2 \mathrm{BM} \Phi \\ & 1 \mathrm{X} 12 \mathrm{H} 2 \mathrm{BM} \mathrm{\Phi} \end{aligned}$	二	$\begin{aligned} & 600 \text { и более } \\ & 700 \\ & 750 \end{aligned}$
2．3．Коррозионно－ стойкая，кисло－ тостойкая и жа－ ростойкая				$\begin{aligned} & \text { 20X3MФ } \\ & \text { 40X13 } \\ & 0,9 \mathrm{X} 16 \mathrm{H} 4 \mathrm{~S} \\ & \text { 14X17H2, } 20 \times 17 \mathrm{H} 2 \\ & 95 \mathrm{X} 18 \\ & \text { 12X18H10T, } \\ & \text { 10X23H18, } \\ & \text { 20X23H18 } \\ & \text { 12X21H5T } \\ & 09 \times 15 \mathrm{H} 9 \mathrm{~F}, \\ & 08 \mathrm{X} 17 \mathrm{H} 5 \mathrm{M} 3 \\ & 07 \mathrm{X} 16 \mathrm{H} 6 \end{aligned}$	－	$\begin{gathered} 900-1300 \\ 900 \\ 1000 \text { и более } \\ 1100 \\ 900 \\ 550 \text { и более } \\ 700 \text { и более } \\ 850-1100 \\ 1100 \text { и более } \end{gathered}$
2．4．Коррозионно－ стойкая иони－				$\begin{aligned} & 20 \times 13,30 \times 13 \\ & 09 \times 16 \mathrm{H} 4 \mathrm{~F} \end{aligned}$	－	$\begin{aligned} & 1100-1400 \\ & 1300 \text { и более } \end{aligned}$

4. Медное и алюминиевое гтлавы

Группа подгрувпв		Номер гоСТаня материал	Cocromhae moctabis no [OCTy	Mapks	Мехачические сойтта	
Номер грушпы и подгруппи, наименование натериалв	Разновнднсети материала 8 noдгруппе				$\begin{aligned} & \text { Теердость по } \\ & \text { Бри:еллю НВ } \end{aligned}$	Временное сопротивление $\sigma_{\mathrm{B}}, \mathrm{M}$ Па
4.2. Медные сплавы низкой твердости	Броняа	$\begin{array}{r} 18175-78 \\ 613-79 \end{array}$	-	$\begin{aligned} & \text { БpAЖ9—4 } \\ & \text { БpO8IL4 } \\ & \text { 5pO10L2 } \\ & \text { БpO10Ф1 } \end{aligned}$	$\begin{array}{r} 100 \\ 75 \\ 75 \\ 90 \end{array}$	$\begin{gathered} 30-35 \\ 196 \\ 225,5 \\ 245 \end{gathered}$
	Јатунь	15527-70	-	$\begin{aligned} & \text { ЛЖМц59—1—1 } \\ & \text { ЛА77-2 } \\ & \text { ЛК80-3 } \end{aligned}$	100	28-66
4.3. Алюминиевые сплавы	-	8617-81 E	-	$\begin{aligned} & \text { Д16, Д19 } \\ & \text { Д20, Д21 } \\ & \text { AK4, AЛ2, AЛ3 } \\ & \text { AJI4, AJI5-1 } \\ & \text { AK5M7, AЛ7 } \\ & \text { AЛ9, BAJ5 } \\ & \text { AЛ1, AJ19 } \end{aligned}$	$\begin{gathered} \overline{-} \\ 100,50,63 \\ 70,65-70 \\ 80,90 \\ 50-60,90 \\ 120,70-90 \end{gathered}$	$\begin{gathered} 539,490 \\ 392,461 \\ 500,157 \\ 235 \\ 226,333 \\ 294 \end{gathered}$

Нанменование и состав СОЖ	Номер TY	Накмевование п. состав СОЖ	Homep ty
1,5-3\%-ная эмульсия из эмульсола	38-101197-76	5-10\%-ный раствор синтетической	38-40130-75
Укринол-1		СОЖ Аквол-10	
3-5\%-ная эмульсия из эмульсола Укринол-1	38-101197-76	3-5\%-ный раствор полусинтетический СОЖ Аквол-11	38-40146-77
$3-5 \%$-ная эмульсия из эмульсола	38 УССР-201220-75	5-10\%-ный раствор полусинтетиче.	38-40146-77
Аквол-2		ский СОЖ Аквол-11	
$5-10 \%$-ная эмульсия из эмульсола Р3-СОЖ8	38-101258-74	MP-1 MP-2y	$\left\lvert\, \begin{aligned} & 38-101247-79 Д \\ & 38 \text { УССР-201205-77 } \end{aligned}\right.$
$2-5 \%$-ный раствор синтетической СОЖ Аквол-10	38-40130-75		

Приложение 3
СООТВЕТСТВИЕ МАРОК ОТЕЧЕСТВЕННЫХ ТВЕРДЫХ СПЛАВОВ МЕЖДУНАРОДНОИ КЛАССИФИКАЦИИ

	Группа примене ния	Сплавв			
		$\underset{3882-74}{\text { по }}$	безвольфрамовве и маловольфрамовые	$\stackrel{\text { марок }}{\text { мС }}$	С пзносостойтвми покрдтиями
P	P01	T30K4	20		
	P10	T15K6		$\mathrm{MCl11}$	MC^{2215},
	P20	T14K8		MC121	- ВП1325 ВП1255
	P25	TT20K9		MC137	$\perp 1.15$
	P30	T5K10	11	MC131	-
		TT'0K8-5			11

	пруппаприменеприменения	Сплавм				
		$\underset{3882-74}{\text { no }}$	безвольфрамовые и маловольфрамовме	$\stackrel{\text { марок }}{\text { MC }}$	c износостоиквми „ократиями	
p	P40	T5K12		MC146		
		TT7K12				
M	M05	BK3-M				
		BK6-OM				
	MiO	TT8K6		MC211	MC2210	
		BK6-M				
	M20	TT10K8-6		MC221		
	M30	BK10-OM	,			
		BK10-XOM				
		BK8				,
	M40	BK15-XOM	-			
		TT7K12		MC241		
K	K01	$\begin{aligned} & \text { BK3, } \\ & \text { BK3-M } \end{aligned}$		MC301		
	K05	BK6-OM		MC306	-	
	K10	BK6-M	$\mathrm{TH} 20-$			
		TT8K6	KHT16		MC3215	
	K20	BK4.			П3115 ${ }^{\text {MC3210 }}$ ВП3325	
		BK6		MC321	- ВПЗ32	
	K30	BK8				
	K40			MC347		

Приложение 4
РЕЗЦЫ СО СМЕННЫМИ ПЛАСТИНАМИ, СЕРИЙНО ИЗГОТОВЛЯЕМЫЕ В СССР

	Схемы ния по карте 9	Пример конструкции	Техииччский документ на резец	Јавод-ияготовитель
P	1		TУ 2-035-892-82	Храпуновский Черновицкий Харьковский Оршанского «Уралмаш»
R	7		$\begin{aligned} & \text { TY } 2-035-892-82 \\ & \text { OCT } 23.50 .30-80 \\ & \text { OCT } 23.55 .522-82 \\ & \text { OCT } 23.5 .101-83 \end{aligned}$	Запорожского НПО «Спецтех оснастка»
S	2		TV 2-035-158-85	Храпуновский Черниговский Харьковский Оршанский
M	3		$\begin{aligned} & \text { TV } 2-035-892-82 \\ & \text { OCT } 211.10-5-84 \end{aligned}$	Киржанский Борисовский Қанашский Тбилисского НПО «Спецтехоснастка»
C	4		$\begin{aligned} & \text { ГOCT } 26611-85 \\ & \text { TY } 2-053-861-82 \\ & \text { TY } 2-035-1024-86 \\ & \text { OCT } 23.5 .102-83 \end{aligned}$	Храпуновский Черниговский НПО «Спецтехос настка» Карачаевский Харьковский Свердловский
D	8		TУ 2-035-901-82	Запорожский Черниговский
163				

Продолжсние прил. 4

$\begin{gathered} \text { Tип } \\ \text { кон- } \\ \text { струк" } \\ \text { ции } \\ \text { резца } \end{gathered}$	Схемы крепле карте 9	Пример конструкции	Техническия документ иа резед	Завод-изготовнтель
E	5		ТУ 2-035-861-82	Харьковский Тбилисский
W	9		ТУ 2-035-87	Серпуховский Храпуновский
H	10		ТУ 2-035-885-82	Сестрорецкий Харьковский

Приложение 5
ЧАСТОТА ВРАЩЕНИЯ ШІИНДЕЛЯ, ДОПУСКАЕМАЯ КОНСТРУКЦИЕЙ СТАНКА

Схема крепления ваготовки

Масса заготовки Q_{C} (т) для D_{c}, мм					
1250	1600	2000	2500	$\mathbf{3 2 0 0}$	частота вращения n, мин
25	39,5	63,5	99,5	159,5	5
23	37,5	58,5	89	150	10
19	32	48	69	103	25

Mасса ваготовки $Q_{c}(x)$ для D_{c}, мм
Частота
вращения n_{0} мин ${ }^{-1}$

1250	1600	2000	2500	3200	мия ${ }^{\text {¢ }}$
15	26	38	51,5	74	50
12,5	22,5	33	45,5	63	75
11,5	20,5	31	43,5	59,5	100
10,5	19	29,5	42	-	150
10	18,5	29	-	-	200
10	18	-	-	-	250
10	4	-	-	-	300

Схема крепления ваготовки

Схема крепления заготовки

Масса заготовки $Q_{c}(\boldsymbol{x})$ для $D_{c}{ }^{\text {, м }}$ мм					Частота вращения n мин ${ }^{-1}$
1250	1600	2000	2500	3200	
24	40	63	99	159,5	5
22,5	37	58	88,5	140	10
18,5	30,5	47	66	101	25
14,5	23,5	36,5	49	73,5	50
12	20	31,5	42,5	59,5	75
10,5	18	29	40,5	55,5	100
9,5	16,5	27,5	39	-	150
9	16	27	-	-	200
9	16	-	-	-	250
9	-	-	-	-	300

Схема крепления заготовки

Macca saroroвки Q_{c} (т) для $D_{\text {c }}{ }^{\text {, мm }}$					Yacrora вращения . мин ${ }^{-1}$
1250	1600	2000	2500	3200	
25	39,5	63	99,5	159	5
23,5	36,5	56,5	88,5	139,5	10
19	29,5	43	- 65,5	99,5	25
14,5	23	33	48	69	50
12	19,5	29	41,5	57,5	75
11	18,5	28	39,5	53,5	100
9,5	17,5	27	38	53,	150
9	17	27		-	200
9	17		-	-	250
9	-	-	-	-	300

Схема хрепления ваготовки

Macca saготовки $Q_{C}(\boldsymbol{T})$ для $D_{c}{ }_{\text {c }}$ м ${ }^{\text {M }}$					Частота вращения n, мин ${ }^{-1}$
1250	1600	2000	2500	3200	
25	40	63	100	160	5
25	38,5	63	95,5	148,5	10
21,5	33	53	75	112	25
17	27	43	59	84	50
15	23,5	38	53,5	80	75
13,5	22	36	51	70	100
12,5	20,5	34,5	50,5	-	150
12	20	34	-	-	200
12	20	-	-	-	250
12	-	-	-	-	300

Схема крепления заготовки

Масса ваготовка $Q_{c}(\mathrm{~T})$ для D_{c}, мм					Частота враще	n
1250	1600	2000	2500	3200		
5	8	9,5	15	24	Не ограничивается	

Приложение 6
ДЛИНЫ ПОДВОДА,' ВРЕЗАНИЯ И ПЕРЕБЕГА

Реsma		Глубина резания t, мм											
		До	2	4	6	8	10	12	15	20	25	30	40
		Подвод, врезание и перебег резца, мм											
Проходные, подрезные и расточные (при работе на проход)	30	8	9	13	16	22	25	29	34	45	53	62	80
	45	7	8	10	12	16	18	20	23	30	35	40	50
	60	6	7	8	9	13	14	15	17	22	24	27	33
	90	6-10											
Отрезные и прорезные	-	4-6											

Приложение 7

ОТНОШЕНИЕ ОСНОВНОГО ВРЕМЕНИ К ШТУЧНОМУ
Средние станки с основным параметром станка $D_{c}=630 \div 1000$ мм

Тип производства	$t_{0} / t_{\text {mi }}$		
	для станков		для рдношпиндель- ных горизонтальных полуавтоматов
	токарных	карусельных	
Крупносерийное	0,60	0,70	0,55
Серийное	0,50	0,60	0,50
Единичное и мелкосерийное	0,30	0,50	-

Тяжелье станки с основным параметром станка - $D_{\mathrm{c}}=1250 \div 5000 \mathrm{~mm}$

Отрасль производства	Обработка	$t_{\mathrm{o}} / t_{\text {mit }}$ при $D_{\text {c }}$, мм						
		1250	1600	2000	2500	3200	4000	5000
Тяжелое и транспортное машиностроение	Черновая	0,65	0,70	0,75	0,80	0,75	0,70	0,70
	Чистовая	0,50	0,60	0,65	0,70	0,70	0,65	0,60
Энергетическое машиностроение	Черновая	0,60	0,65	0,70	0,70	0,70	0,65	0,65
	Чистовая	0,55	0,60	0,60	0,65	0,60	0,60	0,60
Черная металлургия	Черновая	0,70	0,75	0,80	0,80	$\cdot 0,80$	0,80	0,75
	Чистовая	0,60	0,65	0,70	0,70	0,70	0,65	0,65

Приложение 8
УЧЕТ ТРЕБОВАНИИ ПРОИИЗВОДСТВА
ПРИ НАЗНАЧЕНИИ РЕЖИМОВ РЕЗАНИЯ
Поправочные коэффициенты на режимы резания в зависимости от требований производства

- - поправки нд режимы минимальных приведенных затрат при $R=$ = const; -.- - поправки на режимы максимальной производительности при $R=$ const в зависимости от D станка.

Продолжение прил. 8
Алгоритм расчета поправок на режимы резания в зависимости от требований производства при черновой обработке

Содержание вадачп	Исполвзуе்мая кривая	Исходная величина	Порядок определенияискомвх величин			
			1	2	3	4
Повышение производительости при минимальном увезичении приведенных заpat	-	K_{n}	Ks	K_{p}	K_{v}	K_{8}
Мовышение производитель фсти при минимальном уве-来чении расхода инстру*hta	${ }_{\text {D }}^{\text {c }}$	K_{n}	Ks	K_{p}	K_{0}	K_{3}
нижение расхода инструента при минимальном уве тчении приведенных затрат	-	K_{p}	K_{s}	K_{n}	K_{0}	K_{3}
, ияжение расхода инструента при минимальном инжении производитель-》сти	$\xrightarrow{D_{\text {c }}}$,	$K_{\text {p }}$	K_{s}	K_{n}	K_{0}	K_{3}

Приложение 9
МАТЕМАТИЧЕСКИЕ МОДЕЛИ, ИСПОЛЬЗУЕМЫЕ ПРИ ВЫБОРЕ РЕЖИМОВ РЕЗАНИЯ И РАСЧЕТЕ РАСХОДА ИНСТРУМЕНТА

Математическая модель	Обработка ва токарных станках с $D_{c}>320$ мм			
	C_{t}^{\prime}	g_{t}	${ }^{2}$	Orpanичения

Чистовое обтачивание и подрезание (см. карту 3)

$t_{\min }=C_{t}^{\prime} \mathrm{KB}^{\underline{y}} D_{\mathrm{a}}^{2} t$		$4 \cdot 10^{-6}$	4,5		0,36	$0,15 \leqslant t \leqslant 1,5 \cdot 10^{-0,7} \cdot \mathrm{~KB}^{7}$			
Математическая модель	L_{8} / D_{8}	Обработка на токарных станках е $D_{\text {c }}$, мм							
		320-800				1000-2500			
		C_{t}	z_{t}	P_{t}	g_{t}	C_{t}	z_{t}	P_{6}	$\boldsymbol{g}_{\boldsymbol{t}}$
-	До 10Св. 10	Черновое обтачивание и подрезание заготовох из конструкционной стали (210 HB)							
		1,16 5,18	0,5	0,25	$-0,3$ $-0,8$	0,41 3,75	0,7 0,6	0,25	$-0,3$ $-0,8$

Черновое растачивание заготовки из конструкционной стали (210 HB)

0,7	0,5	0	$-0,5$	0,333	0,6	0	$-0,5$

* Для карусельных станков применять математическую модель, используемую для токарных станков при D_{c} и $D_{\mathrm{y}} / D_{\mathrm{c}}$, соответствующих по жесткости D_{c} и l_{II} карусельного станка (см. карту 1).

[^8]

* Для карусельных станков применять математическую модель, используемую для токарных станков при $D_{\mathbf{c}}$ и $D_{3} / D_{\mathbf{c}}$, соответствующих по жесткости D_{c} и $l_{\text {п }}$ карусельного станка.

Математическая модель	Глубина резания t MM	$\begin{gathered} \text { Подача } \\ \text { мм/об } \end{gathered}$										
			320-800					1000-4000				
			Резец		C_{v}	x_{v}	g_{0}	Резеп		c_{0}	${ }^{*}$	∇_{0}
			$\mathrm{Mapra}_{\text {TC }}$	Tan				${ }_{\text {TC }}^{\text {Mapxa }}$	Tmin			
$v=\frac{C_{v}}{t^{x} S^{y_{v}}}$		Черновое обтачивание заготовок конструкционной стали (210 HB), припуск непрерывный (см. карту 12)										
	До 12	До 0,4	T15K6 (MC111)	$\begin{gathered} \mathrm{P}(\mathrm{C}, \mathrm{R}), \\ \varphi=90^{\circ} \end{gathered}$	178	0,15	0,25	-	-	-	-	-
		$\begin{gathered} \text { Св. } 0,4 \\ \text { до } 1,0 \\ \hline \end{gathered}$			155		0,4	T14K8	$\mathrm{R}, \varphi=45^{\circ}$	135	0,15	0,4
		Св. 1,0					0,6					0,6
		До 0,4	T14K8 (MC121)	$\begin{gathered} \mathrm{P}(\mathrm{R}), \\ \varphi=90^{\circ} \end{gathered}$			0,25	-	-	-	-	-
		$\begin{aligned} & \text { Св. } 0,4 \\ & \text { до } 1,0 \\ & \hline \end{aligned}$			135		0,4	T5K10 (MC131)	$\begin{gathered} W(H, D) \\ \varphi=60^{\circ} \end{gathered}$	114	0,15	0,4
		Св. 1,0					0,6					0,6
		До 0,4	$\begin{gathered} \text { T5K10 } \\ (\mathrm{MC} 131) \end{gathered}$	$\begin{gathered} \mathrm{R}(\mathrm{P}), \\ \varphi=90^{\circ} \end{gathered}$			0,25	-	-	-	-	-
		$\begin{aligned} & \text { Св. } 0,4 \\ & \text { до } 1,0 \\ & \hline \end{aligned}$			117		0,4					
		Cb. 1,0					0,6					
	Cв. 12	До 0,4			119	0,1	0,25					
		$\begin{aligned} & \text { Cв. } 0,4 \\ & \text { до } 1,0 \end{aligned}$			104		0,4 0,6	$\begin{gathered} \text { T5K10 } \\ \text { (MC131) } \end{gathered}$	$\begin{aligned} & H(W), \\ & \varphi=60^{\circ} \end{aligned}$	101	0.1	0,*
		Св. 1,0					0,6					0,6

Продолжение прил. 9

Математичесхая модель	Глубиңа резания t, мм	Обработка ва токарных станках с $D_{\text {c }}$, мм												Orpa ничения
		320-800						1000						
		Резед		c_{S}	2^{2}	P_{S}	x_{S}	Резец		c_{S}	${ }^{2} s$	P_{S}	${ }^{x_{S}}$	
		$\underset{\text { МРрка }}{\substack{\text { Марка }}}$	тип					$\underset{\text { БРС }}{\substack{\text { Марка }}}$	Tип					
$S=\frac{C_{S} D_{\mathrm{c}}^{t_{S}}}{t_{S}}\left(\frac{D_{3}}{D_{\mathrm{c}}}\right)^{P_{S}}$	Черновое обтачивание заготовок из конструкционной стали (210 HB), припуск непрерывный\qquad													
	До 3	P6M5	$\varphi \stackrel{\Gamma}{=} 90^{\circ}$	0,106	0,4	0,25	0	P6M5	$\varphi \stackrel{\Gamma}{=} 60^{\circ}$	0,037	0,6	0,25	0	-
	$\begin{aligned} & \text { Св. } 3 \\ & \text { до } 7 \\ & \hline \end{aligned}$			0,153			0,35			0,071			0,35	
	Св. 7			0,232			0,55			0,111			0,55	

Математическая модель	Глубина резания t, Mm	Обработка на токарных станках с D_{c}, мм												㫛
		1250-2500						3200-4000						
		Резец		C_{S}	${ }^{2} S$	P_{S}	${ }^{\boldsymbol{x}}$ S	Резед		C_{S}	${ }^{2} S$	P_{S}	${ }^{*} S$	
		$\begin{gathered} \text { Марка } \\ \text { БРС } \end{gathered}$	Tип					Марка БPC	Thil					

Черновое обтачивание заготовок из конструкционной стали (210 HB), припуск непрерывный (см. карту 13)

$S=\frac{C_{S} D_{\mathrm{c}}^{2} S}{i x_{S}}\left(\frac{D_{o}}{D_{\mathrm{c}}}\right)^{P_{S}}$	До 3	P6M5	$\varphi \stackrel{\Gamma}{=} 60^{\circ}$	0,061	0,6	0,25	0	P6M5	$\varphi \stackrel{\Gamma}{=} 60^{\circ}$	570	-0,6	0,25	0	-
	CB до 析			0,071			0,35			864			0,35	
	Св. 7			0,109			0,55			1332			0,55	

Математическая модель	Глубина резания t, M M	Подача мм/об	Обработка на токарных станках с $D_{\text {c }}$, мм										Orраначения
			320-800					1000-4000					
			Резеп		c_{v}	x_{v}	g_{v}	Резец		c_{v}	x_{v}	y_{v}	
			$\begin{aligned} & \text { Марка } \\ & \text { БРС } \end{aligned}$	тип				Марка EPC	Tип				
C_{0}	Черновое обтачивание заготовок из конструкционной стали (210 HB), припуск непрерывный (см. карту 13)												
$0=\frac{C_{0}}{t^{x_{v}} S^{g_{v}}}$	Весь диапазон		P6M5	$\varphi \stackrel{\Gamma}{=} 60^{\circ}$	33,5	$0,25$	0,65	P6M5	$\varphi \stackrel{\Gamma}{=} 60^{\circ}$	$22,9$	$0,25$	$0,65$	-

Математические модели	Глубина резания t, MM	Обработка на токарных станках с $D_{\text {c }}$, мм												Orpa-ничения
		320-800						1000						
		Резеп		c_{S}	${ }^{2} S$	P_{S}	${ }^{x_{S}}$	Резед		c_{S}	${ }^{2} S$	P_{S}	${ }^{x} S$	
		Марка TC	Тип					Марка TC	Tun					

Черновое обтачивание заготовок из чугуна (190 HB), припуск непрерывный (см. карту 15)

$S=\frac{C_{S} D_{\mathrm{c}}^{2} S}{t^{x_{S}}}\left(\frac{D_{\mathrm{a}}}{D_{\mathrm{c}}}\right)^{P_{S}}$	1,5-3	BK6-M	$\begin{gathered} \mathrm{C} \\ \varphi= \\ 90^{\circ} \end{gathered}$	0,143	0,4	0,25	0,35	-	-	-	-	-	-	\bigcirc
	Св. 3 до 7	BK6	$\varphi=\mathrm{R}, 90^{\circ}$	0,2			0,55	BK6-M		0,067	0,6	0,25	0,35	交
	$\begin{aligned} & \text { Св. } 7 \\ & \text { до } 15 \\ & \hline \end{aligned}$	BK8		0,225				BK6	$\stackrel{\mathrm{D},}{=} 60^{\circ}$	0,112			55	$\stackrel{\sim}{\text { V/ }}$
	$\begin{gathered} \text { Св. } 15 \\ \text { до } 30 \end{gathered}$	-	-	-	-	-	-	BK8	$\varphi=60^{\circ}$	0,123				

Продолжение прил. 9

Математвческие модели	Глубина резания t_{0} мм	Обработка на токарных станках с D_{c}, мм												䃾
		1250-2500						$3200-4000$						
		Резец		c_{s}	2^{2}	P_{s}	x_{S}	Резеп		c_{S}	${ }^{2} S$	${ }^{\text {P }}$	${ }^{x_{S}}$	
		$\begin{gathered} \text { Mapкa } \\ \text { TC } \end{gathered}$	Tип					$\stackrel{\text { Mарка }}{\text { TC }}$	Tип					
$S=\frac{C_{S} D_{0}^{z_{S}}}{t^{x_{S}}}\left(\frac{D_{8}}{D_{\mathrm{c}}}\right)^{P_{S}}$	Черновое обтачивание заготовок из чугуна (190 HB), припуск непрерь вный (см. карту 15)													
	3-7	BK6-M	$\varphi \stackrel{R}{=} 45^{\circ}$	0,074	0,6	0,25	0,35	BK6-M	$\begin{gathered} \mathrm{R}, \\ \varphi=45^{\circ} \end{gathered}$	903	-0,6	0,25	0,35	
	Св. 7	BK6	$\stackrel{\mathrm{D},}{=} 60^{\circ}$	$0,122$			0,55	BK6	$\begin{gathered} \mathrm{D}, \\ \varphi=-60^{\circ} \end{gathered}$	1490			0,55	
	Cв. 15 до 30	BK8		0,151				BK8		1842				

Математические модели	Глубина резания t, мм	Подача S, мм/об	Обраболка на токарных станках с D_{c}, мм									
			320-800					1000-4000				
			Резец		c_{v}	x_{v}	ν_{v}	Peser		c_{v}	x_{v}	y_{v}
			$\mathrm{Mapka}_{\text {TC }}$	Trin				${ }_{\text {TC }}^{\text {Mapka }}$	Tй			
$v=\frac{C_{0}}{t^{x} S^{y v}}$	Черновое обтачивание заготовок из чугуна (190 HB), припууск непрерывннй (см. карту 15)											
	До 12	До 0,4	BK6-M	$\stackrel{\mathrm{C}}{=} 90^{\circ}$	163	0,15	0,25	-	-	-	-	-
		Св. 0,4 до 1,0			139		0,4	BK6-M	$\stackrel{\mathrm{R}}{=} 45^{\circ}$	155	0,15	0,4
		Cs. 1,0					0,6					0,6

Математические модели	Глубина резания t, MM	Подача S, им/об	Обработка на токарных станках с $D_{\text {c }}$, мм									
			320-800					1000-4000				
			Резеп		C_{0}	x_{0}	θ_{0}	Резеи		c_{0}	x_{0}	00
			$\underset{\text { TC }}{\text { Map }}$	Tun				$\begin{aligned} & \text { Mapка } \\ & \text { TC } \end{aligned}$	Tni			
$v=\frac{C_{0}}{t^{x} v S^{y_{v}}}$	До 12	До 0,4	BK6	$\varphi \stackrel{\mathrm{R}}{=} 90^{\circ}$	131	0,15	0,25	-	-	-	-	-
		Св. 0,4 до 1,0			112		0,4					0,4
		Cв. 1,0					0,6		$\varphi=60^{\circ}$			0,6
		До 0,4	BK8	$\varphi \stackrel{\mathrm{R}}{=} 90^{\circ}$	111		0,25	-		-	-	-
		Св. 0,4 до 1,0			98		0,4	B K8	$\varphi \stackrel{\mathrm{D}}{=} 60^{\circ}$	103	0,15	0,4
		Св. 1,0					0,6					0,6
	Св. 12	Св. 0,4 до. 1,0	-	-	-	-	-	BK6	$\varphi \stackrel{D}{=} 60^{\circ}$	107	0,1	0,4
		Св. 1,0										0,6
		Св. 0,4 до 1,0						BK8		91		0,4
		Св. 1,0										0,6

Математическая модель	Глубина резания t, мм	Обработка на токарных станках с $D_{\text {c }}$, мм												
		336-900						$\cdots 1000$						
		Резец		c_{s}	${ }^{2} S$	P_{s}	${ }^{*}$ S	Резеп		c_{s}	${ }^{2}$	P_{S}	${ }^{*}{ }_{S}$	
		Марка TC	тип					Марка TC	тип					
$\begin{aligned} S & =\frac{C_{S} D_{c}^{2} S}{t^{x_{S}}} \times \\ & \times\left(\frac{D_{3}}{D_{c}}\right)^{P_{S}} \end{aligned}$	Черновое обтачивание заготовок из коррозмонно-стойкой стали ($\sigma_{\mathrm{B}}>550 \mathrm{MПа}$), припуск непрерывный (см. карту 14)													
	1,5-3	B K6-M	$\varphi \stackrel{\mathrm{P}}{=} 90^{\circ}$	0,0846	0,4	0,25	0,35	1 -	1 -	$1-$	-	17	1-	
	$\begin{aligned} & \text { Св. } 3 \\ & \text { до } 7 \\ & \hline \end{aligned}$	B K10-OM		0,117			0,55	BK10	¢ $\mathrm{R}=45^{\circ}$	0,0423	0,6	0,25	0,35	
	$\begin{aligned} & \text { Св. } 7 \\ & \text { до } 15 \end{aligned}$	B K10-XOM	$\varphi=90^{\circ}$	0,130				BK10-XOM	$\underline{W}=60^{\circ}$	0,0601			0,55	
	$\begin{gathered} \text { Св. } 15 \\ \text { до } 30 \\ \hline \end{gathered}$	-	-	-		-	-	BK8	$\stackrel{H}{\mathrm{H}} \mathrm{C} 60^{\circ}$	0,0680				
Математическая модель	Глубина резания t, MM	Обработка на токарных станках с $D_{\text {c }}$, мм												
		1250-2500						3200-4000						
		Резеп		c_{S}	${ }^{2} 5$	${ }^{\text {Ps }}$	${ }^{\prime}$ S	Реsen		c_{S}	${ }^{2} S$	Ps	${ }^{5}$	
		Mapka TC	тип					Mapka TC	Tam					
$\begin{aligned} & S=\frac{C_{S} D_{\mathrm{c}}^{2} s}{t^{x_{S}}} \times \\ & \times\left(\frac{D_{3}}{D_{\mathrm{c}}}\right)^{P_{S}} \end{aligned}$	Черновое обтачивание коррозионно-стойкой стали ($\sigma_{B}>550 \mathrm{MПа}$), припуск непрерывньй (см, карту 14)													
	3-7	BK10-OM	$\varphi=\mathrm{R}_{\mathrm{R}} \mathrm{~m}^{\circ}$	0,049	0,6	0,25	0,35	BK10-OM	$\begin{gathered} \mathrm{R}, \\ \varphi=45^{\circ} \end{gathered}$	583	,6	0,25	0,35	$\begin{aligned} & \frac{g}{2} \\ & \frac{\pi}{2} \\ & n \\ & \text { N } \\ & V \\ & \infty \end{aligned}$
	$\begin{aligned} & \text { Св. } 7 \\ & \text { до } 15 \end{aligned}$	BK10-XOM	$\stackrel{W}{\varphi}=60^{\circ}$	0,074			0,55	BK10-XOM	$\begin{gathered} \mathrm{W} \\ \varphi=60^{\circ} \end{gathered}$	897			,55	
	$\begin{array}{r} \text { Св. } 15 \\ \text { до } 30 \\ \hline \end{array}$	BK8	$\stackrel{H}{\varphi}=60^{\circ}$	0,081				BK8	$\begin{gathered} \mathrm{H}, \\ \phi=60^{\circ} \end{gathered}$	981				

Математическая модель	Глубина резания t, мм	Подача S, мм/об	Обработка на токарных станках с $D_{\text {c }}$, мм									
			320-800					1000-4000				
			Резец		c_{v}	x_{0}	y_{v}	Резец		c_{0}	x_{v}	g_{v}
			Марка ТС	Тип				Марка ТС	тип			
$v=\frac{C_{0}}{t^{x_{v}} S_{0}}$	Черновое обтачивание заготовок из коррозионно-стойкой стали ($\sigma_{\text {в }}>550$ МПа), группа 2.2 , припуск непрерывный (см. карту 14)											
	До 12	До 0,3		$\varphi \stackrel{P}{=} 90^{\circ}$	97	0,15	0,2	-	-	-	-	-
		Св. 0,3 до 0,75	BK6M		77,2		0,4	BK10-OM	$\stackrel{\mathrm{R},}{=} 45^{\circ}$	67,2	0,15	0,4
		Св. 0,75			73,0		0,6			63,4		0,6
		До 0,3	BK10-OM		85,4		0,2	-	-	-		-
		Св. 0,3 до 0,75			67,0		0,4	BK10-XOM	$\stackrel{W}{=} 60^{\circ}$	56,9		0,4
		Св. 0,75			63,5		0,6			54		0,6
		До 0,3	BK10-XOM	$\stackrel{\mathrm{R}}{=} 90^{\circ}$	77,8		0,2	-	-	-		-
		Св. 0,3 до 0,75			61,1		0,4					
		Св. 0,75			57,7		0,6					
	Св. 12	Св. 0,3 до 0,75	-	-	-	-	-	BK10-XOM	$\varphi=60^{\circ}$	50,7	0,1	0,4
		Cв. 0,75								46,8		0,6
		Св.. 0,3 до 0,75						BK8	$\varphi \stackrel{\mathrm{H}}{=} 60^{\circ}$	$\frac{40,9}{37,9}$		0,4
		$\mathrm{CB} 0,75$										0,6

Математнческая модель	Глубина резания t, mm	Обработка на токарных станках с $D_{\text {c }}=320 \div 800$ мм						Ограничения
		Резед		c_{s}	${ }^{2} S$	P_{S}	${ }^{x}$ S	
		Марка TC	Tmi					
$S=\frac{C_{S} D_{\mathrm{c}}^{z_{S}}}{t^{X_{S}}}\left(\frac{D_{\mathrm{a}}}{D_{0}}\right)^{P_{S}}$	Черновое обтачивание заготовок из медных сплавов низкой твердости и алюминиевых сплавов, припуск непрерывный (см. карту 16)							
	1,5-3	BK6	C	0,225	0,4	0,25	0,35	$S \leqslant 1,5 \mathrm{~mm} / 06$
	Cs. 3 до 16						0,55	
Математичесвая модель	Глубнна резания t. м $^{\text {м }}$	Обработка на токарных станках с $D_{\text {c }}=320 \div 800$ мм						
		Подача S, мм/об		Резец		C_{v}	x_{v}	y_{0}
				$\underset{\text { сплава }}{\text { Марка }}$	Tип			
$v=\frac{C_{v}}{t^{x} S^{y_{0}}}$	Черновое обтачивание ваготовок из медных сплавов низкой твердости и алюминиевых сплавов, припуск непрерывный (см. карту 16)							
	До 16	До 0		BK6	C	262	0,15	0,25
		Св. 0,4 до 1,0				224		0,4
		Св. 1,0				224		0,6

Матемарические моде	$t_{\text {on }} / H$	Пбработка на токарных станках с $D_{\text {c }}$, мм												
		320-1000						1250-4000						
		Резец		c_{S}	${ }^{2} S$	${ }^{\text {Ps }}$	${ }^{*}$ S	Резеп		c_{S}	${ }^{2} S$	P_{S}	${ }^{x_{S}}$	
		$\mathrm{Mapka}_{\text {TC }}$	Tan					$\underset{\text { TC }}{\text { Марка }}$	Tип					

Чєрновое растачивание заготовок из конструкционной стали (210 HB), припуск непрерывный (см. карту 17)

До 8	T14K8		0,500				T14K8		0,671				
Св. 8	T5K10		0,609				T5K10		0,850				

Черновое растачивание заготовок из чугуна и медных сплавов высокой твердости (см. карту 18)

До 8	BK6		0,557				BK6		0,785	,			
Св. 8	BK8		0,716				BK8		0,947				

Продолжение прил. 9

Черновое растачивание заготовок из конструкционной стали (210 HB) припуск непрерывный (см. карту 17)

Черновое растачивание заготовок из серого чугуна (190 HB), ковкого чугуна (170 HB), бронзы и латуни (80 HB) (см. карту 18)

Продолжение прил. 9

Математическая модель		Глубина ревания t, m		Обработка на токарных станках с $D_{\text {c }}$, ми															
		320-1600																	
		Резеп		c_{S}		${ }^{2} 5$		P_{S}		${ }^{*} S_{S}$									
		Марка TC	Тип																
$S=\frac{C_{S} D_{\mathrm{c}}^{2} S}{t^{x_{S}}}\left(\frac{D_{3}}{D_{\mathrm{c}}}\right)^{P_{S}}$				Чистовое обтачивание заготовки из конструкционной стали (210 HB) (см. карту 20)															
		До	-			T30K4		$\mathrm{P}, \varphi=45^{\circ}$			0,0918		0,3		0,2		0,25		
		Св. 1,0	o 4,0	0,35															
		Чистовое обтачивание заготовки из чугуна (190 HB) (см. карту 21)																	
		До		BK3-M		C, $\varphi=45^{\circ}$			0,1624		0,3		4		0,25				
		Св. 1,0	- 4,0				0,35												
Математическая модель	Глубина резания t, мм			$\begin{gathered} \text { Подача } \\ \text { мм/об } \end{gathered}$	Обработка на токарных станках с $D_{\text {c }}$, мм												Orpariчения		
				320-800	1000-4000														
		Резец						x_{0}	y_{v}	Резец				c_{0}	x_{0}	y_{v}			
		${ }_{\text {Mарка }}^{\text {TC }}$	тип				${ }_{\text {pra }}$												
$0=\frac{C_{0}}{t^{x} v S^{y_{0}}}$	Чистовое обтачивание заготовок из конструкционной стали (210 HB) (см. карту 20)																		
	До 3,0	До 0,2	T30K4		$\varphi \stackrel{\mathrm{P}}{=} 45^{\circ}$	269	0,15	0,15	T30K4		$\varphi \stackrel{P}{=} 45^{\circ}$		242	0,15	0,15	F			
		$\begin{aligned} & \text { Св. } 0,2 \\ & \text { до } 0,6 \end{aligned}$		211		191					0,30								
	Чистовое обтачивание заготовки из чугуна (190 HB) (см. карту 21)																		
	До 4,0	До 0,2	.BK3M	$\varphi \stackrel{C}{=} 45^{\circ}$	243	0,15	0,15	BK3M		$\stackrel{\mathrm{C}}{=} 45^{\circ}$		223	0,15	0,15	-				
		$\begin{gathered} \text { Св. } 0,2 \\ \text { до } 0,6 \\ \hline \end{gathered}$			191		0,30			179			0,30						

Продолжсение прия. 9

Математнческая модель	Глубина резанвя t, MM	Обработка на токарных станках с $D_{\text {c }}=320 \div 1600$ мм					OrpanimeHH:
		Pesen		c_{S}	${ }^{2} s$	${ }^{*} S$	
		Марка керамики	TEI				

Чистовое обтачивание конструкционной стали ($160-320 \mathrm{HB}$), припуск непрерывный. (см. карту 22)

| До 0,4 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Св. 0,4 до 1,5 | BO-13 | C (P) | 0,10 | 0,15 | 0,35 |

Чистовое обтачивание заготовок из конструкционной стали ($35-50 \mathrm{HRC}_{\text {}}$), припуск непрерывныд (см. карту 22)

| До 0,4 | BOK-60
 (ВOK-71) | C (P) | 0,045 | 0,22 | 0,30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Св. 0,4 до 0,8 | 0,04 | 0,22 | 0,44 | - | |

$$
S=\frac{C_{B} D_{\mathrm{c}}^{2} S}{t^{x_{S}}}
$$

Чистовое обтачивание заготовок из конструкционной стали ($50-65 \mathrm{HRC}_{2}$), припуск непрерывный (см. карту 22)

$0,12-0,40$	BOK-60 (BOK-71)	C (P)	0,047	0,15	0,35	-

Чистовое обтачивание заготовок из серого и высокопрочного чугущов ($150-300 \mathrm{HB}$), припуск непрерывный (см. карту 22)

| До 0,4 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Св. 0,4 до 3,0 | BOK-60 | C (P) | 0,096 | 0,21 | 0,25 |

Чистовое обтачивание заготовок из отбеленного чугуна ($400-600 \mathrm{HB}$), припуск непрерывный (см. карту 22)
\qquad

Математнческая модель	Глубина реsaния $\boldsymbol{t}_{\text {¢ }}$,	$\underset{\text { Mм/Oб }}{\text { Подача }} S$	Обработка на токариых станках с $D_{\text {c }}=320 \div 1600$ мм				
			Резед		C_{0}	x_{v}	B_{0}
			Марка керамикв	Tип			

Чкстовое обтачивание ваготовки из конструкционной стали ($160-320 \mathrm{HB}$), припуск непрерывный (см. карту 22)

Св. 0,4 до 1,5	$0,05-0,30$	ВО-13 (ВШ-75, ВОК-71)	$\mathrm{C}(\mathrm{P})$	183	0,2	0,35

Чистовое обтачивание ваготовок из конструкционной стали ($35-50 \mathrm{HRC}_{3}$), припуск непрерывный (см. карту 22)

Св. 0,2 до 0,8	$0,05-0,30$	BOK-60 (BOK-71)	$\mathrm{C}(\mathrm{P})$	96	0,25	0,30

$$
v=\frac{C_{v}}{t^{x} S^{y_{v}}}
$$

Чистовое обтачивание ваготовок из конструкционной стали | ($50-65 \mathrm{HRC}_{2}$) припуск непрерывный |
| :---: |
| (смару 22) |
| Св. 0,12 до 0,40 |

Чистовое обтачивание ваготовок из серого и ковкого чугунов ($150-300 \mathrm{HB}$), припуск непрерывный (см. карту 22)

Св. 0,4 до 3,0	$0,05-0,30$	ВОК-60 (BOK-71, B3, BW-75)	C (P)	178	0,2	0,35

Чистовое обтачивание отбеленного чугуна ($400-600 \mathrm{HB}$), припуск непрерывный (см. карту 22)

Cв. 0,2 до 1,5	$0,05-0,30$	ВOK-60 (BOK-71)	$\mathrm{C}(\mathrm{P})$	47	0,25	0,3

Продолжение прил. 9

Математвческая иодедв	B, мм					
		Резеп		c_{s}	${ }^{8} 8$	P_{S}
		Mapka TC	Tun			
$S=\frac{C_{8} D_{9}^{p_{S}}}{B^{x_{S}}}$	Фасоннее точение заготовки из конструкционнов стали (210 НВ) (см. варту 24)					
	До 25	T14K8	Γ	0,020	0,4	0,6
	CB 25	T5K10		0,025		
	Фасонное точение заготовки ия воррозионно-стовков стали ($\sigma_{\text {в }}>550 \mathrm{MПa}$) (см. карту 24)					
	До 25	BK10-OM	Γ	0,016	0,4	0,6
	CB 25	BK8		0,020		
Математическая модель	ІІррна резда B, мм	Обработка на токарнвп станках о $D_{c}=320 \div 800$ мм				
		Резед		C_{0}	x_{0}	B_{0}
		Марка TC	Ten			
$v=\frac{C_{0}}{B^{x_{0}} S^{y_{v}}}$	Фасонное точение заготовки из конструкционной стали (210 HB) (см. карту 24)					
	До 25	T14K8	Γ	28	0,1	0,4
	Cs. 25	T5K10				
	Фасонноє точение коррозионно-стойкой стали ($\sigma_{\text {в }}>550 \mathrm{MПa}$) (см. карту 24)					
	До 25	BK10-OM	Γ	17	0,1	0,4
	5 25 .	- BK8				

Продолжение прил. 9

Обрабатвваемвй материал	Материал режущей части резца	Математическая модель	Коэффициенты истепенип показателв			
			C_{P}	${ }^{*} P$	θ_{P}	n
Черновое обтачивание и подрезание						
Конструкционная сталь	TC	$P_{z}=C_{P} t^{x} P^{g^{g}}{ }_{v}{ }^{n}$	283	1,0	0,75	-0,15
	БPC		196	1,0	0,75	0
Коррозионно-стойкая сталь	TC		204	1.0	0,75	0
	БPC		196	1,0	0,75	0
Чугуи	TC		87	1,0	0,75	0
Медные сплавы			52,5	1,0	0,65	0
Черновое отрезание и прорезание						
Сталь конструкционная	TC	$P_{z}=C_{P} t^{\boldsymbol{x}} P^{\prime}{ }^{g} F_{Q}$	408	0,72	0,80	0
Сталь коррозионно-стойкая			355	1.0	1,0	0
Чугун			198	1,0	1,0	0
Медные сплавь			96	1,0	1,0	0

Математнческая модень＊	Показатели степепи						Область првменения модели
	n		m		\boldsymbol{x}		
	Tc	bc	тC	вс	$\varphi \leqslant 60^{\circ}$	$\varphi>60^{\circ}$	
$K_{S}=\left(\frac{\mathrm{HB}_{\mathrm{T}}}{\mathrm{HB}}\right)^{n_{S}}$	0,5 0,8	0,5 0,8	－	二	二	二	$\begin{aligned} & H B \leqslant 210 \\ & H B>210 \end{aligned}$
$K_{S}=\left(\frac{\varphi_{\mathrm{T}}}{\varphi}\right)^{x_{S}}$	－	－	－	－	0，4	0，7	Нормальная жесткость
					0，25	0，4	Пониженная жесткость
$K_{s}=\left(\frac{K_{\mathrm{T}}}{K}\right)^{m_{s}}$	－	－	0，4	0，4	－	－	－
$K_{0}=\left(\frac{\mathrm{HB}_{\mathrm{T}}}{\mathrm{HB}}\right)^{n_{0}}$	$\begin{aligned} & 0,65 \\ & 1,3 \end{aligned}$	1,5 1,5	二	二	二	二	$\begin{aligned} & \mathrm{HB} \leqslant 210 \\ & \mathrm{HB}>210 \end{aligned}$
$K_{0}=\left(\frac{\varphi_{r}}{\varphi}\right)^{x_{0}}$	－	－	－	－	0,25 .	0，25	－
$K_{0}=\left(\frac{T_{\text {日 }}}{T}\right)^{m_{v}}$	－	－	0,25 0,33	0,125 0,2	二	二	Черновая обработка Чистовая обработка

＊Параметры с кидексом етә являются расчетными（приведенв в соответствующих таблицах），а коэффициент к ним в картө поправок равен $1,0$.

РАЗДЕЛ II

ФРЕЗЕРНЫЕ РАБОТЫ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

Элементы режима резания B－ширина фрезерсвания，мм， N－мощность резания，${ }^{\text {к }}$ вт， $\mathbf{S}_{\mathbf{o}}$－подача на оборот， mm^{\prime} об， S_{Z}－подача на зуб，мм／зуб；
＊－тлубина резания，мм；
T－период стойкости инструмента， MHH；
y－скорость резания，м／мин．
＊Геометрические элементы и кон－ структивные параметры инструмента：
6）－главный задний угол，．．．；
\％－вспомогательный задний奖号，．${ }^{\circ}$ ，
（0）－главный передний угол，．．${ }^{\circ}$ ； 14 －передний угол на торцовой части яуба，．．．ㅇ；
－угол в плане главной режущей ромки，．．．＂，
19－угол в плане переходной режу－秋ей кромки，。 ${ }^{\circ}$ ；
（－угол в плане вспомогательной ре－ бущей кромки，．．．＇；
4др－диаметр оправки，мм；
диаметр фрезы，мм；
длина пережодной г ежущей кром－ MM；
р－длина оправки，мм；
длина режущей части фрезы，мм； вылет концевсго инструмента，мм； радиус при вершине инструмента，

радиус профиля фрезы，мм；
число зубьев фрезы
фвойства и паралетры заготовки и дли：
－максимальная ширина заго－ 3＊＊，мм，
解－минимальная шируна заготов－ MM；
蜼－твердость го Бринеллю，

HRC－твердость по Роквеллу；
$\sigma_{\text {в }}$－временное соиротивление，МПа，
$R a$－шероховатость поверхности，мкм， Π_{t}－припуск на глубину фрезерова－ ния，огтавляемый по сгоронам кон－ тура под последующую обработту，мм， $\Pi_{t_{1}}$－припуск на глубину фрезеро－ вачия，оставляемый ири вершине кон－ тура，мм，
r_{rt}－радиус сопряжения поверхностей при вершине конгура детали или кри－ визна вогнутого участкд контура，мм， φ_{K}－угол при вершине контура де－ тали，．．． ．

Прочие обозначения．
A－высога выступающих частей де－ тали и приспособлений，мм， h－величина стачивания за одну пе－ реточку и высота пропила для сег－ ментных пил，мм；
h_{3}－критерий затупления инетру－ мента，мм，
k－число переточек или перестановок，
$K_{N_{i}}$－попраьочные коэффициенты на мощность резания；
$K_{\mathcal{S}_{\imath}}$－поправочные коэффициенты на подачу；
$K_{v_{i}}$－поправочнье коэффициенты на скорость резания，
i－номер поправочного коэффициента；
K_{T}－поправочный коэффициент на период стойкости，
$K_{\text {у }}$－коэффициент случайной убыли；
$l_{\text {доп }}$－дополнительная длина рабочего хода，мм，
$l_{\text {рез }}$－длина резания，мм，
$L_{\mathrm{p} x}$－длина рабочего хода，
n－частота вращения шпинделя， мин ${ }^{-1}$ ，
$N_{\text {дв }}$－мощность привода главного движения，кВт，
P－вероятность безотказной работы， P_{1000}－расход фре，на 1000 ч основ－ ного времени，шт．，
S_{M} - минутная подача стола станка, мм/мин;
t_{0} - основное время, мин;
T - период стойкости, мин;
y - sеличина подвода, врезания и перебєга, мм;
η - коэффициент полезного действия электродвигателя;
λ - коэффициечт времени резания;
a - ширина паза, мм.

Индексы и сокращеммя:

м - нормативный;
p- расчетный,
т - табличный;
中-- фактический;
БPC - быстрорежущая сталь;
ИРМ - инструментальный режущий материал;
СМП - сменная многогранная пластина;
ТС - твердый сплав;
СТМ - сверхтвердые материалы;
ИМ - инструментальный материал.

НАЗНАЧЕНИЕ НОРМАТИВОВ,

 ИХ СТРУКТУРА И ОСОБЕН НОСТИОбщемашиностроительные нормативы иредназиачены длія выбора стандартизоваиного режущего инструмента (фрез) для конкретных условий обработки, определения режимов резания, норм ияноса и расхода фрез, а также оснивного времени об́рдботки для разработанного технологического процесса на металлорежущих станках фрезерной группы. Применяемое оборудование, инструмент, заготовки и оснастка должны удовлетворять требованиям соответствующих ГОСТов и ТУ.

Нормативы используют при обработке загоговок из углеродистых, легированндхх и ксррозионно-стойких сталей, серых, ковких и высокопрочных чугупов, а также медных и алюминиевых сплавсз фрезами, оснащенными быстрорежущей сталью, твердым сплавом, минеральной керамикой и сверхтвердыми инструментальными материалами.

В состав нормативов входят общие и методическиє указания 13 -ти разделов, содержащих рекомендации по использованию отдельных видов фрез; ұ приложения. Каждый раздел сидержит рекомендации по выбору инструмента (его типоразмера, геометрии и

марки материала инструмента), рекомендации по назначению режимов резания (подачи и скорости ревания), рекомендации по нормам износа и расхода фрез.

Для торцовых фрез рекомендации приведены в трех разделах по группам инструментальных материалов, которыми оснащается режущая часть (твердые сплавы и быстрорежущая сталь, сверхтвердые инструментальные материалы, минеральная керамика).

В разделах, содержащих рекомендации для ториовых и концевых фрез, оснащенных твердым сплавом и быстрорежущей сталью, приводятся технологические рекомендации по определению числа переходов и рабочих ходов в зависимости от требуемой точности обработки и шероховатости обработанной поверхности.

Для всех типов фрез приняты единые методические указания, испольвуемые при выполнении расчетов вручную по типовой схеме - вначале определяют максимально возможные глу бину резания и подачу, а затем стойкость инструмента, соответствующую минимальной себестоимости операции, которая от элементов режима резания не зависит. В последнюю очередь определяют скорость резания, исходя из функциональной связи ее со стойкостью (расчеты основаны на линейной зависимости стойкости от скорости резания в двойных логарифмических координатах, так как при одноинструментной обработке период стойкости инструмента невысок).

Поскольку стойкость на экономические показатели выполнения операции влияет слабо, то погрёшности при ее определении в пределах 25-30\% можно считать несущественными. При превышении рассчитанного значения мощности ее паспортного значения станка целесообразно снижать скорость резания, так как из всех элементов режима резания ее влияние на показатели выполнения операции наиболее слабое. Фактические скорости резания для принятой стойкости из-за погрешностей рекомендуемых нормативов могут отличаться на $20-30 \%$.

Для расчета режима резания с по. мощью ЭВМ в приложении приведены основные зависимости, положенные в основу разработанных нормативов, которые могут быть использованы в информационном обеспечении САПР ТП

ОБЩИЕ УКАЗАНИЯ ПО РАСЧЕТУ РЕЖИМОВ РЕЗАНИЯ

Выбор режущего, инструмента, расчет режима резания и оценку расхода фрез осуществляют для технологического процесса в соответствии с методическими указаниями. Hормативы содержат сведения по выбору: 1) инструмента; 2) режимов резания.

В нормативах по выбору инструмента даются рекомендации для предварительной оценки типоразмера фрез, выбора марки инструментального материала и геометрических параметров режущей части. Окончательный выбор фрезы осуществляют по ГОСТу, ОСТу и.ТУ предприятий. В нормативах каждой главы приводятся три карты, содержащие необходимую информа-廿ию по выбору подачи на зуб (карта 1), определению скорости и мошности резания (карта 2), оценке расхода фрез на 1000 ч основного времени (карта 3).

В главах «Ториовые фрезы твердосплавные и быстрорежущие» и «Концевые фрезы» приводятся рекоменда-

ции по определению числа переходов и рабочих ходов при повышенных требованиях по точности обработки и шероховатости обработанной поверхности.

Для однозначного определения направления измерения глубины резания t и ширины фрезерования \bar{B} используют схемы обработки фрезами (рис. 1).

Для выбранного (в соответствии с этапом 1 методических указаний) инструмента определяется наибольшее предельное значение подачи на зуб фрезы S_{z} с учетом характера обработки. При этом следует иметь в виду ограничение на подачу снизу более низкое значение подачи ухудшает качество обработанной поверхности и снижает период стойкости инструмента.

Рекомендации по назначению нормативного периода стойкости $T_{\mathbf{H}}$ (такл. 1) даются с учетом производственного опыта (это значение стойкости, как правило, соответствует получению минимальной себестоимости операции). Применительно к конкретным производственным услпвиям они могут

Рис. 1. Схемы обработки фрезами:
4. - пилиндрическими; 6 - торцовыми; \quad - дисковыми; 2 - пазовыми; ∂ - прорезными и отрезными; e - угловыми; \mathscr{C} - полукруглыми выпуклыми и вогнутыми ($B=$
2R); s - концевыми; u - шпоночными ($t=D$): 1 - в один проход; 2 - с маятниковон подачеभ; к - Т-образными; \& - для пазов типа «Ласточкнн хвост»

7 А. Д. Локтев

1. Нормативные периоды стойкости фрез T_{H}^{*}, мин
(в нормативах приняты в минугах основного времени)

Фрезы	Материал инструмента	$T_{\text {н }}$ пря диаметре фрезы D, мм						
		8	16	63	125	200	400	$500 \mathrm{k}$ более
Торцовые	Быстрорежущая сталь	-	$\stackrel{-}{-}$	100	150	200	350	-
	Твердый сплав	-	-	80	150	250	450	600
	Минеральная керамика и СТМ	-	-	-	60	120	270	--
Цилиндрические	Быгтрорежущая сталь	-	-	120	200	-	-	-
	Твердый сплав	-	-	150	300	-	\cdots	-
Концевые, шноночные, одноугловые, для Т-образных пазов	Быстрорежущая сталь	20	60	60	-	-	-	-
	Твердый сплав	-	90	90	-	-	-	-
Дисковые трехсторонние	Быстрорежущая сталь	-	-	-	150	250	400	-
	Твердый сплав	\therefore	-	-	150	300	500	-
Дисковые прорезные, отрезные, пазовые	Быстрорежущая сталь	-	-	80	100	120	-	-
Фасонные		-	-	80	120	-	-	-
Двуугловые несимметричные		--	-	120	180	-	-	--
Для обработки пазов сегментных шпонок		-	30	60	-	-	-	-
Дисковые сегментные пилы		При $D<400$ мм $T_{\text {н }}=300$ мин; при $D>500$ мм $T_{\text {н }}=500$ мин						
	Твердый сплав	$T_{\text {H }}=800$ мин						

2．Поправочный коэффициент на скорость резания $K_{v_{p}}$ в вависимости от вероятности безотказной работы P

P	0,5	0,7	0,8	0,9	$0,95$.
$K v_{p}$	0,95	0,88	0,83	0,75	0,7

5ыть изменены как в сторону повыше－ ния，так и в сторону понижения．Сле－ дует иметь в виду，что снижение стой－ кости при увеличении скорости реза－ ния возможно лишь до режима наи－ большей производительности．Допу－ стимое увеличсние скорости резания может составлять $15-25 \%$（соответ－ ствует одной ступени частоты враще－ ния），а снижение сгойкости возмож－ но в $1,5-3$ раза．При большем уве－ дичении скорости резания возрастают Простои оборудования из－за замены иодналадки инструмента．Увеличе－ ние периода стойкости при снижении фкорости резания приводит к эконо－ мии режущего инструмента с одновре－ Менным снижением производитель－ ности станка．
Нормативный период стойкости $T_{\text {н }}$ приводится в минутах основного вре－ мени（с учетом подвода，врезания и перебега）．В стойкостных зависи－ \％остях скорость резания функцио－ нально связана с периодом стойкости Tp，который измеряется в мичутах Времени резания．При фрезеровании ：большинстве случаев различие между ${ }_{F}$ н и T_{p} не превышает 30% ．Поскольку виияние этого различия на экономи－ फеские показатели выполнения опера－ жии не превышает 5% ，этап расчета оройкости T_{p} в методических указа－ Hitя опущен，чего нельзя сделать при рыенке расхода инструмента．
Рекомендуемые нормативами ско－ иасти резания соответствуют получе－ Who при обработке на этих скоростях реднего периода стойкости T_{H} ．В ре－ пьных производственных условиях 4．силу нестабильности свойств обра－ شтываемого материала и материала世秋струента，жесткости системы ста－ юх－приспособление－инструмент－ жеталь，а также в силу других условий 6работки，которые учесть невозможно， 6ヵеется большая дисперсия стойкости нетрумента при работе на рекомен－ жемых нормативами режимах ре－

зания．Действительная стойкость мо－ жет отличаться от нормативной до 3 раз．

Надежность работы инструмента на станках с ЧПУ повышается при сни－ жении скорости резания．Значения поправочного коэффициента на реко－ мендуемую скорость резания в зави－ симости－от вероятности безотказной работы приведены в табл．2．Следует учитывать уточнение частоты вращения шпинделя по паспорту станка．Ре－ комендуемые нормативами нодачи не－ обходимо уменьшить на 10% ．

При определении расхода фрез（этап 8）рекомендации по расчету даны с уче－ том нормативного периода стойкости $T_{\text {н }}$（см．табл．1）．Если рассчитанный период стойкости отличается от T_{H} ， то в формулу подставляют полученное значение．При уточнении рекомендуе－ мой частоты вращения n_{p} на этапах 43 или 5.2 фактический период стой－ кости умножают на поправочный ко－ эффициент $K_{\text {т }}$（табл．3）．

Режимы резания разработаны при－ менительно к обработке без СОЖ деталей из серого чугуна и с примене－ нием широкораспространенных СОЖ при обработке деталей из других ма－ териалов．При применении СОЖ при обработке серого чугуна скорости ре－ зания могут быть повышены на 15 － 20% ，а при обработке деталей из дру－ гих материалов без применения СОЖ скорости резания понижаются на 15－ 20\％＊．

Нормативы ориентированы на нормальную жесткость системы ста－ нок－приспособление－инструмент－ деталь．При более высокой жесткости подачи можно увеличивать，а при меньшей жесткости－уменьшать．

[^9]3. Поправочный коэффициент $К$ т на период стойкости

Φ ре3ar	Материалы		Пэправочныи козффулиеет $K_{\text {т }}$ при зяачения отрошения n_{p} / n_{ϕ}							
	обрабатываемве	инструмента	0,9	0.95	$\therefore 0$	1.05	1.1	1,2	1,5	2,0
Торцовве	Кснструкционғая зоррозионно-стойхап стали, алюминиецые в кедные сплавы	Быстрорежуцая сталя	0,3	0,75	1,0	1,3	1,6	6,5	7,6	32
		Tеордей cпıab	0,75	0,85	1,0	1.15	1,3	1,7	3.4	§
		Срерхтвердые	0,85	0,9	1,0	1,2	1.15	1,3	1,9	3
	Серый уугуп	Твердый спsas	0.75	0,85	1,0	1,15	1,3	1,7	3,4	8,0
		Cверхтвердаи	0,9	0,95	1,0	1,05	1.1	1,2	1,5	2,0
		Минеральная керамика	6,8	0,9	1,0	1,10	1,80	1,5	2,3	4,5
	Ковкий и высокопрочный чугуп	Твердый спиатв	0,8		1,0	1,12	1,25	1,55	2,5	5,2
Концевые и шпоночнье (обработка в один проход)	Конструкционная сталь	Выстрорежуцая сталь, -Еердый стлав	0,8	0,0	1,0	1,12	1,25	1,55	2,6	5,2
	Серый чугуя	Вистрсрежущая стагы, твердый "плаз	0,65	0,8	1,0	1,2	1,45	2,10	5,0	16,0

Продолэсние табя． 8

Фрезы	Материалы		Поправочный коっфчхциент K_{T} при значении олношения＂p／＇ф							
	обрабатғ вармые	инструмента	0，9	0，95	＇，0	105	1，1	1，2	1，5	2，0
Концрвые и шпоночнье （обработға в один про ход）	Ковкий и вьсокопроч－ Ный чугун，коррозион－ но ェтойкая стапь，алю－ миниевые и медные спла－ вы	Бысгрорежущая стали， твердый сплав	0，75	0，85	$1,0$	1，15	1，33	1，7	3，4	8，0
Дисковые трехстсронние， пропе ヶыые，опрезные и	－	Быстрорежушая сталь	0，6	0，75	1，0	1.3	1，6	25	7，6	32，0
пззоеығ，сегментные пи－ лы		Твердый сппав	0，75	0，85	1，0	1，15	133	1，7	3,4	8，0
Фасонные толукруггые и двихуглюлые，для об－	Констоукционная сталь	Быстрорежущая сталь	0，75	0，85	1，0	1，15	1，33	1，70	3.4	8，0
работкн т лбрдзных па－ зов и пазлз сегментных	Серый чугуч		0，65	0，8	1，0	1，20	1，45	2，10	5，0	16，0
		Твердый сплав	0，8	0，9	10	1，12	1.25	155	2，6	5，2
Однлуглове	Конструкционная сталь	Выстрережущая сталь	0，77	0，9	1，0	1，12	1，25	1，55	2，6	5，2
		Твердый сплав	0，65	0，8	1，0	1，2	1，45	2，10	5，0	16，0
Шпоночные для обработ－ ки с маятниковой пода－ чей		Быстрорежущая сталь	0，65	0，8	1，0	1.2	1，45	210	5，0	16，0

Приведенные в нормативах рекомендации по выбору инструмента, peжимов резания и определению расхода могут уточняться применительно к конкретным производственным условиям.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Методические указания (табл. 4) являются общими для всех видов фрез, приведенных в нормативах, и даются применительно к одному переходу. При многопереходной обработке одним и тем же инструментом режим резания рассчитывают для каждого перехода.

Для твердосплавных, быстрорежущих торцовых и концевых фрез в нормативах даны рекомендации по определению числа переходов при обработке деталей с повышенными требованиями к шероховатости поверхности и точности получаемых размеров. Оценку расхода фрез осуществляют, исходя из принятой при расчете нормативной стойкости T_{H}.

ПРИМЕР ОПРЕДЕЛЕНИЯ

РЕЖИМОВ РЕЗАНИЯ

И РАСХОДА ИНСТРУМЕНТА

Исхф̧дные данные: деталь - корпус $300 \times 220 \times 150$ мм (рис 2); операции фрезерование поверхностей $1-3$, обрабатываемая заготовка - отливка из серого чугуна, точность которой соответствует 16 -му квалитету, с твердостью поверхности 229 HB , станок-вертикально-фрезерный 6P12, размер рабочей поверхности стола станка 320×1250 мм, диапазон частот вращения шпинделя $31,5-1600$ мин $^{-1}$,

число частот вращения шпинделя 18 , диапазон подач стола станка продольной и поперечной $25-1250$ мм $/$ мин, число подач стола станка 18 , мощность привода главного движения 7,5 кВт, коэффициент полезного действия привода главного движения $0,80-0,88$

Выбор режущего инструмента, расчет режимов резания и оценку расхода фрез осуществляют применительно к каждому переходу разработанного или разрабатываемого технологического процесса в соответствии с методическими указаниями (табл 4)

При нерновом и получистовом торцовом фрезеровании плоской поверхности шириной 220 мм (пов. 1 на рис 2) по табл 7 рекомендаций по выбору торцовых фрез предварительно определяем диаметр фрезы: $D=$ $=250 \div 500$ мм Согласно рекомендациям по выбору инструмента при черновой обработке (IT14-IT16 и $R a=$ $=12,5-25$ мкм) и получистовой -(IT12-IT13 и $R a=6,3$ мкм) необходимо применять фрезы со сменными многогранными пластинами (СМП) Форму пластин определяют по табл 8 для черновой обработки (первый переход) применяют ивадратную пластину для получистовой обработки (второй переход) - квадратную с фаской. По табл 9 (первый ряд предпочтительности) выбирают марку ИРМ твердый сплав ВК8 и ВК6 соответственно для первого и второго переходов

Инструмент по приведенным рекомендациям выбирают на стадии разработки технологического процесса с учетом имеющихся в наличии типоразмеров инструмента в конкретной производственной ситуации Например, при отсутствии фрез, диаметр которых соответствует предварительно

Рис. 2. Обрабатываемая деталь
4. Этапы назначения режимов резания и норм расхода

	Содержание этапа	Источник, расчетная формула	Основные исходные данные
5 5.1 5.2	Проверочный расчет по мощности резания: определение потребной мощности резания N, кВт; проверка по мощности двигателя	Қарта 2, прил. 2 $N \leqslant 1,2 N_{\text {дВ }} \eta$ В случае невыполнения условия снижается частота вращения	1. Обрабатываемый териал, твердость (прочность) 2. Диаметр фрезы и чис- ло зубьев 3. Материал инструмента 4. Подача на зуб S_{Z} 5. Глубина t и ширина B фрезерования 6. Скорость резания v 7. Мощность двигателя $N_{\text {дв }}$ и КПД станка η
6	Расчет длины рабочего хода $L_{\text {р. }}$, мм	$\begin{gathered} L_{\mathrm{p} . \mathrm{x}}=L_{\text {рез }}+ \\ +y+L_{\text {дсп }} \\ \begin{array}{c} \text { (значение } \\ \text { в прил. 1) } \end{array} \quad y \quad \text { см. } \end{gathered}$	1. Длина резания $L_{\text {рез }}$ 2. Дополнительная длина $L_{\text {доп }}$ рабочего хода, определяемая длиной перемещения фрезы при рабочей подаче без снятия припуска (подвод и перебег учитываются отдельно)
7	Расчет основного времени t_{0}, мин, перехода	$t_{0}=\frac{L_{\text {p }} \mathrm{x}}{S_{\mathrm{M}}} K_{\mathrm{p}}$	1. Длина рабочего хода $L_{\text {p. }}$, MM 2. Минутная подача S_{M}, мм/мин 3. Число рабочих ходов K_{p}
8	Определение расхода фрез за 1000 ч основного времени:		1. Рекомендуемая часстота вращения шпинделя (см. п. 4.2)
8.1	определение коэффициента времени реза-	$\lambda=\frac{L_{\text {pe3 }}}{L_{p . \mathbf{x}}}$	2. Уточненная по паспорту частота вращения
8.2	ния λ; определение коэффициента изменения стойкости;	Табл. 3	шпннделя (см. п. 4.3) 3. Табличное значение расхода фрез P_{1000} T 4. Стойкость, по кото-
8.3	оценка расхода фрез за 1000 ч основного времени на один переход; в случае работы фрезы на разных переходах (с разными режимами) оценку расхода фрез проводят для каждого перехода независимо и определяют среднее значение	$\begin{aligned} & P_{1000}=P_{1000 T} \lambda \times \\ & \times \frac{T_{\mathrm{T}}}{T_{\mathrm{H}}} K_{T}, \text { карта } 3 \\ & \text { и прил. } 3 \end{aligned}$	рой рассчитывалось $P_{1000 T}-P_{T}$ 5. Нормативная стой- кость T_{H} 6. Поправочный коэффициент, учитывающий различие уточненной по паспорту станка частоты вращения $n_{\text {ф }}$ и рекомендуемой n_{p}

определенному диаметру, обработку открытой поверхности 1 можно провести построчно фрезой $D=125$ мм ($B=110$ мм). Типоразмер фрез, марку ИРМ и геометрические параметры режущей части торцовых фрез для первого и второго переходов окончательно назначают по ТУ 2-035-874-85 (см. табл. 5).

Подачу на зуб при обработке поверхности 1 при торцовом фрезеровании выбирают по карте 1 , поправочные коэффициенты на подачу вводят в зависимости от твердости чугуна ($K_{S_{1}}=1,0$), от инструментального материала $\left[K_{S_{2}}=1,0\right.$ для первого перехода (ИРМ ВК8) и $K_{S_{2}}=0,75$ для второго перехода (ИРМ ВК6)], от тина фрезы $K_{S 3}=1,0$ (СМП); от главного угла в плане $K_{S 4}=0,85$ ($\varphi=75^{\circ}$); от схемы фрезерования $K_{S 5}=1,0 \quad$ (несимметричная), от характера обработки: $K_{S 6}=2,3$ для черновой обработки и $K_{S_{6}}=1,5$ для нолучистовой обработки.

Для первого перехода

$$
\begin{gathered}
S_{z \mathrm{p1}}=0,17 \cdot 1,0 \cdot 1,0 \cdot 1,0 \times \\
\times 0,85 \cdot 1,0 \cdot 2,3=0,33 \mathrm{mм} / \text { зуб }
\end{gathered}
$$

и для второго перехода

$$
\begin{gathered}
S_{z \mathrm{p} 2}=0,25 \cdot 1,0 \cdot 0,75 \cdot 1,0 \times \\
\times 0,85 \cdot 1,0 \cdot 1,5=0,23 \text { мм } / \text { зуб }
\end{gathered}
$$

Нормативный период стойкости фрез назначается по табл. 1. Для торцовых твердосплавных фрез с $D=125$ мм $T_{\text {H }}=150$ мин.

Скорость и мощность резания определяют по карте 2. Поправочные коэффициенты зависят от твердости чугуна ($K_{v 1}=K_{N 1}=1,0$), от состояния обрабатываемой поверхности $\left[K_{v 2}=K_{N 2}=0,7\right.$ для первого перехода (обработка с литейной коркой) и $K_{v 2}=K_{N 2}=1,0$ для второго перехода], от марки твердого сплава $\left[K_{v 3}=K_{N 3}=1,0\right.$ для первого перехода (ВК8) и $K_{v 3}=K_{N 3}=1,2$ для второго перехода (BK6)], от типа фрезы $\left[K_{\text {D4 }}=K_{N 4}=1,1\right.$ (СМП)], от главного угла в плане $\left[K_{v 5}=K_{N 5}=\right.$ $=0,9$ ($\left.\left.\varphi=0,75^{\circ}\right)\right]$, от выбранного периода стойкости инструмента [$K_{\text {vв }}=$ $=K_{N 6}=0,95\left(T_{\mathrm{H}}=150\right.$ мин)]; от числа зубьев фрезы $\left[K_{N 7}=1,2(Z=\right.$ $=12)]$.

$$
\begin{gathered}
v_{\mathrm{p} 1}=89 \cdot 1,0 \cdot 0,7 \cdot 1,0 \times \\
\times 1,1 \cdot 0,9 \cdot 0,95=58,6 \mathrm{~m} / \text { мин; }
\end{gathered}
$$

$$
N_{\mathbf{p} 1}=7,2 \cdot 1,0 \cdot 0,7 \cdot 1,0 \times
$$

$$
\times 1,1 \cdot 0,9 \cdot 0,95 \cdot 1,2=5,7 \mathrm{\kappa Bт}
$$

$$
v_{\mathrm{p} 2}=112 \cdot 1,0 \cdot 1,0 \cdot 1,2 \times
$$

$$
\times 1,1 \cdot 0,9 \cdot 0,95=126,4 \text { м } / \text { мин }
$$

$$
N_{\mathrm{p} 2}=3,1 \cdot 1,0 \cdot 1,0 \cdot 1,2 \times
$$

$$
\times 1,1 \cdot 0,9 \cdot 0,95 \cdot 1,2=4,2 \text { кВт. }
$$

Значения частот вращения шпинделя станка определяют по формулам

$$
\begin{aligned}
& n_{\mathrm{p} 1}=\frac{1000 \cdot 58,6}{\pi \cdot 125}=149 \mathrm{MиH}^{-1} \\
& n_{\mathrm{p} 2}=\frac{1000 \cdot 126,4}{\pi \cdot 125}=322 \mathrm{MиH}^{-1}
\end{aligned}
$$

Согласно паспортным данным станка $n_{\text {Ф1 }}=160$ мин $^{-1}$ и $n_{\text {Ф } 2}=315$ мин $^{-1}$.

Фактические значения скоростей резания:

$$
\begin{aligned}
& v_{\Phi 1}=\frac{\pi \cdot 125 \cdot 160}{1000}=62,8 \mathrm{~m} / \mathrm{Mин} \\
& v_{\Phi 2}=\frac{\pi \cdot 125 \cdot 315}{1000}=123,7 \mathrm{~m} / \mathrm{mин}
\end{aligned}
$$

Расчетные значения минутной подачи стола станка:

$$
\begin{aligned}
& S_{\mathrm{Mp1} 1}=0,33 \cdot 12 \cdot 160=634 \mathrm{mм} / \text { мин } \\
& S_{\mathrm{Mp} 2}=0,24 \cdot 12 \cdot 315=907 \mathrm{mм} / \text { мин } .
\end{aligned}
$$

Согласно паспортным данным станка назначаем $S_{\text {мф1 }}=630$ мм $/$ мин и $S_{\text {мф } 2}=$ $=800 \mathrm{mм} /$ мин.

Фактические значения подачи на зуб:

$$
\begin{aligned}
S_{Z \Phi_{1}} & =\frac{630}{12 \cdot 160}=0,33 \text { мм } / \text { зуб } \\
S_{Z \Phi 2} & =\frac{800}{12 \cdot 315}=0,21 \text { мм } / \text { зуб }
\end{aligned}
$$

Расчет необходимой мощности резания показывает, что проверку" по мощности привода главного движения проводить не обязательно, так как $N_{\text {дв }}>N_{\text {p }}(7,5>5,7)$.

Длина подвода, врезания и перебега согласно прил. 1 составит:

для чернового перехода

$$
\begin{gathered}
y_{1}=\left(\frac{125-\sqrt{125^{2}-110^{2}}}{2}\right) 2+ \\
+(2 \div 5)=70 \mathrm{MM}
\end{gathered}
$$

для чистовоғо перехода

$$
y_{2}=2(125+5)=260 \mathrm{mм}
$$

Длина рабочего хода для каждого перехода

$$
\begin{aligned}
& L_{\mathrm{px} 1}=70+710=780 \mathrm{~mm} \\
& L_{\mathrm{px} \times 2}=260+600=860 \mathrm{~mm}
\end{aligned}
$$

Основное время.

$$
\begin{aligned}
t_{01} & =\frac{780}{630^{-}}=1,24 \text { мин; } \\
t_{02} & =\frac{860}{800}=1,08 \text { мин. }
\end{aligned}
$$

Для опредедения раслода инструмента за 1000 п основного времени рассчитывают коэффициеныы времени резания на первом и віпром переходах

$$
\begin{aligned}
& \lambda_{1}=\frac{710}{780}=0,91 \\
& \lambda_{2}=\frac{600}{860}=0,7
\end{aligned}
$$

Для определения поправочного коэффициетта K_{T} (см табл 3) рассчитывают огношенке n_{Φ} / n_{p} на каждом переходе

$$
\begin{aligned}
& \left(\frac{n_{\Phi}}{n_{\mathrm{p}}}\right)_{1}=\frac{160}{149}=1,1 \\
& \left(\frac{n_{\phi}}{n_{\mathrm{p}}}\right)_{2}=\frac{315}{322}=1,0
\end{aligned}
$$

По карже 3 для торцовых фрез, оснащенных четырехграннымя СМП, определяют табтичное значание периода стойкости $T_{T}-150$ мин. Гири черновой обрзботкс на первом переходе для фрезы с $D=125$ мм и $7-12$ табличюое значение расхода пластин $P_{1000 т}=686$ птт , так как число перестановок пиастин $k=8$, а при получистовой обработке $k=4$ и $P_{1000 \text { г }}=$ $=1315$, таккак пластины имеют фаски тожькп с одной стироны Исходя из этоio
$P_{1000 \text { ф1 }}=686 \cdot 0,91 \cdot \frac{150}{150} \cdot 1,3=81.2$ uтs.;
$P_{1100 \Phi_{2}}=1815 \cdot 0,7 \cdot \frac{150}{150} \cdot 1,0=921 \mathrm{\omega T}$
Выбор режущего инструмента, /асчет режимов резания и оценку расхода фрез при пбработке пов. 2 и 3 (см рис 2) ос ицесгвляют так же, нак и дпя пов 1

Bсе результагы расчета приведены в табл. 6 .

TOPムOHЫE ФРЕЗЫ
ТВЕРДОСПЛІАВНЫЕ И
БЫСТРОРЕЖУЩИЕ
Рекомендации по выбору инструмента Диаметр фрезы выби әают воеможмо меньшии из рекоменляемых в табл 7

При черновой обрабогке (14-16 й квалитег линейных размеров, шероховатость $R a=12,5-25$ мкм) и получис товой ($12-13$ й квалитет, $\quad R a=$ $=6,3$ мкм) целесообразно применяль торцовые фрезы сс сменньми мноцогранныии пластинамя (CMI) Напаянные торцовые фүезы с мелким зубом рекомендуются при чисговои (10-1 й квалитет, $R a=3,2$ мкм) н похучистовой обработке, с крупнцм зубом - при черновои однозубые фрезы с широким резцом --. гои отделочной лб̆рабптке ($7-9$-й квалитет, $P a=$ - 1,6 мкм)

Пля торцовых фрєз с СМП исполь зуют балльную оценку при выбор. формы твердосппавных пластин (табл 8) Назначается форма, имеющзя зысшую оценку При наличии одинаковых оценои предпочгение отдавать форме ппастины с бо́льшим числом граней

Торцовые фрезн из бысгрорежушеи стали рекомрндуется испопьзовать при обрабоме цвегных металлов и и* сплавов, а также черных металлов в случде, иогда применение твердосплавных фрез ограничено возможностью обеслечения досгаточной скорости ре зания или низкои жегткостью систем санок - при погобление - инстр мент-- деталь

При нормалі ных условиях обработки поименяю. инструментальные материалы первого ряда (габл 9) Пр́и по вышенной жесткости и ири отделонной обработке предпочтительно приме 1 ние инструментальныя материялов втлрого ряда При повименных требова ниях к надежности работы инстру мента предпочтительно применение ви струменгальных материалоз третегго ряда

Геометрические параметры перет. чиваемих торцовых фрез выбирант в зависимости от материала фре 1 (таєл. 10)

Размеры режущей части зуба фрє : 1 (пластины) спедует проверять на пр дел», тую глубину 1 езания (табл. i), хсторая не должна превьитать

7．Дкаметр торионой фрезы

	диаметр фргзм то гостя，мм											
$\underset{\substack{\text { ровмя } \\ \text { мı }}}{ }$	60 ＊	63 ＊	50 ＊	100 ＊	125 ＊	160 ＊	200 \＆	250	315	100	500	630
До 40	P	p	д									
Св． 40 до 60		д	P	p	д							
60＊ 80			д	P	P	p	Д					
＊80＊100				Д	P	P	Д	4				
＊ $100 \geqslant 120$					д	p	F	д				
＊ 120 ＊ 140						ת	P	P	д			
＊ $140 \cdot 160$						д	p	P	Д	Д		
＊ 160 － 180							Д	p	p	д	Д	
＊ 180 ， 200							Д	P	p	д	д	
埴 200 ＂ 250									P	P	Д	
\％ 300 \％ 350										P	P	д
$350 \geqslant 400$											p	P
\％ 450 》 500											д	P
¢ 500 》 550												P
触 550 ＊ 600												p
＋10．												

＊Совпадающие диаметры горцовых фрея СМП и перетачиваемых．
Усдовные ибозначеяия： P －．．－рєғомендуеиая обпасть приме－ Аия；Д－допусиимая область применелия．

－opma njuctun

9. Марки материалов торцовых фрез

Обрабатываемый материал		Временное сопротивление $\sigma_{в}$, МПа	Обработка	Марка материала фрезы		
				1-й ряд	2-й ряд	3-й рпд
Конструкционные углеродистые и легированные стали		-	Отделочная, чистовая	T15K6	$\begin{aligned} & \text { T30K4, } \\ & \text { T30K4, } \end{aligned}$	T14K8
			Получистовая	$\begin{aligned} & \text { T14K8 } \\ & \text { P6M5 } \end{aligned}$	$\begin{aligned} & \text { T15K6 } \\ & \text { P6M5 } \end{aligned}$	$\begin{aligned} & \text { T5K } 10 \\ & \text { P6M5 } \end{aligned}$
			Черновая	$\begin{gathered} \text { T5K10, } \\ \text { P6M5 } \end{gathered}$	$\begin{aligned} & \text { T14K8, } \\ & \text { P6M5 } \end{aligned}$	TT7K12 T5K12B P6M5
			Черновая по корке	$\begin{gathered} \text { T5K12B, } \\ \text { T T7K12, } \\ \text { P6M5 } \end{gathered}$	$\begin{aligned} & \text { T5K10, } \\ & \text { P6M5 } \end{aligned}$	P6M5
Серый, ковкий и высокопрочный чугуны	-	-	Отделочная	-	$\begin{aligned} & \text { BK4, } \\ & \text { BK } 3 M \end{aligned}$	-
			Чистовая	BK6	BK4	BK6
			Получи- - стовая	$\begin{aligned} & \text { BK6, } \\ & \text { BK4 } \end{aligned}$	BK 3 M, BK6M	BK8
			Черновая	BK8	BK4, BK6	BK8B
			Черновая по корке	BK8B	BK8	BK10-OM
Коррозионностойкие стали	I	До 1180	-	$\begin{gathered} \text { BK } 6 M, \\ \text { BK8 } \end{gathered}$	BK6M	$\begin{aligned} & \mathrm{BK} 8, \\ & \mathrm{P} 6 \mathrm{M} 5 \end{aligned}$
		$1180-1370$	-	BK8	T15K6	P6M5
				BK8	BK6M	P6M5
	II	Св. 1370	-	BK8, BK6M	BK6M	P6M5
Медные и алюминиевые сплавы	-	-	-	$\begin{aligned} & \text { P6M5, } \\ & \text { BK8, } \\ & \text { BK6 } \end{aligned}$	-	-

Примечание. I группа - коррозионно-стойкие хромистые и сложнслегированные стали; II группа - коррозионно-стойкие хромоникелевые стали.

Твердосплавные фрезъ

Констпукдионные углеродистые и легированнье стали	$\mathrm{HB}<140$	45-90	$\frac{\varphi}{2}$	5	12-15	$0 \div+5$	-	12-15	$1-1,15$	-
	140-229 HB					-5-0				
	$\mathrm{HB}>229$					-10				
Копргзионно-стойкие стали	$\sigma_{B}<1180$	30-60	$\frac{\varphi}{2}$	$10-15$	10-15	8-10	-5	0	1,0	0,2
	$\sigma_{\mathrm{B}}>1180$					-5		0	1,5-2,0	
	$\mathrm{HB}<160$	45-90	$\frac{\varphi}{2}$	5	12-15	$+5$	-	12-i5	$1-1,5$	-
	$\mathrm{HB}>160$					$-5-0$				
Ковкий и высокопрофыый чугун	-	45-90	$\frac{\varphi}{2}$		6-8	7	-	12-15	1-1,5	--

Обрабатываемый материал	Механические свойства материала $\sigma_{\text {в }}$ (МПа), HB	Угол заточки зубъев фрез, ... ${ }^{\circ}$							Раднус при вершине r или длина переходной кромки l	$\begin{aligned} & \text { Размер } \\ & \text { фаски } \end{aligned}$
		в плане			$\underset{\alpha}{\text { заднй }}$	$\underset{\gamma}{\text { переднй }}$	передний на фаске γ_{f}	наклона режущей кромки λ		
		главный φ	$\begin{gathered} \text { переход- } \\ \text { ной } \\ \text { кромки } \\ \varphi_{0} \end{gathered}$	вспомо-гательный φ_{1}						
									мк	
Медные и алюминие вые сплавы	-	45-60	45	1-2	8-15	10-25	-	-	1-1,5	-

Быстрорежуцие фрезы

Углеродистые и легированные стали	$\mathrm{HB}<140$	45-60	45	1-2	10-15	20	10-15	-	1-1,5	-
	140-229 HB					15				
	$\mathrm{HB}>229$					10				
Коррозионно-стойкие стали	-	30-60	-	10-15	10-15	10-15	-	-	1-2,0	-
Медные и алюминиевые сплавы	-	45-60	45	1-2	8-16	10-25	-	-	1-2,0	-

Примечания: 1. На задней грани торцовых фрез из быстрорежущей стали при заточке оставлять круглошлифованную ленточку шириной не более 0,1 мм.
2. Главный угол в плане $\varphi=15 \div 30^{\circ}$ применять при повышенной жесткости системы СПИЗ, для чистовой обработки с малыми значениями глубины резания.

$$
\frac{2}{3} l \sin \varphi
$$

где l - длина режущей кромки зуба фрезы, мм, φ - главный угол в плане зуба фрезы.

Окончательно типоразмер фрезы, а также типоразмеры сменных многотранных пластин твердого сплава подбирают по ГОСТам, ОСТам и ТУ.
(Режимы резания. Обработку плоских поверхностей торцовыми фрезами проводят за один-четыре пере*ода в зависимости от способа получения заготовки, ее точности и требуемой точности детали. Рекоменддции по выбору необходимого числа переходов приведены в табл. 12, а минимальной глубины резания на каждом из переходов - в табл. 13 (при исמользовании табл. 13 следует учитывать данные табл 12).

В карте 1 приведены сведения, необходимые для назначения подач на ауб торцовой фрезы, а в карте 2 для назначения скорости и мощности резания Табличные значения скоротей резания рдссчитаны для периода стойкости 120 мин.
(4+ в карте 3 даны рекомендации по фценке расхода фрез.

ТОРЦОВЫЕ ФРЕЗЫ ИЗ ВВЕРХТВЕРДЫХ МАТЕРИАЛОВ

4екомендации по выбору инструмента. диаметр фрезы выбирают в зависиपости от максимальной ширины фрезеФвания B При этом должно соблюПаться отношение $B / D=0,6-0,8$

При выборе конструкции торцовой резы с СТМ необходимо пользоваться феедующими рекомендациями.

Торцовые насадные регулируемые резы со вставными ножами (ТУ 035-918-83), оснащенные компози(10) 01 или 10, применяют для чистообработки, в том числе взамен 4nифования деталей из чугунов и ॠалей любой твердости. Максимальная מубина резания при одноступенчатом рианте исполнения фрез равна 0,5 мм, (\%) двухступенчатом 1,0 мм. Фрезы апользуют для обработки открытых ступенчатых поверхностей, а также верхностей типа «Ласточкин хвост». жаметры фрез 80-200 мм.
Торцовые фрезы с регулируемыми ссетами (ТУ 2-035-1038-86) осна(1отся сменными неперетачиваемыми

пластинами из синтетических сверхтвердых материалов - композитов 10 и и 05 Фрезы с пластинами из композита 10 д круглой или квадратной формы предназначаются для чистовой и получистовой обработки открытых поверхностей деталей из чугунов и сталей любой твердости при глубине резания при одноступенчатом варианте исполнения фрез до 2 мм, при двухступенчатом - до 3,5 мм Фрезы с пластинами из композита 05 используют для чистовой и получистовой обработки открытых поверхностей деталей только из чугуна Максимальная глубина резания при одноступенчатом варианте исполнения фрез 3,0 мм, при двухступенчатом - $5,0 \mathrm{~km}$ Диаметры фрез 125-630 мм.

Марки композитов приведены в табл. 14.

Режимы резания. В карте 1 приведены рекомендации по назначению подач на зуб для торцовых фрез, в карте 2 - скорости и мощности резания Значения скоростей резания рассчитаны при обработке сталей для периода стойкости 60 мин (фрезы из композита 01 и 10) и 90 мин (фрезы из композита 10Д), при обработке серых чугунов для периода стойкости 120 мин (фрезы из композита 01, 05 и 10) и 240 мин (фрезы из композита 10Д)

Стойкость фрез назначают исходя из критерия здтупления, выраженного величиной ленточки износа по задней поверхности Для фрез по ТУ 2-035-918-83 допустимый износ составляет 0,4 мм, а для фрез по ТУ 2-035-1038-86-0,8 мм В карте приведены сведения для одноступенчатых фрез При определении скорости резания ступенчатых фрез глубину резания следует выбирать по наиболее загруженной ступени, а общее число зубьев фрезы делить на число ступеней Мощность резания может быть определена как сумма мощностей резания отдельных ступеней

В карте 3 даны рекомендации по оценке расхода фрез.

ТОРЦОВЫЕ ФРЕЗЫ, ОСНАЩЕННЫЕ ПЛАСТИНАМИ ИЗ МИНЕРАЛОКЕРАМИКИ

Рекомендации по выбору инструмента.. Диаметр фрезы D выбирают в зависимости от максимальной ширины фре-

Обрабатываемый материал	Номер группы сбрабатываемого матернала	Временное сопротивление $\sigma_{в}$, МПа	Предельная глубиня резания t, мм
Коррозионно-стойкие хромистые сложнолегированные стали	1	$\begin{gathered} \text { До } 1200 \\ 1200-1400 \\ \text { Сs. } 1400 \end{gathered}$	8 5 4
Коррозионно-стойкие хромоннкелевые стали	II	-	8

12. Рекомендации по определению маршрута обработки поверхностей

TpoovTruernie mab̊. 12

Способ получения заготовки	Квалитет заготовки	Выполняемая обрабо		а при квалитете детали	
		до 14	13-12	11-10	9-7
Литье: стали (отливки II класса точности) и чугуна (отливки I класса точности) в песчаные формы; стали и чугуна в кокиль и центрсбежное; чугуна в оболочковые формы; цветных металлов и сплавов (отливки II класса точности) в песчаные и оболочковые формы, кокиль, центробежное и по выплавляемым моделям; горячая ковка и штамповка стальных деталей в штампах, на прессах и молотах	14	-	Получистовая	Получистовая, чистовая	Получистовая, чистовая, отделочная
Литье: стали (отливки I класса точности) в песчаные и оболочковые формы, по выплавляемым моделям; чугуна в оболочковые формы и по выплавляемым моделям; цветных металлов и сплавов по выплавляемым моделям и под давлением	13	-	Получистовая	Получистовая, чистовая	Получистовая, чистовая, отделочная
Литье: стали (отливки I класса точности) в песчаные и оболочковые формы, и по выплавляемым моделям; чугуна по выплавляемым моделям и в оболочковые формы; цветных металлов и сплавов под давлением	12	-	-	Чистовая	Чистовая, отделочная
Литье: стали в оболочковые формы и по выплавляемым моделям; чугуна по выплавляемым моделям	11	-	-	Чистовая	Чистовая, отделочная

3. Мхкимальная глубина резания при торцовом фрезеровании

Габарнтнье размеры обрабатвзаемой повсрхности, мм	Обработка	Квалитет размеров		Мивимальная глубина резания t (мм) при выполняемом размере (мм), не более								
		sаготовки	детали	80	120	180	250	315	400	500	630	C8. 630
До 160×160	Получистовая	14 13	$13-12$	$\begin{aligned} & 2,10 \\ & 1,25 \end{aligned}$	$\begin{aligned} & 2,30 \\ & 1,45 \end{aligned}$	$\begin{aligned} & 2,60 \\ & 1,70 \end{aligned}$	$\begin{aligned} & 2,80 \\ & 1,85 \end{aligned}$	$\begin{aligned} & 3,10 \\ & 2,05 \end{aligned}$	$\begin{aligned} & 3,30 \\ & 2,20 \end{aligned}$	$\begin{aligned} & 3,50 \\ & 2,30 \end{aligned}$	$\begin{aligned} & 4,20 \\ & 2,65 \end{aligned}$	$\begin{aligned} & 4,70 \\ & 2,90 \end{aligned}$
	Чистовая	13-11	$11-10$	$\begin{aligned} & 1,10 \\ & 0,65 \end{aligned}$	$\begin{aligned} & 1,20 \\ & 0,65 \end{aligned}$	$\begin{aligned} & 1,30 \\ & 0,70 \end{aligned}$	$\begin{aligned} & 1,40 \\ & 0,75 \end{aligned}$	1,55 0,85	1,65 $\mathbf{1 , 9 5}$	1,75 1,05	2,30 1,40	$\begin{aligned} & 2,50 \\ & 1,50 \end{aligned}$
	Отделочная	11-10	9--7	0,45	0,50	0,55	0,63	0,70	0,80	0,85	0,90	0,95
До 400×400	Полз чистовая	14 13	13-12	2,15 1,35	$\begin{aligned} & 2,35 \\ & 1,55 \end{aligned}$	$\begin{aligned} & 2,65 \\ & 1,80 \end{aligned}$	$\begin{aligned} & 2,85 \\ & 1,95 \end{aligned}$	3,15 2,15	$\begin{aligned} & 3,35 \\ & 2,30 \end{aligned}$	3.55 2.40	4,25 2,75	$\begin{aligned} & 4,75 \\ & 3,00 \end{aligned}$
	Чистовая	$13-12$	$11-10$	$\begin{aligned} & 1,15 \\ & 0,65 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 0,70 \end{aligned}$	$\begin{aligned} & 1,40 \\ & 0,75 \end{aligned}$	$\begin{aligned} & 1,50 \\ & 0,80 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 0,90 \end{aligned}$	1,75	1,85 1,05	$\begin{aligned} & 2,40 \\ & 1,45 \end{aligned}$	$\begin{aligned} & 2,60 \\ & 1,55 \end{aligned}$
	Отделочная	11-10	9-7	0,50.	0,55	0,55	0,65	0,70	0,75	0,80	0,95	1,00
Cs. 400×400	Получистовая	14	13-12	$\begin{aligned} & 2.30 \\ & 1,45 \end{aligned}$	2,50 1,65	$\begin{aligned} & 2,80 \\ & 1,90 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 2,05 \end{aligned}$	$\begin{aligned} & 3,30 \\ & 2,25 \end{aligned}$	3,50 2,40	$\begin{aligned} & 3,70 \\ & 2,50 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 2,65 \end{aligned}$	$\begin{aligned} & 4,90 \\ & 3,10 \end{aligned}$
	Чистовая .	$13-12$	$11-10$	$\begin{aligned} & 1,25 \\ & 0,70 \end{aligned}$	1,35 0,75	$\begin{aligned} & 1,50 \\ & 0,80 \end{aligned}$	$\begin{aligned} & 1,60 \\ & 0,85 \end{aligned}$	$\begin{aligned} & 1,75 \\ & 0,95 \end{aligned}$	$\begin{aligned} & 1.85 \\ & 1,05 \end{aligned}$	1,95 1,10	2,50 1,50	$\begin{aligned} & 2,70 \\ & 1,60 \end{aligned}$
	Отделочная	11-10	9-7	0,55	0,55	0,60	0,70	0,75	0,80	085	1,00	:,05

Карта 1

Обрабатываемый материал - сталь, чугун, алюминиевые и медные сплавы
\qquad
Конструкционная сталь

$$
S_{Z}=S_{Z_{T}} K_{S 1} K_{S 2} K_{S 3} K_{S 4} K_{S 5} K_{S 6}
$$

$\begin{gathered} \text { Диаметр } \\ \text { фрезы } D, \text { wм } \end{gathered}$	$S_{Z_{\text {т }}}$ прія глубине резания t, мм					
	0,5	1,0	2,0	4,0	8,0	12,0
80	0,12	0,09	0,07	0,05	0.04	0,03
125	0,15	0,11	0,08	0,06	0,06	0,04
200	0,19	0,14	0,11	- 0,08	0,06	0,05
400	0,26	0,19	0,15	0,11	0,08	0,07
630	0,32	0,24	0,18	0,14	0,10	0,09

Поправоиные коэффициентьы

Твердость стали НВ 156	173	207	229	265	285	321
$K_{\text {S1 }} \quad 1,2$	1,1	1,0	0,9	0,8	0,7	0,6
Марка материала инструмента	TT7K12	$\text { T5K } 10, \mathrm{P} 6 \mathrm{M} 5$			T14K8	T15K6
$k_{s 2}$	1,4		1,25		1,1	1,0

Перетачиваемая
Тип фрезы

Продолжение карты 1

Обработка	Черновая	Получистовая	Чистовая	Отделочная
$K_{S 6}$	1,0	0,65	0,43	0,26

Коррозионно-стойкая сталь

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S 1} K_{S_{2}} K_{S_{3}} K_{S_{4}} K_{S 5} K_{S 6}
$$

Диаметр фрезы D, мм	$S_{Z_{\text {t }}}$ при глубине резания t, мм					
	0,5	1,0	2,0	4,0	8,0	12,0
80	0,08	0,06	0,05	0,03	0,03	0,02
125	0,10	0,07	0,06	0,04	0,03	0,03
200	0,12	0,09	0,07	0,05	0,04	0,03
400	0,17	0,13	0,10	0,07	0,06	0,05
630	0,21	0,16	0,12	0,09	0,07	0,06

Поправочные коэффициенты

Временное сопрот ние $\sigma_{в}, М П а$		640	800		1000	1200
$K_{S 1}$		1,0	0,85	0,75		0,65
Марка материала струмента		BK 10 OM, P6M5K5, P9K5	BK8B	BK8	BK6, BK4	BK $6 M$, BK3
$K_{S 2}$		1,2	1,1	1,0	0,75	0,65
Tип фрезы	СМП		Перетачиваемая			
			с мелким зубом		с крупным зубом	
$K_{S 3}$		1,0				
Главный угол в плане $\varphi, \ldots{ }^{\circ}$			45		60	90
$k_{\text {SU }}$			1,15		1,0	0,7
Схема фрезерования	Симметричная			Несимметричная (попутное фре зерование)		
$K_{S s}$	0,5			1,0		

Обработка	Черновая	Получистовая	Чистовая	Отделочная
$K_{S \boldsymbol{B}}$	1,0	0,65	0,43	0,26

Чугун
$S_{\boldsymbol{Z}}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{\mathbf{S}_{2}} K_{\boldsymbol{S}_{3}} K_{\boldsymbol{S}_{4}} K_{\boldsymbol{S}_{5}} K_{\boldsymbol{S} 6}$

Диаметр фрезы D, мм	Глубина резания t, мм					
	0,5	1,0	2,0	4,0	8,0	12,0
80	0,28	0,22	0,17	0,14	0,11	0,09
125	0,36	0,28	0,22	0,17	0,14	0,12
200	0,46	0,36	0,28	0,22	0,17	0,15
400	0,66	0,52	0,41	0,32	0,25	0,22
630	0,85	0,66	0,52	0,41	0,32	0,28

Поправочные коэффициентть

фрезерования	Симметричная	Несимметричная (встречное фрезерование)
	0,5	1,0

Продолжение карты

Обработка	Черновая		Получистовая			Огделочная
$K_{S 6}$	1,0		0,65	0,43		0,26
. Алюминиевые и медные сплавы$S_{Z}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{S 2} K_{S 3} K_{S 4} K_{S 5} K_{S 8}$						
Диаметр фрезы D. мм	$S_{Z_{T}}$ при глубине рездния t, мм					
	0,5	1,0	2,0	4,0	8,0	12,0
80	0,48	0,37	0,29	0,23	0,18	0,16
125	0,61	0,47	0,37	0,29	0,23	0,20
200	0,78	0,61	0,48	0,38	0,30	0,26
400	1,13	0,89	0,70	0,55	0,73	0,37
630	1,45	1,14	0,89	0,70	0,55	0,47

Поправочные кояффициентьь

Сплавы	Алюминиевые			Медные	
$K_{S 1}$	1,0			0,9	
Марка материала инструмента	BK10-OM	$\begin{aligned} & \text { BK8B, } \\ & \text { P6M5 } \end{aligned}$	BK8	BK6, BK4	BK6M, BK3
$K_{S 2}$	1,2	1,1	1,0	0,75	0,65
Тип Фрезя	СМп	Перетачиваемая			
		с мелким зубо		м с крупным зубом	
$K_{S 3}$	1,0	0,8		1,1	
Главный угол в плане $\varphi, \ldots{ }^{\circ}$		45		60	90
$K_{S 4}$		1,15		1,0	0,7
Схема фрезерования	Симметричная		Несиммегричная (встречное фре зерование)		
$K_{S 6}$	0,5		1,0		

Продолжение карть 1

Обработка	Черновая	Получистовая	Чистовая	Отделочная
$K_{S o}$	1,0	0,65	0,43	0,26

Торцовые фрезы из ТС и БРС
Kapra 2

Скорость резания v, м/мин
Мощность резания N, кВт

Обрабатываемый материал - стадь, чугун, алюминиевые и медные сплавы

Твррдосплавные фрезы
Конструкционная сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{v 4} K_{v 5} K_{v 8} K_{v 7} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N \theta} K_{N}, K_{N 8} .
\end{gathered}
$$

Глубина резания t, мм

4	0,05	0,08	0.12	0,15	0,18	0,20	0.25	0,35
1,5	$\frac{370}{4,9}$	$\frac{352}{6,6}$	$\frac{284}{7,2}$	$\frac{260}{7,8}$	$\frac{241}{8,3}$	$\frac{231}{8,7}$	$\frac{211}{9,4}$	$\frac{185}{10,5}$
3,0	$\frac{344}{9,1}$	$\frac{328}{12,4}$	$\frac{265}{13,5}$	$\frac{242}{14,7}$	$\frac{225}{15,6}$	$\frac{216}{16,2}$	$\frac{197}{17,5}$	$\frac{172}{19,5}$
箅 5,0	$\frac{327}{14,5}$	$\frac{312}{19,7}$	$\frac{252}{21,5}$	$\frac{230}{23,2}$	$\frac{214}{24,8}$	$\frac{205}{25,7}$	$\frac{187}{27,8}$	$\frac{164}{31,3}$
$8,0$	$\frac{312}{22,1}$	$\frac{298}{30,0}$	$\frac{240}{32,8}$	$\frac{219}{35,5}$	$\frac{204}{37,8}$	$\frac{196}{39,3}$	$\frac{179}{42,5}$	$\frac{156}{47,8}$

Поправочкые коэффициентьь

Tpynna стали	Углеродистая	Хромистая, хромоникелевая, хромованадиевая	Прочие леги. рованные, инструментальная углеродистая	Инструмен- тальная лет ировакная, подшипниковая	Быстрорежущая
	1,0	0,9	0,8	0,7	0,6
V_{1}	1,0	1,0	1,0	1,15	1,25
3 3 a 217					

Продолжение карть 2

Твердость стали НВ	156	173	207	229	265	28		321
$K_{V 2}$	1,3	1,2	1,0	0,9	0,8	0,		0,6
$K_{N 2}$	0,9	0,95	1,0	1,0	1,1	1,		1,2
Состояние обрабатываемой поверхности				Без корки			С коркой	
$K_{v 3}=K_{N 3}$				1,0			0,8	
Марка твердого сплав		TT7K12		T5K10	T14K8		T.15K6	
$K_{v 4}=K_{N 4}$		0,45		0,65	0,8		1,0	
Тип фрезы		СМП			Перетачиваемая			
$K_{v 5}=K_{N 5}$		1,1			1,0			
Главный угол в плане φ, \ldots			90		60		45	
$K_{v 6}=K_{N 6}$			0,9		1,0		1,1	
Период стойкости T, мин			45	120	150	250	400	600
$K_{v 7}=K_{N 7}$			1,45	1,0	0,9	0,75	0,65	0,55
Число зубьев 2	5	10		20	36		52	
$K_{N 8}$	0,5	1,0		2,0	3,6		5,2	

$$
\begin{gathered}
\text { Коррозионно-стойкая сталь } \\
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{v 4} K_{v \mathbf{v}} K_{v 6} K_{v 7} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N_{4}} K_{N 5} K_{N 6} K_{N 7} K_{N 8} .
\end{gathered}
$$

$\begin{gathered} \text { Глубина } \\ \text { резания } t, \\ \text { мм } \end{gathered}$	$\frac{v_{\mathrm{T}} \text { (м/Мин) }}{N_{\text {T }}(\text { кВт })}$ при подаче на зуб S_{Z}, м,				
	0,05	0,08	0,10	0,12	0,15
1,5	$\frac{70}{0,9}$	$\frac{61}{1,2}$	$\frac{57}{1,3}$	$\frac{54}{1,4}$	$\frac{51}{1,6}$

$\underset{\text { резания }}{\text { глубина }},$	$\frac{v_{T}(\text { м/мй })}{N_{T}(\mathrm{KBT})}$ при подаче па вуб $S_{\boldsymbol{Z}}$. м				
	0,05	0,08	0,10	0,12	0,15
3,0	$\frac{67}{1,7}$	$\frac{58}{2,1}$	$\frac{54}{2,4}$	$\frac{52}{2,6}$	$\frac{48}{2,9}$
5,0	$\frac{64}{2,6}$	$\frac{56}{3,3}$	$\frac{52}{3,7}$	$\frac{50}{4,1}$	$\frac{47}{4,6}$
8,0	$\frac{62}{4,0}$	$\frac{54}{5,0}$	$\frac{51}{5,6}$	$\frac{48}{6,1}$	$\frac{45}{6,8}$

Поправочные коэффициенты

$\begin{gathered} \text { Марка } \\ \text { обрабатывае- } \end{gathered}$	$\begin{gathered} 12 \times 13, \\ 25 \times 13 \mathrm{H} 2 \end{gathered}$	20X13	30X13	$40 \times 13,12 \times 18 \mathrm{H} 10 \mathrm{~T}$. $09 \times 16 \mathrm{H} 4 \mathrm{E}, 14 \mathrm{X} 17 \mathrm{H} 2$. $07 \times 16 \mathrm{H} 6,20 \times 23 \mathrm{H} 13$		$12 \times 21 \mathrm{M} 5 \mathrm{~T}$
$K_{v 1}=K_{N 1}$	1,4	1,3	1,2		0	0,85
Состояние обрабатываемой поверхности				Без кор		С коркой
$K_{02}=K_{N 2}$				1,0		0,7
арка тверд	сплава	BK10-OM	BK8B	BK8	BK6, BK4	$\begin{gathered} \text { BK6M, } \\ \text { BK3 } \end{gathered}$
$\alpha_{108}=K_{N 3}$		0,7	0,8	1,0	1,2	1,3
Тип фрезы		СМП		Перетачиваемая		
$K_{v 4}=K_{N 4}$		1,1		1,0		

¢авный угол в плане $\varphi, \ldots{ }^{\circ}$		90	60	45
${ }_{\text {\% }}=K_{N s}$		0,9	1,0	1,2
\%ошение B / D	0,4		0,6	0,8
\%	1,1		1.0	0,95
\%	0,7		1.0	1,25

Продолжение картьє 2

Период стойкости T, мин		45	120	150	250	400	600
$K_{v 7}=K_{N 7}$		1,35	1,0	0,95	0,8	0,7	0,6
Число зьбьев Z	5	10	20	36	52		
$K_{N 8}$	0,5	1,0	2,0	3,6	5,2		

Серьии чисун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7}
\end{gathered}
$$

Глубина

резания t, мм	0,05	010	0,15	018	0,20	0,25	030	0,35
1,5	$\frac{198}{1,6}$	$\frac{155}{2,2}$	$\frac{134}{2,5}$	$\frac{126}{2,7}$	$\frac{122}{2,8}$	$\frac{112}{3,1}$	$\frac{105}{33}$	$\frac{100}{3,5}$
3,0	$\frac{178}{2,8}$	$\frac{140}{3,7}$	$\frac{121}{4,3}$	$\frac{114}{4,6}$	$\frac{109}{18}$	$\frac{101}{53}$	$\frac{95}{5,6}$	$\frac{90}{6,0}$
5,0	$\frac{165}{4,1}$	$\frac{129}{5,4}$	$\frac{112}{6,3}$	$\frac{105}{6,8}$	$\frac{101}{7,1}$	$\frac{94}{7,7}$	$\frac{88}{8,3}$	$\frac{83}{8,8}$
8,0	$\frac{154}{5,9}$	$\frac{120}{7,7}$	$\frac{104}{9,0}$	$\frac{98}{9,7}$	$\frac{94}{10,1}$	$\frac{87}{11,0}$	$\frac{82}{11,8}$	$\frac{78}{12,6}$

Поправочные кояффициенть

Твердость чугуна НВ	156	173	207	229	265	285	321
$K_{v 1}$	1,5	1,3	1,1	1,0	0,8	0,7	0,6
$K_{N 1}$	1,3	1,2	1,1	1,0	0,9	0,8	0,7
Состояние обрабатываемой поверхности	Без корки	С коркой					
$K_{v 2}=K_{N 2}$							

Продолженир карты 2

Ковкий и высокопроиньй чуеуныя

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{כ 2} K_{v g} K_{v i} K_{v E} K_{v \theta}, \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N \Delta} K_{N \Delta} K_{N \mathrm{~b}} K_{N \mathrm{~B}} K_{N 7}
\end{gathered}
$$

Глубина

Глубина резання t, мм	$N_{\text {T }}(\mathrm{KBT})$							
	0,05	0.10	015	0,18	0,20	0,25	0,3	0,4
$1,5$	$\frac{125}{1,4}$	$\frac{16}{2,2}$	$\frac{112}{2,9}$	$\frac{110}{3,3}$	$\frac{103}{3,3}$	$\frac{95}{3,7}$	$\frac{90}{4,0}$	$\frac{82}{4,5}$
4 3,0	$\frac{111}{2,5}$	$\frac{103}{4,0}$	$\frac{99}{5,2}$	$\frac{70}{59}$	$\frac{91}{5,9}$	$\frac{85}{6,5}$	$\frac{80}{7,1}$	$\frac{73}{-8,0}$
	$\frac{102}{3,9}$	$\frac{95}{6,1}$	$\frac{91}{8,0}$	$\frac{89}{90}$	$\frac{83}{9,1}$	$\frac{78}{10,0}$	$\frac{73}{11,0}$	$\frac{67}{12,3}$
$8,0$	$\frac{94}{5,8}$	$\frac{88}{9,1}$	$\frac{84}{11,8}$	$\frac{82}{13,3}$	$\frac{77}{13,5}$	$\frac{72}{14,8}$	$\frac{c 8}{16,1}$	$\frac{62}{18,2}$

Поправочнье коэффициентыи

Отношение B / D	0,4	0,6	0,8		
$K_{v 6}$	1,1	1,0	0,95		
$K_{N 6}$	0,7	1,0	1,3		
Период стойкости T, мин		45	120	150	250
$K_{v 7}=K_{N 7}$	400	600			
Число зубьев Z	5	10	$2 \emptyset$		36

Медные сплавы
$v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} ;$
$N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7}$

Глубина резания t, мм								
	0,03	0,05	0,1	0,15	0,18	0,25	0,35	0,40
1,5	$\frac{411}{1,5}$	$\frac{371}{2,0}$	$\frac{323}{3,1}$	$\frac{280}{3,7}$	$\frac{260}{4,0}$	$\frac{232}{4,5}$	$\frac{199}{5,3}$	$\frac{189}{5,6}$
3,0	$\frac{383}{2,7}$	$\frac{346}{3,7}$	$\frac{301}{5,7}$	$\frac{261}{6,8}$	$\frac{243}{7,3}$	$\frac{216}{8,2}$	$\frac{186}{9,5}$	$\frac{176}{10,1}$
5,0	$\frac{364}{4,2}$	$\frac{329}{5.8}$	$\frac{286}{8,8}$	$\frac{248}{10,5}$	$\frac{230}{11,3}$	$\frac{205}{12,7}$	$\frac{176}{14,8}$	$\frac{167}{15,6}$
8.0	$\frac{347}{6,3}$	$\frac{314}{8,6}$	$\frac{273}{13,1}$	$\frac{236}{15,7}$	$\frac{220}{16,9}$	$\frac{196}{18,9}$	$\frac{168}{22,0}$	$\frac{160}{23,2}$

Поправочные коэффициентьь

Марка обрабатываемого сплава	БрБ2, БрМц5	ЛАЖ60-1-1, БрА10Ж3Mц2, 5рА10Ж4H4Л, БрА11 Ж6Н6, ЛЦ23А6Ж3Мц2		ЛЖ $58-1-1$, БрА5, БрА7, ЛЦЗ8Мц2С2, БрКМц3-1, БрОЦ4-3, БрО $\Phi 6,5-0,4$. БрО $94-0,25$	
$K_{v 1}=K_{N_{1}}$	0,2	0,4	0,5	1,0	1,5

Быстрорежущиефрезы
Конструкционная сталь
$v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} K_{v 7} ;$
$N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7}$.
$\frac{v_{\mathrm{T}} \text { (м/Мин) }}{N_{\mathrm{T}} \text { (КВТ) }}$ при подаче на зуб s_{Z}, мм/зуб
Глубина
резания t, мм

1,5	$\frac{63}{0,4}$	$\frac{57}{0,5}$	$\frac{49}{0,8}$	$\frac{48}{0,9}$	$\frac{44}{1,0}$	$\frac{41}{1,1}$	$\frac{36}{1,3}$	$\frac{31}{1,4}$
3,0	$\frac{59}{0,7}$	$\frac{53}{1,0}$	$\frac{46}{1,5}$	$\frac{45}{1,7}$	$\frac{41}{1,9}$	$\frac{38}{2,0}$	$\frac{33}{2,3}$	$\frac{29}{2,6}$
5,0	$\frac{56}{1,1}$	$\frac{50}{1,5}$	$\frac{44}{2,3}$	$\frac{43}{2,7}$	$\frac{39}{2,9}$	$\frac{36}{3,1}$	$\frac{32}{3,6}$	$\frac{28}{4,1}$
8,0	$\frac{53}{1,7}$	$\frac{48}{2,3}$	$\frac{42}{3,5}$	$\frac{41}{4,0}$	$\frac{37}{4,4}$	$\frac{34}{4,7}$	$\frac{30}{5,4}$	$\frac{26}{6,1}$

8 А. Д Локтев

Попрсяочнье коэффициентьи

$\underset{\text { группа }}{\substack{\text { грали }}}$углеро- дистая	Хромнстая, хромоникеліевая, хромованадиевая	Прочие леги. рованные ичсгрументальные, углеродистая			Инструментальная легированная, подшипниковая		Выстрорежущая
K_{01} 1,0	0,8	0,7			0,6		0,5
$K_{N 1}$ 1,0	0,8	0,9			1,1		1,3
Твердость сталя HB	156	173	207	229	265	285	321
K_{03}	1,3	1,2	1,0	0,9	0,7	0,6	0,5
KN2	0,9	0,95	1,0	1,0	1,0	0,95	0,85
Состояние обрабагываемой поверхности				Без корки		C корков	
$K_{u s}=K_{N s}$				1,0		0,8	
Главный угол в плане $\varphi, \ldots{ }^{\circ}$			90		60		45
$K_{v 4}=K_{N 4}$			0,9		1,0		1,1
Отношение B / D	0,4		0,6			0,8	
$K_{v 5}$	1,1		1,0			0,95	
$K_{N \checkmark}$	0,5		1,0			1,2	
Число вубьев Z	10	12		6	20	36	52
K_{00}	1,0	1,		95	0,9	0,9	08
$K_{\text {Ne }}$	1,0	1,1		, 5	1,9	3,0	4,8

Период стойкости T, мин	45	120	150	200	350	400
$K_{07}=K_{N 7}$	1,2	1,0	0,95	0,9	0,8	0,75

Коррозионно-стойкая сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 6} K_{N 6} K_{N 7} .
\end{gathered}
$$

Глубина	$\frac{\sigma_{\mathrm{T}}(\mathrm{m} / \text { мин })}{N_{\mathrm{T}}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, мм/зуб						
	0,05	0,08	0,10	0,12	0,15	0,18	0.2
1,5	$\frac{57}{0,6}$	$\frac{50}{0,8}$	$\frac{48}{0,9}$	$\frac{45}{1,0}$	$\frac{43}{1,1}$	$\frac{41}{1,2}$	$\frac{40}{1,3}$
3,0	$\frac{49}{1,1}$	$\frac{44}{1,4}$	$\frac{41}{1,6}$	$\frac{40}{1,8}$	$\frac{37}{2,0}$	$\frac{36}{2,2}$	$\frac{36}{2,3}$
5,0	$\frac{44}{1,7}$	$\frac{39}{2,1}$	$\frac{37}{2,4}$	$\frac{36}{2,7}$	$\frac{34}{3,0}$	$\frac{32}{3,3}$	$\frac{31}{3,5}$
8,0	$\frac{40}{2,4}$	$\frac{36}{3,2}$	$\frac{34}{3,6}$	$\frac{32}{3,9}$	$\frac{31}{4,4}$	$\frac{29}{4,9}$	$\frac{28}{5,2}$

Поправочные коэффициенть

Поправочные кояффициентьь

	АЛ7, АЛв. АЛ19, АК5М7, Д16, АК4, АК6, АК8. В93, В95					АДО, АД1, АМц, АММС, АДЗ1, АДЗ3, AMr3, AMI5, AB		
$K_{v 1}=K_{N 1}$	0,85		1,0			1,25		
Состояние обрабатываемой поверхности				Без корки			С коркой	
$\chi_{0_{02}}=K_{N 2}$				1,0			0,9	
лавный угол в плане φ, \ldots 。			90		60		45	
$\chi_{p s}=K_{N 3}$			0,95		1,0		1,15	
¢тошение $^{\text {¢ }} / D$	0,4		0,6			0,8		
x^{1}	1,1		1,0			0,95		
MN_{4}	0,6		1,0			1,35		
解ериод стойкости T, мин			45	120	150	200	350	400
${ }^{\prime 2 \mathrm{bs}}=K_{N \mathrm{~s}}$			1,2	1,0	0,95	0,9	0,8	0,75
исло зубьев Z	5	10	20		36		52	
48x	0,5	1,0	2,0		3,6		5,2	

Медные сплавья

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

Глубина резания t, мм

$\frac{v_{\mathrm{T}}(\mathrm{m} / \mathrm{MuH})}{N_{\mathrm{T}}(\mathrm{KBT})}$ при подаче на зуб s_{Z}, мм/зуб							
0,03	0,05	0,10	0,15	0,18	0,25	0,35	0,4
$\frac{151}{0,4}$	$\frac{136}{0,6}$	$\frac{118}{0,9}$	$\frac{103}{1,1} \cdot$	$\frac{95}{1,2}$	$\frac{85}{1,4}$	$\frac{73}{1,6}$	$\frac{69}{1,7}$
$\frac{141}{0,8}$	$\frac{127}{1,1}$	$\frac{110}{1,7}$	$\frac{96}{2,1}$	$\frac{89}{2,2}$	$\frac{79}{2,5}$	$\frac{68}{2,9}$	$\frac{64}{3,1}$

Глубина резания t, мм	$\frac{v_{T} \text { (м/Мин) }}{N_{T}(\text { КBT })}$							
	0,03	0,05	0,10	0.15	0,18	0,25	0,35	0,4
5,0	$\frac{134}{1,3}$	$\frac{121}{1,7}$	$\frac{105}{2,7}$	$\frac{91}{3,2}$	$\frac{84}{3,5}$	$\frac{75}{3,9}$	$\frac{65}{4,5}$	$\frac{61}{4,8}$
8,0	$\frac{127}{1,9}$	$\frac{115}{2,6}$	$\frac{100}{4,0}$	$\frac{87}{4,8}$	$\frac{81}{5,2}$	$\frac{72}{5,8}$	$\frac{62}{6,8}$	$\frac{58}{7,2}$

Поправочные коэффициентьь

Mapкa сплава	БpE2, БрMц5								
$K_{v 1}=K_{N 1}$	0,2	0,4		0,55			1,0		1,5
Состояние обрабатываемой поверхности						корк		С коркой	
$K_{v 2}=K_{N 2}$					1,0			0,8	
Главный угол в плане $\varphi, \ldots{ }^{\circ}$				90		60		45	
$K_{03}=K_{N 3}$				0,9		1,0		1,15	
Отношение B / D		0,4		0,6			0,8		
K_{54}		1,1		1,0			0,95		
$K_{N 4}$		0,8		1,0			1,4		
Период стойкости T, мин				45	120	150	200	350	400
$K_{v 5}=K_{N 5}$				1,2	1,0	0,95	0,9	0,8	0,75
Число вубьев Z		5	10		20		36		
$K_{N 0}{ }^{\prime}$		0,5	1,0		2,0		3,6		

Kapra 3

Критерии затупления, число переточек и расход фрез за 1000 ч основного времени

Обрабатываемый материал - сгаль, чугун, алюминиевые и медные сплавы

Насадные фрезы со вставными ножами, оснащенными пластинами из TC

Диаметр фрезы D, мм	$\begin{gathered} \text { Период } \\ \text { стой- } \\ \text { кости } T, \\ \text { мин } \end{gathered}$	Критерий затупления $h_{\mathbf{3}}$, MM	Величина стачивания за одну переточку k, MM	Число переточек k	Суммарныд период сгойкости之1, ч	$\begin{gathered} \text { Расход } \\ \text { фрез } \\ P_{1000, ~ w r ~}^{2} \end{gathered}$

Черновая обработка
Сталь

100	150	1,2	0,5	12	29	34
125	150	1,4	0,6	12	29	34
160,200	250	1,4	0,6	12	49	21
250,315	500	1,4	0,7	13	105	10
400	500	1,5	0,8	15	120	9
500,630	600	1,5	0,8	15	145	7

Чуаун, медные и алюминиевые сплавы

100	150	1,5	0,6	10	25	40
125	150	1,7	0,7	10	25	40
160, 200	250	1,7	0,7	10	40	24
250	500	2,0	0,8	12	98	11
315	500	2,0	0,8	13	105	10
4. 400	500	2,0	0,8	15	120	9
'500,630	600	2,0	0,8	15	145	7

Чистовая обработка
Сталь, чугун, алюминиевье и меднье сплавь

100	150	0,6	0,4	15	36	28
125	150	0,6	0,4	17	40	25
160,200	250	0,6	0,4	17	64	16
250,315	500	0,6	0,5	19	151	17
400	500	0,8	0,6	20	159	7
500,630	600	0,8	0,6	20	191	6

Фрезы насадные из БРС

Обработка стали

Диаметр фрезы - D, мм	$\begin{gathered} \text { число } \\ \text { зубьев } \\ Z \end{gathered}$	$\begin{gathered} \text { Период } \\ \text { стоА } \\ \text { кости } \\ \text { м } \\ \text { мн } \end{gathered}$	Критерии за$\underset{h_{3}, \text { мм }}{\text { туления }}$	Величина стачивания за одну точку h, MM	Число переточек k	Суммарпериод croñкости $\Sigma T, q$	$\begin{gathered} \text { Расход } \\ \text { 中pes }_{1000 \%} \mathrm{mp} . \end{gathered}$
40	10	100	0,3	0,4	10	17	58
50	12	100	0,3	0,4	13	22	45
63	8	100	1,2	0,8	7	12	79
	14	100	0,4	0,4	16	27	38
80	10	150	1,3	0,8	10	26	39
	16	150	0,5	0,4	18	45	23
100	12	150	- 1,5	0,8	13	33	30
	18	150	0,5	0,4	20	50	20

Фрезы насадныесовставными ножами из БРС
Обработка стали

Диаметр фрезы D, мм	$\begin{gathered} \text { Период } \\ \text { стон- } \\ \text { кости } T, \\ \text { мин } \end{gathered}$	$\begin{gathered} \text { Крите- } \\ \text { риияа- } \\ \text { тупления } \\ \text { has }_{\mathbf{3}}, \text { мм } \end{gathered}$	Величина стачивания за одну переточку h, MM	Число переточек k	Суммарнии период стоикости ΣT,	
80	100	1,2	0,4	15	25,5	39,0
100	100	1,2	0,4	23	38,0	26,0
125	100	1,4	0,5	24	40,0	25,0
160, 200	150	1,5	0,6	25	62	16
250	350	1,5	0,6	25	145	7,0

Торцовые фрезы, оснащенные СМП
Обработка стали и иугуна

Диаметр фрезы D. M M	Число зубьев Z	$\begin{gathered} \text { Период } \\ \text { стои- } \\ \text { кости } T, \\ \text { мин } \end{gathered}$	Критерий затупления h_{3}, мм, при обработке		Число гранеп k	Суммар- нып период cтойкости $\Sigma T, ~ q$	Расұод пластин P_{1000}, wit.
			стали	qугунa			

Ромбические СМП

63	5	80	$1,0-1,2$	$1,4-1,6$	2	2	2273
100	8	150	$1,0-1,2$	$1,4-1,6$	2	4	1940
125	10	150	$1,0-1,2$	$1,4-1,6$	2	4	2424
160	12	250	$1,0-1,2$	$1,4-1,6$	2	6	1818
200	14	250	$1,0-1,2$	$1,4-1,6$	2	6	2121

Круалье СМП

50,63	5	80	1,2-1,4	1,6-1,8	8.	9	536
			1,4-1,6	1,8-2,0	4	5	986
80	8	150	1,2-1,4	1,6-1,8	8	17	457
			1,4-1,6	1,6-2,0	4.	9	842
100	10	150	1,2-1,4	1,6-1,8	8	17	572
			1,4-1,6	1,8-2,0	4	9	1052
125	12	150	1,2-1,4	1,6-1,8	8	17	687
			1,4-1,6	1,8-2,0	4	9	1263
160	14	250	1,2-1,4	1,6-1,8	8	28	480
			1,4-1,6	1,8-2,0	4	14	885
200	16	250	1,2-1,4	1,6-1,8	8	28	549
			1,4-1,6	1,8-2,0	4	14	1011

Продолжение карты 3

Диаметр фрезы D, MM	Число зубьев Z	$\begin{gathered} \text { Период } \\ \text { стой- } \\ \text { кости } T, \\ \text { мин } \end{gathered}$	Критерй затупления h_{3}, мм, при обработке		Число граней k	Суммарны период стойкости ΣT, ч	Расход пластин P_{1000}, wт
			стали	чугуна			

Четырехгранные СМП

63	5	80	1,0-1,2	1,4-1,6\|	8	9	536
			1,2-1,4	1,6-1,8	4	5	1028
100, 125	8	150	1,0--1,2	1,4-1,6	8	17	457
			1,2-1,4	1,6-1,8	4	9	877
100	10	150	1,0-1,2	1,4-1,6	8	17	572
			1,2-1,4	1,6-1,8	4	9	1096
125	12	150	1,0-1,2	1,4-1,6	8	17	686
			1,2-1,4	1,6-1,8	4	9	1315
160	16	250	1,0-1,2	1,4-1,6	8	29	549
			1,2-1,4	1,6-1,8	4	15	1053
200	20	250	1,0-1,2	1,4-1,6	8	29	686
			1,2-1,4	1,6-1,8	4	15	1315
			Пятигран	ные СМП			

63	5	80	1,0-1,2	1,4-1,6	10	11	432
			1,2-1,4	1,6-1,8	5	6	833
100	6	150	1,0-1,2	1,4-1,6	10	21	276
			1,2-1,4	1,6-1,8	5	11	533
	8		1,0-1,2	1,4-1,6	10	21	368
125			1,0-1,2	1,4-1,6	10	21	368
			1,2-1,4	1,6-1,8	5	11	711
160	10	250	1,0-1,2	1,4-1,6	10	36	276
			1,2-1,4	1,6-1,8	5	18	534
200	12		1,0-1,2	1,4-1,6	10	36	332
			1,2-1,4	1,6-1,8	5	18	639

14. Марки инструментального материала

О6рабатываемыи материал	Твердость материала	Обработка	Глубина резания t. мм	Марка композита
Стали углеродистые и легированные в состоянии поставки	$10-30 \mathrm{HRC}_{3}$	Чистовая	До 0,5	01, 10
		Чистовая и получистовая	0,5-2,0	10Д
Стали закаленные	35-55 HRC ${ }_{\text {a }}$	Чистовая	До 0,5	01, 10
		Чистовая и получистовая	0,5-2,0	$10 Д$
	55-65 HRC ${ }_{\text {a }}$	Чистовая	До 0,5	01, 10, 10Д
		Чистовая и получистовая	До 1,0	10Д
Hyгуны серые и бысокопрочные	143-360 HB	Чистовая	До 0,5	$\begin{gathered} 01,05,10 \\ 10 Д \end{gathered}$
		Чистовая	0,5-3,5	05, 10Д
		Получистовая	3,5-5,0	05

верования B. При этом рекомендуется соблюдать отношение $B / D=0,6 \div 0,8$. Окончательно типоразмер фрезы подбирают по ГОСТам, ОСТам и ТУ. Марка минералокерамической плафтины зависит от обрабатываемого материала (табл 15).
Режимы резания. Рекомендации по фазначению подач приведены в карте 1 , до назначению скорости и мощности резания - в карте 2. Для чугунов \%начения скоростей резания рассчитаны \%з условия стойкости фрез 120 мин ири критерии затупления $0,3-0,4$ мм (износ по задней поверхности зубьев (कрезы); для закаленных углеродистых ¢ легированных сталей скорости резаяия обеспечивают стойкость фрез 60 90 мин при критерии затупления 0,2-0,3 мм.

Уровни скоростей резания, диапаяоны подач, периоды стойкости преवусматривают использование торцовых фрез, оснащенных пластинами классов U и G при обработке чугунов и

класса G при* обработке закаленных сталей. Требования к изготовлению пластин классов U (шлифованные по опорным и задним поверхностям) и G (шличованные по опорным и задним поверхностям с более жесткими допусками) приведены в ГОСТ 25003-81.

ЦИЛИНДРИЧЕСКИЕ ФРЕЗЫ

Рекомендации по выбору инструмента. Ширина фрезы принимается не менее $1,2 B_{\max }$ от максимальной ширины фрезерования. Если ширина фрезерования более 150 мм, необходимо применять сборные составные фрезы Диаметр фрез зависит от ширины фрезерования (табл. 16).

При обработке быстрорежущим инструментом чистовую обработку проводят фрезами с мелким зубом, а черновую - с крупным.

На основании ориентировочно выбранных значений диаметра, ширины, формы зуба фрезы и марки инстру-

Подача на оборот $S_{0 б}$, мм/об

$\underset{\substack{\text { Орабагываемыи } \\ \text { материал }}}{\text { - }}$	Tвepдость HRC_{3}	Раднус при вер шине τ_{B}, мм	Шероховатость обработанной поверхности $R a$, мкм					
			0,16	0,32	0,63	0,80	1,25	2,50
Сгали	10-30	$\begin{gathered} 0,8-1,2 \\ 2,5-5,0 \\ 10-20 \end{gathered}$	-	二	$\begin{aligned} & 0,15 \\ & 0,3 \end{aligned}$	$\begin{aligned} & 0,15 \\ & 0,3 \\ & 1,0 \end{aligned}$	$\begin{aligned} & 0,25 \\ & 0,5 \\ & 1,5 \end{aligned}$	0,4 0,8 2,5
Закаленные стали	35-65	$\begin{gathered} 0,8-1,2 \\ 2,5-5,0 \\ 10-20 \\ 20-50 \end{gathered}$	$\begin{aligned} & \overline{-} \\ & 0,15 \\ & 0,2 \end{aligned}$	$\begin{aligned} & \overline{0,15} \\ & 0,25 \\ & 0,4 \end{aligned}$	0, 0,5 0,5 0,8	0,2 0,4 1,0 1,8	0,3 0,6 1,8 3,0	0,5 0,8 3,0 5,0
Серый чугун	-	$0,8-1,2$ $2,5-5,0$ $10-20$ $20-50$	-	0,15 0,2	0,15 0,25 0,4	0,15 0,25 0,5 0,8	0,2 0,4 1,0 1,5	0,3 0,6 2,0 3,0

Торцовые фрезы из сверхтвердых материалов

Карта 2

Скорость резания v, м/мин
Мощность резания N, кВт

Обрабатываемый материал - незакаленная и закаленная сталь

Регулируемые фрезы, оснащенные вставками из композита 01 и 10
(ТУ 2-035-918-83)
Незакаленная сталь твероостью $10-30 \mathrm{HRC}_{3}$

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} .
\end{gathered}
$$

$\begin{gathered} \text { Глубина } \\ \text { резания } t, \end{gathered}$MM	$\frac{{ }_{\mathrm{T}} \text { (м/мин) }}{N_{\mathrm{T}}(\text { кВт })}$ при подаче на зуб S_{Z}, м				
	0,02	0,04	0,06	0,08	0,10
0,05	$\frac{677}{0,1}$	$\frac{546}{0,1}$	$\frac{481}{0,1}$	$\frac{440}{0,2}$	$\frac{411}{0,2}$
0,10	$\frac{645}{0,2}$	$\frac{520}{0,3}$	$\frac{459}{0,3}$	$\frac{419}{0,4}$	$\frac{391}{0,5}$

$\begin{gathered} \text { Глубина } \\ \text { резанияя } t_{0} \\ \text { мм } \end{gathered}$	$\frac{v_{T}(\mathrm{~m} / \mathrm{Mин})}{N_{T}(\text { кВ才) }}$ при подаче на зуб S_{Z}, мм/s				
	0,02	0,04	0,06	0,08	0.10
0,20	$\frac{614}{0,3}$	$\frac{495}{0,5}$	437 0,7	400 0,9	$\frac{373}{1,0}$
0,30	$\frac{597}{0,5}$	$\frac{482}{0,8}$	$\frac{425}{1,1}$	$\frac{388}{1,3}$	$\frac{362}{1,5}$
0,40	$\frac{585}{0,7}$	$\frac{472}{1,1}$	$\frac{416}{1,4}$	$\frac{381}{1,7}$	$\frac{355}{2,0}$
0,50	$\frac{576}{0,9}$	$\frac{465}{1,4}$	410 1,8	$\frac{375}{2,2}$	$\frac{350}{2,5}$

Поправочные ковффициентьь

Tвердость HRC_{3}	10		20			30		
x_{01}	1,0		0,9			0,8		
©тношение B / D		0,8	0,6		0,4		0,2	
		0,9	1,0		1,1		1,3	
		1,2	1,0		0,8		0,5	
\#пело зубьев Z	8	10	12		20	24		36
\% ${ }^{2}$	0,8	1,0	1,2		2,0	2,4		3,6
(1ериод стойкости T, мин			30	45	60	90	120	180
$\mathrm{K}_{08}=K_{N 3}$			1,65	1,23	1,0	0,75	0,6	0,5
(роизведение поправочных коэффициентов Ма скорость резания ΠK_{0}				2,0	1,6	1,0	0,6	0,4
T^{+1}				0,8	0,9	1,0	1,15	1,3

Закаленная сталь твероостью $35-55 \mathrm{HRC}_{\boldsymbol{\partial}}$

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathrm{~b}} .
\end{gathered}
$$

$\begin{gathered} \text { Глуоина } \\ \text { резания } t, \\ \text { мм } \end{gathered}$	$v_{\text {T }}(\mathrm{M} / \mathrm{MHH})$		при подаче на зуб s_{Z}, мм/зуб		
	0,02	0,04	0,06	0,08	0,10
0,05	$\frac{466}{0,1}$	$\frac{365}{0,1}$	$\frac{317}{0,1}$	$\frac{287}{0,1}$	$\frac{265}{0,2}$
0,10	$\frac{426}{0,2}$	$\frac{334}{0,2}$	$\frac{290}{0,3}$	$\frac{262}{0,3}$	$\frac{242}{0,4}$
0,20	$\frac{389}{0,3}$	$\frac{305}{0,5}$	$\frac{265}{0,6}$	$\frac{239}{0,7}$	$\frac{221}{0,8}$
0,30	$\frac{369}{0,5}$	$\frac{289}{0,7}$	$\frac{251}{0,9}$	$\frac{227}{1,0}$	$\frac{210}{1,2}$
0,40	$\frac{355}{0,7}$	$\frac{279}{1,0}$	$\frac{242}{1,2}$	$\frac{219}{1,4}$	$\frac{202}{1,5}$
0,50	$\frac{345}{0,9}$	$\frac{271}{1,2}$	$\frac{235}{1,5}$	$\frac{212}{1,7}$	$\frac{196}{1,9}$

Поправочные кояффициенты

Tвердость HRC_{3}	35	40		45			55	
$K_{v 1}$	1,0	0,95	0,9		0,8		0,7	
$K_{N 1}$	1,0	1,2	1,4		1,5		1,5	
Отношение ширины фрезерования к диаметру B / D					0,8	0,6	0,4	0,2
$K_{v 2}$					0,9	1,0	1,1	1,3
$K_{N 2}$					1,2	1,0	0,8	0,5
Число зубьев Z	8	10	12		20	24		36
$K_{\text {N }}$	0,8	1,0	1,2		2,0	2,4		3,6
Период стойкости T, мин			30	45	60	90	120	180
$K_{\text {v3 }}=K_{N 4}$			1,55	1,2	1,0	0,75	0,65	0,55
Произведение поправочных коэффициентов на скорость резания ΠK_{v}				3,0	2,0	1,0	0,6	0,4
$\underline{K_{N 5}}$				0,8	0,85	1,0	1,1	1,2

Закаленная сталь твердостиь $55-65 \mathrm{HRC}_{9}$

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{\mathrm{vS}} \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathrm{~B}}
\end{gathered}
$$

Глубина резания $t_{\text {, }}$ мм	$\frac{v_{T}(\text { M/Мин })}{N_{T}(\text { (КВT) }}$ иря нощдче на зуб $S_{1,}$,				
	0,02	0,04	0,06	0,08	0,10
0,05	$\frac{327}{0,2}$	$\frac{239}{0,2}$	$\frac{199}{0,2}$	$\frac{175}{0,3}$	$\frac{158}{0,3}$
0,10	$\frac{300}{0,4}$	$\frac{220}{0,4}$	$\frac{183}{0,5}$	$\frac{161}{0,5}$	$\frac{145}{0,6}$
0,20	$\frac{276}{0,7}$	$\frac{202}{0,9}$	$\frac{169}{0,9}$	$\frac{148}{1,0}$	$\frac{134}{1,1}$
0,30	$\frac{263}{1,0}$	$\frac{193}{1,2}$	$\frac{160}{1,4}$	$\frac{141}{1,4}$	$\frac{127}{1,5}$
0,40	$\frac{254}{1,4}$	$\frac{186}{1,6}$	$\frac{155}{1,8}$	-136	$\frac{123}{2,0}$
0,50	$\frac{248}{1,7}$	$\frac{181}{2,0}$	$\frac{151}{2,1}$	$\frac{132}{2,3}$	$\frac{120}{2,4}$

Поправочные коэпфициенпья

Твердость HRC_{3}	55		60			65		
$K_{v 1}$	1,5		1,0			0,8		
$K_{N 1}$	1,3		1,0			0,9		
Отношение B / D		0,8	0,6		0,4		0,2	
K_{02}		0,93	1,0		1,1		1,3	
$K_{N 2}$		1,2	1,0		0,8		0,5	
Число зубьев Z	10	12	14	18	24	32	36	42
${ }^{1}{ }_{N 8}$	1,0	1,2	1,4	1,8	2,4	3.2	3,6	4,2
Период стойости T, мин			30	45	60	90	120	180
$K_{\text {E8 }}=K_{N 4}$			1,3	11,1	1,0	0,85	0,75	0,7
Произведение поправочных коэффициентов на скс рость резания ΠK_{v}					2,5	1,5	1.0	07
$K_{N B}$					0,9	0,95	1,0	1,05

Регулируемые фрезы, оснащенные вставками из композитов 01 и 10Д (ТУ 2-035-918-83)

Серый чугун
$v=v_{T} K_{v 1} K_{v 2} K_{v 3} ;$
$N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathbf{5}}$.

$\begin{gathered} \text { Глубина } \\ \text { резания } t, \\ \text { мм } \end{gathered}$	$\frac{v_{\mathrm{T}}(\text { м/Мин })}{N_{\mathrm{T}}(\text { КВт })}$ при подаче на зуб S_{Z},				
	0,02	0,04	0,08	0,12	0,16
0,05	$\frac{1670}{0,1}$	$\frac{1300}{0,1}$	$\frac{1000}{0,2}$	$\frac{860}{0,3}$	780 0,3
0,10	$\frac{1490}{0,2}$	$\frac{1160}{0,3}$	$\frac{900}{0,4}$	$\frac{770}{0,5}$	$\frac{690}{0,6}$
0,20	$\frac{1340}{0,4}$	$\frac{1040}{0,6}$	$\frac{800}{0,9}$	$\frac{690}{1,1}$	$\frac{620}{1,2}$
0,30	$\frac{1250}{0,6}$	$\frac{970}{0,8}$	$\frac{750}{1,2}$	$\frac{640}{1,5}$	$\frac{580}{1,8}$
0,40	$\frac{1200}{0,7}$	$\frac{920}{1,0}$	$\frac{720}{1,6}$	$\frac{620}{1,9}$	$\frac{550}{2,2}$
0,50	$\frac{1150}{0,9}$	$\begin{array}{r}890 \\ \hline 1,3\end{array}$	$\frac{690}{1,8}$	$\frac{590}{2,4}$	$\frac{540}{2,7}$

Поправочные коэффициентья

Твердость HRC_{3}	156	173	207	229	265		285		1
$K_{v 1}$	1,4	1,2	1,1	1,0	0,8		0,65		, 5
$K_{N 1}$	1,1	1,1	1,0	1,0	0,85		0,7		6
Отношение B / D		0,8		0,6	0,4			0,2	
$K_{v 2}$		0,9		1,0	1,1			1,3.	
$K_{N 2}$		1,2		1,0	0,8			0,5	
Число зубьев Z	8	10		12	20		24	36	
K ${ }^{\text {N }}$	0,8		, 0	1,2	2,0		2,4		,6
Пернод стойкости T, мин			60	90	120		180	240	
$K_{V 3}=K_{N 4}$			1,7	1,3	1,0		0,75	0,6	
Произведение поправочных коэффициентов на скорость резания $І K_{v}$				B 3,0	2,0	1,0	0,8	0,6	0,4
$K_{N 5}$				0,6	0,75	1,0	0,9	0,8	0,7

Торцовые фрезы с механическим креплением пластин из комнозита 10 д (ТУ 2-035-1038-86)

Незакаленная сталь твердостью $10-30 \mathrm{HRC}_{2}$

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} .
\end{gathered}
$$

Глубина резания t, MM	$v_{T}(\mathrm{M} / \mathrm{MHH})$		при подаче на зуб S_{Z}, мм/зуб			
	0,01	0,02	0,04	0,06	0,08	0,10
0,05	$\frac{540}{0,05}$	$\frac{450}{0,08}$	$\frac{410}{0,1}$	$\frac{380}{0,1}$	$\frac{360}{0,2}$	$\begin{array}{r}340 \\ \hline 0,2\end{array}$
0,30	$\frac{490}{0,2}$	$\frac{410}{0,4}$	$\frac{370}{0,6}$	340 0,7	$\frac{325}{0,8}$	$\frac{310}{1,0}$
0,50	$\frac{450}{0,4}$	$\frac{370}{0,6}$	340 0,9	$\frac{310}{1,2}$	$\frac{300}{1,6}$	$\frac{280}{2,0}$
1,00	$\frac{400}{0,8}$	$\frac{390}{1,2}$	$\frac{310}{1,6}$	$\frac{280}{2,0}$	$\frac{260}{3,0}$	-
1,50	$\frac{370}{1,2}$	$\frac{310}{2,0}$	$\frac{256}{3,0}$	-	-	-
2,00	$\frac{230}{1,6}$	$\frac{140}{2,5}$	-	-	-	-

Поправочные кояффициентьь

Закаленная сталь твердостью 35-55 НRC。

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v s} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} .
\end{gathered}
$$

$\underset{\text { мезания }}{\text { Глубина }},$	$\frac{v_{\mathrm{T}}(\text { м/мин })}{N_{\mathrm{T}}(\text { (КВт) }}$ при подаче на зуб S_{Z},				
	0,02	0,04	0,06	0,08	0,10
0,1	365	$\frac{317}{0,1}$	$\frac{287}{0,2}$	$\frac{265}{0,2}$	$\frac{250}{0,2}$
0,3	$\frac{334}{0,3}$	$\frac{290}{0,4}$	$\frac{262}{0,4}$	$\frac{242}{0,5}$	$\frac{230}{0,6}$
0,5	305	$\frac{265}{0,6}$	$\frac{239}{0,7}$	221 0,8	$\frac{208}{1,0}$
1,0	$\frac{289}{1,0}$	$\frac{257}{1,3}$	$\frac{227}{1,6}$	$\frac{210}{1,9}$	--
1,5	279	$\frac{242}{2,6}$	$\frac{219}{3,1}$	-	-
2,0	$\frac{271}{3,0}$	$\frac{235}{3,8}$	-	-	-

Поправочнье коэффициентьь

Твердость HRC_{0}	35		45		50			55		
$K_{v 1}$	1,4		1,2		1,0			0,9		
$K_{N 1}$	0,95		1,0		1,0			1,05		
Отношение B / D	0,8		0,6		0,4			0,2		
$K_{v 2}$	0,9		1,0		1,1			1,3		
$K_{N 2}$	1,2		1,0		0,8			0,5		
Число зубьев Z	10	14	20	24	3	0	40	50		60
$K_{\text {N3 }}$	1,0	1,4	2,0	2,4		,0	4,0	5,0		6,0
Период стойкости T, мин				45	60	9	0	120	180	240
$K_{v 3}=K_{N 4}$				1,5	1,2	1,	0	0,75	0,65	0,55
Произведение поправочных коэффициентов на скорость резания ΠK_{v}				3,0	2,5	1,5	1,0	0,8	0.6	0.4
$K_{N 5}$				0,78	0,82	0,86	0,9	1,0	1,05	1,22

Закаленная сталь твероостью 55-65 НRCэ

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 3} .
\end{gathered}
$$

Глубина резания t, мм	$\frac{v_{T} \text { (м/Мин) }}{N_{\text {T }}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, мм/зу				
	0,02	0,04	0,06	0,08	0,10
0,1	$\frac{265}{0,1}$	$\frac{230}{0,2}$	210 0,2	$\frac{190}{0,3}$	$\frac{160}{0,3}$
0,3	$\frac{240}{0,5}$	$\frac{210}{0,6}$	$\frac{190}{0,7}$	$\frac{180}{0,9}$	$\frac{170}{1,0}$
0,5	$\frac{225}{0,9}$	$\frac{200}{1,2}$	$\frac{180}{1,4}$	$\frac{170}{1,6}$	-
1,0	$\frac{210}{1,8}$	$\frac{190}{2,2}$	$\frac{170}{2,7}$	-	-
1,5	$\frac{200}{2,8}$	$\frac{160}{3,5}$	-	-	-
2,0	$\frac{200}{4,2}$	-	-	-	-

Поправочные коэффициенть

Серый чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathrm{Nb}} .
\end{gathered}
$$

MM	$v_{\mathrm{T}} \text { (м/мин) } \mathrm{np}$		при подауе на зуб S_{Z}, мм/syб			
	0,02	0.04	0,06	0.08	0,10	0,12
0,1	$\frac{1480}{0,3}$	$\frac{1250}{0,5}$	$\frac{1100}{0,6}$	$\frac{1000}{0,7}$	925	875
0,3	$\frac{1380}{0,8}$	$\frac{1150}{1,2}$	$\frac{1015}{1,5}$	$\frac{925}{1,7}$	$\frac{855}{1,8}$	800
0,5	$\frac{1205}{1,4}$	$\frac{1010}{2,0}$	$\frac{890}{2,7}$	$\frac{810}{3,2}$	$\frac{750}{3,6}$	700
1,0	$\frac{1100}{2,0}$	$\frac{920}{3,6}$	$\frac{810}{4,5}$	$\frac{730}{5,2}$	$\frac{680}{5,6}$	650
1,5	$\frac{950}{3,5}$	$\frac{810}{5,4}$	$\frac{710}{7,2}$	$\frac{650}{7,7}$	$\frac{600}{8,5}$	560 9,0
2,0	$\frac{880}{4,8}$	$\frac{740}{6,8}$	$\frac{660}{8.2}$	$\frac{600}{9,5}$	550	$\frac{511}{12,0}$

Поправочньи кояффичиентьи

Твердость НВ	156	173		207	229		265		285		321
$K_{v 1}$	1,4	1,2		1,1	1,0		0,8		0,65		0,5
$K_{N_{1}}$	1,1	1,1		1,0	1,0		0,85		0,7		0,6
Отношение B/D	0,8			0,6		0,4			0,2		
$K_{v 2}$	0,9			1,0		1,1			1,3		
$K_{N 2}$	1,3			1,0		0,7			0,4		
Число зубьев Z	10	12		14	20	24	40		50		60
$\mathrm{K}_{\underline{N 3}}$	0,5	0,6		0,7	1,0	1,2	2 2,		2,5		3,0
Период стойкости T, мин				80	120		180	240		300	
$\underline{K_{\text {v3 }}=K_{N 4}}$				2,0	1,5		1,2		1,0	0,8	
Произведение поправочных коэффициентов на скорость рездния ΠK_{v}			2,0	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,3
$K_{\text {N5 }}$			0,74	0,78	0,8\|	0,86	0,92	1,0	1,1	1,25	1,7

Фрезы с механическим креплением пластин из композита 05 (ТУ 2-035-1038-86)

Серый чугун
$v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} ;$
$N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathbf{b}}$.

$\underset{\text { мм }}{\substack{\text { Глубина } \\ \text { резания } \\ \hline}}$	$\frac{v_{\mathrm{T}} \text { (м/мин) }}{N_{\mathrm{T}}(\text { кВт })}$ при подаче на зуб s_{Z}, мм/з					
	0,02	0,04	0,06	0,08	0,10	0,12
\% 0,1	$\frac{1000}{0,3}$	$\frac{860}{0,4}$	770 0,5	$\frac{710}{0,6}$	$\frac{660}{0,7}$	$\frac{630}{0,8}$
0,3	$\frac{900}{0,7}$	$\frac{770}{1,1}$	$\frac{690}{1,4}$	$\frac{630}{1,6}$	$\frac{600}{1,8}$	$\frac{570}{1,9}$
\% 0,5	$\frac{800}{1,4}$	$\frac{690}{1,8}$	$\frac{620}{2,5}$	$\frac{570}{2,9}$	$\frac{530}{3,1}$	$\frac{500}{3,8}$
W 1,0	$\frac{750}{2,0}$	$\frac{650}{3,3}$	$\frac{580}{4,2}$	$\frac{550}{5,0}$	$\frac{520}{5,4}$	$\frac{490}{6,2}$
缼 2,0	$\frac{720}{4,1}$	$\frac{620}{6,4}$	$\frac{550}{7,7}$	$\frac{500}{8,6}$	$\frac{470}{9,0}$	$\frac{440}{11,0}$
根 3,0	$\frac{690}{5,6}$	$\frac{600}{7,8}$	$\frac{540}{9,0}$	490	$\frac{460}{12,0}$	$\frac{430}{14,0}$

Поправочнье коэффициентьь

кердость НВ	156		73	207	229		265		285		321
4	1,4		,2	1,1	1,0	0	0,8		0,65		0,5
N_{1}	1,1		,1	1,0	1,0	0	0,85		0,7		0,6
\%ошение B/D	0,8			0,6		0,4			0,2		
1	0,93			1,0		1,1			1,3		
\%2	1,20			1,0		0,77			0,52		
Асло зубьев Z	10	14		16	20	24	30		40	50	60
V_{8}	0,5	0,7		0,8	1,0	1,2	1,5		2,0	2,5	3,0
фриод стойкости T, мин				60	90		120	180		240	
$W^{\prime \prime}=K_{N 4}$				1,5	1,18		1,0	0,8		0,6	
фоизведение по яфффициентов на фания $П K_{v}$			2,0	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,3
${ }_{4}$			0,74	4\|0,78	\|0,8	0,86	0,92	1,0	1,1	1,25	1,7

Обрабатываемый материал стали, чугун

Критерий затупления, число переточек и расход фрез за 1000 ч основного времени

$\underset{\substack{\text { дрезы } \\ \text { мм } \\ \text { диамет }}}{ }$	Марка композита	Период стойкости между ками T, мин	Критерии затупления h_{3}, мм	Величи. на стачивания за одну переточку h, мм	Число чек k	Суммарныи период кости $\Sigma T, \mathbf{q}$	$\begin{aligned} & \text { Расход } \\ & \text { фрез } \\ & P_{1000, ~ m r . ~}^{20} . \end{aligned}$
80	01	120	0,20-0,4	0,25	4	10	110
200	10				6	16	79

Примечания: 1. Расход фрез с СМП устанавливается по опыту эксплуатации.
2. Расчет расхода проводится аналогично расчету расхода торцовых твердосплавных фрез (см. прил. 3).

ментального материала (табл. 17) устанавливают типоразмер фрезы по ГОСТам, ОСТам, ТУ. Геометрические параметры режущей части цилиндрических фрез приведены в табл. 18.

Режимы резания, Рекомендации по назначению подачи на зуб приведены в карте 1. Наименьшая подача на зуб равна 0,03 мм/зуб при обработке твердосплавным инструментом и 0,02 мм/зуб - при обработке быстрорежущим инструментом.
15. Рекомендуемые марки :
минералокерамических пластин

Обраба-тываемыйма териал	Марка материала инструмента	
	1-й ряд	2-й ряд
Сталь	BOK-60	B3
Чугун	BOK-60	$\begin{aligned} & \mathrm{B} 3, \quad \text { Силинит-P, } \\ & \text { ВШ-75 } \end{aligned}$

Примечание. Рекомендуется применять марки минеральной керамики 1-го ряда. В случае применения минеральной керамики 2 -го ряда снижается надежность работы инструмента.

В карте 2 даны рекомендации по определению скорости и мощности резания. Табличные значения скорости рассчитаны на стойкость 200 мин для быстрорежущих фрез и стойкость 300 мин для твердосплавных.

В карте 3.приведены рекомендации по оценке расхода фрез.

КОНЦЕВЫЕ ФРЕЗЫ

Рекомендации по выбору инструмента.
Если нет ограничений по конфигурации детали, то для обработки используют фрезы максимального допустимого для станка диаметра.

При черновой обработке внутреннего углового контура (рис. 3) диаметр фрезы определяют по формуле

$$
D \geqslant \frac{2\left(\Pi_{t} \sin \varphi_{\mathrm{K}} / 2-\Pi_{t_{1}}\right)}{1-\sin \varphi_{\mathrm{K}} / 2}+2 r_{\mathrm{K}}
$$

где Π_{t} и $\Pi_{t 1}$ - припуск на глубину фрезерования, оставляемый соответственно по сторонам контура под последующую обработку и при вершине контура; $\varphi_{\text {к }}$ - угол при вершине контура; $r_{\text {к }}$ - радиус сопряжения поверхностей при вершине контура.

Рекомеңдуется назначать диаметр фрезы

$$
D \geqslant 1,2 \Pi_{t}
$$

Торцовые фрезы
с пластинами из минералокерамики

Карта 1

Обрабатываемый материал незакаленная сталь

Подача на зуб фрезы S_{Z}, мм/зуб

Марка минералокерамики	Обработка	Глубина t, мм	Подача на ауб S_{Z}, мм/зуб
OK-60	Чистовая	До 1,0	0,02-0,08
	Получистовая	1,5	0,06-0,15
		2,0	0,04-0,08
	Чистовая	До 1,0	0,02-0,08
	Получистовая	1,0	0,06-0,15
		1,5	0,04-0,1
111-75	Чистовая	До 1,0	0,02-0,06
	Получистова̇я	1,0	0,4-0,1
		1,5	0,02-0,08
ипинит-Р	Чистовая	До 1,0	0,02-0,06

Примечание. Меньшие значения подач назначают при применении нералокерамических пластин класса U, бо̀льшие - при применении пластин \#eca G.

довые фрезы'из минералокерамики䦠-60, B3

Обрабатываемый материал - углеродистые и легированные закаленные стали

твердость обрабатыекого материала HRC_{9}

Глубина резания t, мм
Подача на зуб S_{Z}, мм/зуб

До 40
40-50
Св. 50

$$
\begin{array}{r}
0,05-1,0 \\
0,4-0,6 \\
0,2-0,5
\end{array}
$$

$$
\begin{aligned}
& 0,05-0,1 \\
& 0,04-0,08 \\
& 0,02-0,06
\end{aligned}
$$

Примеча́ние. Меньшие значения подач назначают при больших глурезания и твердости обрабатываемого материала.

Торцовые фрезы с пластинами из минералокерамики

Скорость резания v, м $/$ мин
Мощность резания N, кВт

Карта 2

чугуны, стали

Материдлпластин-минералокерамика BOK-60 Чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1}, \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2}
\end{gathered}
$$

Глубина	0_{T} (M/Mин) \quad п			при подаче на зуб S_{Z}, мм/зуб					
	0,04	0,06	0,08	0,10	0,12	0,14	0,16	0,18	0,20
0,50	626	561	519	488	421	371	332	301	276
	4,0	5,0	6,0	7,8	7,0	7,0	7,0	7,0	7,0
1,00	537	481	445	419	361	318	285	259	237
	7,5	9,0	11,0	12,0	12,0	12,0	13,0	13,0	13,0
1,50	446	399	369	348	299	264	236	215	197
	10,0	12,0	13,0	15,0	16,0	16,0	16,0	16,0	16,5
2,00	390	350	324	305	262	231	207	188	172
	11,5	14,0	16,5	18,5	19,0	19,0	19,0	19,5	20,0

Поправочнье коэффициентьи

Число зубьев Z	8	10	12	16		
$K_{N 1}$	0,8	1,0		1,2		1,6
Период стойкости T, мин		60	90	120	180	240
$K_{\nu 1}$		1,35	1,15	1,0	0,85	0,75
$K_{N 2}$		1,30	1,1	1,0	0,85	0,75

Углеродистье и легированные вакаленные стали

$$
v=v_{\mathrm{T}}
$$

Твердость HRC $_{7}$	Глубина резания t, мм	Подача на зуб s_{Z}, мм $/$ зуб	Скорость резания v_{T}, м/мин
До 40	$0,5-1,0$	$0,05-0,1$	$200-250$
$40-50$	$0,4-0,6$	$0,04-0,08$	$160-200$
Св 50	$0,2-0,5$	$0,02-0,06$	$140-160$

Материал пластй - минералокерамика ВЗ, Сулинит - Р, ВШ-75

Чусун

$$
v=v_{\mathrm{T}} K_{v 1} ; \quad N=N_{\mathrm{T}} K_{N 1} K_{N 2}
$$

Глубина резания t. мм

$$
\frac{v_{T}(\text { м/Мин })}{N_{T}(\text { KBr })} \text { при подаче нг зуб } S_{Z} \text {, мм/зуб }
$$

	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,16
0,5	$\frac{812}{3,0}$	$\frac{633}{4,0}$	$\frac{547}{5,0}$	$\frac{493}{6,0}$	$\frac{455}{6,5}$	$\frac{389}{6,5}$	$\frac{340}{6,5}$	$\frac{303}{6,6}$
	$\frac{642}{5,12}$	$\frac{500}{7,0}$	$\frac{432}{8,5}$	$\frac{389}{9,5}$	$\frac{359}{10,5}$	$\frac{307}{10,8}$	$\frac{269}{10,8}$	$\frac{239}{11,0}$
21,50	$\frac{464}{5,9}$	$\frac{361}{8,1}$	$\frac{312}{9,7}$	$\frac{281}{11,0}$	$\frac{260}{12,3}$	$\frac{222}{12,4}$	$\frac{194}{12,5}$	$\frac{173}{12,5}$
20	$\frac{358}{6,5}$	$\frac{287}{8,9}$	$\frac{248}{10,7}$	$\frac{223}{12,2}$	$\frac{206}{13,5}$	$\frac{176}{13,7}$	$\frac{154}{13,7}$	$\frac{137}{13,8}$

Поправочнье коэффициенть

псло зубьев Z	8	10	12			16	
\% ${ }^{61}$	0,8	1,0		1,2		1,6	
ериод стойкости T, мин		60	90	120	180	240	300
\%		1,6	1,25	1,0	0,75	0,6	0,5
\%2		1,5	1,2	1,0	0,8	0,65	0,6

Торцовые фрезы из минералокерамики
Карта 3
Обрабатываемый мдтериал стали, чугуны
Пптерии затупления, расход пластин

	Число зубъев Z	Период стойости между переточками T, мив	Критерий затупления h_{3}, MM	Число граней k	Суммарный период стойости $\Sigma \Gamma$, ч	Pacxof пластин P_{1000}, ili
Получистовая обработка						
100	8	120	0,6	8	13,3	600
\% 125	10					750
+160	12					900
4200	16					1200

Диаметр фрезы D, мм	Число зубьев Z	Период стойкости между переточками T, мин	Критерий затупления h_{3}, MM	Число rpareă k	Суммарныи период стойкости $\Sigma T_{i}{ }^{\mathbf{4}}$	Расход пластин P_{1000}, шт

Чистовая обработка

100	8				571
125	10				
160	12	120	$0,2-0,4$	8	14,0
200	16				814

При обработке паза или прорези шириной Π_{t} диаметр фрезы принимают равным или меньшим ширины паза или прорези:

$$
D \leqslant \Pi_{t} .
$$

Чистовую обработку поверхностей, параллельных оси шпинделя, проводят фрезами, радиус которых меньше минимального радиуса кривизны r вогнутого участка контура:

$$
D \leqslant 2 r-\rho .
$$

Значения ρ зависят от радиуса кривизны:
r, мм . . . До 6
ρ, мм . . $\begin{array}{llllll} & 2 & 3 & 5 & 6 & 7\end{array}$
Диаметр фрезы D, мм До 12
Δ, мм
2
Если невозможно фрезой выбранного диаметра осуществлять обработку заготовки за один проход и предусмотрено несколько проходов по ширине

16. Диаметр цилиндрических фрез D, мм

Ширина фрезерова- ния B, мм	D при глубине резания, мм			
	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 0}$
70	63	80	100	100
100	80	100	100	125
150	100	125	125	160
$\mathbf{2 0 0}$	100	125	160	200
$\mathbf{2 5 0}$	125	125	160	200

Наиболее выгодно осуществлять чистовую сбработку фрезами с нормальным зубом, а черновую - с крупным.
При обработке с осевой подачей, когда нет предварительно просверленного отверстия, применяют двухзубые фрезы без центрового отверстия.

Длину режущей части фрезы l_{0} определяют из условия

$$
l_{\mathrm{p}} \geqslant B_{\max }+\Delta
$$

где $B_{\text {max }}$ - максимальная ширина фрезерования; Δ - запас по длине, обусловленный переточками и погрешностями изготовления фрезы:
$12-20 \quad 20-32 \quad 32-40 \quad 40-63$

Рис. 3. Схема обработки внутреннего углового контура
17. Марка инструментального материала цилиндрических фрез

Обрабатываемыи материал	Марка материала инструмента при обработке	
	черновои	чистовой
Сталь:		
конструкционная	T5K10, P6M5	T15K6, P6M5
* коррозионно-стойкая	P6M5K5	P9K5
Чугуны	BK8, P6M5	BK6M, BK8, P6M5
Медные сплавы	P6M5	P6M5

18. Геометрические параметры режумей части цилиндрических фрез

$\begin{gathered} \text { Обрабатываемы』 } \\ \text { материал } \end{gathered}$	Инструментальный материал	Твердость обрабатываемого материала НB	Передний угол	Задний угол α, ...	
				$\begin{gathered} \text { с круп- } \\ \begin{array}{c} \text { ным } \\ \text { зубом } \end{array} \end{gathered}$	с мелким зубом
	Быстрорежущая сталь	До 179	20	12	16
,		179-269	15		
онструкционная		Св. 269	10		
4	Твердый сплав	До 179	5	17	
,		179-269	0	17	
*		Св. 269	-5	15	
	Быстрорежущая сталь	До 156	15	12	
橉		156-217	10		
угуны		Св. 217	5		
W	Твердый сплав	До 207	5	17	-
4		Св. 207	0		
рррозионно-стойсталь	Быстрорежущая сталь	-	10	16	20
дные сплавы				12	16

Цилиндрические фрезы из ТС и БРС
Карта 1

Обрабатываемый материал - сталь, чугун, медные сплавы

Твердосплавные фрезы
Конструкционная сталь

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S 1} K_{S 2} K_{S 3}
$$

Диаметр фрезы D, мм	$S_{Z_{T}}$ при площади сечения припуска, мм ${ }^{2}$							
	50	100	200	300	400	600	800	1000
63	0,49	0,30	0,19	0,14	0,11	0.09	0,07	0,06
80	-	0,40	0,26	0,19	0,15	0,12	0,10	0,08
100	-	-	0,34	0,25	0.20	0,16	0,13	0,11
125	-	-	-	0,33	0,26	0.21	0,17	0,14

Поправочнье коэффициентьь

Твердость стали HB	156	173	207	229	265	285	321
$K_{S 1}$	1,2	1,1	1,0	0,9	0,8	0,7	0,6
Марка материала инструмента	TТ7K12	T5K 10	T14K8	T15K6			
$K_{S 2}$	1,4	1,25	1,1	1,0			
гношение длины оправки к ее диаметру	4	5	10	20	30		
$K_{S s}$		1,2	1,1	1,0	0,75	0,5	

Серый чугун

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S 1} K_{S 2} K_{S 3}
$$

Диаметр фрезы D, мм	$S_{Z_{T}}$ при площади сечения припуска, мм ${ }^{2}$							
	50	100	200	300	400	600	800	1000
63	0,60	0,37	0,23	0,17	0,14	0,11	0,09	0,04
80	-	0,50	0,31	0,23	0,19	0,15	0,12	0,09
100	-	-	0,41	0,30	0,25	0,20	0,16	0,13
125	-	-	-	0,40	0,33	0,26	0,21	0,17

Поправочные коэффициентья

Твердость чугуна HB	156	173	207	229	265	285	321
$K_{S 1}$	1,3	1,2	1,1	1,0	0,9	0,8	0,7

Продолжение карть 1

Марка материала инструмента	BK10-OM	BK8B	BK8	BK6	BK4	BK	, BK3
$K_{S 2}^{\prime}$	1,2	1,1	1,0	0,75		0,65	
Отношение длины оправки к ее диаметру			4	5	10	20	30
$K_{S 8}$			1,2	1,1	1.0	0,75	0,5

Быстрорежущиефревы
Конструкционная сталь

$$
S_{Z}=S_{Z_{\mathrm{r}}} K_{S 1} K_{S 2} K_{S 3}
$$

Диаметр фрезы D, мм	$S_{Z_{\text {т }}}$ при площади сечения припуска, мм ${ }^{2}$							
	50	100	200	300	400	600	800	1000
50	0,52	0,29	0,16	0,11	0,09	0,06	0,05	0,04
63	-	0,40	0,22	0,15	0,12	0,08	0,07	0,05
80	-	-	0,30	0,21	0,17	0,11	0,09	0,08
100	-	-	0,41	0.28	0,23	0,15	0,13	0,10

Поправочнье кояффициентья

*вердость стали НВ	156	173	207	229	265	28		21
${ }^{3}$	1,2	1,1	1,0	0,9	0,8			,6
\%un фрезы	С крупным зубом				С мелким зубом			
(s)	1,0				0,5			
\%rношение длины оправки к ее диаметру				4	5	10	20	30
\%				,2	1,1	1,0	0,75	0,5

Корровионно-стойкая сталь

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{S_{2}} K_{S s}
$$

Диаметр	$S_{Z_{\text {т }}}$ при площади сечения припуска, мм ${ }^{2}$							
	50	100	200	300	400	600	800	1000
50	0,24	0,14	0,08	0,06	0,05	0,04	0,03	0,02
63	-	0,18	0,10	0,08	0,06	0,05	0,04	0,03
80	-	-	0,14	0,10	0,08	0,06	0,05	0,04
100	-	-	-	0,12	0,10	0,08	0,06	0,05

Поправочнье коэффициентья

Временное сопротивление σ_{B}, МПа	640	800	1000	1200	
$K_{S 1}$	С крупным зубом		С мелким зубом		
Тип фрезы	1,0	0,85	0,75	0,6	
$K_{S 2}$	1,0			0,5	
Отношение длины оправки к ее диаметру	4	5	10	20	30
$K_{S 3}$		1,2	1,1	1,0	0,75

Чугун
$S_{Z}=S_{z_{\mathrm{T}}} K_{S 1} K_{S 2} K_{S 3} K_{S 4}$

Диаметр фрезы D, мм	$S_{Z_{T}}$ при площадіи сечения припуска, мм ${ }^{2}$							
	50	100	200	300	400	600	800	1000
50	0,38	0,22	0,13	0,10	0,08	0,06	0,05	0,04
63	-	0,28	0,17	0,13	0,10	0,08	0,06	0,05
80	-	,	0,22	0,17	0,13	0,10	0,08	0,07
100	-	-	-	0,21	0,17	0,13	0,11	0,09

Поправочнье коэффициенть

Группа чугунов		серь		Чуr	ко	й̆ и	ысок	прочн	
$K_{S 1}$		1,0					,25	-	
Твердость чугуна НВ		156	173	207	229	265			321
$K_{S 2}$		1,3	1,2	1,1	1,0	0,9			0,7
Тип фрезы		C крупным зубом				С мелким зубом			
$K_{S s}$		1,0				0,5			
Отношение длины оправки к ее диаметру					4	5	10	20	30
$K_{S 4}$					1,2	1,1	1,0	0,75	0,5

$$
\begin{gathered}
\text { Медные сплавы } \\
S_{Z}=S_{Z_{\mathrm{T}}} K_{S 1} K_{S 2}
\end{gathered}
$$

Диаметр	$S_{Z_{T}}$ при площади сечения припуска, мм ${ }^{2}$							
	50	100	200	300	400	600	800	1000
50	0,48	0,28	0,16	0,12	0,09	0,07	0,06	0,05
63	-	0,36	0,21	0,16	0,12	0,09	0,08	0,06
80	-	0,	0,27	0,20	0,15	0,12	0,10	0,08
100	-	-	-	0,26	0,19	0,15	0,13	0,11

Поправочные кояффициенть

4п фрезы \quad С крупным	С крупным зубом	С мелким зубом			
3si 1,0	1,0	0,5			
жношение длины оправки к ее диаметру	4	5	10	20	30
18	1,2	1,1	1,0	0,75	0,5

Миндрические фрезы из ТС и БРС
Kарта 2

Обрабатываемые материалы - сталь, чугун, медные сплавы
омность резания N, кВт

Твердосплавные фрезы
Конструкционная сталь

$$
0=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 8} K_{v 4} K_{v 5} K_{v 8} K_{v \eta}
$$

$$
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7} K_{N 8}
$$

410	$\frac{v_{\mathrm{T}} \text { (M/Mин) }}{N_{\mathrm{T}}(\mathrm{KBT})}$			при подаче на зуб S_{Z}, мм/зуб				
\%	0,04	0,06	0,10	0,16	0,20	0,25	0.32	0,40
$0,03$	$\frac{254}{6,6}$	227 7,2	$\frac{197}{8,0}$	$\frac{173}{10,0}$	$\frac{162}{11,0}$	$\frac{152}{12,3}$	$\frac{.142}{14,0}$	$\frac{133}{15,4}$
4,0,05	$\frac{210}{8,0}$	187	$\frac{162}{10,0}$	$\frac{142}{12,4}$	$\frac{133}{13,8}$	$\frac{125}{15,3}$	$\frac{117}{17,2}$	$\frac{110}{19,0}$

Продолжение карть

t / D	$\frac{v_{\mathrm{T}}(\mathrm{M} / \mathrm{mин})}{N_{\mathrm{T}}(\mathrm{KBT})}$							при подаче на зуб $s_{Z, \text { мм/зуб }}$
0,08	$\frac{195}{10,0}$	$\frac{156}{10,8}$	$\frac{135}{12,1}$	$\frac{119}{15,1}$	$\frac{112}{16,7}$	$\frac{105}{18,6}$	$\frac{98}{21,0}$	$\frac{92}{23,2}$
0,10	$\frac{161}{11,0}$	$\frac{144}{12,0}$	$\frac{124}{13,3}$	$\frac{109}{16,6}$	$\frac{102}{18,4}$	$\frac{96}{20,4}$	$\frac{90}{23,0}$	$\frac{84}{25,5}$

Поправочнье коэффициентья

Серый чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N \varepsilon} K_{N 7} .
\end{gathered}
$$

t / D	v_{τ} (M/MHH)			при подаче на зуб S_{Z}, мм/зуб				
	0,04	0,06	0,10	0,16	0,20	0,25	0,32	0,40
0,03	$\frac{206}{3,0}$	$\frac{191}{4,0}$	$\frac{173}{5,4}$	$\frac{159}{7,3}$	$\frac{152}{8,3}$	$\frac{142}{9,2}$	$\frac{126}{10,0}$	$\frac{114}{10,7}$
0,05	$\frac{168}{4,0}$	$\frac{155}{5,2}$	$\frac{142}{7,0}$	$\frac{130}{9,4}$	$\frac{124}{10,7}$	$\frac{115}{12,0}$	$\frac{102}{13,0}$	$\frac{93}{14,0}$
0,08	$\frac{140}{5,1}$	$\frac{129}{6,5}$	$\frac{117}{9,0}$	$\frac{107}{11,8}$	$\frac{102}{13,6}$	$\frac{96}{15,0}$	$\frac{86}{16,3}$	$\frac{77}{17,6}$
4,0,10	$\frac{127}{5,6}$	-118	$\frac{107}{10,0}$	$\frac{98}{13,2}$	$\frac{94}{15,0}$	$\frac{87}{16,8}$	$\frac{78}{18,2}$	$\frac{70}{19,6}$

Поправочные коэффициентть

ердость чугуна НВ	156	173	207	229	265	285	321
H	1,5	1,3	1,1	1,0	0,8	0,7	0,6
\%	1,3	1,2	1,05	1,0	0,85	0,8	0,7
стояние обрабатываемой поверхности				Без корки		С коркой	
$V^{2}=K_{N 2}$				1,0		0,7	

Быстрорежущиефрезы
Конструкционная сталь
$v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{v 8} K_{v \sigma} K_{v \theta} ;$
$N=N_{T} K_{N 1} K_{N 2} K_{N 8} K_{N 4} K_{N 8} K_{N 8} K_{N 8} K_{N 8}$.

t / D								
	0,04	0,06	0,10	0,16	0,20	0.25	0,32	0.
0,03	$\frac{49}{3,4}$	$\frac{45}{3,5}$	$\frac{42}{3,7}$	$\frac{34}{4,1}$	$\frac{31}{4,3}$	$\frac{28}{4,5}$	$\frac{26}{4,7}$	- ${ }^{2+}$
0,05	$\frac{42}{4,2}$	$\frac{39}{4,4}$	$\frac{36}{4,6}$	$\frac{29}{5,0}$	$\frac{27}{5,3}$	$\frac{24}{5,5}$	$\frac{22}{5,8}$	$-\frac{26}{6}$
0,08	$\frac{37}{5,0}$	34	$\frac{31}{5,5}$	$\frac{25}{6,1}$	$\frac{23}{6,4}$	$\frac{21}{6,7}$	$\frac{19}{7,0}$	$\frac{11}{7}$
0,10	$\frac{35}{5,5}$	$\frac{32}{5,7}$	$\frac{29}{6,0}$	$\frac{24}{6,7}$	$\frac{21}{7,0}$	$\frac{20}{7,3}$	$\frac{18}{7,6}$	$\frac{16}{8}$

$$
\begin{aligned}
& 0=o_{T} K_{\text {D1 }} K_{\text {w2 }} K_{\text {og }} K_{\text {vis }}: \\
& N=N_{\mathrm{T}} K_{N 2} K_{N 2} K_{N 8} K_{N 4} K_{N \alpha} K_{N z} .
\end{aligned}
$$

t/D								
	0,04	0,08	0,10	0,16	0,20	0,25	0.32	3.40
0,03	$\frac{38}{3,6}$	$\frac{35}{3,7}$	$\frac{32}{3,9}$	$-\frac{27}{4,8}$	$\frac{24}{42}$	$\frac{22}{4,7}$	$\frac{19}{5,0}$	$\frac{18}{5.2}$
0,05	- 3 4,4	$\frac{30}{4,6}$	$\frac{27}{4,8}$	$\frac{22}{5,3}$	$\frac{20}{5.6}$	$\frac{18}{5,8}$	$\frac{17}{6,1}$	$\frac{15}{6,4}$
0,08	$\frac{28}{5,3}$	$\frac{26}{5,5}$	$\frac{23}{5,8}$	$\frac{19}{6,4}$	$\frac{17}{6,7}$	$\frac{16}{7,0}$	$\frac{14}{7,4}$	13 -77
0,10	$\frac{26}{5,8}$	$\frac{{ }_{2} 4}{6,0}$	$\frac{22}{8,4}$	$\frac{18}{7,0}$	$\frac{16}{7,3}$	$\frac{15}{7,7}$	$\frac{13}{8.0}$	12 $-8,4$

Поправочнье кояф̆фициентьк

Аисло зубьев Z	6	8	10	12	14	16	18
(No	0,55	0,7	0,85	1,0	1,15	1,3	1,45
\%иріна фрезерования B, мм			25			75	100
			0,55		1,0	1,45	1,9

Серый чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{v 4} K_{v 6} K_{v 8} K_{v 7} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7} .
\end{gathered}
$$

t / D	$\frac{v_{\mathrm{T}}(\mathrm{M} / \mathrm{M} H \mathrm{H})}{N_{\mathrm{T}}(\mathrm{KBT})}$			при подаче ва зуб S_{Z}, мм/зуб				
	0,04	0,06	0,10	0,16	0,20	-0,25	0,32	0.40
0,03	$\frac{59}{1,0}$	$\frac{55}{1,2}$	$\frac{49}{1,5}$	$\frac{44}{1,8}$	$\frac{38}{1,8}$	$\frac{33}{1,8}$	$\frac{29}{1,8}$	$\frac{25}{1,9}$
0,05	$\frac{46}{1,2}$	$\frac{42}{1,4}$	$\frac{38}{1,7}$	$\frac{34}{2,1}$	$\frac{29}{2,1}$	$\frac{26}{2,2}$	$\frac{22}{2,2}$	$\frac{19}{2,2}$
40,08	-36	$\frac{33}{1,6}$	$\frac{30}{2,0}$	$\frac{26}{2,5}$	$\frac{23}{2,5}$	$\frac{20}{2,5}$	$\begin{array}{r}17 \\ \hline 2,5\end{array}$	$\frac{15}{2,6}$
40,10	$\frac{32}{1,5}$	$\frac{30}{1,7}$	$\frac{27}{2,2}$	$\frac{24}{2,6}$	$\frac{20}{2,7}$	$\frac{18}{2,7}$	$\frac{15}{2,7}$	$\frac{13}{2,8}$

Поправочнье коэффициентьь

вердость чугуна HB	156	173	207	229	-265	285	321
m	1,5	1,3	1,1	1,0	0,8	0,7	0,6
N1	1,3	1,2	1,05	1,0	0,85	0,8	0,7
бостояние обрабатываемой поверхности Без корки С коркой							
$V_{2}=K_{N 2}$				1,0		0.7	

Продолжсение карть 2

Отножение длины оправки к ее диаметру				4	5	10	20	30
$K_{v g}=K_{N 8}$				1,2	1,1	1,0	0,75	0,5
Диаметр фрезы D, мм		50		63		0		00
$K_{\text {U4 }}=K_{N 4}$		0,85		0,9	0,95		1,0	
Число зубьев Z	6	8	10	12	14	16		18
$K_{v 0}$	1,15	1,1	1,0	0,95	0,9	0,85		0,85
$K_{N s}$	0,7	0,85	1,0	1,15	1,25	1,4		1,5
Ширина фрезерования B, мм			25		50	75		100
$K_{\text {06 }}$			1,25		1,0	0,9		0,8
$K_{N 6}$			0,6		1,0	1,35		1,6
Период стойкости T, мин		120	200		300	400		600
$K_{v 7}=K_{N \eta}$		1,15	1,0		0,9	0,85	0,75	

Ковкиіи и высокопрочнвй чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{V 5} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 6} K_{N 8} K_{N 7} .
\end{gathered}
$$

t / D	$\frac{v_{\text {T }}(\mathrm{M} / \mathrm{MHH})}{N_{\text {T }}(\mathrm{KBT})}$			при подате ва syб S_{Z}, мия/3yб				
	0,04	0.06	0.10	0,16	0,20	0,25	0,32	0,40
0,03	$\frac{46}{0,7}$	$\frac{42}{0,9}$	$\frac{39}{1,1}$	$\frac{32}{1,3}$	$\frac{29}{1,4}$	$\frac{27}{1,5}$	$\frac{24}{1,6}$	$-\frac{22}{1,8}$
0,05	$\frac{40}{0,9}$	$\frac{37}{1,2}$	$\frac{33}{1,5}$	$\frac{27}{1.7}$	$\frac{25}{1,9}$	$\frac{23}{2,0}$	$\frac{21}{2,2}$	$\begin{array}{r}19 \\ \hline 2,3\end{array}$

t / D	$\frac{v_{T} \text { (м/Мин) }}{N_{T}(\text { (КВт) }}$ при подаче на зуб $s_{\mathcal{Z}}$, м							
	0.04	0,06	0,10	0,16	0,20	0.25	0,32	0,40
0,08	$\frac{35}{1,2}$	$\frac{32}{1,5}$	$\frac{29}{2,0}$	$\frac{24}{2,3}$	$\frac{22}{2,4}$	-20	$\frac{18}{2,8}$	$\frac{16}{3,0}$
0,10	$\frac{32}{1,4}$	$\frac{30}{1,7}$	- 27	22	$\frac{20}{2,8}$	$\frac{18}{3,0}$	$\frac{16}{3,2}$	$\frac{15}{3,4}$

Поправочные коэффициентьь

Твердость чугуна HB		156	173	207	229	$265{ }^{\prime}$	285		321
$K_{v i}$ *		1,5	1,3	1,1	1,0	0;8	0,7		0,6
$K_{N i}$		1,3	1,2	1,1	1,0	0,9	0,85		0,8
Состояние обрабатываемой поверхности					Без корки		С коркой		
$K_{v 2}=K_{N 2}$					1,0			0,7	
Отношение длины оправки к ее диаметру					4	5	10	20	30
$K_{v s}=K_{N 8}$					1,2	1,1	1,0	0,75	0,5*
Диаметр фрезы D, мм		50		63		80		100	
$K_{04}=K_{N 4}$		0,9		0,95		0,95		1,0	
Период стойкости T, мин		120		200	300		400	600	
$K_{\text {vs }}=K_{N \leq}$		1,2		1,0	0,85		0,8	0,7	
Мисло зубьев Z	6	9		12		14	16	18	
R_{N}	0,6				1,2	1,35	1,5		1,7

Продолжсние карпья

Ширина фрезерования B, мм	25	50	75	100
$K_{N 7}$	0,55	1,0	1,45	1,9

Медные сплавыя$\begin{gathered} v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 8} K_{v 4} K_{v 5} ; \\ N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N s} K_{N 4} K_{N s} K_{N 6} K_{N \eta} . \end{gathered}$								
t / D								
	0,04	0,06	0,10	0,16	0,20	0,25	0,32	0,40
0,03	$\frac{105}{1,0}$	$\frac{98}{1,2}$	$\frac{88}{1,6}$	$\frac{73}{1,8}$	-87	$\frac{61}{2,1}$	$\begin{array}{r}55 \\ \hline 2,3\end{array}$	$\frac{50}{2,4}$
0,05	$\frac{91}{1,3}$	$\frac{84}{1,6}$	$\frac{75}{2,1}$	-63	$\frac{57}{2,6}$	$\frac{52}{2,8}$	$\frac{47}{3,0}$	$\begin{array}{r}43 \\ \hline 3,2\end{array}$
0,08	$\frac{79}{1,7}$	$\begin{array}{r}72 \\ \hline 2,1\end{array}$	-66	$\frac{54}{3,1}$	$\frac{49}{3,4}$	- 45	$\begin{array}{r}42 \\ \hline 3,9\end{array}$	$\frac{38}{4,2}$
0,10	$\frac{73}{1,9}$	68	$\frac{62}{3,1}$	$\frac{51}{3,6}$	$\frac{46}{3.8}$	$\frac{42}{4,1}$	$\frac{39}{4,5}$	$\frac{35}{4,8}$

Поправочньи коэффициентье

Mapка сплава	5p $52 ;$ БрMц5	 БрA10 Ж 3 ML 2 ; БрА10ж4Н4л; БрАНЖ6Н6; ЛЦ23А6Ж3Мц2	Л63; Л062-1; БрАЖ9—4; БрАЖМи10-3-1.5: БрАЖ $110-4-4 ;$ БрАЖ9Ми2л; ЛЦЗ0АЗ; ЛЦ16К4			ЛЖ $58-1-1$; БрА5; БрА7: JПム38Mц202; БрАМц9-2; БрКМц3-1: БрОЦ4-3; БрО $\$ 6,5-0,4$: БрОФ4-0.25		-
$K_{01}=K_{N 1}$	0,2	0,4	0,55			1,0		1,5
Состояние обрабатываемой поверхности				Вes корки			С коркой	
$K_{\text {D2 }}=K_{N 2}$				1,0		0,9		
Отношение длины оправки к ее диаметру				4	5	10	20	30
$K_{\text {vs }}=K_{N 3}$				1,2	1,1	1,6	0,75	0,5

Диаметр фрезы D, мм			50	63		30	100
$K_{06}=K_{N 4}$			0,9	0,95		95	1,0
Период стойкости T, мин			120	200	300	400	600
$K_{\text {DS }}=K_{\text {NB }}$			1,2	1,0	0,9	0,8	0,7
Число зубьев Z		6	8	$10 \quad 12$	14	16	18
$K_{N 0}$		0,6	0,8	, 0 1,2	1,35	1,5	1,7
Ширина фрезерования B, мм				25	50	75	100
$K_{N z}$				0,55	1,0	1,45	1,9
Цилиндрические фрезы из ТС и БPC				Kapra 3			
Критерии затупления, число переточек и расход фрез за 1000 ч основного времени				Обрабатываемые материалы - сталь, чугун, медные сплавы			
Днаметр Фрезы D мм	$\begin{gathered} \text { पисло } \\ \text { sубьее } \\ \boldsymbol{Z} \end{gathered}$		$\begin{array}{\|c} \text { Крите- } \\ \text { рия яа- } \\ \text { тулления } \\ \mathbf{h}_{3} \text { : мм } \end{array}$	Величи- на ста- чивания sa одну переточ. ку h, мм	$\begin{gathered} \text { Число } \\ \text { пере. } \\ \text { точек } k \end{gathered}$		$\begin{gathered} \text { Расход } \\ \text { 中pes } \\ \mathbf{P}_{10000} \text {, mi. } \end{gathered}$

Твердосплавныефревы Конструкиинная сталь

63	8	150	0,45	0,35	17	31	27
80	8	800	0,5	0,36	16	71	14
100	10	800	0,55	0,38	15	67	15
125	12	300	0,6	0,39	15	67	15
Yyays							
63	8	8	150	0,65	0,34	17	37
80	8	300	0,70	0,35	17	75	13
100	10	300	0,75	0,36	16	71	14
125	12	300	0,80	0,38	15	67	15

$\begin{gathered} \text { Диаметр } \\ \text { фрезн } D . \\ \text { мм } \end{gathered}$	число зубвев, Z	$\begin{gathered} \text { Период } \\ \text { стой- } \\ \text { кости } T \\ \text { мнн } \end{gathered}$	Критерй затупления h_{3}, MM	Величи- на ста- чивания за одну переточ - кy h, Mm	Число переточек, k	$\begin{aligned} & \text { Суммар- } \\ & \text { ный } \\ & \text { период } \\ & \text { стоम̈- } \\ & \text { кости } \\ & \Sigma T, \text { п } \end{aligned}$	$\begin{gathered} \text { Расход } \\ \text { фрез } \\ P_{1000,} \end{gathered}$

Быстрорежущиефрезы Конструкционная сталь

50	6	120		0,4	0,35	22	14
	12	120		23			
63	8	120		0,37	21	12	24
	14	120			15	30	33
80	10	200	0,50	0,38	26	86	14
10	16	200		16	54	23	
	18	200	0,60	0,41	-24	79	16

Чугун

50	6	120	0,5	0,37	21	42	24
	12	120	0,5		14	29	43
63.	8	120	0,6	0,40	20	40	25
	14	120			14	29	35
80	10	200	0,6	0,43	23	76	13
	16	200	0,7		15	51	20
100	12	200	0,8	0,46	21	70	14
	18	200			15	51	20

Медниые сплаевя

50	6	120	0,20	0,28	28	55	18
63	12	120			16	32	31
	14	120	0,25	0,30	26	51	20
80	10	200	0,30	0,30	32	105	10
	16	200			199	63	16
100	12	200	0,35	0,33	30	98	10

Матернал sarotobiкя	Марка материала ияструмевта при обраєотке	
	черновоя	тустовои
Сталь конструкционная	T5K10, P6M5	T15K6, P6M5
पугуны	BK8, P6M5	BK6M, BK8, P6M5
Алюминиевые и меднце сплавы	P6M5	P6M5
Коррознонно-стойкие стали	P6M5K5, P9K5	P6M5K5, P6M5

ярезерования, то длину режущей части фрезы определяют по формупе

$$
l_{\mathrm{p}} \geqslant \frac{B_{\max }}{n_{\mathrm{J}}}+2
$$

дде $n_{п}$ - число проходов.

Длину вылета фрезы из оправки наодят из условия

$$
l_{\phi} \geqslant B_{\max }+\Delta+A
$$

дде A - высота выступающих частей риспособления, которые не позяоляют опустить пиноль на требуежый уровень.
Ha основании ориентировочно устаовленных сведений о диаметре фрез, ясле зубьев, длине режущей части, арок материалов инструмента и зартовки (табл. 19) устанавливают тиеразмер инструмента по ГОСТам, СТам и ТУ.
Режимы резания. Для назначения ежимов резания обрабатываемые поерхности разбиваются на участки в ответствии с их формой (плоская

поверхность, уступ, паз, контур). В пределах поверхности одной формы может быть выделено несколько участков, если колебание площади сечения срезаемого слоя составляет более 30% или к участку предъявляют повышенные требования по точности обработки и шероховатости обработанной поверхности. Выделяют также участки врезания инструмента в заготовку.

Геометрические параметры режущей части концевых фрез приведены в табл. 20 .

Фактичсская глубина резания соответствует припуску Π_{t}, снимаемому за один рабочий ход только на прямолинейных участках. На криволинейных участках контура $\Pi_{t}<t$ на выпуклом контуре (рис. $4, a)$ и $\Pi_{t}>t$ на вогнутом контуре (рис. 4, б). Фактическую глубину резания можно определить по формуле

$$
t=K_{t} \Pi_{t},
$$

где K_{t} - поправочный коэффициент (табл. 21).

4c. 4. Схемы обработки для расчета фактической глубины резания: - 0 - обработка контуров соответственво выпуклого и вогвутого

20．Геометрщяеске параметры режущей части концевых фрез

Материал		твердость обрабатываемо－ го матержала HB		Yroл，．．．${ }^{\circ}$			
satcrosk	мнструмепта						
Конструк－ ционная сталь	Быстро－ режущая сталь	До 179	До 10	20	25	0	6
		Св． 179 до 260	Св． 10 до 20	15	20		
		Св． 269	Cb． 20	10	16		
	Твердый сплав	До 179	До 20	5	20		8
		Св． 179 до 269		0			
		Св． 269	Св． 20	－5	17		
	Быстро－ режущая с＇алыь	До 156	8－63	15	14	5	6
		Св． 156		10			
Чугунь	Твердый сплав	До 156	10－50	5	12	0	4
Коррознон－ но－стойкая̆ сталь	Быстро－ режумая стал̆	－	8－63	10	－	－	8
Алюоминие－ вме сплавы				15	20	6	15
Медные сплавея				10			15

Для вогнутого ковтура

$$
t=\frac{\Pi_{t}\left(2 r-\Pi_{t}\right)}{2 r-D}
$$

для выпуклого контура

$$
t=\frac{\Pi_{t}\left(2 r+\Pi_{t}\right)}{2 r+D} .
$$

При повышенных требованиях по точности обработки припуск，оставля－ емый на последний рабочий ход фрезы， может быть разделен между двумя технологическими переходаии－－．чер－ новым и чистовым．Черновой переход может содержать до трех рабочих ходов，чистовой－один рабочий ход．

Наименьшие значения допусков δ ， которые могут быть обеспечены за один переход при обработке с нерав－ номерным принуском，приведены в табл．22－24．Если требуемые по чер－ тежу допуски на размеры детали меньше полученных по табл．22－24 с учетом поправочных коэффициентов， то обработку детали осуществдяяют за два перехода．
В табл． 25 и 26 приведены рекомен дации по распределению припуска по рабочим ходам при об́работке ${ }^{\text {² }}$ один и два перехода．
При обработке поверхностей бе корки целесообразно применять пс．
 не глубине к диаметру фрезн

$2 r / D$	Коэффамееня K_{t} zиря отношенам Π_{t} / D				
	0,1	0.25	0.5	0.75	1.0

Выпуклая поверхностия

0,5	0,40	0,50	0,67	0,83	1,0
1,0	0,55	0,63	0,75	0,88	1,0
2,0	0,70	0,75	0,83	0,92	1,0
5,0	0,85	0,88	0,92	-96	1,0
10,0	0,92	0,93	0,96	0,98	1,0

Пяоская поверхность
$\begin{array}{llllllllll}1 & 1,0 & 1,0 & 1,0 & 1 & 1,0 & 1 & 1,0\end{array}$
Bоекуmая поөерхности

10,0	1,10	1,08	1,06	1,03	1,00
5,0	1,23	1,19	1,13	1,06	1,00
2,0	1,90	1,75	1,50	1,25	1,00
1,5	2,80	2,50	2,00	1,50	1,00
1,2	5,50	4,75	3,50	2,25	1,00

2. Наименвхие зжачения подускож, обеспечиваемые за однн переход три обработке сталіных заготовок

Временное сопроииление σ_{3} коррозиоино-стойкой стали, МПа	640	800	1000	1200
K_{82}	1,0	1,4	1,8	2,2
Отношсние вылета фрезы к ех диаметру l_{ϕ} / D	2	3	4	5
$K_{\delta_{3}}$	0,35	1,0	2,7	5,0
Отношение ширичы фрезерования к диаметру фреэы B / D	0,5	1,0	2,0	3,0
K_{84}	0,5	1,0	2,0	3,0

23. Наименьшие значения допусков, обеспечиваемые за один переход при обработке чугунных заготовок

$\Pi_{\text {max }} / D$	$\delta=\delta_{9} K_{\delta 1} K_{\delta 2}$					
	$\delta_{\text {т }}$ при отношении $\Pi_{\min } / D$					
	0,1	0,2	0,3	0,5	0,7	$C_{B} \quad 0,8$
0,1	0,27	-	-	-	-	,
0,2	0,73	0,22	-	-	-	-
0,3	1,16	0,65	0,22	-	-	-
0,5	1,89	1,40	0,87	0,19	-	-
0,7	2,43	1,94	1,57	0,73	0,14	-11
0,9	2,92	2,43	1,97	1,19	0,59	0,11

Поправочные коэффичиентьь

Твердость НВ	156	173	207	229	265	285	321
$K_{\delta_{1}}$	0,6	0.7	0,9	1,0	1,1	1,25	1,35
Отношение вылета фрезы к ее диаметру l_{Φ} / D	2	3	4	5			
$K_{\delta_{2}}$.	0,35	1,0	2,7	5,0		

24. Наименьшие значевия допусков, обеспечиваемые за один переход ири обряботке затотовок из алюминиевых и медных сплавов

$$
\delta=\delta_{\mathrm{T}} K_{81} K_{\delta 2}
$$

$n_{\max } / D$	δ_{r} при отношенви Π_{min} / D								
	0,1	0,2	0,3	0.4	0,5	0,6	0.7	0,8	CE 0,8
0,1	0,21	-	-	-	-	-	-	-	-
0,2	0,60	0,21	-	-	-	-	-	-	
0,3	0,99	0,60	0,18	-	-	-	-	-	-
0,4	1,35	0,96	0,60	0,18	-	-	-	-	-
0,5	1,71	1,29	0,90	0,51	0,18	-	-	-	
0,6	1,98	1,59	1,20	0,81	0,45	0,15	12	-	-
0,7	2,22	1,80	1,41	1,05	0,69	0,39	0,12	-	-
0,8	2,40	2,0	1,62	120	0,90	0,60	0,30	0,09	\bigcirc
0,9	2,55	2,10	1,74	1,38	1,02	0,72	0,45	0,24	0,06
1,0	2,64	2,22	1,80	1,50	1,11	0,78	0,54	0,30	0,15

Поправочнье кояффициенть

утное фрезерование, а при обработке ро корке - встречное
В пределах одного учасгка обработки одачу и скорость резания назначают о максимальной площади сечения сре-
戠ого слоя $t \times B$
В карте 1 выбирают подачу на зуб резы На чистовых переходах подачу меньшают на $30-40 \%$. При этом флучаемый параметр шероховатости рверхности $R a=1,25 \div 2,5$ мхм при送езеровании цилиндрической частью $R a=3,2 \div 5,0$ мкм при фпезерованич ррцовой частью Подача па зуб не рлжна быть меньше 0,02 км/зуб для

быстрорежущих фрез и 0,03 мм/зуб для твердосплавных.

Используя карту 2, можно определить скорость и мощность резания. Для быстрорежущих фрез диаметром до 10 мм рекомендации по скорости резания при обработке сталей и сплавов приведены при периоде стойкости 20 мин, для фрез диаметром более 10 ммскорости резания при периоде стойкости 60 мин для быстрорежущих фрез и 90 мин для твердосплавных.

В карте 3 даны рекомендации по оценке расхода фрез.
25. Распределение припуска по рабочим ходам при обработке за один переход

$$
t_{i}=K_{i} \Pi_{t \max }
$$

$\underset{\substack{\text { дрезы } \\ \text { мм } \\ \text { диаметр }}}{ }$	$\Pi_{\max ^{2}} B$	Козффициент K_{i} деления по рабочим ходам при обработке								
		стали и чугуна						$\begin{aligned} & \text { алюминиевых } \\ & \text { сплавов } \end{aligned}$		
		Матернал инструмента								
		6PC			TC			EPC		
		Номер рабочего хода								
		1	2	3	1	2	3	1	2	3
8	$\begin{gathered} \text { До } 40 \\ 100 \\ 200 \\ 300 \end{gathered}$	$\begin{aligned} & 1,0 \\ & 0,50 \\ & 0,35 \\ & - \end{aligned}$	$\begin{gathered} - \\ 0,50 \\ 0,35 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & 0,3 \\ & - \end{aligned}$	$\begin{gathered} 1,0 \\ 0,35 \\ - \\ - \end{gathered}$	$\begin{gathered} - \\ 0,35 \\ - \\ - \end{gathered}$	$\begin{gathered} - \\ 0,3 \\ - \\ - \end{gathered}$	$\begin{aligned} & 1,0 \\ & 1,0 \\ & 0,5 \\ & 0,35 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 0,5 \\ & 0,35 \end{aligned}$	---0,3
16	$\begin{gathered} \text { До } 100 \\ 200 \\ 400 \\ 600 \end{gathered}$	$\begin{gathered} 1,0 \\ 0,5 \\ 0,35 \\ - \end{gathered}$	$\begin{aligned} & \overline{-} \\ & 0,5 \\ & 0,35 \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 0,3 \end{aligned}$	$\begin{gathered} 1,0 \\ 0,5 \\ 0,35 \\ - \end{gathered}$	$\begin{aligned} & - \\ & 0,5 \\ & 0,35 \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 0,3 \\ & - \end{aligned}$	$\begin{aligned} & 1,0 \\ & 1,0 \\ & 0,5 \\ & 0,35 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 0,5 \\ & 0,35 \end{aligned}$	0,3
32	$\begin{gathered} \text { До } 300 \\ 600 \\ 900 \\ 1400 \end{gathered}$	$\begin{aligned} & 1,0 \\ & 0,50 \\ & 0,350 \\ & 0,35 \end{aligned}$	$\begin{gathered} - \\ 0,50 \\ 0,35 \\ 0,35 \end{gathered}$	$\begin{gathered} - \\ \overline{0,3} \\ 0,3 \end{gathered}$	$\begin{gathered} 1,0 \\ 0,5 \\ 0,35 \\ - \end{gathered}$	$\begin{aligned} & - \\ & 0,5 \\ & 0,35 \end{aligned}$	-	1,0	-	-
							-	1,0	-	
							0,3	0,5	0,5	-
						-	-	0,35	0,35	0,3
63	До 400	1,0	-	-	1,0	--	-	1,0	-	-
	900	0,50	0,50	-	0,50	0,50	-	1,0	-	-
	1800	0,35	0,35	0,30	0,35	0,35	0,3	0,5		-
	3000	-	-	-	-	-	-	0,35	0,35	0,3

$t_{i}=K_{i} \Pi_{t \max }$

	$\Pi_{\max ^{2}} B$	Отнощение$\frac{\Pi_{\min }}{\Pi_{\max }}$	Коэффицнент K_{i} делеяия шрипускя по рабочим ходам прн обработня								
			стали и чугука						медных $и$елкммннезыдсплавов		
			Матернел ниструмента								
			EPC			TC			SPC		
			Нокер перехода								
			I		II			11			11
			Номер рабопето хода								
			1	2	1	1	2	1	\pm	2	1
Ho 8	До 40	До 0,5	0,8	-	0,2	0.8	-	0,2	0.85	-	0,15
		Cb. 0,5	0,8	-	0,2	0,8	\cdots	0,2	0,85	-	0,15
	65	До 0,5	0,9	-	0,1	0,45	0,45	0,1	0,85	-	0,15
		Св. 0,5	0,9	-	0,1	0,6	-	0,4	0,85	-	0,15
	100	До 0,5	0,45	0,45	0,1	0,4	0,4	0,2	0,45	0,45.	0,1
		Св. 0,5	0,45	0,45	0,1	0,4	0,4	0,2	0,7	-	0,3
	200	До 0,5	-	-	-	-	-	\cdots	0,45	0,45	0,1
		Св. 0,5	-	-	\square	-	-	-	0,5	-	0,5
	До 100	До 0,5	0,9	-	0,1	0,9	-	0,1	0,85	-	0,15
		Св. 0,5	0,9	. -	0,1	0,9	-	0,1	0,85	-	0,15
	200	До 0,5	0,45	0,45	0,1	0,45	0,45	0,1	0,9	-	0,1
		Св. 0,5	0,7	-	0,3	0,5	-	0,5	0,9	-	0,1
	400	До 0,5	0,35	0,35	0,3	0,35	0,35	0,3	0,45	0,45	0,1
		Св. 0,5							0,5	-	0,5
	600	До 0,5									
		Св. 0,5									

	$\underset{\operatorname{mM}^{*}}{\Pi_{\operatorname{maxax}^{*}} B,}$	$\begin{aligned} & \begin{array}{l} \text { Отио } \\ \text { wetre } \\ \Pi_{\min } \end{array} \\ & \hline \Pi_{\mathrm{may}} \end{aligned}$	Кояффицневт K_{\imath} делення припусха по рабочвм жодам при окработке								
			сталв в уугуна						медныд иалкммнневыхсплавов		
			Материал инструмента								
			BPC			TC			EPC		
			Номер перехода								
			1		11	1		11	I		II
			Номер рабовего жога								
			!	2	1	1	2	1	1	2	1
32	До 300	До 0,5	0,9	-	0,1	0,85	-	0,15	0,8	-	0,2
		Cz U,5									
	600	До 0,5	0,45	0,45	0,1	0,45	0,45	0,1	0,85	-	0,15
		C8 0,5	0,65	-	0,35	0,75	-	0,25			
	900	До 0,5	0,35	0,35	0,3	0,35	0,35	0,3	0,45	0,45	0,1
		Св. 0,5							0,6	-	0,4
		До 0,5									
		Cв. 0,5									
63	Д10 400	До 0,5	$0,9$	-	0,1	0,9	-	0,1	0,8	-	0,2
		CB. 0,5							0,75		0.25
	900	Д10 0,5	0,9	-	0,1	0,45	0,45	0,1	0,85	\cdots	0,12
		C8. 0,5				0,5	-	0,5			
	1200	До 0,5	0,45	0,45	0,1	-	-	-	0,9	-	0,1
		Cb. 0,5	0,5	-	0,5						
	1800	Д० 0,5							0,45	0,45	0,1
		Св. 0,5							0,55	-	0,4

Концевые фрезы			Kapra 1					
Подача на зуб S_{Z}, мм/зуб			Обрабатываемые материалы - сталь, тугун, алюминиевые и медные сплавы					
Сталь$K_{S_{1}} K_{S_{2}} K_{S_{8}} K_{S_{4}} K_{S 8}$								
диаметр фрезы D, мм	$s_{Z_{\mathrm{T}}}$ при площади сеченкя припуска, мм*							
	6	12	25	50	100	200	$\$ 00$	600
5	0,03	0,02	-	-	-	--	-	-
6	0,04	0,03	-	-	-	-	-	\div
8	0,07	0,05	0,03	-	-	-	-	\cdots
10	0,09	0,07	0,06	0,04	0,02	-	-	-
12	0,11	0,09	0,07	0,05	0,03	0,02	-	-
16	0,14	0,12	0,09	0.06	0,04	0,02	-	--
4 20	0,18	0,14	0,12	0,08	0,05	0,03	0,02	-
- 25	-	0,18	0,13	0,10	0,07	0,06	0,04	0,03
32	-	-	0,15	0,11	0,08	0,06	0,05	0,04
40	-	-	,	0,11	0,08	0,06	0,05	0,05
50,63	-	- -	-	0,13	0,11	0,08	0,06	0,05

Лоправочнье кояффициентья

¢вердость стали НВ	156	173	207	229	265	285	321
${ }_{3}{ }^{1}$	1,2	1,1	1,0	0,9	0,8	0,7	0,6
аарка инструментального матеиала		TT7K12		T5K10, P6M5		T14K8	T15K6
${ }^{4} 8$		1,4.		1,25		1,1	1,0
фрезы	СМП		Перетачиваемая				
			с крупным зубом			с нормальным зубом	
8	1,0	1,0				0,7	
тношение вылета фрезд к ее аметру		До 2		2-3		CB. 3	
$D \leqslant 8 \mathrm{~mm}$		1,0		1,0		0,8	
$D>10 \mathrm{~mm}$		1,1		1,0		0,8	
取ма обрабатываемой поверхности			Плоскость			Уctyin	П1as
			1.2			1,0	0,8

Корровионно-стойкая сталь
$S_{Z}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{S_{2}} K_{S_{3}} K_{S_{4}}$

$\underset{\text { дрезы } D, \text { мм }}{\text { Диаметр }}$	$s_{z_{\text {т }}}$ при площади сечення пржпуска, мм ${ }^{\text {a }}$							
	6	12	25	50	100	200	400	gro
「5	0,03	0,02	-	-	-	-	-	-
6	0,04	0,03	-	-	-	-	-	--
8	0,07	0,05	0,03	-	-	-	-	-
10	0,09	0,07	0,06	0,04	0,02	-	-	--
12	0,11	0,09	0,07	0,05	0,03	0,02	-	--
16	0,14	0,12	0,09	0,06	0,04	0,02		
20	0,18	0;14	0,12	0,08	0,05	0,03	0,02	-
25	--	0,18	0,13	0,10	0,07	0,06	0,04	0,03
32		-	0,15	0,11	0,08	0,06	0,05	0,04
40		-	-	0,13	0,10	0,07	0,05	0,04
50,63	-	-	-	-	0,11	0,08	0,06	0,05

Поправочные коэффициентья

Впеменное сопротивление $\sigma_{\text {в }}$, МПа			640	800	1000	1200
$K_{S_{1}}$			1,0	0,85	0,75	0,64
Фреза	С крупным зубом			С нормальным зубом		
$K_{S 3}$		1,0		0,7		
Отношение вылета фрезы к ее диаметру		До 2		2-3		CB 3
$K_{\text {S8 }}$	$D \leqslant 8 \mathrm{~mm}$	1,0		1.0		0,8
	$D>10 \mathrm{~mm}$	1,1		1,0		,8
Форма обрабатываемой поверхности			Пяоскость		Уcıyп	Паз
K_{54}			1,1		1,0	0,8

Чугун

$$
s_{Z}=s_{Z_{\mathrm{T}}} K_{S_{1}} K_{S_{2}} K_{S_{3}} K_{S_{4}} K_{S_{5}} K_{S_{6}}
$$

Поправоиные кояффициентьк

Перетачиваемая
иі фрезы

$|$| c c. Π |
| :---: |
| $\mid 1,0$ |

Быстрорежущие фрезы
Алюминиевые и медные сплавы

$$
s_{Z}=S_{Z_{\mathrm{r}}} K_{s_{1}} K_{S_{\mathbf{2}}} K_{S_{3}} K_{S_{4}}
$$

$\begin{gathered} \text { Диаметы } D, \text { мм } \end{gathered}$	$s_{z_{\text {t }}}$ ирн площади сечения припуска, мм ${ }^{\text {a }}$							
	6	12	25	50	100	200	400	600
10	0,14	0,12	0,09	0,06	0,04	0,02	-	-
12	0,17	0,14	0,11	0,07	0,05	0,03	0,02	-
16	0,23	0,19	0,15	0,10	0,06	0,04	0,02	
20	0,29	0,23	0,19	0,12	0,08	0,05	0,03	0,02
25	-	0,26	0,21	0,16	0,12	0,09	0,07	0,06
32		-	0,24	0,18	0,14	0,11	0,08	0,07
40	-	-	0,27	0,20	0,16	0,12	0,09	0,07
50, 63	-	-	-	0,23	0,17	0,13	0,10	0,08

Поправочнье кояффициентья

Сплавы	Алюмини	Медные		
$K_{S_{1}}$	1,0		0,9	
Фреза	С крупным вубом		С нормальным зубом	
$K_{S}{ }_{2}$	1,0		0,7	
Отношение вылета фрезы к ее диаметру		До 2	2-3	Св. 3
$K_{S 8}$		1,1	1,0	0,6
Форма обрабатываемой поверхности		Плоскость	Уступ	Паз
$K_{S_{4}}$		1,1	1,0	0,8

Концевые фрезы

Скорость резания u, м/мин Моцность резания N, кВт

Kарта 2

Сбрабатываемые материалы -- сталв, чугун

твердосидавные фрезы

Конструкционная сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 8} K_{v 4} K_{v b} K_{v 8} \\
N=N_{\mathrm{T}} K_{N 1} K_{N \mathbf{2}} K_{N 8} K_{N 4} K_{N B} K_{N 8} K_{N 7} K_{N 8}
\end{gathered}
$$

	0,02	0,04	0,06	0,08	0,10	0,16	0,20	0.25
0,10	$\frac{152}{1,0}$	$\frac{123}{1,2}$	$\frac{108}{1,3}$	$\frac{99}{1,3}$	$\frac{92}{1,4}$	$\frac{80}{1,7}$	$\frac{75}{1,9}$	$\frac{69}{2,0}$
0,25	$\frac{141}{1,9}$	$\frac{114}{2,2}$	$\frac{101}{2,4}$	$\frac{92}{2,5}$	$\frac{85}{2,6}$	$\frac{75}{3,2}$	$\frac{69}{3,6}$	$\frac{64}{3,9}$
0,50	$\frac{134}{3,2}$	$\frac{108}{3,6}$	$\frac{95}{3,9}$	$\frac{87}{4,1}$	$\frac{81}{4,3}$	$\frac{70}{5,3}$	$\frac{65}{5,8}$	$\frac{61}{6,5}$
0,75	$\frac{130}{4,5}$	$\frac{104}{5,2}$	$\frac{92}{5,5}$	$\frac{85}{5,8}$	$\frac{79}{6,1}$	$\frac{68}{7,5}$	$\frac{64}{8,3}$	$\frac{59}{9,1}$
4,00	$\frac{102}{4,6}$	$\frac{81}{5,2}$	$\frac{72}{5,6}$	$\frac{66}{5,9}$	$\frac{62}{6,2}$	$\frac{53}{7,6}$	$\frac{50}{8,4}$	$\frac{47}{9,2}$

Поправочные кояффициенты

	Серый едаgн$\begin{aligned} & 0=v_{\nabla} K_{01} K_{08} K_{v 8} K_{04} ; \\ & N_{\mathrm{F}} K_{N I} K_{N \mathbf{2}} K_{N 8} K_{N 4} K_{N 8} K_{N \mathrm{~A}} \end{aligned}$							
t/D	$\frac{o_{T}(\text { (} / \text { /кин })}{N_{T}(\mathrm{KBT})}$ пра подаче на вуб S_{Z}, мм/зуб							
	0.02	0.04	-0,06	0,08	0.10	0.16	0.20	0,25
0,10	$\frac{180}{0,7}$	$\frac{156}{1,0}$	$\frac{144}{1,3}$	$\frac{136}{1,4}$	$\frac{130}{1,5}$	$\frac{115}{1,9}$	$\frac{100}{1,9}$	$\frac{88}{1,9}$
0,25	$\frac{118}{1,1}$	$\frac{103}{1,4}$	$\frac{96}{1,7}$	$\frac{90}{2,0}$	$\frac{86}{2,2}$	$\frac{76}{2,6}$	$\frac{67}{2,7}$	$\frac{58}{2,7}$
0,50	$\frac{87}{1,3}$	$\frac{76}{1,9}$	$\frac{70}{2,3}$	$\frac{66}{2,6}$	$\frac{63}{2,9}$	$\frac{56}{3,4}$	$\frac{49}{3,4}$	$\frac{42}{3,5}$
0,75	$\frac{80}{1,8}$	$\frac{70}{2,4}$	$\frac{64}{2,9}$	$\frac{61}{3,3}$	$\frac{58}{3,7}$	$\frac{46}{4,0}$	$\frac{41}{4,1}$	$\frac{35}{4,1}$
1,00	$\frac{60}{1,7}$	$\frac{52}{2,3}$	$\frac{49}{2,8}$	$\frac{46}{3,2}$	$\frac{44}{3,5}$	$\frac{33}{3,6}$	$\frac{30}{3,6}$	$\frac{25}{3,6}$

Поправочные коэффициентьы

вердость чугуна НВ	156	173	20		229		265		285	321
4	1,5	1,3	1,		1,0		0,8		0,7	0,6
Ni	1,3	1,2	1,		1,0		0,9		0,8	0,7
мстояние обрабатываемой поверхности					Без корки				С коркой	
$W_{1}=K_{N 2}$					1,0				0,7	
ррка твердого сплава	BK10-OM		BK8B		BK8		B	BK4, BK6		$\begin{aligned} & \text { BK3, } \\ & \text { BK6M } \end{aligned}$
$4=K_{N z}$	0,7		0,8		1,0			1,2		1,3
\%риод стойости T, мин	20		35	60	90			150	200	300
$\mathrm{t}_{4}=K_{N 4}$	1,5		1,25	0,9	1,0			0,9	0,8	0,75
\%ero sубьев 2	2		3			4			6	
	0,7		1,0			1,3			1,9	
¢ина фрезерования B, мм		5	10		20			40		80年
		0,3	0,5		1,0			1,9		3,5

Ковкий и высокопрочный чугуны

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{\text {v8 }} K_{v 4} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N \mathbf{2}} K_{N \mathrm{~B}} K_{N 4} K_{N \mathrm{~s}} K_{N \mathrm{~B}} .
\end{gathered}
$$

t / D	$\frac{v_{T}(\mathrm{M} / \mathrm{M} \boldsymbol{H})}{N_{\mathrm{T}}(\mathrm{KBT})}$			при подаче на зуб S_{Z}, ммм/зуб				
	0,02	0.04	0.06	0,08	0.10	0,16	0,20	0,25
0,10	$\frac{143}{0,5}$	$\underline{125}$	$\frac{115}{1,0}$	$\frac{108}{1,1}$	$\frac{104}{1,2}$	$\frac{93}{1,6}$	$\frac{84}{1,6}$	$\frac{76}{1,7}$
0,25	$\frac{99}{0,8}$	$\frac{87}{1,2}$	$\frac{80}{1,5}$	$\frac{75}{1,7}$	$\frac{72}{1,9}$	$\frac{64}{2,3}$	$\frac{58}{2,5}$	$\frac{53}{2,7}$
0,50	$\frac{75}{1,1}$	$\frac{66}{1,7}$	$\frac{61}{2,0}$	$\frac{57}{2,3}$	$\frac{55}{2,6}$	$\frac{49}{3,3}$	$\frac{44}{3,5}$	$\frac{40}{3,6}$
0,75	$\frac{64}{1,4}$	$\frac{56}{1,9}$	$\frac{51}{2,4}$	$\frac{49}{2,8}$	$\frac{46}{3,1}$	$\frac{42}{3,9}$	$\frac{37}{4,2}$	$\frac{34}{4,4}$
1,00	$\frac{46}{1,2}$	$\frac{40}{1,7}$	$\frac{36}{2,2}$	$\frac{85}{2,5}$	$\frac{33}{2,9}$	$\frac{30}{3,6}$	$\frac{27}{3,8}$	$\frac{24}{4,0}$

Поправочнье кояффициентьы

Бистрорежушиефревы
Конструкционная сталь
$v=v_{\mathrm{T}} K_{v_{1}} K_{v_{2}} K_{08} K_{04} K_{05} ;$
$N=N_{T} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N B} K_{N 6} K_{N 7}$.

t / D	$\frac{v_{T} \text { (M/MAB) }}{N_{T}\left(\mathrm{KBT}^{2}\right)}$			прм подаче на збб S_{Z}, мм/зуб				
	0,02	0,04	0,06	0,08	0,10	0,16	0,20	0,25
0,10	$\frac{54}{0,8}$	$\frac{47}{0,8}$	$\frac{43}{0,9}$	$\frac{41}{0,9}$	$\frac{39}{0,9}$	$\frac{35}{1,1}$	$\frac{34}{1,2}$	$\frac{32}{1,3}$
0,25	$\frac{44}{1,2}$	$\frac{38}{1,3}$	$\frac{35}{1,3}$	$\frac{33}{1,4}$	$\frac{32}{1,4}$	$\frac{29}{1,7}$	$\frac{28}{1,9}$	$\frac{26}{2,0}$
0,50	$\frac{38}{1,7}$	$\frac{33}{1,8}$	$\frac{30}{1,9}$	$\frac{29}{1,9}$	$\frac{27}{2,0}$	$\frac{25}{2 ; 4}$	$\frac{24}{2,6}$	$\frac{23}{2,8}$
0,75	$\frac{34}{2,2}$	$\frac{30}{2,4}$	$\frac{28}{2,5}{ }^{\text {a }}$	$\frac{26}{2,5}$	$\frac{25}{2,6}$	$\frac{23}{3,2}$	$\frac{22}{3,4}$	$\frac{21}{3,8}$
1,00	$\frac{26}{2,2}$	$\frac{22}{2,3}$	$\frac{21}{2,4}$	$\frac{20}{2,5}$	$\frac{19}{2,5}$	$\frac{17}{3,1}$	$\frac{16}{3,4}$	$\frac{16}{3,7}$

Поправочные коэффициентьь

Коррозионно-стойкая сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v s} ; \\
N=N_{T} K_{N 1} K_{N 2} K_{N s} K_{N 4} K_{N b} K_{N 8} .
\end{gathered}
$$

t / D	$\frac{v_{\mathrm{T}}(\mathrm{m} / \mathrm{MnH})}{N_{\mathrm{T}}(\mathrm{KBT})}$ при подаче на зуб S_{Z}							
	0,02	0,04	0,06	0.08	0,10	0,16	0,20	0,25
0,10	$\frac{43}{0,7}$	$\frac{38}{0,8}$	$\frac{35}{0,9}$	$\frac{34}{0,9}$	$\frac{32}{0,9}$	$\frac{24}{0,9}$	$\frac{21}{0,9}$	$\frac{18}{0,9}$
0,25	$\frac{36}{1,2}$	$\frac{32}{1,3}$	$\frac{29}{1,3}$	$\frac{28}{1,4}$	$\frac{27}{1,4}$	$\frac{20}{1,4}$	$\frac{17}{1,4}$	$\frac{15}{1,4}$
0,50	$\frac{31}{1,7}$	$\frac{27}{1,8}$	$\frac{26}{1,9}$	$\frac{24}{2,0}$	$\frac{24}{2,0}$	$\frac{17}{2 ; 0}$	$\frac{15}{2,0}$	$\frac{13}{2,0}$
0,75	$\frac{28}{2,2}$	$\frac{25}{2,4}$	$\frac{24}{2,5}$	$\frac{23}{2,6}$	$\frac{22}{2,7}$	$\frac{16}{2,7}$	$\frac{14}{2,6}$	$\frac{18}{2,6}$
1,00	$\frac{22}{2,2}$	$\frac{19}{2,4}$	$\frac{18}{2,5}$	$\frac{17}{2,6}$	$\frac{16}{2,7}$	$\frac{12}{2,6}$	$\frac{10}{2,6}$	$\frac{9}{2,5}$

Поправочные кояффициенты

$\underset{\text { cravi }}{\text { Mapıa }}$	${ }_{25 \times 13}{ }_{2} \times 13{ }^{2}$	20x13		33×13	$12 \times 18 \mathrm{H} 10 \mathrm{~T}, 12 \mathrm{X} 18 \mathrm{H} 9 \mathrm{~T}$ $40 \times 13,09 \times 16 \mathrm{H} 4 \mathrm{E}$,$07 \times 16 \mathrm{H} 6,14 \times 17 \mathrm{H} 2$ $07 \mathrm{X} 16 \mathrm{H} 6,14 \mathrm{X} 17 \mathrm{H}$				皆
$F_{\tau 1}={ }^{\circ} K_{N 1}$	1,4	1,3		1,2		1,			0,85
(غлояние обрабатываемой поверхности						Без корки		С коркоп	
$K_{v 2}=K_{N 2}$						1,0		0,7.	
Диаметр фрезы D, мм			4-5		6-12	16-25	32-40		50-63
$K_{v s}=K_{N 3}$			0,75		0,9	1,0	1,1		1,15
Период стойкости T, мин			20	35	60	- 100	150	200	300
$K_{v 4}=K_{N 4}$			1,4	1,2	1,0	0,85	0,75	0,7	0,6
Число зубьев Z		.	4		5		6		8
$K_{\text {Ns }}$			1,3		1,6		1,9		2,4
Ширина фрезерования B, мм				5	10	20		40	80
$K_{N e}$				0,24	0,5	1,0		,1	4.2

Ковкий и еысокопрочкыӑ цуеуныя

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 8}
\end{gathered}
$$

t / D								
	0.02	0,04	0,06	0,08	0,10	0,16	0.20	0.25
0,10	$\frac{55}{0,2}$	$\frac{48}{0,2}$	$\frac{44}{0,3}$	$\frac{42}{0,3}$	$\frac{40}{0,4}$	$\frac{36}{0,5}$	$\frac{32}{0,5}$	$\frac{29}{0,5}$
0,25	$\frac{38}{0,3}$	$\frac{33}{0,4}$	$\frac{31}{0,4}$	$\frac{29}{0,5}$	$\frac{28}{0,6}$	$\frac{25}{0,7}$	$\frac{22}{0,8}$	$\frac{20}{0,8}$
0,50	$\frac{29}{0,3}$	$\frac{25}{0,5}$	$\frac{23}{10,6}$	$\frac{22}{0,7}$	$\frac{21}{0,8}$	$\frac{19}{1,0}$	$\frac{17}{1,1}$	$\frac{15}{1,1}$
0,75	$\frac{25}{0,4}$	$\frac{21}{0,6}$	$\frac{20}{0,7}$	$\frac{19}{0,9}$	$\frac{18}{1,0}$	$\frac{16}{1,2}$	$\frac{14}{1,3}$	$\frac{13}{1,4}$
1,00	$\frac{18}{0,4}$	$\frac{15}{0,5}$	$\frac{14}{0,7}$	$\frac{13}{0,8}$	$\frac{13}{0,9}$	$\frac{11}{1,1}$	$\frac{10}{1,2}$	$\frac{9}{1,2}$

Поправочные коэффичиентья

Твердость чугуна HB	156	173	207	229	2		285	321
$K_{p 1}$	1,5	1,3	1,1	1,0	0		0,7	0,6
$K_{N 1}$	1,3	1,2	1,1	1,0	0		0,85	0,8
Состояние обрабатываемо妾 поверхности				Без корки			С коркой	
$K_{v 2}=K_{w_{2}}$				1,0			0,7	
Период стойкости T, мин		20	35	60	100	150	200	300
$K_{v 3}=K_{N s}$		1,3 1,15		1,0	0,9	0,8	0,75	0,7
Число зубьев Z	3	4		5	6			8
$K_{N 4}$	1,0	1,3		1,6	1,9			2,4
Ширина фрезерования B, мм		5		10	20	40		80
$K_{N s}$		0,3		0,5	1,0		1,9	3,5

Медныце сплазы

$$
\begin{gathered}
0=\sigma_{T} K_{\sigma 1} K_{U 1} K_{V g} K_{V Q}: \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 8} K_{N 4} K_{N 3} K_{N 6} .
\end{gathered}
$$

t / D								
	0,02	0,04	0.06	0,08	0.10	0,16	0,20	0,25
0,10	$\frac{126}{0,2}$	$\frac{110}{0,3}$	$\frac{101}{0.4}$	$\frac{95}{0,5}$	$\frac{91}{0,5}$	$\frac{83}{0.7}$	$\begin{array}{r}79 \\ \hline 0,8 \\ \hline\end{array}$	$\frac{76}{0,9}$
0,25	$\frac{96}{0,4}$	$\frac{83}{0,6}$	$\frac{77}{0,7}$	$\frac{72}{0,8}$	$\frac{69}{6,9}$	$\frac{63}{1,1}$	$\frac{60}{1,3}$	$\frac{58}{1,4}$
0,50	$\frac{78}{0,6}$	$\frac{68}{0,8}$	$\frac{62}{1,0 .}$	$\frac{59}{1,2}$	$\frac{56}{1,3}$	$\frac{51}{1,7}$	$\begin{array}{r}49 \\ \hline 1,9 \\ \hline\end{array}$	$\frac{47}{2,1}$
0,75	$\frac{69}{0,7}$	$\frac{60}{1,0}$	$\frac{55}{1,3}$	$\frac{52}{1,5}$	$\frac{50}{1,6}$	$\frac{45}{2,1}$	$\frac{43}{2,4}$	$\frac{41}{2,6}$
1,00	$\frac{50}{0,7}$	$\frac{44}{1,0}$	$\frac{40}{1,2}$	$\frac{38}{1,4}$	$\frac{37}{1,5}$	- 33	$\frac{32}{2,2}$	$\frac{30}{2,5}$

Поправонные кояффициенты

Mapka силава	Брб2; БрМц5						${ }_{\text {Мр }}$ EDAM49-2; ЕрКМц3-1, БроL4-3; 			-
$K_{K_{21}}=K_{N 1}$	0,2	0,4		0,55			1,0			1,5
Состояние обрабатываемой поверхности					Без корки			С коркой		
$K_{02}=K_{N 2}$					1,0			0,9		
Диаметр фрезы D, мм			4-5	6-8	10-12	16-25		32-40	50-63	
$K_{v_{3}}=K_{N 8}$			0,4	0.5	0,9	1,0		1,1	1,15	
Нериод стойкости T, мин			20	35	60	100	150	200	300	
${ }_{v_{4}}=K_{N_{4}}$			1,45	1,2	1,0	0,85	0,75	0,65	0,6	
иисло зуӧьев Z		3	4	5		6		88		
${ }^{\text {Nos }}$		1,0	1,3	1,6		1.9		2,4		
пприна фрезерования B, мм				10		20	40		80	
5		0,3			0,5	1,0	1,9		3,5	

Алюминиевье сплавв
$v=v_{\mathrm{T}} K_{v_{2}} K_{v_{2}} K_{v 3} K_{v 4} ;$
$N=N_{\mathrm{T}} K_{N 1} K_{N 8} K_{N \mathbf{3}} K_{N 4} K_{N 5} K_{N \mathbf{s}}$.

$8 / 2$	$\frac{y_{T}\left(\mathrm{M} / \mathrm{MrM}^{\prime}\right)}{N_{T}(\mathrm{FBr})}$ при подаяе на зуб S_{Z}, мм/зуб							
	0,02	001	006	0,08	0,10	0,16	0,20	0,25
0,10	$\frac{183}{0,3}$	$\frac{150}{0,4}$	$\frac{147}{0,4}$	$\frac{139}{0,5}$	$\frac{133}{0,6}$	$\frac{121}{0,7}$	$\frac{116}{0,8}$	$\frac{111}{0,9}$
0,25	$\frac{139}{0,4}$	$\frac{121}{0,6}$	$\frac{112}{0,7}$	$\frac{106}{0.9}$	$\frac{101}{1,0}$	$\frac{92}{1,2}$	$\frac{88}{1,4}$	$\frac{84}{1,6}$
0,50	$\frac{113}{0.6}$	$\frac{99}{0,9}$	$\frac{91}{1,1}$	$\frac{86}{1,3}$	$\frac{82}{1,4}$	$\frac{75}{1,8}$	$\frac{71}{2,1}$	$\frac{68}{2,3}$
0,75	$\frac{100}{0,8}$	$\frac{87}{1,1}$	$\frac{80}{1,4}$	$\frac{76}{1,6}$	$\frac{73}{1,8}$	$\frac{66}{2,3}$	$\frac{63}{2,6}$	$\frac{60}{2,9}$
1,00	$\frac{74}{0,7}$	$\frac{64}{1,0}$	$\frac{59}{1,3}$	$\frac{56}{1,5}$	$\frac{53}{1,7}$	$\frac{49}{2,2}$	$\frac{46}{2,4}$	$\frac{44}{2,7}$

Поппизочные коэффициентьы

Концевые фрезы					Kарта 3		
Критерии затупления, число переточек и расход фрез за 1000 ч основного времени					Обрабатываемыв материалы сталь, чугун		
Диаметр фрезы D, MM	$\begin{gathered} \text { Число } \\ \text { аубьев } \\ Z \end{gathered}$	Период стой- T, мин	Критетупления h_{3}, мм	Вепичина стачивания за одну переточку h. мин	Число перетоघek k	Суммарный период CTOHΣT,	Pacrop фрез P_{1000} mit.

твердосплавныефрезв
Конструкционная сталь

10	2	90	0,30	0,30	8	11	88
12,5	2	90	0,30	0,30	8	11	88
16	3	90	0,35	0,32	7	10	100
20	4	90	0,40	0,33	7	10	100
25	4	90	0,45	0,35	10	14	72
32	4	90	0,40	0,33	14	19	48
40	6	90	0,40	0,33	15	20	46
50	6	90	0,40	0,33	15	20	46

Чугун

10	2	90	0,4	0,29	8	11	88
12,5	2	90	0,4	0,29	8	11	88
16	3	90	0,45	0,30	8	11	88
20	4	90	0,55	0,32	7	10	100
25	4	90	0,65	0,34	10	14	72
32	4	90	0,55	0,32	15	20	46
40	6	90	0,55	0,32	16	21	43
50	6	90	0,55	0,32	16	21	43

Быстрорежушиефрезы
Конструкиионная сталь

4	3	20	0,25	0.28	2	0,8	1200
	4		0,20	0,26			
5	- 3	20	0,25	0.28	2	0,8	1200
	4		0,20	0,26			
6	3	20	0,25	0,28	3	1,1	900
	4		0,20	0,26			
8	3	20	0,30	0,30	4	1,4	720
	4		0,20	0,26			

Продолжение карты $я$

Диаметр фрезы D. мм	$\begin{gathered} \text { Чигло } \\ \text { syбbes } \\ Z \end{gathered}$	Период cTon. т, мин	Критерий 32. тупления $h_{3}, \mathrm{~mm}$	Величина стдчивания $3 \mathbf{a}$ одну переточку h, мин	पияло перето чек k		Расход фрез $P_{\text {sooo, }}$ ux
10	3	60	0,35	0,32	5	55	183
	4		0,25	0.28	4	4.2	220
12	4	60	0,35	0.32	5	5.5	183
	5		0,25	0.28			
16	3	60	0,50	0,38	5	5.5	183
	4, 5		0,35	0,32	6	6,4	157
20	3	60	0,55	0,40	7	7.3	138
	5			0,34	6	6.4	157
	6				4		
25	3	60	0,65	0,44	8	82	122
	5		0.50	038	7	7.3	138
32	4	60	0,55	0,40	12	11.8	88
	6		0,40	0,34	8	8.6	117
40	4	60	0,40	0.34	15	15,2	66
	6		0,30	0,30	12	12.4	81
50	4	60	0,40	0.34	17	17,1	58
	6		0,30	0.30	15	15.2	65
63	5	60	0,40	0,34	24	23,8	42
	8		0,30	0,30	18	18,1	55

Чугунь

4	3,4	20	0,3	0.34	1	06	1800
5	3,4	20	0,3	0.34	2	0.8	1200
6	3	20	0,35	0.35	2	0.8	1200
4		0,3	0.34				

Продолэение картьк 8

Продолжение карты 8

Диаметр фрезы D, мм	Число вубьев Z	Период стойкости T, мин	Критери月 затупления $h_{3}, ~ м м ~$	Величина стачивания за одну переточку h, мин	Число переточек k	Суммарный период стойкости $\sum r, ч$	Расход фрез $P_{1000,}$ mp:

Коррозионно-стойкая сталь, алюминиевые и медные сплавы

4	3	20	0,15	0,29	2	0,8	1200
	4		0,1	0,26			
5	3	20	0,15	0,29	2	0,8	1200
	4		0,1	0,26			
6	3	20	0,15	0,29	3	1,1	900
	4		0,15	0,29			
8	3	20	0,20	0,30	4	1,4	720
	4		0,2	0,30			
10	3	60	0,25	0,32	5	5,5	183
	4		0,20	0,29	4	4,5	220
12	4	60	0.25	0,32	5	5,5	183
	5		0,20	0,29			
16	3	60	0,30	0.33	6	6,4	157
	4		0,20	0,29	8	8.2	122
	5		0,20	0,29	8	8.2	-122
20	3	60	0,35	0,35	8	8,2	122
	5		0,25	0,30	6	6.4	157
	6		0,25	0,30	5	5,5	183
25	3	60	0,35	0,35	10	10	100
	5		0,25	0,30	7	7,3	138
32	4	60	0,3	0,33	14	14,3	70
	6		0,2	0,29	9	9,5	105

Диаметр фрезы D, мм	$\begin{gathered} \text { число } \\ \text { зубьев } \\ \boldsymbol{Z} \end{gathered}$	Период croи: T, мин	Критерий затупления h_{8}, мм h_{8}, MM	Величиня стачивания за одну переточку h, мин	Число $\underset{\text { чек } k}{\substack{\text { перето- }}}$	Суммарный период кости ΣT,	$\begin{gathered} \text { Рас ход } \\ \text { Фрез } \\ P_{1000, ~ \mathrm{mx}} . \end{gathered}$
40	4	60	0,3	0,33	16	16,2	62
	6		0,2	0,29	11	11,4	88
50	4	60	0,3	0,33	18	18,1	55
	6		0,2	0,29	13	12,4	75
63	5	60	0,3	0,33	25	24,8	40
	8		0,2	0,29	16	15,2	62

ИИСКОВЫЕ ТРЕХСТОРОННИЕ中РЕЗЫ

Рекомендации по выбору инструмента. рекомендуемые значения диаметров исковых фрез приведены в табл. 27. Iри отсутствии ограничений по конфигурации деталей предпочтение в пределах указанного диапазона слеует отдавать фрезам меньшего диаетра.
Марки материалов инструмента и жометрическге параметры режушей тасти дисковых трехсторонних фрез

приведены соответственно в табл. 28 и 29.

На основании ориентировочно выбранных значений диаметра, ширины фрезы и марки инструментального материала устанавливают типоразмеры фрез по ГОСТам, ОСТам и ТУ.

Режимы резания. При назначении подач обрабатываемые поверхности разбивают на участки в соответствии с их формой (плоскость, паз и уступ).

Рекомендации по назначению подач для различных форм обрабатываемых поверхностей приведены в карте 1.
7. Диа метры быстрорежущих фрез, мм

28. Марки материалов инструмента дисковых трехсторонних фрез

Обрабатываемвй материал	Марка материала инстдумента при обработке	
	черновои	чистовой
Сталь:		
конструкционная	T5K10, P6M5, 10P6M5	T15K6, P6M5, 10P6M5
коррозионно-стойкая	BK8, P6M5K5,	BK6, P6M5K5, P9K5
Серые и ковкие чугуны	BK8, P6M5	BK6, P6M5
Сплавы:	P6M5	P6M5
алюминиевые	P6M5	P6M5

29. Геометрические параметры режущей части дисковых трехсторонних фрез

Материал		$\begin{gathered} \text { Tвердость } \\ \text { матералала } \\ \text { заготовки } \\ \text { HB } \end{gathered}$	Угол, ... ${ }^{\circ}$	
ваготовкв	ивструмента		$\underset{\gamma}{\text { передний }}$	$\underset{\alpha}{\text { заднй }}$
Конструкционная сталь	Быстрорежущая сталь	До 179	20	16
		Св. 179	15-10	10
	Твердый сплав	До 229	5	15
		Св. 229	-5	15
Коррозионно-стойхая сталь	Быстрорежущая сталь	-	5	10
	Твердый сплав	-	5	12
Серые и ковкие пугуны	Быстрорежущая сталь	До 156	15	10
		Св. 156	10	10
	Твердый сплав	До 156	5	15
		Св. 156	5	10
Медные	Быстрорежущая сталь	-	10	20
Алюминиевые сплавы	Быстрорежущая сталь	-	25	20

Дисковые трехсторонние фрезы	Карга 1
Подача на вуб $S_{Z, \text { мм/зуб }}$	Обрабатываемые материалы - сталь, чугуны, алюминиевые н медные сплавы

Твердосплавннефрезы
Обработка стали и чцгуна

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{S_{2}} K_{S 3} K_{S 4} K_{S \mathfrak{s}}
$$

Обрабатываемвй материал	$S_{Z_{\text {m }}}$ при глубине резания t, мм					
	5	10	15	20	30	50
Сталь:						
конструкшионная	0,12	0,10	0.08	0,07	0,06	0,04
коррозионно-стойкая	0,11	0,09	0.07	0,06	0,05	0,03
Чугуны	0,17	0,12	0,10	0.09	0,08	0,06

Поправочнье коэффициенть

Тип фрезы	c СМП		Со вставными ножами			
$K_{S 3}$	0.9		1,0			
Отношение длинь оправки к ее диаметру		4	5	10	20	30
K		1,2	1,1	1,0	0,75	0,5
Форма обрабатвваемой поверхности	Плогкость, уступ				Паз	
$K_{\text {Ss }}$	1,3			1,0		

Быстрорежущиефревы
Обработка стали, чугина, алюминиевых и меднык сплавов

$$
s_{Z}=s_{Z_{T}} K_{S_{1}} K_{s_{2}} K_{S_{9}} K_{S_{4}} K_{S_{5}}
$$

t/D	$S_{Z_{T}}$ при ширине фрезерования B, мм					
	2	5	10	20	- 30	40
0,03	0,36	0.28	0,24	0,22	0,20	0,18
0,05	0,28	0.22	0,19	0,17	0,16	0,14
0,1	0,20	0,15	0.13	0,12	0,11	0,09
0,2	0,14	0.11	0,09	0,08	0,07	0,06

Поправочнне коэффициентья

Обрабатываемвй матернал	Конструкционная сталь	Kop	язионн		Yyry и мед сृла		$\begin{gathered} \text { люмин } \\ \text { спла } \end{gathered}$	евые
$K_{\text {Sl }}$	1,0		0,9		1,5		1,6	
Твердость стали НВ	струкционной	156	173	207	229	265	285	321
$K_{S 2}$!	1,2	1,1	1,0	0,9	0,8	0,7	0,6
Временное сопротивление коррозионно-стойкой стали σ_{B}, МПа					640	800	1000	1200
$K_{S 2}$					1,0	0,85	0,75	0,6

Продолжсение картье 1

Твердость чугуна НВ	156	173	207	229	265	285		321
$K_{\text {S2 }}$	1,3	1,2	1,1	1,0	0,9	0,8		0,7
Тип фрезы	Цельная			Со вставными ножами				
$K_{\text {Ss }}$	1,0			1,4				
Отношение длины оиравки к ее диаметру ?				4	5	10	20	30
$K_{S q}$				1,2	1,1	1,0	0,75	0,5
Форма обрабатываемой	пове	ости	Плоскость, уступ				Паз	
$K_{S s}$			1,3				1,0	
Дисковые трехсторонние фрезы			Карта 2					
кхорость рездния \quad, м/мин Мощность резания N, кВт			Обрабатываемые материалы - сталь, чугун, медные и алюминиевые сплавы					

Твердосплавнве фревв

Конструкционная сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} K_{v 7} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7} .
\end{gathered}
$$

t / D						
	0,05	0,1	0,15	0,2	0,25	0,3
0,03	$\frac{340}{3,6}$	407	$\frac{346}{9,2}$	$\frac{307}{10,5}$	$\frac{285}{11,5}$	$\frac{262}{12,5}$
0,05	$\frac{298}{5,4}$	$\frac{346}{10,5}$	$\frac{294}{12,7}$	$\frac{261}{14,6}$	$\frac{243}{16,0}$	$\frac{222}{17,3}$

t / D	$\frac{v_{\mathrm{T}}(\mathrm{M} / \text { Мин) }}{N_{\mathrm{T}}(\mathrm{KBT})}$ при подаче па зуб S_{Z}, мм/зуб					
	0,05	0,1	0,15	0,2	0.25	0,3
0,1	$\frac{238}{8,2}$	$\frac{280}{16,6}$	$\frac{238}{19,8}$	$\frac{211}{22,7}$	$\frac{197}{26,0}$	$\frac{180}{26,9}$
0,2	$\frac{198}{12,8}$	227	$\frac{194}{30,4}$	$\frac{172}{34,9}$	$\frac{160}{38,3}$	$\frac{146}{41,3}$

Поправочгьк коячфициентть

Продолжение карты

Отношение длины оправки к ее циаметру	3	4	5	10	20	30	
$K_{v 0}=K_{N 6}$	Консольное крепление	1,0	0,8	0,05	0,5	-	-
Крепление с дополнитель- ной опорой	-	1,2	1,1	1,0	0,75	0,5	
Период стойкосги T, мин	60	120	180	300	500		
$K_{v 7}=K_{N 7}$	1,45	1,15	1,0	0,85	0,7		

Корровионно-стойкая сталь
$v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 8} ;$
$N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6}$.

t / D						
	0,05	0,1	0,15	0.2	0,25	0,3
0,03	$\frac{79}{1,1}$	60 1,5	51 1,8	$\frac{46}{2,0}$	$\begin{array}{r}43 \\ \hline 2,2\end{array}$	40 2,5
0,05	64	49 2,0	$\frac{41}{2,5}$	$\frac{38}{2,7}$	$\frac{34}{3,1}$	$\frac{32}{3,6}$
0,1	47	36 2,7	$\frac{31}{3,3}$	$\frac{28}{3,7}$	26	$\frac{24}{4,4}$
0,2	$\begin{array}{r}35 \\ \hline 2,9\end{array}$	$\begin{array}{r}27 \\ \hline 3,9\end{array}$	$\frac{23}{4,8}$	$\frac{22}{5,4}$	$\frac{20}{6,1}$	$\frac{18}{6,4}$

Поправочные коляфициенть

$\begin{gathered} \text { Марка } \\ \text { обрабатн- } \\ \text { ваемон } \\ \text { стали } \end{gathered}$	$\begin{gathered} 12 \times 13, \\ 25 \times 13 \mathrm{H} 2 \end{gathered}$	20×13	30×13	40×13, 12×18 $09 \times 16 \mathrm{H} 4 \mathrm{5}, 14 \mathrm{X}$ 07X16H6, 20 X	12X21M5T
$k_{01}=K_{N 1}$	1,4	1,3	1,2	1,0	0,85
¢остояние обрабатываемой поверхности				Без корки	С коркой
$\mathrm{c}_{02}=K_{N 2}$				1,0	0,7

Прооолжсние карть 2

Серьй чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 8} K_{v 4} K_{v 5} K_{v \theta} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

t/D	$\frac{v_{T} \text { (М/Мин) }}{N_{T}(\text { (} \mathrm{BT})}$ при подаче на зуб S_{Z}, мм/зуб					
	0,05	0,1	0,15	0.2	0,25	0,3
0,03	127 0,4	$\frac{116}{0,6}$	109 0,7	$\frac{105}{1,0}$	$\frac{102}{1,2}$	$\frac{100}{1,4}$
0,05	$\frac{101}{0,4}$	$\frac{92}{0,8}$	$\frac{86}{1,1}$	$\frac{83}{1,3}$	$\frac{81}{1,5}$	79 1,8
0,1	$\frac{72}{0,6}$	$\frac{66}{1,2}$	$\frac{62}{1,5}$	60 1,8	$\begin{array}{r}58 \\ \hline 2,2\end{array}$	57 2,5
0,2	$\frac{52}{1,1}$	$\frac{48}{1,8}$	$\frac{44}{2,5}$	43	42 3,2	$\frac{41}{4,5}$

Поправочные коячфициенты

Ковкий и высокопрочный чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{v 4} K_{v 5} K_{v 8} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

t / D	$\frac{v_{T}(\text { м/мин })}{N_{T}(\text { кВ才) }}$ при подаче на зуб S_{Z}, мм/зу					
	0,05	0,10	0,15	0,20	0,25	0,30
0,03	$\frac{235}{1,1}$	$\frac{165}{1,6}$	163 2,0	$\frac{146}{2,3}$	137 2,5	$\frac{128}{2,8}$

Прооолжекие картв 2

Период стойкосси T, мин	60	120	180	300	500
$K_{v 6}=K_{N 6}$	1,45	1,15	1,0	0,85	0,65

Быстрорежущиефрезы
Констьрукционная сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7} .
\end{gathered}
$$

t / D								
	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0.4
0,03*	$\frac{59}{1,3}$	$\frac{50}{1,4}$	$\frac{47}{2,2}$	$\frac{44}{2,6}$	$\frac{42}{2,9}$	$\frac{41}{3,2}$	$\frac{39}{3,4}$	$\frac{38}{3,7}$
0,05	$\frac{51}{1,7}$	$\frac{43}{2,3}$	$\frac{40}{2,9}$	$\frac{37}{3,4}$	$\frac{36}{3,8}$	$\frac{35}{4,2}$	$\frac{34}{4.6}$	$\frac{33}{5,0}$
0,1	$\frac{41}{2,4}$	$\frac{34}{3,4}$	$\frac{33}{4,2}$	$\frac{32}{5,1}$	$\frac{31}{5,7}$	$\frac{30}{6,2}$	$\frac{29}{6,7}$	$\frac{28}{7,3}$
0,2	$\frac{33}{3,6}$	$\frac{38}{5,1}$	$\frac{26}{6,2}$	$\frac{25}{7,5}$	$\frac{23}{9,2}$	$\frac{23}{9,2}$	$\frac{.22}{9,9}$	$\frac{22}{10,9}$

Поправочное колффициентья

O6panaтываемые стали	Углеродистые	Хромичые, хромоникелевые, х ромованадиевые		Прочие легированные, инструментальные		Кнсгрументаль ные легированные, под щипниковые		Бsictpoрежущие
$K_{v 1}$	1,0	0,8		0,7		0,6		0,5
$K_{N 1}$	1,0	0,8		0,9		1.1		1,3
Tвердость стали НВ		156	173	207	229	265	185	32.1
$K_{\nu 2}$		1,3	1,2	1,0	0,9	0,7	0,6	0,5
$K_{N 2}$		0,9	0,95	1,0	1,0	1,0	0,95	0,85

Продолжение картье 2

Корровионно-стойкая сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

t / D	$\frac{\left.{ }^{\tau} T \text { (} \mathrm{M} / \mathrm{MHH}\right)}{N_{T}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, м							
	0.05	0,1	0,15	0.2	0,25	0.3	0,35	04
0,03	$\frac{21}{0,6}$	$\frac{17}{0,8}$	$\frac{15}{0,9}$	$\frac{14}{1,0}$	$\frac{13}{1,1}$	$\frac{12}{1,1}$	$\frac{12}{1,2}$	$\frac{11}{1,2}$
0,05	$\frac{18}{0,9}$	$\frac{15}{11}$	$\frac{14}{1,2}$	$\frac{12}{1,4}$	$\frac{11}{1,6}$	$\frac{11}{1,6}$	$\frac{11}{1,6}$	$\frac{10}{17}$

Продолжение картья

Число зу6ьев чрезы Z	10	14	18	22	26
$K_{N 6}$	0,6	0,8	1,0	1,2	1,4

Серый чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v s} K_{v 4} K_{v 5} K_{v s} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 8} K_{N 4} K_{N 5} K_{N B} K_{N 7} .
\end{gathered}
$$

t / D				пря подаче па syб s_{Z}, мm/sy6				
	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4
0,03	$\frac{85}{1,1}$	$\frac{66}{1,4}$	$\frac{57}{1,5}$	$\frac{50}{1,6}$	$\frac{45}{1,7}$	$\frac{42}{1,7}$	$\frac{40}{1,8}$	$\frac{37}{1,9}$
0,05	$\frac{65}{1,4}$	$\frac{50}{1,6}$	$\frac{43}{1,8}$	$\frac{38}{1,9}$	$\frac{35}{2,1}$	$\frac{32}{2,1}$	$\frac{30}{2,2}$	$\frac{29}{2,3}$
0,1	$\frac{50}{1,7}$	$\frac{37}{2,0}$	$\frac{31}{2,2}$	$\frac{30}{2,4}$	$\frac{25}{2,6}$	$\frac{23}{2,7}$	$\frac{22}{2,8}$	$\frac{21}{2,9}$
0,2	$\frac{32}{2,1}$	$\frac{25}{2,6}$	$\frac{22}{2,8}$	$\frac{19}{3,1}$	$\frac{17}{3,3}$	$\frac{16}{3,4}$	$\frac{15}{3,5}$	$\frac{14}{3,6}$

Поправочные коэффициентьь

Твердость чугуна HB	156	173	207	229	265	285	321
$K_{v 1}$	1,5	1,3	1,1	1,0	$0 ; 8$	0,7	0,6
$K_{N 1}$	1,3	1,2	1,1	1,0	0,9	0,8	0,7
Состояние обрабатываемой поверхности	Без корки		С коркой				
$K_{v 2}=K_{N 2}$							
Ширина фрезерования B, мм	2	10	20	30	40		
$K_{v 3}$		1,25	1,1	1,0	1,0	0,9	
$K_{N 3}$	0,2	0,6	1,0	1,4	1,8		

Продолокение карть 2

Диамегр фрезы D, мм, до			80		60	200		315
$K_{V 4}=K_{N 4}$			1,25		,0	0,9		0,8
Отношение длины оправки к ее диаметру			3	4	5	10	20	30
$K_{v 5}=K_{N 5}$	Консольное крепление		1,0	0,8	0,65	0,5	-	-
	Крепление с дополнительной опорой		-	1,2	1,1	1,0	0,75	0,5
Период стойкости T, мин		60	100		50	250		400
$K_{06}=K_{N 6}$		1,15	1,05		, 0	0,9		0,85
исло зубьев Z		10	14		8	22		26
$V^{N 7}$		0,6	0,8		, 0	1,2		1,4

Ковкий и высокопрочный чугуя

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

t / D	$\frac{\left.v_{T} \text { (} \mathrm{M} / \mathrm{MH}\right)}{N_{T}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, м							
	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4
$0,03$	$\frac{82}{0,8}$	$\frac{70}{1,1}$	$\frac{65}{1,3}$	$\frac{62}{1,6}$	$\frac{58}{1,8}$	$\frac{57}{2,0}$	$\frac{55}{2,1}$	$\frac{53}{2,3}$
$0,05$	$\frac{71}{1,0}$	$\frac{61}{1,4}$	$\frac{55}{1,8}$	$\frac{52}{2,1}$	$\frac{50}{2,4}$	$\frac{49}{2,6}$	$\frac{47}{2,8}$	$\frac{46}{3,1}$
愿	$\frac{58}{1,5}$	$\frac{48}{2,1}$	$\frac{46}{2,6}$	$\frac{43}{3,1}$	$\frac{41}{3,6}$	$\frac{40}{3,8}$	$\frac{38}{4,1}$	$\frac{37}{4,5}$
$1,2$	$\frac{47}{2,2}$	$\frac{40}{3,1}$	$\frac{36}{3,9}$	$\frac{35}{4,6}$	$\frac{33}{5,7}$	$\frac{32}{5,7}$	$\frac{30}{6,2}$	$\frac{30}{6,8}$

Поправочные кояффициентьь

| Твердость чугуна НВ | 156 | 173 | 207 | 229 | 265 | 285 | 321 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K_{v 1}$ | 1,5 | 1,3 | 1,1 | 1,0 | 0,8 | 0,7 | 0,6 |
| $K_{N 1}$ | 1,3 | 1,2 | 1,1 | 1,0 | 0,9 | 0,8 | 0,7 |
| Состояние обрабатываемой поверхкости | Без корки | | С коркой | | | | |
| $K_{\text {v2 }}=K_{N 2}$ | | | | | | | |
| Ширина фрезерования B, мм | 2 | 10 | 20 | 30 | 40 | | |
| $K_{v 3}$ | | | | | | | |
| $K_{N 3}$ | | 1,25 | 1,1 | 1,0 | 1,0 | 0,95 | |
| Отношение длины оправки к ее диаметру | 3 | 4 | 5 | 10 | 20 | 30 | |

Меднье сплавы

$$
v=v_{\mathrm{r}} K_{v 1} K_{v 2} K_{v g} K_{v 4} K_{v 5} ;
$$

$$
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathrm{~B}} K_{N 6} .
$$

t / D								
	0,05	. 0,1	0,15	0.2	0,25	0,3	0,35	0,4
0,03	$\frac{120}{0,8}$	$\frac{101}{1,2}$	$\frac{94}{1,5}$	$\frac{89}{1,7}$	$\frac{83}{2,1}$	$\frac{82}{2,2}$	$\frac{79}{2,3}$	$\frac{77}{2,6}$

t / D	$\frac{v_{\mathrm{T}} \text { (м/Мин) }}{N_{\mathrm{T}}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, м							
	0,05	0,1	0,15	0.2	0,25	0,3	0.35	0.4
0,05	$\frac{103}{1,2}$	$\frac{90}{1,7}$	$\frac{83}{2,1}$	$\frac{78}{2,3}$	$\frac{74}{2,7}$	$\frac{72}{2,9}$	$\frac{71}{3,2}$	$\frac{68}{3,5}$
0,1	$\frac{83}{1,7}$	$\frac{73}{2,3}$	$\frac{68}{2,9}$	$\frac{63}{3,5}$	$\frac{60}{4,0}$	$\frac{59}{4,3}$	$\frac{58}{4,7}$	$\frac{55}{5,1}$
0,2	$\frac{68}{2,5}$	$\frac{58}{3,5}$	$\frac{54}{4,3}$	$\frac{51}{5,3}$	$\frac{48}{6,4}$	$\frac{47}{6,6}$	$\frac{46}{6,7}$	$\frac{45}{7,6}$

Поправочные коэффициенты

Продолэсение карты 2

Число зуоьев Z	10	14	18	22	26
$K_{N 6}$	0,6	0,8	1,0	1,2	1,4

Алюминиевые сплавы

$$
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v \mathrm{~b}}
$$

t / D	$v_{\text {т }}$ (м/мин) при подаче на зуб S_{Z}, мм/зуб							
	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4
0,03	200	168	157	148	138	137	132	129
0,05	173	150	138	131	124	121	118	113
0,1	140	122	113	107	101	98	96	93
0,2	113	98	91	86	82	80	78	75

Поправочнье коэффициентья

Критерии здупления, число переточек и расход фрез за 1000 ч основного времени

Обрабатываемые материалы стали и чугуны

Дчаметр фрезы D, мм	Ширина ррезы B, мM	Период стойкости T, мин	Критерий затупления h_{3}, MM	Велнчина стачивания за одну nepeточку h, MM	Число переточек k	$\begin{gathered} \text { Суммар- } \\ \text { нын } \\ \text { стнод } \\ \text { стой- } \\ \Sigma_{T, \text { ч }} \end{gathered}$	Расход фрез P_{1000}, WT

Двух-итрехсторонние твердосплавные фрезы
Конструкционная сталь и чугун

100	14	180	1,0	0,50	9	25	40
	18, 22				14	37	27
125	12	180	1,1	0,64	7	20	50
	16				9	25	40
	20				11	29	34
	25				15	40	25
160	14	300	1,1	0,64	7	33	30
	18, 22				11	48	21
	28				15	66	15
280	12	300	1,1	0,64	7	33	30
	16				9	41	24
	20				11	48	21
	25				15	66	15
	32				18	78	13
	12	300	1,1	0,64	7	33	30
	16				9	41	24
	20				11	48	21
	25				15	66	15
	32				18	78	13

Диаметр фрезы D, мм	Ширина фрезы B, мм	Период cton: T, мин	$\left\lvert\, \begin{gathered} * \\ \text { Kрите- } \\ \text { рй } 3 \mathrm{a} \\ \text { тупления } \\ \mathbf{h}_{\mathbf{3}}, \text { мм } \end{gathered}\right.$	Величина стачивания за одну пере точку h, MM	Число переточек k	$\begin{gathered} \text { Суммар } \\ \text { ный } \\ \text { период } \\ \text { стой } \\ \text { кости } \\ \Sigma T, \text { п } \end{gathered}$	Расход фрез $P_{1000, \text {, } 17}$
224, 200	18, 22	500	1,2	0,67	10	75	14
	28				14	102	10
	36				18	130	8
315	16	500	1,2	0,67	9	69	15
	20				10	75	14
	25				14	102	10
	32, 40				18	130	8

Коррьвионно-стойкая сталь

100	14	180	0,6	0,39	12	55	18
	18, 22				18	78	13
125	12	180	0,7	0,52	9	42	24
	16				11	- 51	20
	20				13	60	17
	25		\&		18	78	13
160	14	300	0,7	0,52	9	70	14
	18, 22				13	100	10
	28				18	130	8
180	12	300	0,7	0,52	9	70	14
	16				11	82	12
	20				13	100	10
	25				18	130	8
	32				23	165	6

Продолжение карть 3

Диаметр фрезы D, мм	Ширина фрезы B, мм	$\begin{aligned} & \text { Период } \\ & \text { стой } \\ & \text { кости } \\ & \text { T, мин } \end{aligned}$	Критерий ва" тупления h_{3}, MM	Величина стачивания за одну переточку h, мм	ч́исло переточек k	$\begin{gathered} \text { Суммар } \\ \text { ный } \\ \text { период } \\ \text { стой } \\ \text { кости } \\ \sum_{T, \text { ч }} \end{gathered}$	Pacxor фрез $P_{1 \text { noo }}$, Hit
200	12	300	0.7	0,52	9	70	14
	16				11	82	12
	20				13	100	10
	25				18	130	18
	32				23	165	16
4, 250	14	500	$0,8$	0,56	8	103	10
	18, 22				12	153	70
	28				17	208	5
	36				21	258	5
315	16	500	0,8	0,56	10	128	8
	20.				12	153	7
	25				17	208	5
	32, 40				21	255	5

рехсторонние быстоодежущие фрезы вставные
Конструкиионная сталь и чугун

Продолжение карть 3

Диаметр фрезы D, мм	IIирина фрезы B, m	Период стойкости T, мин	Крите. рий затупления h_{3}, мм h_{3}, MM	Величина стачивания за одну nedeточку h, MM	Число переточек k		Расход фрез P_{1000}, wit
160	14	250	0,5	0,43	18	45	23
	18				21	52	20
	22				25	62	16
	28				37	90	12
	36				39	95	11
200	12	250	0,5	0,43	15	60	17
	16				21	84	12
	20				25	100	10
	25				31	122	8
	32				39	152	7
	40				45	176	6
250	18	250	0,6	0,45	20	133	8
	22				24	160	7
	28				25	230	5
	36				38	246	5
	45				58	373	3
315	20	250	0,6	0,45	20	160	7
	25				- 30	197	6
	32				38	247	5
	40				43	280	4
	50				43	280	4

Коррозионно-стойкая сталь

100	14	150	0,5	0,32	24	60	17
	18				28	68	15
	28				42	102	10

Продолэкение картыя 3

Диаметр фрезы D. Mм	Ширина фрезн B, мм	Период стои$\underset{\text { кости }}{\text { ко }}$ 7.	Критерй $3 \mathrm{a}-$ тупления h_{a}, мм	Величина стачивания за одну переточку b, MM	Число переточек k	Суммарныи период стоити ΣT, ч	Расхо, фрез P_{1000}, шт.
125	12	150	0,6	0,42	15	37	27
	16				21	52	20
	25				26	63	16
	32				40	97	11
*	14	250	0,6	0,42	18	45	23
160	18				21	56	20
	22				26	63	16
	28				36	87	12
	36				40	97	11
200	20	250	0,5	0,42	26^{\prime}	122	10
	25				32	126	8
	32				40	156	7
250	18	250	0,7	0,44	30	133	8
	22				25	163	6
	28				36	233	5
	36				38	246	5
	45				58	366	3
315	20	250	0,7	0,44	25	166	3
	25				30	196	6
	32				38	246	5
	40				44	286	4
	50				44	286	4

Трехсторонние цельные быстрорежущие фрезы
Конструкиионная сталь и чугун

50	-	150	0,4	0,38	11	28	36
63	$4-16$	150	0,4	0,38	13	33	31
80	$5-20$	150	0,4	0,38	15	37	27
100	$6-20$	150	0,4	0,38	17	42	24
125	$8-28$	150	0,5	0,54	12	31	32

Диаметр фрезы D, мм	Ширина фрезы B, мм	Период стойкости \qquad	Критерий затупления h_{3}, MM	$\left\lvert\, \begin{gathered} \text { Величина } \\ \text { стачи- } \\ \text { вания } \\ \text { за одну } \\ \text { пере- } \\ \text { точку } \\ h, \text { мм } \end{gathered}\right.$	Число переточек k	Суммарпериод стой кости $\Sigma T, y$	$\begin{gathered} \text { Расход } \\ \text { фрез } \\ P_{1000, \text { шит } .} . \end{gathered}$
Коррозионно-стойкая сталь							
50	4-10	150	0,5	0,42	10	26	39
63	4-16	150	0,5	0,42	11	28	36
80	5-20	150	0,5	0,42	14	36	28
100	6-20	150	0,5	0,42	15	37	27
125	8-28	150	0,6	0.58	12	31	32

Подачи при чистовом фрезеровании следует назначать до 0,06 мм/зуб при обработке стали и до 0,08 мм/зуб при обработке чугунов
По карте 2 выбирают скорости и мощности резания. Табличные значения скорости резания рассчитаны на период стойкости фрез 150 мин для быстрорежущих фрез и 180 мин для твердосплавных.

Карты составлены для встречного фрезерования: при попутном фрезеровании указанные в карте скорости увеличивают на $10-20 \%$.
В карте 3 приведены рекомендации по оценке расхода фрез.

ДИСКОВЫЕ ПРОРЕЗНЫЕ (ШЛИЦЕВЫЕ), ОТРЕЗНЫЕ И ПАЗОВЫЕ ФРЕЗЫ

Рекомендации по выбору инструмента. Прорезные (шлицевые) и отрезные фрезы типов 1 и 2 с мелким и средним зубом 1-го класса точности, а также дисковые пазовые фрезы используют для прорезки пазов и шлицев. Фрезы 2 -го класса точности предназначены для прорезных и отрезных работ, а 3 -го класса точности с шириной более 0,5 мм - для отрезных работ. Фрезы типа 1 применяют при глубине фрезерования менее 6 мм.
30. Диаметры фрез, мм

Прорезные (шлицевые) и отрезные фрезы типов 2 и 3 и отрезные фрезы для обработки легких сплавов

Ширина фрезерова-ния ни, мм	Диаметр фрезы при глубине резания t, им								
	5	10	15	20	30	40	60	70	30
0,5-0,6	50	100	-	-	-	-	-	-	
0,8-1,4	50	63	100	160	200	-	-	-	
1,6-2,8	50	50	100	125	160	200	250	315	
3,0-6,0	5	50	63	100	125	160	200	250	15
Дисковые пазовые фрезы									

Ширина фрезерования B, мм	Диаметр фрезы при глубине резания t, мм				
	3	5	10	15	20
3-6	50	50	-	-	-
5-8	50	63	-		
8-12	-	80	80	100	125
10-16	-	-	80	100	125
8-25	-	-	125	125	125

31. Марка материала инструмента

Обрабатываемьй материал	Марка бвстрорежущей стали
Стали конструк-	P6M5, 10P6M5
ционные Стали коррозион-	P6M
но-стойкие	P6
Чугуны серые и	P6M5
Алюминиевые	
сплавы	
Медные сплавы	P6M5
Рекомендации по выбору значений фиаметров фрез приведены в табл. 30. При отсутствии ограничений по конфигурации деталей необходимо исдользовать в пределах указанного ииапазона фрезв меньшего диаметра. ${ }^{\text {На основани выбранных значений }}$ фиаметра, ширины фрезы и марки ма-	

териала инструмента (табл. 31) устанавливают типоразмеры фрез по ГОСТам, ОСТам и ТУ Геомет ричес кие параметры устанавливаются по табл 32

Режимы резания. Рекомендации по режимам резания даны для чистовой обработки прорезными и пазовыми фрезами, закдепленными с дополнительной опорой При отрезании и прорезании немерного паза допускается работа с консольным креплением фрез.

В карте 1 приведены рекомендации по назначению подач на зуб. фрезы, а в карте 2 - скорости и моџности резания. Табличные значения ско рости рассчитаны на период стойкости 120 мин. При отрезании деталей с литейной коркой необходимо снижать скорости резания на 30% при обработке серых чугунов и на 20% ковких.

В карте 3 даны рекомендации по оценке расхода фрез

2. Геометрические параметры режущей части фрез

Обрабатываемвィматериал	Угол, . ${ }^{\circ}$						
	передний ${ }^{\text {p }}$		งадния \propto			вспомогательны" в плане φ_{1}	
	$\underset{\text { Шм }}{\underset{\text { Ширина }}{ }} B \text {, }$		Прорезка шлицев	Отрезные работы		Прорезка шлицев	Отре $з$ ные работы при B CR 3 mm
	до 3	ce. 3					
онстру кционные и фрроз ионно-стойкие кали, серые и ковкие туны, медные спла4	5	10	30			$\stackrel{0,25-}{1,5}$	0,25-1,0
мом иниевые спла-	20		20			$1 \div 3$	
Дисковые павовые фревы							
Обрабатываемпй материал			угол, . ${ }^{\text {e }}$				
			передний γ		$\underset{\alpha}{\text { задний }}$	вспомогательный в плане φ_{1}	
рнструкционные и о̆йие стали, серые жы, медные сплавы	коррозионнои ковкие чу-		10		20	1-2	
томиниевые сплавы			20		20	2-3	

Дисковые фрезы
Карта 1

Обрабатываемые материалы - стали, чу

Подача на зуб S_{Z}, мм/зуб

гуны, алюминиевые и медные сплавы

Прорезные (шлицевые)
иотрезныебыстрорежущие фрезы

$$
S_{z}=S_{Z_{T}} K_{S 1} K_{S 2} K_{S 8} K_{S 4}
$$

глубина резания t, мм	$S_{Z_{\mathrm{T}}}$ при диаметве фрезы D, мм						
	20	50	80	125	200	315	
5	0,006	0,006	0,008				
10	-	0,005	0,007	0,010	-	-	
20	-	-	0,005	0,008	0012	-	
40	-	-	-	0,006	0.005	0.012	
80	-	-	-	-	0,011		

Поправочные коэффициенть

Обрабатываемые материалы	Конструкционные стали	Kop	озион		Медны сплавы		$\begin{gathered} \text { Чугу } \\ \text { алюми } \\ \text { спл } \end{gathered}$	$\begin{aligned} & \text { ен } \end{aligned}$
$K_{S 1}$	1,0		0,8		1,3		1,	
Твердость стали и чугуна НВ		156	173	207	229	265	285	321
$K_{S \mathbf{2}}$		1,2	1,1	1,0	0,9	0,8	0,7	0,6
Временное сопротивление стали коррозионно-стойкой σ_{B}, МПа					640	800	1000	1200
$K_{S 2}$					1,0	0,85	0,75	0,6

Tип фрезы	K_{S}, при ширине фрезерования B, мм						
	0,3	0,6	1,0	2,0	3,0	4.0	6.0
С мелким зубом	0,2	0,3	0,5	0,8	1,1	1,4	1,9
Со средним зубом	0,5	0,6	0,8	1,0	1,2	1,3	1,6
C крупным зубом:							
1-я градация	0,7	0,9	1,2	1,5	1,8	2,0	2,3
2-я градация	0,8	1,1	1,3	1,7	2,0	2,3	2,6

Отношение длинв оправки в ее диаметру		До 3	4	5	10	20	30
$K_{\text {Sa }}$	Консольное крепление	1,0	0,8	0,65	0,5	-	-
	Крепление с дополнительнои опорой	-	1,2	1,1	1,0	0,75	0,5

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S \mathbf{1}} K_{S \mathbb{2}} K_{S 3} K_{S 4}
$$

$\begin{gathered} \text { Глубина } \\ \text { резания } t_{n} \\ \text { мм } \end{gathered}$	- $\mathcal{S}_{Z_{\text {t }}}$ иря диаметре фреза D, мм				
	50	63	80	100	125
策 3	0,08	0,10	0,11	-	-
19	0,05	0,07	0,08	0,09	0,10
(10	0,04	0,06	0,07	0.08	0,09
\% 15.	-	-	-	0,06	0,07
穊 20°	-	-	-	0.04	0.05

Поправочные коэффициенть

Отношение длины оправки к ее диаметру	До 3	4	5	10	20	30	
$K_{S 4}$	Консольное крепление	1,0	0,8	065	0,5	-	-
Kрепление с дппотнитепьной опопой	-	1,2	1,1	1,0	0,75	0,5	

Прорезные (шлишевые), отрезные и пазовые быстрорежищие фрезы

Скорость резания v, м/мин
Моцность резания N, кВт

Kapra 2

Обрабатываемые материалы - стал чугуны, медные и алюминиевые сплав

Констрикционная сталь$\begin{gathered} v=v_{\mathrm{T}} K_{v 1} K_{v \mathrm{o}} K_{v 3} K_{v 4} K_{v 5} K_{v 6} \\ N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} K_{N 7} \end{gathered}$							
t / D	$\frac{v_{T} \text { (м/мин) }}{N_{\text {m }}(\text { кВт })}$ пои подаче на зуб S_{Z}. мм/Зуб						
	0.002	0004	0008	0016	0.032	0.064	0.128
0,05	$\frac{71}{0,04}$	$\frac{62}{0,07}$	$\frac{54}{0,09}$	$\frac{46}{0,15}$	$\frac{41}{0,2}$	$\frac{35}{0,3}$	$\frac{31}{0,4}$
0,1	$\frac{57}{0,07}$	$\frac{50}{0,1}$	$\frac{44}{0,15}$	$\frac{37}{0,2}$	$\frac{33}{0,3}$	$\frac{29}{0,4}$	$\frac{24}{0,6}$
0,2	$\frac{46}{0,1}$	$\frac{41}{0,15}$	$\frac{36}{0,2}$	- $\frac{30}{0,3}$	$\frac{27}{0,4}$	$\frac{23}{0,6}$	$\frac{20}{0,8}$
0.3	$\frac{41}{0,13}$	$\frac{37}{018}$	$\frac{31}{025}$	$\frac{29}{0,4}$	24	20 0,9	$\frac{17}{1,1}$

Поправочные коэффициенть

Обраба тываемые стали	Уrледо дистые	Хромистые, хромоникеле вые хромова надиевые	Прочие легированные, инструменталь ные углеродистые	Инструментальные, легированные, подшипниковые	Быстро режущи
K_{01}	1,0	0,8	0,7	0,6	0,5
$K_{N 1}$	1,0	0,8	0,9	1,1	1,3

Tверлость ста	H HB	156	173	207	229	265	285		321
χ_{02}		1,3	1,2	1,0	0.9	0,7	0,6		0,5
$\mathrm{K}_{\mathrm{N} 2}$		0,9	0,95	1,0	1,0	1,0	095		0,85
K_{Na}				0,7		1,0		1,3	
Пирина фрезерования B, мм				0,5	1,0	2,0	4,0	8,0	16
K_{ds}				1,4	1,3	1,15	1,0	0,9	0,8
$\mathrm{K}_{N 4}$				0,3	0,4	0,7	1,0	1,5	2,4
Мисло зубьев	фрезы Z	12-25	40-64		80	100	128		160
$\mathrm{K}_{\text {co }}$		1,1	1,0		0,9		0,8		
$\mathrm{k}_{\text {Nb }}$		0,25	0,6		0,8	1.0	1,1		1,4
Отношение длины к диаметру оиравки					До 3	5	10	20	30
$K_{V \mathrm{~B}}=K_{N E}$	Консольное крепленря				1,0	0,65	0,5	-	-
	Крапление с допглнительной опорой					1,1	1,0	0,75	0,5
Период стойкости T, мин				30	80	120	180	300	500
$K_{\text {vs }}=K_{N \%}$				1,5	1,1	1,0	0,9	0,85	0,75

Коррозионно-стойкая сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{r 4} K_{v b} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N{ }_{2}} K_{N 9} K_{N 4} K_{N 5} K_{V 6} .
\end{gathered}
$$

t / D	$\frac{v_{T}(\mathrm{M} / \mathrm{M} \boldsymbol{H})}{N_{\mathrm{T}}(\mathrm{KBT})}$						
	0,002	0,004	0,008	0,016	0.032	0.064	0,128
0,05	46	$\frac{40}{0,3}$	$\frac{.35}{0,35}$	$\frac{30}{0.5}$	- 26	$\frac{23}{0,8}$	$\frac{20}{1,1}$
0,1	$\frac{33}{0,3}$	$\frac{33}{0,4}$	$\frac{29}{0.5}$	-24	$\frac{22}{0,9}$	$\frac{18}{1,1}$	$\frac{16}{1,5}$
0,2	30 0,4	$\frac{27}{0,5}$	$\frac{24}{0.7}$	$\frac{20}{0,9}$	$\frac{18}{1.2}$	$\frac{15}{1,6}$	$\frac{13}{2,1}$
0,3	$\frac{27}{0,5}$	$\frac{24}{0.6}$	$\frac{20}{0.8}$	$\frac{18}{1,1}$	-15	$\frac{13}{1.9}$	$\frac{12}{2,5}$

Поправочнье кпяффицзиентьь

Отношение длины к диаметру оправки			До 3		4			10	20	30
$K_{v 4}=K_{N s}$	Консольное крепление		1.0		0,8			0,5	-	-
	Крепление с дополнительной оппрой		-		1.2			1,0	0,75	0,5
Период стойкогти T. мин		3	0	80		20		80	300	500
$K_{\nu \mathrm{b}}=K_{N 6}$			4	1,1		, 0		0,9	0,8	0,7

Серый иугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v \theta} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

t / D	$\frac{v_{T}(\mathrm{M} / \text { мин })}{N_{\text {T }}(\mathrm{K} \mathrm{BT})}$						
	0,002	0.004	0.008	0.016	0,032	0.064	0.128
0,05	70	$\frac{57}{0,15}$	$\frac{39}{0,2}$	$\frac{30}{0.25}$	$\frac{23}{0.3}$	$\frac{17}{0,35}$	$\frac{13}{0,4}$
0,1	50 0,2	$\frac{40}{0,25}$	$\frac{27}{0.3}$	$\frac{21}{0.35}$	$\frac{15}{0,4}$	$\frac{12}{0,45}$	$\frac{9}{0,55}$
0,2	$\frac{35}{0,25}$	$\frac{28}{0,3}$	$\frac{20}{0.35}$	$\frac{14}{0,4}$	$\frac{12}{0,5}$	$\frac{8}{0.6}$	$\frac{6}{0,7}$
0,3	$\frac{28}{0,25}$	- 23	$\frac{15}{0.4}$	$\frac{12}{0,5}$	$\frac{9}{0.55}$	$\frac{6}{0,65}$	$\frac{5}{0,8}$

Поправочные коэффициентья

Твердость чугуна НB	156	173	207	229	265	285	321
$K_{v 1}$	1,5	1,3	1,1	1,0	0,8	0,7	0,6
$K_{N 1}$	1,3	1,2	1,1	1,0	0,9	0,8	0,7

Коөкий и высокопрочный чугуны

$$
\begin{gathered}
v=o_{\mathrm{T}} K_{v 1} K_{v 9} K_{v g} K_{v \mathrm{~d}} K_{\text {vg }} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N \mathbf{2}} K_{N \mathrm{~s}} K_{N 4} K_{N \mathrm{~B}} K_{N 8} .
\end{gathered}
$$

t/D				дри подаче на зуб S_{z}, мм/syб			
	0,002	0,004	0.008	0.016	0.032	. 0,064	0.128
0,05	$\frac{98}{0,01}$	$\stackrel{86}{0,03}$	$\frac{76}{0,04}$	$\frac{64}{0,06}$	$\frac{57}{0,09}$	$\frac{49}{0,13}$	$\frac{48}{0,18}$

Продолэжение картьє

t / D	$\frac{v_{T}(\mathrm{M} / \mathrm{MKH})}{N_{T}(\mathrm{KBT})}$						
	0.002	0.004	0.008	0,016	0.032	0，064	0.120
0，1	$\frac{80}{0,03}$	$\frac{71}{0,04}$	$\frac{61}{0,06}$	$\frac{52}{0,09}$	$\frac{46}{0,13}$	$\frac{40}{0.18}$	$\frac{34}{0,25}$
0，2	$\frac{64}{0,04}$	$\frac{57}{0,06}$	$\frac{50}{0,09}$	$\frac{43}{0,13}$	$\frac{37}{0,18}$	$\frac{31}{0,25}$	$\frac{28}{0,35}$
0，3	$\frac{57}{0,05}$	$\frac{51}{0,08}$	$\frac{44}{0,1}$	$\frac{37}{0,2}$	$\frac{33}{0,35}$	$\frac{28}{0,4}$	$\frac{24}{0,5}$

＊Поправочныие кояффициенть

Твердость чугуна HB		156	173	207	229		265	285		321
Kod		1，6	1，3	1，1	1，0		0，8	0，7		0，6
$K_{N 1}$		1，3	1，2	1，1	1，0		0，9	0，85		0，8
Диаметр фрезы D ，мм				20－50			63－125		＇160－315	
$K_{N 2}$				0，7		1，0			1，3	
Ширина фрезерования B ，мм				0，5	1，0		2，0	4，0	8，0	16
$K_{\text {Dg }}$				1，4	1，3		， 15	1，0	0，9	0，8
$K_{N 8}$				0，3	0，4		0，7	1，0	1，5	2，4
Число зубьев фрезы Z		12－25	40－64		80		100	128		160
$K_{\text {VB }}$		1，1	1，0		0，9			0，8		
$K_{N 4}$		0，25	0，6		0，8	1，0		1，1		1，4
Отношение длины к диаметру оправки				До 3		4	5	10	20	30.
$K_{\text {D4 }}=K_{\text {Nb }}$	Консольное крепление					0，8	0，65	0，5	－	－
	Крепление с дополнитель－ но⿱⺈⿸⿻口丿乚丶 o ouopod					1，2	1，1	1，0	0，75	0，5

Продолэсение картьи

Период стойкости T, мин	30	80	120	180	300	500
$K_{D 8}=K_{N \tau}$		1,3	1,1	1,0	0,9	0.85

$$
\begin{gathered}
\text { Медные сплавь } \\
v=v_{T} K_{v i} K_{v 2} K_{v s} K_{v 4} K_{v s}
\end{gathered}
$$

t／D	$\boldsymbol{v}_{\text {т }}$（м／мин）при подаче на зуб S_{Z} ，мм／зуб						
	0，002	0，004	0，008	0,016	0.032	0，064	0，128
0，05	103	91	79	68	60	51	44
0，1	84	74	64	55	49	43	36
0，2	68	60	52	44	40	33	30
0，3	60	54	46	40	35	30	25

Поправочные кояффициенть

Mapka o6paba－ тывае－ сплава						シั่ $\stackrel{\circ}{\circ}$ T佷 T「0． がぎミ 50．0ิ			$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$K_{v i}$	0,2	0，4				1.0			，5
Ширина фрезерования B ，мм			0，5	1，0	2.0		4.0	8，0	16
$K_{v 2}$			1，4	1，3	1，15		1.0	0，9	0，8
Число вубьев фрезы			40－64			80， 100		128， 160	
K_{08}^{*}			1，1		1.0			0，9	
Отнотение длины к диаметру оправки				До 3	4	5	10	$20 \quad 30$	
K_{84}	Консольное крепление				0，8	0，65	0，5	－	－
	Крепление с дополнительной опорой			－	1，2	1，1	1.0	0，75	0，5

Период стойкости T, мин	30	80	120	180	300	500
$K_{2 \boldsymbol{s}}$	1,3	1,1	1,0	0,9	0,8	0,7

$$
\begin{aligned}
& \text { Алюминиевьіе сплавь } \\
& v=v_{\mathrm{r}} K_{v 1} K_{v 2} K_{v 3} K_{v 4}
\end{aligned}
$$

t / D	v_{T} (м/мин) при подаче на зуб S_{Z}, мм/зуб						
	0,002	0,004	0,008	0,016	0.032	0.064	0,128
0,05	316	276	242	207	188	157	136
0,1	258	226	- 197	167	148	130	109
0,2	207	188	160	135	122	101	90
0,3	183	165	141	122	106	90	77

Поправочные коэффіциентьь

Марка обрабатываемого сплава	АЛ7, АЛ8, АЛ19, Д16, AK5M7, AK4, AK6, AK8, B95, B93		$\begin{aligned} & \text { АЛ2. АЛ3, АЛ4, } \\ & \text { АЛ9, } \underset{\text { AM5r6 }}{\text { AMr }}, \end{aligned}$			АДо, АД1, АМц, АМЦС, АДЗ31, АДЗ3, AMi 3, AB			
$K_{v 1}$	0,85		1,0			1,25			
Ширина фрезерования B, мм			0,5	1,0	2,0		4,0	8,0	16
$K_{v 2}$			1,4	1,3	1.15		1,0	0,9	0,8
Число зубьев фрезы Z		12-25	40-64		80, 100			128, 160	
		1,1	1.0		0,9			0,8	
Отношение длины к диаметру оправки				До 3	4	5	10	20	30
$K_{v 4}$	Консольное крепление оправки				0,8	0,65	0,5	-	-
	Крепление с дополнительной опорой				1,2	1,1	1,0	0,75	0,5

Примечание. Режим резания обеспечивает период стойкости инструмента одну-две смены.

Критерхи ватупления, число переточек и расход фрез за 1000 о основного времени

Об́рабатывваемые материалн стали и чугуны

Основные размеры фрезы, мм						Суммарныв период стойкости ΣT, ч		Расход фрез P_{1000}, wr	
Дев метр	Ширава								
						$B_{\text {min }}$	$B_{\text {max }}$	$B_{\text {min }}$	$B_{\text {max }}$

 иотрезние фревы

Конструкционная сталь и єуеун

20	$0,2-2,5$	80	0,15	0,25	4	4	5	195	158
25	$0,2-3,0$	80	0,15	0,26	5	5	6	163	131
32	$0,2-4,0$	80	0,15	0,26	7	8	9	123	98
40	$0,2-5,0$	80	0,15	0,26	7	8	9	123	98
50	$0,2-6,0$	80	0,15	0,26	9	10	10	98	89
63	$0,25-6,0$	80	0,15	0,26	13	14	18	69	56
80	$0,3-6,0$	100	0,15	0,26	19	25	31	39	32
100	$0,5-6,0$	100	0,15	0,26	28	37	45	27	22
125	$0,6-6,0$	100	0,18	0,39	24	31	39	32	26
160	$1,0-6,0$	120	0,18	0,39	30	47	62	21	16
200	$1,0-6,0$	120	0,18	0,39	38	58	74	17	13
250	$1,6-6,0$	120	0,20	0,40	47	76	90	13	11
315	$2,5-6,0$	120	0,20	0,40	60	100	111	10	9

Коррозионно-стойкая ста.ав

20	$0,2-2,5$	80	0,20	0,29	3	4	4	244	225
25	$0,2-3,0$	80	0,20	0,29	5	5	5	163	158
32	$0,2-4,0$	80	0,20	0,29	6	6	8	140	113
40	$0,2-5,0$	80	0,20	0,29	6	6	8	140	113
50	$0,2-6,0$	80	0,20	0,29	8	8	11	108	87
63	$0,25-6,0$	80	0,20	0,29	12	13	16	75	60
80	$0,5-6,0$	100	0,20	0,29	17	22	28	44	35
100	$0,6-6,0$	100	0,20	0,29	25	33	41	30	24
125	$0,6-6,0$	100	0,25	0,41	23	30	37	33	27
160	$1,0-6,0$	120	0,25	0,41	29	45	55	22	18
200	$1,0-6,0$	120	0,25	0,41	36	55	71	18	14
250	$1,6-6,0$	120	0,3	0,43	44	76	90	13	11
315	$2,5-6,0$	120	0,3	0,43	56	90	111	11	9

Прорезные (длацевые) потрезные фрезы типа 2 со средним вубом

Конструкционкая сталь и чугун

50	$0,5-3,0$	80	0,15	0,26	11	12	14	81	66
63	$0,5-3,0$	80	0,15	0,26	15	16	20	62	50
80	$0,6-4,0$	100	0,15	0,26	23	30	37	33	27
100	$0,6-4,0$	100	0,15	0,26	24	43	54	23	18
125	$0,8-4,0$	100	0,18	0,34	29	37	45	27	22

Продолжение картв 3

Основные размеры фрезы, мм						Суммарны дериод ctonkocta $\Sigma r, ~ y$		$\begin{gathered} \text { Расход } \\ \text { фpes } \\ P_{1000, ~ x u t . ~}^{\text {Pa }} \end{gathered}$	
$\begin{aligned} & \text { Диа- } \\ & \text { метр } \end{aligned}$	Ширина					B_{min}	$B_{\text {max }}$	$s_{\text {min }}$	$B_{\text {mam }}$
160	1,0-6,0	120	0,18	0,39	38	58	71	17	14
200	1,2-6,0	120	0,18	0,39	46	71	90	14	11
250	1,6-6,0	120	0,2	0,4	55	90	111	11	9
315	2,5-6,0	120	0,2	0,4	81	142	166	7	6

Коррозионно-тойкая спиаль

50	$0,5-3,0$	60	0,20	0,29	10	10	13	89	72
63	$0,5-3,0$	80	0,20	0,29	14	15	18	65	53
80	$0,6-4,0$	100	0,20	0,29	20	26	33	38	30
100	$0,6-4,0$	100	0,20	0,29	31	41	51	24	20
125	$0,8-4,0$	100	0,25	0,41	28	37	45	27	22
160	$1,0-6,0$	120	0,25	0,41	36	58	71	17	14
200	$1,2-6,0$	120	0,25	0,41	44	71	83	14	12
250	$1,6-6,0$	120	0,30	0,43	61	90	100	11	10
315	$2,5-6,0$	120	0,30	0,43	75	125	142	8	7

Прорезные (шлидевве) иотрезпвефреяв типа $3 \mathrm{ckpyпным} \mathrm{аубом}$

Конструкчионная сталь и мдгун

50	$1,0-3,0$	80	0,15	0,26	11	12	14	81	66
63	$1,0-3,0$	80	0,15	0,26	17	18	22	54	44
80	$1,0-3,0$	100	0,15	0,26	27	35	43	28	23
100	$1,0-3,0$	100	0,15	0,26	38	48	59	21	17
125	$1,6-4,0$	100	0,18	0,39	34	48	56	21	18
160	$1,6-4,5$	120	0,18	0,39	43	71	83	14	12
200	$2,0-4,5$	120	0,18	0,39	54	90	100	11	10
250	$2,5-5,0$	120	0,20	0,4	62	100	125	10	8

Коррозионно-стойсая спиав

50	$1,0-3,0$	80	0,2	0,29	10	10	13	89	72
63	$1,0-3,0$	80	0,2	0,29	15	16	20	62	50
80	$1,0-3,0$	100	0,2	0,29	24	31	39	32	26
100	$1,0-3,0$	100	0,2	0,29	34	43	55	23	18
125	$1,6-4,0$	100	0,25	0,41	32	45	51	22	20
160	$1,6-4,5$	120	0,25	0,41	41	71	76	14	13
200	$2,0-4,5$	120	0,25	0,41	51	83	100	12	10
250	$2,5-50$	120	0,30	0,43	58	100	111	10	9

Дисковые пазовые фрезы

Стали и чугун

Основные размеры фрезы, мм		Период стойкости фрезы T, мин	$\begin{gathered} \text { Крите- } \\ \text { рииз за- } \\ \text { тупления } \\ h_{3}, \text { мм } \end{gathered}$	Величина стачивания за одну переточку h, MM	Число переточек k	Суммарныи период cron' 	$\begin{gathered} \text { Расход } \\ \text { фрез } \\ P_{1000, \text { шт. }} \end{gathered}$
Диаметр	Ширина						
50	3-6	80	0,3	0,34	10	13	70
63	5-8	80	0,35	0,36	11	15	67
80	8-12	100	0,4	0,38	12	20	49
100	10-14	100	0,45	0,42	13	22	46
125	8-25	100	0,5	0,45	14	23	42

ФАСОННЫЕ ФРЕЗЫ

Рекомендации по выбору инсорумента.
Тип фрезы и ее конструктивные элементы выбирают в зависимости от конфигурации обрабатываемой поверхности. Диаметр фрез рекомендуется принимать максимально возможным. Геометрические параметры режущей части фрезы приведены в табл. 33.

Режимы резания. Рекомендации по назначению подач приведены в карте 1. Наименьшее значение подачи на зуб не должно быть менее 0,02 мм $/ з у б$. По карте 2 можно вы" брать скорости и мощности резания. Табличные значения скорости резания рассчитаны на период стойкости фрез 120 мин. В карте 3 даны рекомендации по оценке расхода фрез.
33. Геометрические параметры режущей части фасонных фрез

Фрезя	Tвердость обраба-тываемого риала HB	Угол, ... ${ }^{\circ}$			
		передний γ при обработке		$\underset{\alpha}{\text { заднии }}$	вспомо" галельный Задни α_{1}
		черновой	чистовои		
	До 179	15	10		
Полукруглые и вогнутые (ГОСТ 9305-69)	$\begin{aligned} & \text { Св. } 179 \\ & \text { до } 269 \end{aligned}$	15 10	5 5	12	-
Двухугловые несимметричные (ТУ 2-035-526-76)	До 179 Св. 179 до 269 Св. 269	$\begin{aligned} & 15 \\ & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	16	8

Подача на зуб S_{Z}, мм/зуб

Обрабатываемый материал - конструкционная сталь

Двухугловыенесимметричнвефревв

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S \mathbf{1}} K_{S \mathbf{2}}
$$

Диаметр фрезн D, m	$S_{Z_{\text {T }}}$ при площади сечения припуска, мм ${ }^{2}$							
	10	25	40	50	75	100	150	200
40	0,09	0,05	0,04	0,04	0,03	-	-	-
50	0,11	0,07	0,06	0,05	0,04	-	-	-
63	0,14	0,09	0,07	0,06	0,05	-	-	-
80	0,19	0,12	0,10	0,08	0,07	0,66	0,05	0,04

Поправочнье коэффициенть

Твердость	стали НВ	156	173	207	229		65	285		1
$K_{S I}$		1,2	1,1	1,0	0,9	0,8		0,7		0,6
Отношение длины оправки к ее диаметру					До 3	4	5	10	20	30
$K_{\text {S2 }}$	Консольное крепление оправки				1,0	0,8	0,65	0,5	-	-
	Крепление с дополнительной опорой				-	1,2	1,1	1,0	0,75	0,5

Полукрурлвевыпуклвепводнутвефревв

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S \mathbf{1}} K_{S \mathbf{2}} K_{S \mathbf{3}}
$$

Диаметр фрезы D, мм	$S_{Z_{T}}$ при радиусе профиля фрезы R, мм						
	1,6	2,5	4,0	8,0	12.0	16,0	20,0
- 50	0,13	0,08	-	-	-	-	-
63	-	0,11	0,07	-	-	-	-
80	-	-	0,10	0,05	-	-	-
100	-	-	-	0,07	0,05	-	-
125	-	-	-	-	0,06	0,05	0,04

Поправочнье кояффициенть

Твердость стали НВ		156	173	207	229		265	285		321
$K_{S I}$		1,2	1,1	1,0	0,9		0,8	0,7		0,6
Тип фрезы		Выпуклая					Borнутая			
$K_{8 g}$		1,0					- 0,8			
Отношение длины оправки к ее диаметру					3	4	5	10	20	30
$K_{S 8}$	Консольное крепление				, 0	0,8	0,65	0,5	-	-
	Крепление с дополнительной опорой				-	1,2	1,1	1,0	0,75	0,5
Фасонные быстрорежущие фрезы					Kapra 2					
Скорость резания v, м/мин Мощность резания N, кВт				Обрабатываемый струкционная сталь				материал - кон		

Двухугловые несимметричные фрезы

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N s} .
\end{gathered}
$$

$\frac{D}{Z}$								
	0,03	0,04	0,05	0,08	0,1	0,12	0.16	0,2
$\frac{40}{12}$	$\frac{31}{0,3}$	$\frac{29}{0,4}$	\bigcirc	$\frac{25}{0,6}$	$\frac{24}{0.7}$	$\frac{23}{0.7}$	$\frac{22}{0.9}$	$\frac{21}{1,0}$
$\frac{50}{14}$	$\frac{33}{0,3}$	$\frac{32}{0,4}$	$\frac{30}{0,5}$	$\frac{28}{0,6}$	$\frac{26}{0,7}$	$\frac{25}{0,8}$	$\frac{24}{0,9}$	$\frac{23}{1,1}$
$\frac{63}{16}$	$\frac{37}{0,3}$	$\frac{35}{0,4}$	$\frac{33}{0,5}$	$\frac{30}{0,6}$	$\frac{29}{0,7}$	$\frac{28}{0,8}$	$\frac{26}{0,9}$	$\frac{25}{1,1}$
$\frac{80}{18}$	$\frac{40}{0,3}$	$\frac{38}{0,4}$	$\frac{36}{0,5}$	$\frac{33}{0,6}$	$\frac{32}{0,7}$	$\frac{31}{0,8}$	$\frac{29}{1,0}$	$\frac{27}{1,1}$

Поправоиные кояффициентья

Обраба1 msaeстали -	углеро-	Хромистые, хромоникеле" зые, хромовнаднезые		Прочие легированные, ные углеро дистые			Инструментальные, леги рованные, псд щипниковые			Выстрорежущие
K_{01}	1,0	0,8		0,7			0,6			0,5
$K_{N 1}$	1,0	0,8		0,9			1,1			1,3
Твердость стали НВ		156	173	207	229		265	28		321
$K_{v 2}$		1,3	1,2	1,0	0,9		0,7	0,6		0,5
$K_{N 2}$		0,9	0,05	1,0	1,0		1,0	0,9		0,85
Глубина фрезерования t, мм .			2	3	4		6		12 -	- 18
K_{03}		2,0	1,6	1,3	1,15		1,0		0,75	0,65
$K_{N 3}$		0,1	0,2	0,35	0,55		1,0	2,1	2,75	5,0
Отношение длины оправки к ее диаметру					До 3	4	5	10	20	30
$K_{v 4}=K_{N}$	Консольное крепление				1,0	0,8	0,65	0,5	-	- -
	Крепление с дополнительной опорой				-	1,2	1,1	1,0	0,75	0,5
¢Период стойкости фрезы T, мин				40	60		120	180	240	300
$K_{\text {v5 }}=K_{N \mathrm{~s}}$				1,45	1,25		1,0	0,9	0,8	0,7
Угол при вершине $\varphi, \ldots{ }^{\circ}$			60	65	70	75	80	85	90	100
$\mathrm{K}_{\text {NS }}$		0,6	0,65	0,75	0,85	1,0	1,2	, 45	1,5	1,95

Полукруглые выпуклые и вогнутые фрезы

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} K_{N 6} .
\end{gathered}
$$

D	$\frac{v_{\mathrm{T}} \text { (м/мин) }}{N_{\mathrm{T}}(\text { кВт) }}$ при подаче на зуо S_{Z}, м							
	0,03	0,04	0,05	0,08	0,1	0,12	0,16	0,2
$\frac{50}{14}$	$\frac{36}{1,0}$	$\frac{34}{1,2}$	$\frac{32}{1,4}$	$\frac{30}{1,7}$	$\frac{28}{1,9}$	$\frac{27}{2,1}$	$\frac{26}{2,5}$	$\frac{25}{2,8}$
$\frac{63}{12}$	$\frac{41}{0,8}$	$\frac{38}{1,0}$	$\frac{36}{1,1}$	$\frac{33}{1,4}$	$\frac{32}{1,5}$	$\frac{31}{1,7}$	$\frac{29}{2,0}$	$\frac{28}{2,2}$
$\frac{80}{10}$	$\frac{46}{0,6}$	$\frac{43}{0,7}$	$\frac{41}{0,8}$	$\frac{38}{1,1}$	$\frac{36}{1,2}$	$\frac{35}{1,3}$	$\frac{33}{1,5}$	$\frac{31}{0,7}$
$\frac{100}{10}$	$\frac{51}{0,6}$	$\frac{48}{0,7}$	$\frac{46}{0,8}$	$\frac{42}{1,0}$	$\frac{40}{1,1}$	$\frac{39}{1,2}$	$\frac{36}{1,4}$	$\frac{35}{1,5}$
$\frac{125}{10}$	$\frac{56}{0,5}$	$\frac{53}{0,6}$	$\frac{51}{0,7}$	$\frac{46}{}$	$\frac{44}{1,0}$	$\frac{43}{1,1}$	$\frac{40}{1,3}$	$\frac{38}{1,4}$

Поправочные коэччиииентьы

Обраба-тываемые стали	Углеродистые	Хромистые, хромоникелевые, хромова надиевые		Прочие легированные, ин-струментальные углероди стые		Инструментальные легированные, подшипниковые			Быстрорежущие
$K_{\text {D1 }}$	1,0	0,8		0,7		0,6			0,5
$K_{N 1}$	1,0	0,8		0,9		1,1			1,3
Твердость стали НВ		156	173	207	229	265			321
$K_{D 2}$		1,3	1,2	1,0	0,9	0,7			0,5
$K_{N 2}$		0,9	0,95	1,0	1,0	1,0			0,9
Радиус профиля фрезы R, мм			1,6	2,5	4	8	12	16	20
$K_{v 8}$			1,9	1,6	1,3	1,0	0,85	0,75	0,7
$K_{N 3}$			0,1	0,2	0,4	1,0	1,8	2,75	3,8

Продолжсние картьє 2

Фасонные быстрорежущие фрезы
Карта 3

Критерии затупления, число переточек и расход фрез за 1000 ч основного времени

Обрабатываемый : материал конструкционная сталь

Диаметр фрезы D, мM	Число зубьев Z	Период стой$\xrightarrow[T, \text { мости }]{\text { кй }}$ T, ми	Крите: рий затупления h_{3}, MM	Величина стачивания за одну переточку h, MM	Число переточек k	Суммар- ныन̆ период стойкости $\Sigma T, ~ y$	Расход фрез P_{1000}, wT
Двухугловые фрезы							
40	12	120	0,6	0,35	8	17	58
50	14	120	0,6	0,35	12	25	40
63	16	120	0,7	0,38	13	27	37
80	18	180	0,7	0,38	15	46	22
Полукруглые өыйуклье фревы							
50	14	80	0,3	0,5	10	14	71
63	12	80	0,3	0,5	14	19	52
80	10	120	0,35	0,55	20	40	25
100	10	120	0,4	0,6	23	46	22
125	10	120	0,4	0,6	29	54	17
Полукруулье вогнутьее фрезьи							
50	14	80	0,5	0,7	7	10	98
63	12	80	0,55	0,75	10	14	72
80	10	120	0,6	0,8	14	29	35
100	10	120	0,6	0,8	17	34	29
125	10	120	0,65	0,85	21	42	24

MПOHOЧHBE ФРЕЗЫ

Рскомендации по выбоду инг грммента． Диамат）фрез принияск 1 равннм ши рине 19 поноч iल， 1 аза по ГОС 873879 и ГОСГ 10748－79 Геиме трические параметрот режущей шасти фред вмбирают mo таfл 34

34 еомегрические параметоы режушцй＂аскк шионочныя фрез

	угоя			
	皆 ${ }^{2}$	茭	тя редпии на rop цовой पасти γ_{1}	
Д0 16	\bigcirc	12	6	20
CB 16	5	12	6	16

Режимы резания ппоночными от строрежущими фрезами рассчитаны нж мистовую обраяотуу конитрукционне （ галРй Рекомендашии даны для двух （хем фрежерования пазов за оля д роход и на сганках с маятников ： пидашсй за нескилько рабочих хс дов

Рекомендании по назначению пода приведены в карте 1
Пс карте 2 выбираюг скороити ре зэнит Поправочныи коэффициент 1 щтрину фрелерования учитывают толь кл при фрезсровании пазов на станка с маятниковои подачей Скорости ре зания рассчитаны иг кодя из периодя стиккости 20 мин для фрез диаметром до 10 мм и 60 мин для фрез диаметром 10－40 mм

Моиность резания іри обработк пазов в один проход не превышас 2 kBr

B карте 3 даны рекомендации（i） оценке †асхода фрез

Шпоночяне фрезы б гстрорежущие

Пощаяд на зуб S_{Z}

Kарта 1 струкдионная сталь

материал－кон

$$
S_{L}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{S_{2}}
$$

Фре єрование пагов за один проход

Диаметр фрезы D ，мм	4	5	6	8	10	12	14	16
ІІрдна фрезерова－ нич B ，мм	2，5	3	3，5	4	5	5	5，5	6
Подача на вуб S_{7} ， мм／зуб	0，016	0，019	0，022	0，029	0，048	0，05	0，05	0，05
Диаметр фрезы D ，мм	18	20	25	25	28	32	36	46
IIирина 中резгрова－ ния B ，мм	7	7，5	9	9	10	11	12	13
Подача на вуб S_{7} ， $\mathrm{mm} / \mathrm{syo}$	0，045	0，04	0，067	0，068	0，066	0，065	0063	0，0r

Фрезерование пазов на станкал с маятниковой подачей

IIIирина甲резеB, rim	Подауа на зуб S_{Z}, им/зуб, пря дмаметре фрезн D, мм							
	4	5	6	8	10	12	14	16
0,1	0,28	0,31	0,34	0,40	0,44	0,49	-	-
0,2	0,17	0,19	0,20	0,24	0,26	0,29	0,31	0,33
03		0,13	0,15	0,17	0,20	0,21	0,23	0,25
0,4	-	-	-	-	-	-	0,19	0,20
Ширина фрезеро В, мм								
	18	20	22	25	28	32	36	40
0,2	0,35	0,37	039	0,42	0.44	-	-	-
0,3	0,26	0,28	0,30	0,31	0,33	0,35	0,37	0,39
0,4	0,21	0,22	0,23	0,25	0,26	0,28	0,30	0,31
0,5	-	-	-	0,21	0,22	0,24	0,25	0,27

Поправочнья коэффициентть

Твердост с стали HB	156	173	207	229	265	285	321		
$K_{S_{1}}$	1,2	1,1	1,0	0,9	0,8	0,7	0,6		Отношение вылета фрезы к ее диа-
:---									
метру									

ШПоночные быстрорежущие фрезы

бкорость резания च, м/мин

Kарта 2

Обрабатываемый материал - кон" струкционная сталь

$$
v=v_{\mathrm{T}} K_{\nu 1} K_{02} K_{v 3} K_{v 4} K_{v 5}
$$

Фрезерование павов ва один проход

Диаметр фрезы D, mм	Ширина фрезерования B, мм	$v_{\text {т, }}$ м/мнн, при подаче на зуб S_{Z}, мм/зуб					
		0,02	0,03	0,04	0,05	0.06	0,08
4, 5	2,5-3	26	24	-	-	-	-
6, 8	3,5-4	30	28	26	-	-	-
10-14	5-5,5	41	38	36	34	33	-
16-20	6-7,5	45	41	39	37	36	$\overline{3}$
22-28	9-10	48	44	42	40	39	36
32-40	11-13	52	48	45	43	41	39

Фреверование павов на станках с маятниковой подачей

Диаметр фрезы D, мм	Ширина фрезерования B, мм	v_{T}, м/мнн, при подаче на зуб S_{Z}, мм/зуб					
		0,1	0,16	0,2	0,3	0,5	0,8
4,5 $6-14$	0,2	22 24	20 22	19 20	17 18	$\overline{16}$	-
16-20		26	24	22	20	17	15
22-28		29	26	25	22	20	18
32-40		33	30	29	27	25	23

Поправочные коэффициенть

Обраба-тываемые стали	Углеро- $^{\text {- }}$ дистые	Хромистые, хромоникелевые, хромовавадиевые		Прочие легированные, ин струменталь ные углеродистые		Инструментальные легированные, подшипниковые		Быстро режущие
$K_{л}$	1,0	0,8		0,7		0,6		0,5
Твердость стали НВ		156	173	207	229	265	285	321
$K_{v 2}$		1,3	1,2	1,0	0,9	0,7	0,6	0,5
Отношение вылета фрезы к ее диаметру				До 2		Св. 2 до 3		Сз. 3
$K_{v 3}$	$D \leqslant 10 \mathrm{mм}$			1,0		0,9		0,8
	$D>10 \mathrm{~mm}$			1,0		1,0		0,8
Период стойкости T, мин			20			60	100	200
K_{04}			1,6			1,0	0,8	0,6

Продолосение карть:

| Ширина фрезерования (с маятниковой пода-
 чей), мм | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $K_{\text {vь }}$ | 1,25 | 1,0 | 0,9 | 0,8 | 0,75 |

- IIпоночные быстрорежущие фрезы

Kарта 3

Критерий затупления, число нереточек и расход фрез за 1000 ч основного времени

Обрабагываемый материал конструкционная сталь

Диаметр фрезы D, мм	Период стои. кости T, мин	Қритерии затупления h_{3}, MM	Величина стачивания за одну переточку h, Mm	Чисто перето. чек k	Суммарнын период стоикости ΣT, प	Pacxod фрез P_{1000}, uT.

Фрезерование в один проход

4	20	0,15	2,6	2	0,8	1200
5	20	0,2	3,1	2	0,8	1200
6	20	0,2	3,6	2	0,8	1200
8	80	0,25	4,1	2	0,8	1200
10,12	40	0,25	5,1	2	1,8	550
14	40	0,25	5,6	2	1,8	550
16	40	0,3	6,2	2	1,8	550
18	40	0,3	7,2	2	1,8	550
20	40	0,3	7,7	2	1,8	550
22,25	40	0,35	9,2	2	1,8	550
28	40	0,35	10,3	2	1,9	525
$32-40$	40	0,4	12	2	1,9	525

Фрезерование с маятниковой подачей

4	20	0,15	0,4	9	2,8	360
5	20	0,2	0,4	10	3,1	327
6	20	0,2	0,4	13	3,9	257
8	20	0,25	0,5	14	4,2	240
10	40	0,25	0,5	13	8,5	118
12,14	40	0,25	0,5	16	10,3	97
16,18	40	0,3	0,5	20	12,7	78
20	40	0,3	0,5	22	13,9	72
22	40	0,35	0,6	19	12,1	82
25	40	0,35	0,6	22	13,9	72
28	40	0,35	0,6	22	14,6	69
$32-40$	40	0,4	0,65	27	17,8	57

¢РЕЗЫ ДЛЯ ОБРАБОТКИ Т-ОБРАЗНЫХ ПАЗОВ

Рекомендации по выбору инсгрумента.
Тип фрезы и ее конструктивные парасетры, выб́ираемые по номинальным Размерам паза (ГОСТ 1574-75), приееены в габл 35.
При обработке серого чугуна ресомендуется применять фрезы с углом

наклона стружечной канавки $\omega=$ $=10^{\circ}$, изготовлениые из быстрорежущей стали нормальной производительности и твердого сплава марки BK8, а при обработке конструкционной стали - быстрорежущие фрезы с углом наклона стружечной канавки $\omega=$ $=10 \div 20^{\circ}$ (ГОСТ 7063-72 и ГОСТ 10673-75) Геометрические ғараметры режущей части фрез приведены в табл 36.
35. Диаметр фрезы

Номинальный размер паза a, мм	5	6	8	10	12	14	18
Диаметр фрезы D, мм	11	12,5	16	18	21	25	32
Номинальный размер паза a, мм	22	28	36	42	48	54	
Диаметр фрезы D, мм	40	50	60	72	85	95	

36. Геометрические параметры режумцей части фрез

Материял		HB	Передния угол γ.
инструментальныи	обрабатываемый		
Быстрорежущая сталь	Сталь коно	До 197	10
	Сталь жонструмионая	Св. 197	5
	Чугун серый	До 207	10
		Св 207	5
Твердый сплав		До 229	5
		Cb 229	0

Режимы резания. Для обработки Т-образных пазов предварительно фрезеруют паз шириной a (см. табл 35) концевыми или дисковыми фрезами. Допускается оставлять припуск по глубине паза в пределах $1-2$ мм.

В карте 1 приведены рекомендации по назначению подач При обработке пазов до шероховатости $R a=3,2-$ 6,3 мкм быстрорежущими фрезами

подача на зуб не должна превыша 0,04 мм/зуб, а твердоплавными фр зами - 0,07 мм/зуб

По карте 2 выбирают скорости мощности резания Табличные зт чения скорости резания рассчитс на период стсйкости фр 60 мин.

В карте 3 даны рекомендации : оценке расхода фрез.

Фрезы для обработки Т-образных пазов
Подача на зуб S_{Z}

Kapra 1

Обработка конструкционной втали фревамииз бЕ $S_{Z}=S_{Z_{\mathrm{T}}} K_{S_{\mathrm{I}}}$.

Диаметр фрезы D, мм	18	25	40	50	72	35
Подача на зуб S_{Z}, мм/syб	$\cdot 0,03$	0,04	0,06	0,07	0,08	0,6

Твердость сіали HB	156	173	207	229	265	285	321
$K_{S_{1}}$	1,2	1,1	1,0	0,9	0,8	0,7	0,6

Обработка серого qугуна фрезами из БРС

$$
s_{Z}=-s_{L_{\mathrm{T}}} K_{S_{1}}
$$

Диамегр фрезы D, ми	16	18	25	32	40	60
Подащд на зуо S_{Z}, кмм $/ \mathbf{y 5}$		0,04	0,05	0,06	0,07	0,08

Поправсчнье коәффинцентья

Твердость чуяуна HB	156	173	207	229	265	285	321
$K_{S 1}$		1,3	1.2	1,1	1,0	09	0,8

обработка cepoin чугуна фрезами из т

$$
S_{Z}=s_{L_{\mathrm{T}}} K_{S_{1}} K_{\mathrm{S}_{2}}
$$

днаметр фрезы D, мм	21	32	50	60	72	95
Нодача на зуб s_{Z}, мм/зу5	0,04	0,06	008	0,09	0,11	0,13

Поправочньее ковффициенть

Рвердость чугуна HB	156	173	207	229	265	285	321
$k_{s 1}$	1,3	12	1,1	1,0	0,9	0,8	0,7
Парка инструмента ного материапа	BK10-OM		ВК8B	BK8	BK6, BK4	BK 6 M , BK3	
V_{52}		1,2	1,1	1,0	0,76		

Фрезы для обработки Т-образных пазов	Карта 2
Скорость резания v, м/мин; мощность резания $N, \underset{\text { кВт }}{ }$	Обрабатываемый материал-стали, чугун

> Обработка фрезами ия БРС

Конструкционжая сталь

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 8} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 8} .
\end{gathered}
$$

Диаметр фрезы D, MM	$\frac{0_{\mathrm{T}} \text { (м/MAR }}{N_{\mathrm{T}}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, мм/зуб					
	0,015	0,02	0,03	0,05	0,08	0,12
21	$\frac{20}{0,4}$	$\frac{21}{0,5}$	$\frac{25}{0,6}$	$\frac{23}{0,8}$	$\frac{21}{1,1}$	$\frac{19}{1,3}$
32	$\frac{30}{0,7}$	$\frac{28}{0,9}$	$\frac{26}{1,1}$	$\frac{24}{1,4}$	$\frac{21}{1,8}$	$\frac{20}{2,2}$
50	$\frac{31}{1,2}$	$\frac{30}{1,4}$	$\frac{27}{1,7}$	$\frac{25}{2,3}$	$\frac{22}{2,9}$	$\frac{21}{3,6}$
72	$\frac{32}{2,5}$	$\frac{30}{2,9}$	$\frac{28}{3,6}$	$\frac{25}{4,7}$	$\frac{23}{6,0}$	$\frac{21}{7,4}$
85	$\frac{33}{3,3}$	$\frac{31}{3,9}$	$\frac{28}{4,8}$	$\frac{26}{6,2}$	$\begin{array}{r}23 \\ \hline 7,9\end{array}$	$\frac{22}{9,8}$

Поправочнье коэффициенть

Обрабатываемые стали	Углеродистые	Хромистые, хромоникелевые, хромова надиевые	Прочие легированные, внструментальные углеродистые	Инструментальные легированные, под щипниковые	Быстро режущиє
$K_{v 1}$	1,0	0,8	0,7	0,6	0,5
$K_{N 1}$	1,0	0,8	0,9	1,1	1,3

Продолокение карть 2

Твердость стали НВ
K 156
$K_{v 2}$
$K_{N 2}$
Период стойкости T, мин

Серый чуаун

$$
v=v_{\mathrm{T}} K_{v 1} K_{v 2} ; N=N_{\mathrm{T}} K_{N 1} K_{N \mathbf{2}}
$$

Диаметр фрезы D, MM	$\frac{v_{\mathrm{T}} \text { (м/Мин) }}{N_{T}(\mathrm{KBT})}$ при подаче на зуб S_{Z}, мм/з					
	0,015	0,02	0.03	0,05	0,08	0,12
12,5	$\frac{22}{0,2}$	$\frac{21}{0,2}$	$\frac{19}{0,2}$	$\frac{17}{0,3}$	$\frac{16}{0,3}$	$\frac{14}{0,4}$
, 13,0	$\frac{24}{0,2}$	$\frac{23}{0,2}$	$\frac{21}{0,3}$	$\frac{18}{0,4}$	$\frac{17}{0,4}$	$\frac{15}{0,5}$
(25,0	$\frac{24}{-0,4}$	$\frac{23}{0,5}$	$\frac{21}{0,5}$	$\frac{19}{0,7}$	$\frac{17}{0,8}$	$\frac{16}{1,0}$
40,0	$\frac{24}{0,6}$	$\frac{23}{0,7}$	$\frac{21}{0,9}$	$\frac{19}{1,1}$	$\frac{17}{1,4}$	$\frac{16}{1,6}$
$60,0$	$\frac{26}{1,0}$	$\frac{25}{1,1}$	$\frac{23}{1,4}$	$\frac{21}{1,7}$	$\frac{19}{2,1}$	$\frac{17}{2,5}$

Поправочнье кояффициентьи

рдость чугуча НВ	156	173	207	229	265	285		21
4	1,6	1,3	1,1	1,0	0,8	0,7		,6
-	1,3	1,2	1,1	1,0	0,9	0,8		,7
¢од стойкости T, мин		20	35	60	100	$\cdot 150$	200	300
$\underline{=} K_{N 2}$		1,25	1,1	1,0	0,8	0,8	0,8	0,7

Обработка фрезами
снапаянными пластинкамииз ТС

Серой чугун

$$
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v \beta} ; N=N_{\mathrm{T}} K_{N 1} K_{N a} K_{N \mathrm{~S}}
$$

Диамеip $\underset{\text { мм }}{\text { фрезы }} \bar{D}$.						
	0,015	0,02	0,03	0,05	0,08	0,12
21	$\frac{66}{0,5}$	$\frac{62}{0,6}$	$\frac{58}{0,8}$	$\frac{52}{1,1}$	-	-
32	$\frac{58}{0,7}$	$\frac{55}{0,9}$	$\frac{51}{1,2}$	-46	$\frac{42}{2,1}$	$\frac{39}{2,7}$
50	$\frac{52}{1,1}$	$\frac{49}{1,3}$	$\frac{46}{1,6}$	$\frac{41}{2,2}$	$\frac{38}{2,9}$	$\frac{35}{3,8}$
72	$\frac{46}{1,8}$	$\frac{44}{2,1}$	$\frac{40}{2,7}$	$\frac{37}{3,7}$	$\frac{33}{5,0}$	$\frac{31}{6,4}$
95	$\frac{41}{2,3}$	$\frac{39}{2,7}$	$\frac{36}{3,4}$	$\frac{33}{4,7}$	$\frac{30}{6,2}$	$\frac{28}{8,0}$

Поправочние кояффиџиентья

Твердость чугуна НВ	156	173	207	229	265	285	321
$K_{v_{1}}$	1,5	1,3	1,1	1,0	0,8	0,7	0,6
$K_{N_{1}}$	1,3	1,2	1,1	1,0	0,9	0,85	0.8

Фрезы для обрабогкх Т-образных пазов				Карта 3		
Критерий затупления, "исло переточек, расход фрез за 1000 ч основного времени				Обрабатываемый материал -чугуны и стали		
Диаметр фрезы D, MM	Пернод croan. T. мин	Критеряи затупления h_{g}. MM	Велкчина стачнвания 32 одиу aeperosky h. MM	Число перетоnex k	Суммарныи период стоикости Σ т, ч	$\begin{gathered} \text { Рлсход }^{\text {фрез }} \\ P_{\text {1000, mit. }} . \end{gathered}$

твердоспладные фрезы

Чугук

21	90	0,55	0,22	4	6,45	160
25		0,60	0,24	4	6,45	160
32		0,70	0,3	4	6,45	160
40		0,80	0,32	4	6,45	153,3
50		0,85	0,33	6	9,6	109,3
60		0,9	0,34	6	9,6	109,3
72		0,95	0,40	5	8,25	128
85		1,0	0,41	6	9,6	109,3
95		1,1	0,43	6	9,6	109,3

Быстрорежущие фрезы
Конструкционкая сталь

18	60	0,40	0,20	4	4	230
21		0,45	0,22	4	4,5	220
25		0,50	0,23	4	4,5	220
32		0,60	0,31	4	4,5	220
40		0,65	0,32	5	5,5	184
50		0,75	0,35	5	5,5	175
60		0,85	0,38	5	5,5	175
72		1,0	0,46	4	4,5	210
85		1,10	0,49	5	5,5	175
95		1,20	0,42	5	5,5	175

Чyays

11	60	0,40	0,21	3	3,5	288
12		0,45	0,22	3	3,5	288
16		0,50	0,23	3	3,5	288
18		0,55	0,25	4	4,5	230
21		0,60	0,26	4,	4,5	220
25		0,70	0,29	3	3,5	275
32		0,80	0,36	3	3,5	275
40		0,90	0,39	4	4,5	220
50		1,0	0,42	5	5,5	175
60		1,1	$, 0,44$	5	5,5	175

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ ТИПА «ЛАСТОЧКИН XBOCT*

Рекомендации по выбору инструмента. Для обработки пазов типа «Ласточкин хвост» в конструкционных сталях и серых чугунах применяют цельные ($D=10 \div 25$ мм) и насадные ($D=$ $=40 \div 80$ мм) фрезы из быстрорежущей стали P6M5, а также насадные твердосплавные фрезы с номинальным углом фрезеруемого паза $\varphi=55^{\circ}$ в серых чугунах.

Мельные фрезы диаметром 10, 16 и 25 мм рекомендуется применять для обработки пазов высотой соответственно не более 6,8 и 10 мм.

37. Передние углы режущей части фрезы

Обрабатываемый материал	Tвер. дость uбраба-тывае-материала HB	$\begin{gathered} \text { Перед- } \\ \text { нй } \\ \text { угол. } \\ \boldsymbol{\gamma}, \ldots, \end{gathered}$
Конструкционная сталь	$\begin{gathered} \text { До } 197 \\ \text { Св. } 197 \\ \text { до } 269 \\ \text { Св. } 269 \end{gathered}$	$\begin{aligned} & 20 \\ & 15 \\ & 10 \end{aligned}$
Серый чугун	До 187 Св. 187	$\begin{aligned} & 15 \\ & 10 \end{aligned}$

Диаметр насадных фрез выбираи n из условия, что в работе участвует m болєе 0,75 ширины и не более 0 , : диаметра фрезы.

Обработку пазов в деталях из сероио чугуна проводят фрезами, оснащен ными пластинами из твердого сплан: марки ВК8.

Геометрические параметры режушея части фрез приведены в табл 37 и 38

Режимы резания. Для обработки плзов типа «Ласточкин хвост» необхц димо предварительно обработать усту дисковой или концевой фрезой с пря пуском по дну наза 1-2 мм.

В карте 1 приведены рекомендаш и по назначению подач. При рабк is с подачами, выбранными по карте обеспечивается шероховатость повер: ности $R a=3.2-6,3$ мкм.

В карте 2 даны рекомендации назначению скорости и мощности p зания. Табличные значения скорост резания рассчитаны на стойкость ин струмента 60 мин.

В карте 3 приведены рекомендаци. по оценке расхода фрез.
38. Задние углы и вспомогательны及 угол в плане режущей части фрезы, ...ㅇ

Диаметр фрезы мм	Задние углм		Вспомогя. тельный угол в плане φ_{1}
	α	α_{1}	
До 10	25		
Св. 10 до 20	20	5	$1^{\circ} 30^{\prime}$
Св. 20	16		

Фрезы угловые для обработки пазов типа «Ласточкин хвост»	Карта 1
Подача на зуб S_{Z}, мм/зуб	Обрабатываемый струкционная сталь, материал - кой чугун

Быстрорежушие фрезы $S_{z}=S_{z_{\mathrm{T}}} K s_{1} K s_{2} K_{s_{3}}$

$\begin{gathered} \text { Диаметр } \\ \text { н чилло } \\ \text { зубьев } \\ \text { фрезы } D / Z \end{gathered}$	$S_{Z_{T}}$ при ширине фрезерования B, мм				
	4	6	8	10	12
$\begin{aligned} & 10 / 8 \\ & 16 / 10 \end{aligned}$	$\begin{aligned} & 0,023 \\ & 0,030 \end{aligned}$	$\begin{aligned} & 0,020 \\ & 0,027 \end{aligned}$	0,025	三	-

$\begin{gathered} \text { Диаметр } \\ \text { и число } \\ \text { зубьев } \\ \text { фрезы D/Z } \end{gathered}$	$S_{Z_{\text {T }}}$ при ширине фрезерования B, мм				
	4	6	8	10	12
25/12	0,031	0,029	0,027	0,025	-
40/12	0,076	0,040	0,026	0,020	-
50/14	0,09	0,050	0,033	0,023	0.020
63/16	0.11	0,064	0.040	0,030	0.020
80/18	0,15	0,080	0,050	0,040	0,03

Поправочнье коэффициенть

ппа обрабатвваемого материала			Сталь констрөкционная						Чугук серый		
$K_{S 1}$			1,0						1,3		
Твердость НВ		156	173	207		229	265		285	321	
$K_{S_{2}}$		1,2	1,1	1,0		0,9	0.8		0,7	0,6	
Угол в плане $\varphi, \ldots{ }^{\circ}$			45	50	55	60	65	70	75	80	85
			-	-	0,7	0.8	0.9	1,0	1,1	1,2	1,3
			0,8	1,0	1,1	-1,2	1,3	1,4	1,6	1,7	1,8

Твердосплавныефрезы
Серый «угук

$$
S_{z}=S_{z_{\mathbf{T}}} K_{S_{1}} K_{S_{\mathbf{2}}} K_{S_{\mathbf{z}}}
$$

D/Z	63/8	80/8	100/8	125/10	160/14	200/16	250/20	315/20
Подача на зуб \% $z_{Z, \text { мм/зуб }}$	0,045	0,055	0,06	0,07	0,08	0,09	0,10	0,12

ПІоправочные кояффициентья

Твердость пугуна HB	156	173	207	229	265	285	321
$K_{\text {S }}$	1,2	1,1	1,0	0,9	0,8	0,7	0,6
Марка инструменталь. ного материала	BK10		ВК8B	BK8	BK6,	BK4	BK6M, BKJ
$K_{S *}$	1.9		1,1	1,0			0,65
Ширина фрезерсвания B, мм			12		7	33	45
$K_{S s}$			1,6		, 3	1,0	0,8

\qquad

Угловве фрезы дая обрабопки пазов типа «Јасточхин жвост

Спорость резания \cup, м/мин Мощность резания N, кВт

Kapte 2

Обрабатываемы м мтериал - м струкцнонная сталь, сешый чугун

Быстрорежущмефрезы
Коиструкционная сталь

$$
v=u_{\mathrm{T}} K_{01} K_{\mathrm{va}} K_{\mathrm{ta}} K_{\mathrm{E} 4}, N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 9} K_{N 4}
$$

$\frac{D}{Z}$	$v_{\mathrm{T}}(\mathrm{M} / \mathrm{M} H \mathrm{H})$		при подаче па sуб s_{Z}, им/зуб			
	0.01	0,03	0.05	0.07	0.09	0.11
10	25	20	18			
8	1,1	2,2	2,9	-	-	
16	29	23	21			
10	1,1	2,1	2,8	-	-	-
25	34	27	24			
12	1,0	2,0	2,6	-	-	-
40	40	32	28	26	25	23
12	0,8	1,6	2,1	2,5	2,9	3,2

$\frac{D}{Z}$						
	0.01	0,03	0,05	0.07	0,09	0,11
$\frac{50}{14}$	$\frac{43}{0,8}$	$\frac{34}{1,6}$	$\frac{30}{2,2}$	$\frac{28}{2,6}$	$\begin{array}{r}27 \\ \hline 2,9\end{array}$	$\frac{26}{3,3}$
$\frac{63}{16}$	$\frac{45}{0.8}$	$\frac{36}{1,6}$	$\frac{32}{8,1}$	$\frac{30}{2,6}$	$\frac{29}{2,9}$	$\frac{28}{2,9}$
$\frac{80}{18}$	$\begin{array}{r}48 \\ \hline 0,8\end{array}$	$\frac{38}{1,6}$	$\frac{34}{2,1}$	$\frac{32}{2,5}$	$\frac{31}{2,8}$	$\frac{29}{3,2}$

Поправочные ковффициентья

Твердость стали HB	156	173	207	229	26		285	321	
$K_{\text {S1 }}$	1,3	1,2	1,0	0,9	0,7		0,6	0,5	
$K_{N I}$	0,9	0,95	1,0	1,0	1,0		0.95	0,85	
Глубина фрезерования t, мM ($\oplus, . . .{ }^{\circ}$)	$\begin{gathered} 0,5 \\ (85) \end{gathered}$	$\begin{gathered} 1 \\ (80) \end{gathered}$	$\begin{gathered} 2 \\ (75) \end{gathered}$	$\begin{gathered} 3 \\ (70) \end{gathered}$	$\begin{gathered} 4 \\ (65) \end{gathered}$	$\begin{gathered} 5 \\ (60) \end{gathered}$	$\begin{gathered} 6 \\ (55) \end{gathered}$	$\begin{gathered} 7 \\ (50) \end{gathered}$	$\begin{gathered} 8 \\ (45) \end{gathered}$
${ }^{1} K_{C 3}$	1,6	1,3	1,0	1,0	0,9	0,9	0,85	0,8	0,8
$K_{N 2}$	0,3	0,5	0,8	1,0	1,2	1,4	1,5	1,7	1,8
¢ирина фрезерования B, мм		6	8		10		11	14	
$K_{v s}$		1,0	1,0		1,0		1,0	0,95	
$K_{N 3}$		0,6	0,8		1,0		1,1	1.35	
Период стойкости T, мин	30		60		90		120	180	
$K_{04}=K_{N 4}$	1,3		1,0		0,8		0,7	0,6	

Серый иугун$\begin{gathered} v=v_{\mathrm{T}} K_{v \mathrm{r}} K_{w 3} K_{w 3} K_{v 4} ; \\ N=N_{\mathrm{r}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} . \end{gathered}$						
Дияметр и число зубьен фрезы	$\frac{v_{\mathrm{T}} \text { (м/мин) }}{N_{\mathrm{T}} \text { (КВт) }}$ пои подаче на зуб S_{Z}, мм/зуб					
${ }^{2}$	0.01	0,03	0.05	0.07	0.09	0.11
$\frac{10}{8}$	$\frac{27}{0.5}$	$\frac{22}{0,8}$	$\frac{20}{1,0}$	-	-	-
$\frac{16}{10}$	$\frac{33}{0,5}$	$\frac{26}{0,8}$	$\frac{24}{1,0}$	-	-	-
$\frac{25}{12}$	$\frac{39}{0,5}$	$\frac{31}{0,8}$	$\frac{29}{1,0}$	-	-	-
$\frac{40}{12}$	$\frac{48}{0,4}$	$\frac{38}{0,6}$	-35	$\frac{32}{0.9}$	$\frac{31}{1,0}$	$\frac{30}{1,1}$
$\frac{50}{14}$	$\frac{52}{0,4}$	$\frac{42}{0,6}$	$\frac{38}{0,8}$	$\frac{36}{0,9}$	$\xrightarrow{34}$	$\frac{33}{1,2}$
$\frac{63}{16}$	$\frac{58}{0,4}$	46	$\frac{42}{0 ; 8}$	$\begin{array}{r}39 \\ \hline 0.9\end{array}$	$\frac{37}{1,1}$	$\frac{36}{1,2}$
$\frac{80}{18}$	$\frac{63}{0,4}$	$\frac{51}{0,6}$	46	43	$\frac{41}{1,1}$	40 1,2

Iіоправочные коэффициентьи

Твердость чугуна HB	156	173	207	229	265		285	321	
K_{01}	1,5	1,3	1,1	1,0	0,8		0,7	0,6	
$K_{N 1}$	1,3	1,2	1,1	1,0	0,9		0,8	0,7	
Глубина фрезерования t, мм ($\varphi, \ldots{ }^{\circ}$)	$\begin{array}{r} 0,5 \\ (85) \\ \hline \end{array}$	$\begin{gathered} 1 \\ (80) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (75) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (65) \\ \hline \end{gathered}$	$\begin{array}{c\|c} 5 \\ 5) & (60) \\ \hline \end{array}$	$\begin{gathered} 6 \\ (55) \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ (50) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (45) \end{gathered}$
$K_{V 2}$	2,2	1,6	1,2	1,0	0,8	0,7	0,7	0,6	0,6
$K_{N z}$	0,5	0,6	0,7	1,0	1,1	1,2	1,3	1,3	1, ${ }^{\prime}$

Ширина фрезерования B, мм	6	8	10	11	14
$K_{v s}$	1,1	1,0	1,0	0,8	0,9
$K_{N 3}$	0,7	0,8	1,0	1,0	1,3
Период стойкости T, мин	30	60	90	120	180
$K_{v 4}=K_{N 4}$	1,2	1,0	0,9	0,85	0,75

Фревыспластинамитвердого сплава
Серый чугун

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 9} K_{v 4} K_{v 5} K_{v 6} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N B} K_{N 6} .
\end{gathered}
$$

t / D	$\frac{v_{T}(\text { M/Мин })}{N_{T}(\text { KBT })}$	при подаче на зуб S_{Z}, мм/зуб		
	0,05	0,07	0,09	0.11
0,2	$\frac{46}{4,0}$	$\frac{44}{4,8}$	$\frac{41}{5,8}{ }^{\text {a }}$	$\frac{40}{6.6}$
0,3	$\frac{40}{5,0}$	$\frac{37}{6,0}$	$\frac{35}{7,3}$	$\frac{34}{8,1}$
0,4	$\frac{35}{5,7}$	$\frac{33}{7,0}$	$\frac{31}{7,5}$	$\frac{30}{9,4}$

Поправочнье кояффициентья

Твердость чугуна НB	156	173	207	229	265	285	321
$K_{v 1}$	1,5	1,3	1,1	1,0	0,8	0,7	0,6
$K_{N 1}$	1,3	1,2	1,1	1,0	0,9	0,85	0,8
Марка твердого сплава	ВК10-OM	ВК8B	ВК3	ВК4, ВК6	ВК6М, ВК3		
$K_{v 2}=K_{N 2}$	0,7	0,8	1,0	1,2	1,3		

Продслзтение картия

Диаметр фрезы D, мм	$63-100$	125	160	200	250,315	
$K_{v z}$	1,1	1,0	1,0	1,0	0,9	
$K_{N s}$	0,7	0,75	1,0	1,1	1,2	
Ширина фрезерования B, мм	12	17	26	30	33	42
$K_{v a}$	1,25	1,15	1,0	1,0	0,95	0,90
$K_{N 4}$	0,60	0,75	0,9	1,0	1,0	1,15

Фрезы для обработки пазов типа «Ласточкин хвост»

Kарта 3

Кригерий затупления, число переточек и расход фрез эа 1000 ч основного времени

Обрабатываемые материалы сталь и чугин

Диаметр фрезы D. м	Период стоикости T, MHII	Критерии затупления h_{3}, MM	Величина стачивания за одну переточку h, мм	Число meperoчек k	Суммарный период сто共кости ΣT, ч	$\begin{gathered} \text { Расход } \\ \text { фрез } \\ P_{\text {1000. }} \text { wit } \end{gathered}$

Быстрорежумие фрезы
Конструкционная сталь

10	60	0,3	0,9	4,0	4	224
16	60	0,4	0,25	4,0	5	194
25	60	0,5	0,3	5,0	5,5	173
40	60	0,55	0,35	6,0	7	139

$\begin{aligned} & \text { Диаметр } \\ & \text { фрезы } D, \\ & \text { мм } \end{aligned}$	$\begin{gathered} \text { Период } \\ \text { стоикостн } \\ T, \text { мин } \end{gathered}$	Критерии sатупления $h_{\mathbf{3}}$, MM	Величина стачивания за одну переточку h, мм	Число переточек k	Суммарныи период стойкости Σ т.	
50	60	0,55	0,35	7,0	7	129
63	60	0,6	0,37	7,0	8,5	117
80	60	0,6	0.37	9,0	9,5	105
Серый чугук						
10	60	0,4	0,24	3,0	4	256
16	60	0,5	0,28	4,0	4	217
25	60	0,6	0,32	4,0	5,5	191
40	60	0,65	0.38	6,0	6	151
50	60	0,65	0,38	6,0	7	142
63	60	0,7	0,40	7,0	7,5	127
80	60	0,7	0,40	8,0	8,5	114

Фрезыспластинамиизтвердогосплава
Серый чугун

63	90	1,0	0,56	4	6	160
80	90	1,0	0,56	5	7	133
100	90	1,1	0,6	9	12	80
125,160	90	1,1	0,6	9	12	77
200,250,	90	1,1	0,6	10	15	73
315						

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ СЕГМЕНТНЫХ щПОНОК

Рекомендации по выбору инструмента. Исполнение и размеры фрезы (ГОСТ 6648-79) выбирают в зависимости от иоминальных размеров сегментных ыпонок (ГОСТ 24071-80) (табл. 39).

Марки материалов для фрез и геометрические параметры их режущей пасти приведены соответственно в табл. 40 и 41.

Режимы резания. В карте 1 приведены рекомендации по назначению додач, в карте 2 - рекомендации по назначению скорости резания. Табдичные значения скоростей рассчи. таны на обработку конструкшионных жталей и серого чугуна при периоде стойкости 30 мин для диаметров фрез до 16 мм и 60 мин для диаметров более 16 мм, при обработке коррозионностойких сталей период стойкости равен 30 мин для фрез всех диаметров.
В карте 3 даны рекомендации по - ценке расхода фрез.
39. Диаметр и исполнение фрез

Номи нальные размеры шпонок, MM	Диаметр фрезы $D_{\text {. }}$ MM	Ширина фрезы B, MM	Число syбьев

Фрезы исполнения 1

4×1	4,3	1	
$7 \times 1,5$	7,5	1,5	
7×2	7,5	2,0	6
10×2	10,8	2,0	
$10 \times 2,5$	10,8	2,5	

Фрезы исполнения 2

13×3	14,0	3,0	
16×3	17,3	3,0	
16×4	17,3	4,0	
16×5	17,3	5,0	8
19×4	20,5	4,0	
19×5	20,5	5,0	
22×5	23,8	5,0	
Фрезы исполнения 3			
22×6	23,8	6,0	
25×6	27,0	6,0	10
28×8	30,2	8,0	
32×10	34,6	10,0	

40. Марки материалов инструмента

Обрабатываемый материал	марка материа- ла инструмента
Сталь: конструкционная коррозионно- стойкая P6M5, 10P6M5 Серый чугун	P6M5K5, P9K5

Фрезы для пазов сегментных шпонок быстрорежущие
41. Геометрические параметры режумей части фрез

Дияметр фрезы D, мм	Угол, ... ${ }^{\circ}$	
	передний	задния
До 17,3	5	20
) 34.6	10	20
Св. 34.6	10	15

Карта 1

Обрабатываемые материалы -- кон струкционная и коррозипнно-стойкея сталь, сепнй чугун

Подача на оборот S_{0}, мм/об

$$
S_{\mathrm{o}}=S_{\mathrm{o}_{\mathrm{T}}} K_{S_{1}} K_{S_{2}} K_{S_{3}}
$$

Номинальный диаметр и чис- ло зубьев фре- з зы $\frac{4}{Z}$

Поправочные коэффициентьь

Обрабатываемые материалы	Конструкционные стали			Коррозионностойкие стали			Серый яугун		
$K_{S 1}$	1,0			0.8			1,4		
Твердость стали и чугуна НВ		156	173	207	229	265	28	321	
$K_{S 2}$		1,2	1,1	1.0	0,9	0,8	0,7		0,6
Временное сопротивление коррозионно-стойкой стали $\sigma_{в}$, МПа						640	300	1000	1200
$K_{S 2}$						1,0	0,85	0,75	0,6
Способ крепления фрезы		С дополнительной опорой					Қонсольный		
$K_{S 3}$		1,0					0.8		

Фрезы для пазов сегментных зшпонок быстрорежущие

Карта 2

Скорость резания $ஏ$, м/мин \quad Обрабатываемый материал - стали, чугун

Конструкиионная сталь

$$
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3}
$$

Номинальный диаметр фрезы D, мм	$v_{\text {т }}$ (м/мин) при подаче на оборот S_{0}, мм/об					
	0.03	0.06	0.12	0,2	0.25	0.3
4	19	17	-	-	-	-
7	25	22	18	-	-	-
10	27	23	21	-	-	-
13	29	26	22	-	-	-
16	-	22	19	17	-	-
19	-	24	21	18	-	-
22	-	25	21	19	--	-
25	-	-	22	20	19	-
28	-	-	22	20	19	-
32	-	-	23	21	20	19

Поправочные коэффициенть

Обрабатываемые стали	Углеродистые стали	Хромистые, хромоникелевые		Прочие легированные, инструментальные углеродистые		Инструментальные легированные, подшипниковые		Быстрорежущие
K_{01}	1,0	0.8		0,7				0,5
Твердость стали НВ		156	173	207	229	265	285	321
$K_{\text {D2 }}$		1,3	1,2	1.0	0.9	0,7	0,6	0,5
Период стойкости T, мин			30	60		90	120	180
$K_{v s}$	$D \leqslant 16 \mathrm{~mm}$		1,0	0,8		0,70	0.65	0,60
	$D>16 \mathrm{~mm}$		1.25	1,0		0,9	0.8	0,70

Коррозионно-стойкая сталь

$$
v=v_{\mathrm{T}} K_{v 1} K_{v 2}
$$

диаметр фрезы D, мм	$0^{\text {(}}$ (m/mar) пои подаче па оборот S_{0}, mm/oб							
	0,03	0,06	0.12	0.2	0.25	0,3	0.35	0,4
4	12	10	9	-	-	-	-	-
7	14	13	11	-	-	-	-	-
10	16	14	13	-	-	-	-	-
13	-	16	14	-	-	-	-	-
16	-	17	15	13	-	-	-	-
19	-	-	16	14	-	-	-	-
22	-	-	17	15	-	-	-	-
25	-	-	18	16	15	14	-	-
28	-	-	18	16	16	15		-
32	-	-	-	18	17	16	15	15

Поправочные кояффициенть

Оораба. тываемые стали	$\begin{aligned} & 12 \times 13 \\ & 25 \times 13 \mathrm{H} 2 \end{aligned}$	20X13	30×13	14×17	$\begin{array}{r}12 \times \\ \times 13 . \\ \hline\end{array}$	H6	12X21M5 ${ }^{\text {T }}$
K_{01}	1,4	1,3	1,2	1,0			0.85
Период стойкости T, мин			15	30	45	60	75
$K_{p 2}$			1,2	1,0	0,9	0.8	0.75

Серый чугук
$v=v_{T} K_{v_{1}} K_{v_{2}}$

Номинальнви диаметр фрезв D, MM	$0_{\text {¢ }}$ (м/мнн) при подаче па оборот S_{0}, мм/об							
	0,04	0,08	0,16	0.25	0.3	0.4	0,5	0,6
4	24	22	18	-	-	-	-	-
7	30	25	22	-	-	-	-	-
10	32	29	25	-	-	-	-	-
13	-	30	26	24	-	-	-	-
16	-	23	25	23	-	-	-	-
19	-	30	26	24	23	-	-	-
22	-	-	27	26	24	-	-	-
25	-	-	29	26	25	23	-	-
28	-	-	28	26	25	24	-	-
32	-	-	-	27	26	25	24	23

Поправочные кояффициентьь								
Твердость чугуна НВ		156	173	207	229	265	5285	321
K_{01}		1,5	1,3	1,1	1,0	0,8	- 0,7	0,6
Период стойкости T, мин			30	60	90		120	180
$K_{v 2}$	$D>16$ мм		1,2	1,0	0,9		0,85	0,75
	$D \leqslant 16 \mathrm{~mm}$		1,0	0.85	0,75		0,7	0,65
Фрезы для пазов сегментных шпонок					Карта 3			
Критерий затупления, число переточек. расход фрез за 1000 ч основного времени					Обрабатываемые материалы стали и чугуны			
Диаметр $\underset{\text { мрезы }}{ }(B)$, м	Период стойкости T, мин	Критерий затупления h_{3}, мм	Величина стачивания за одну переточку h, мм		Число переточек k		Суммарный период стойкости ΣT, ч	$\begin{gathered} \text { Расход } \\ \text { фpes } \\ \mathbf{1 0 0 0 0}^{2} \text { ㅍT. } \end{gathered}$

Конструкционная сталь и серый чугун

4,3	30	0,15	0,15	1	0,85	1150
7,5	30	0,15	0,15	2	1,3	767
10,$8 ; 14,0$	30	0,15	0,15	3	1,7	575
17,$3 ; 20,5$	60	0,15	0,15	3	1,7	287
$23,8(5)$	60	0,15	0,15	3	3,5	267
$23,8(6)$	60	0,2	0,2	4	4,3	230
27	60	0,2	0,2	4	4,3	230
30,$2 ; 34,6$	60	0,2	0,2	5	5,2	191

Коррозионно-стойкая сталь

4,3	30	0,15	0,15	1	0,85	1250
7,5	30	0,15	0,15	2	1,3	830
10,8	30	0,15	0,15	2	1,3	167
$14,0-16,0$	30	0,2	0,2	2	1,3	767
$17,3-23,8$	60	0,2	0,2	2	2,6	383
(5)						
$23,8(6)$	60	0,2	0,2	3	3	287
27	60	0,2	0,2	4	7	230
30,2	60	0,2	0,2	5	5	192
34,6	60	0,2	0,2	5	8	192

ДИСКОВЫЕ СЕГМЕНТНЫЕ ПИЛЫ

Рекомендации по выбору инструмента. Дисковые сегментные пилы выбирают по номенклатуре выпускаемого инструмента в зависимости от максимального размера сечения разрезаемой заготовки (табл. 42) и ее конфигурации.

Диаметры пил для разрезания за-

готовок прямоугольного сечения или пакета заготовок приведены в табл 43

В нормативах даны рекомендации для пил, диаметры которых соответствуют предпочтительному I ряду по ГОСТ 4047-82. Для пил, диаметры которых соответствуют II ряду предпочтительности, ориентировочные значения могут быть приняты по ближайшему диаметру I ряда.
42. Максимальные размеры (мм) сечений заготовки

Профиль сечения разрезаемой яаготовки (характерный размер)	Максимальнве размеря сечения при днаметре сегментной пилы, мм									
	250	315	400	500	630	800	1000	1250	1600	2000
Kруг (диаметр)	80	100	125	160	208	265	330	413	528	660
Квадрат (сторона)	77	98	124	155	195	248	310	387	496	620
Двутавр (высота профиля)	180	220	270	360	400	550	600	-	-	-
Швеллер (высота профиля)	180	220	300	360	400	-	-	-	-	-

43. Диаметры пил (мм) в зависимости от максимального размера сечения обрабатываемой заготовки прямоугольного сечения или пакета заготовок

Becota sarotobки h, MM	Диаметр сегментной пилв при ширине B яаготовки, мм									
	25	50	75	100	150	200	300	400	500	60
25	250	250	250	315	500	630	1000	1250	1600	2000
50	250	250	250	315	500	630	1000	1250	1600	2000
100	250	250	315	400	500	630	1000	1250	1600	2000
150	250	250	315	400	500	630	1000	1250	1600	2000
200	250	315	400	400	630	800	1000	1250	1600	2000
250	315	400	400	500	630	800	1000	1250	1600	2000
300	400	400	500	500	630	800	1000	1600	1600	2000
350	400	500	500	630	630	800	1250	1600	1600	2000
400	500	500	630	630	800	800	1250	1600	1600	2000
450	500	630	630	630	800	1000	1250	1600	2000	2000
500	630	630	630	800	800	1000	1250	1600	2000	2000
600	800	800	800	800	1000	1000	1250	1600	2000	2000
700	800	800	1000	1000	1000	1250	1250	1600	2000	2000
800	1000	1000	1000	1000	1250	1250	1600	1600	2000	
900	1000	1000	1250	1250	1250	1250	1600	1600	2000	
1000	1250	1250	1250	1250	1250	1600	1600	2000	2000	

Дисковые сегментнне пилы для металлов по ГОСТ 4047-82

ДиаметDпилы мм	Шаг между зубьями (мм) при числе зубьев на сегменте			Число сегментов	Число зубьев пилы при числе зубьев на сегменте		
	4	6	8		4	6	8
250	14,02	9,35	7.01	14	56	84	108
315	17,64	11,78	8.84	14	56	86	108
400	17,45	11,64	8,73	18	72	108	144
500	21,82	14,54	10,91	18	72	108	144
630	27.74	16,49	12,37	20	80	120	160
800	26.16	17,44	13.01	24	96	144	192
1000	26.16	17,44	13.08	30	120	180	240
1250	27,25	18,17	13.62	36	144	216	288
1600	34,88	23,25	17.44	36	144	216	288
2000	35,68	23,78	17,84	44	176	264	352

Круглые сегментные пильь
для легких сплавов по ГОСТ 18210—72

Диаметр пилы	Шаг между зубьями	Чигло зубьев
мм		
710	46,4	48
1010	52.85	60
1430	62,36	72
2000	71,36	88
2030	6565	110
3000	71.36	132

Крцглые сегментные пилы, оснащенные пластинами твердого сплава по ОСТ 2-И-65-1-76

$\begin{gathered} \text { Диаметр } \\ \text { пилыы } \end{gathered}$	Шаг между зубьями	Число зуб゙ьев
мм		
710	62,00	36
1000	68.29	46
1010	68,90	46
1430	62,39	72
2000	71,39	88

45. Шаг между зубьями сегментных пил P, мм

Размер сечения заготовки h, мм					
	Алюминиевые и медные сплавы	Стали и чугуны			
25	8.5	7,5	6.5	6	5
50	14,5	11,0	8,5	7,5	5,5
75	19,0	13,5	11,0	9,0	6,5
100	22,5	16,0	12,0	10,0	7,0
125	26,0	18,5	13,5	11,0	7,5
150	29,5	20.5	15,0	12,0	8,0
175	32,5	22,5	16,5	12,5	8,5
200	35.5	24,0	17,5	13.0	9,0
250	40.5	27,0	19,5	14,0	9,5
300	45,5	30.0	21,5	15,0	10,0
400	55	36	25	17,0	11,0
500	60	40.0	25,5	17,5	12,5
600	66	42,0	26,0	18	15

Рис. 5. Форма заточки зубьев пилы: 1 в 2 - зубья пилы соответственно поорезно眮 и зачистной

Число зубьев дисковых сегментных пил устанавливают по табл. 44 в вависимости от шага зубьев, диаметра пилы и числа сегментов. Ориентировочно шаг зубьев выбирается по табл. 45.

На основании установленных значений диаметра и числа зубьев, а также марки материала инструмента (табл. 46) в соответствии с ГОСТами, ОСТаंми и ТУ выбирают типоразмер дисковой сегментной пилы.

Геометрические параметры дисковых пил зависят от материала заготовки и его твердости (табл. 47). На прорезных зубьях затачиваются фаски под

углом 45° размером, равным $1 /{ }_{3} B$. На зачистных зубьях размер фасок равен $0,4-0,7$ мм. Высота прорезных зубьев превышает высоту зачистных зубьев на $0,2-0,5$ мм. Задний угол на фасках равен 6-7 (рис. 5).

Режимы резания. В карте 1 поиводятся рекомендации по назначению подач. При обработке алюминиевых сплавов подачу корректируют дополнительно в зависимости от типа пилы. Для пил, оснащенных пластинами твердого сплава, подача составляет $S_{Z}=0,05 \div 0,08$ мм $/$ зуб.

По карте 2 выбирают скорости и мощности резания. Табличные значения скорости резания рассчитаны на период стойкости пил из быстрорежущей стали 1000 мин для конструкционных сталей, чугунов и медных сплавов; 500 мин для коррозионно-стойких сталей; период стойкости пил из твердого сплава при обработке алюминиевых сплавов равен 500 мин.

Мощность резания твердосплавных пил при обработке алюминиевых сплаво́в не приводится, так как эта мощность не превышает мощности привода главного движения отрезного станка.

В карте 3 даны рекоменддации по оценке расхода пил.

46. Инструментальный материал

Обрабатвваемьй материал	Марка материала инстдумента
Стали:	
конструкционные	P6M5, P6AM5
коррозионно-стойкие	P6M5K5, P9K5, P9K10
Серые и ковкие чугунв	P6M5, P6AM5
Сплавы:	
медные	P6M5, P6AM5
алюминиевые	BK8, P6M5, P6AM5

47. Геометрические параметры дисковых пил

Обрабатвваемве материалв	твердость НВ	Угол, ... ${ }^{\circ}$	
		переднй ψ	задний α
Конструкционные стали	До 156	20	8
	Св. 156 до 260	15-20	8
	Cb. 321	10-15	8

Обрабатываемые материалы	Твердость НВ	угол, ... ${ }^{\circ}$	
		передний $\boldsymbol{\gamma}$	яаднй α^{\prime}
Коррозионно-стойкие стали	-	15-20	8
Серые и ковкие чугуны	До 156	15	8
	Св. 156	10	8
Медные сплавы	-	20-25	8
Алюминиевые сплавы	- .	25-30	12

Цисковые сегментные пилы	Карта 1
Подача на зуб S_{Z}, мм/зуб	Обрабатываемый материал - стали, чугуны, цветные сплавы

Быстрорежущиепилыдля металла
Конструкционнье и коррозионно-стойкие стали

$$
S_{Z}=S_{Z_{\mathrm{T}}} K_{S_{1}} K_{S_{2}} K_{S 3}
$$

$\begin{aligned} & \text { диаметр } \\ & \text { пилы } D, \text { мм } \end{aligned}$	S_{Z} (мм/зуб) при высоте пропила t, мм							
	50	100	150	200	250	300	400	Cb. 400
250	0,07	0,05	-	-	-	-	-	-
315, 400	0,09	0,07	0,05	-	-	\square	-	-
500	0,09	0,09	0,07	-	-	\cdots	-	-
630	0,10	0,10	0,08	0,06	-0	-	一.	-
800, 1000	0,10	0,10	-0,08	0,06	0,06	0,05.	-	-
1250	-	0,10	0,09	0,07	0,07	0,06	0,05	0,05
1600, 2000	-	0,12	0,10	0,09	0,07	0,07	0,06	0,05

Поправочные коэффициентье

Обрабатываемая сталь	Конструкционная	Коррозионно-стойкая
$K_{S 1}$	1,0	0,6

Продолжение карты I

Твердость стали конструкцион- ной НВ	156	173	207	229	265	285	321
$K_{S 2}$	1,2	1,1	1,0	0,9	0,8	0,7	0,6
Временное сопротивление стали коррозионно-стой- кой σ_{B}, МПа	610	800	1000	1250			
$K_{S 2}$		1,0	0,85	0,75	0,6		
Число зубьев в сегменте Z	1,3	1,0	0,8				
$K_{S 3}$			6	8			

Дисковыесегментныепилы для металла,
круглыесегментные пилыдля легких сплавов
Чугуны, алюминиевое и медные сплавы

$$
S_{z}=S_{Z_{\mathrm{T}}} K_{S 1} K_{\mathrm{S} 2} K_{\mathrm{S} 3} K_{S 4}
$$

$\begin{gathered} \text { Диаметр } \\ \text { пилы } D, \text { мм } \end{gathered}$	$S_{Z_{\text {m }}}$ (мм/зуб) при высоле пропила t, мм								
	50	100	150	200	250	300	400	Св	400
250	0,08	0,06	-	-	-	-	-		-
315, 400	0,10	0,08	0,06	-	-	-	-		-
500	0,10	0,10	0,08	-	-	-	-		-
630	0,11	0,11	0,09	0,07	-	-	-		-
800, 1000	0,11	0,11	0,09	0,07	0,07	0,06	-		-
1250	-	0,11	0,10	0,08	0,08	0,07	0,06		-
1600, 2000	-	0,14	0,11	0,10	0,08	0,08	0,07		,06

Поправочные коэффициенть

Обрабатываемые матери- алы	Чугуны, медные сплавы	Алюминиевые сплавы					
$K_{S \mathbf{1}}$	1,0			0,5			
Твердость чугуна НB	156	173	207	229	265	285	321
$K_{S \mathbf{S}}$	1,3	1,2	1,1	1,0	0,9	0,8	0,7

Дисковые сегментные пилы	Карта 2
Скорость резания v, м/мин Мощность резания N, кВт	Обрабатываемый материал - сталь, чугун, цветные сплавы

Быстрорежущиепилы

Конструкционная сталь

$$
v=v_{\mathrm{T}} K_{\nabla 1} K_{\nabla 2} K_{\nu g} K_{v \Delta} K_{\nabla \Delta} ;
$$

$$
N=N_{\mathrm{T}} K_{N 1} K_{N 8} K_{N \mathbf{2}} K_{N 4} K_{N \mathrm{~B}} K_{N \mathrm{Nb}}
$$

t/D						
	0,02	0,03	0,05	0,08	0,12	0,2
0,1	$\frac{39}{2}$	$\frac{36}{2,5}$	$\frac{32}{3,3}$	$\frac{29,5}{4,2}$	$\frac{27,5}{5,2}$	$\frac{25,5}{6,7}$
0,2	$\frac{31,5}{3,2}$	$\frac{29}{4}$	$\frac{26}{5,3}$	$\frac{24}{6,8}$	$\frac{22}{8,3}$	$\frac{20,5}{10,8}$
0,3	$\frac{28}{4,4}$	$\frac{26}{5,4}$	$\frac{23}{7,1}$	$\frac{21}{9} 1$	$\frac{19,5}{11,1}$	$\frac{18}{14,6}$

Поправочные коэффициенть

Корровионно-стойкие ста.ли

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v \mathbf{3}} K_{v 4} ; \\
N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathbf{b}} .
\end{gathered}
$$

t / D	$\frac{v_{\mathrm{T}}(\mathrm{m} / \mathrm{MmH})}{N_{T}(\mathrm{KBT})}$ ири подаче на вуо s_{Z}, mм/s					
	0,012	0.02	0,03	0,05	0,08	0.12
0,1	$\frac{29}{0,8}$	$\frac{26}{0,9}$	$\frac{24}{1,1}$	$\frac{22}{1,4}$	$\frac{20}{1,6}$	$\frac{19}{1,9}$
0,2	$\frac{23}{1,2}$	$\frac{21}{1,5}$	$\frac{20}{1,8}$	$\frac{18}{2,1}$	$\frac{16}{2,6}$	$\frac{15}{3,0}$
0,3	$\frac{21}{1,6}$	$\frac{19}{2,0}$	$\frac{18}{2,4}$	$\frac{16}{2,9}$	$\frac{14}{3,5}$	$\frac{13}{4,0}$

Поправочныя кояффициенты

Обрабатываемые стали	$\begin{aligned} & 12 \times 13 \\ & 25 \times 13 \mathrm{H} 2 \end{aligned}$		20×13	30×13		$\begin{gathered} 12 \times 18 \mathrm{H10T}, 14 \times 17 \mathrm{H} 2, \\ 12 \times 18 \mathrm{H9}, \mathrm{~T}^{2}, 40 \times 13 \\ 09 \times 16 \mathrm{H} 4 \mathrm{~b}, 07 \mathrm{X} 16 \mathrm{H} 6 \end{gathered}$			$12 \times 21 \mathrm{H5T}$	
$K_{01}=K_{N 1}$	1,		1,3				1,0			
Состояние обрабатываемой поверхности						Без корки			С коркой	
$K_{\nu 2}=K_{N 2}$						1,0			0,8	
Диаметр пилы D, мм		$\begin{gathered} 250 \\ 315 \end{gathered}$		$\begin{gathered} 400 \\ 500 \end{gathered}$	630	800	1000	1250	16002000	
$K_{v s}$		1,1		1,1	1,0	1,0	1,0	0,9	0,8	0,7
$K_{N 8}$		0,		0,6	0,8	1,0	1.4	1,9	2,5	3,4
Число зубьев на сегменте Z						4		6	8	
$K_{N 4}$						0,7		1	1,3	
Период стойкости T, мин						300, 400			500	
$K_{v 4}=K_{N s}$						1,1			1,0	

Серые чугунь$\begin{gathered} v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} \\ N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N 5} \end{gathered}$						
t / D	$\frac{v_{\mathrm{T}} \text { (м/мин) }}{N_{\mathrm{T}}(\text { КВт) }}$ при подаче на яуо S_{Z}, мм/зуб					
	0,02	0,03	0,05	0,08	0.12	0,2
0,1	$\frac{19,2}{0,9}$	$\frac{16,4}{1,0}$	$\frac{13,5}{1,1}$	$\frac{11,2}{1,2}$	$\frac{9,4}{1,4}$	$\frac{7,6}{1,6}$
0,2	$\frac{15,4}{1,2}$	$\frac{13,0}{1,4}$	$\frac{11,0}{1,6}$	$\frac{9,2}{1,8}$	$\frac{7,5}{2,0}$	$\frac{6,0}{2,2}$
0,3	$\frac{11}{1,5}$	$\frac{9,5}{1,7}$	$\frac{7,8}{1,9}$	$\frac{6,5}{2,0}$	$\frac{5,4}{2,4}$	$\frac{4,4}{2,7}$

Поправочные коэффициентвь

Твердость чугуна НВ		156	173	207	229	265	285		321
K_{01}		1,5	1,3	1,1	1,0	0,8	0,7		0,6
$K_{N 1}$		1,3	1,2	1,1	1,0	0,9	0,8		0,7
Состояние обрабатываемой поверхности					Без корки			C кор	кой
$K_{02}=K_{N \mathbf{2}}$					1,0			0,6	
Диаметр пилы D, мм	$\begin{gathered} 250, \\ 315 \end{gathered}$		400 500	630	800	1000	1250	1600	2000
K_{08}	1,4.		1,2	1,1	1,0	0,9	0,8	0,7	0,6
$K_{N 3}$	0,5		0,7	0,8	1,0	1,3	1,7	2,0	2,8
Число зубьев на сегменте Z				4		6		8	
$K_{N 4}$				0,7		1		1,3	
Период стойкости T, мин				500			1000		
$K_{v \mathrm{~s}}=K_{N \mathrm{~S}}$				1,1			1,0.		

Ковкие и высокопрочнье чугунь$\begin{gathered} v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v \mathbf{2}} K_{v 4} \\ N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathrm{~b}} \end{gathered}$									
:/D	$\frac{v_{T} \text { (м/мин) }}{N_{T} \text { (КВт) }}$ при подаче ва ауб S_{Z}, мм/зуб								
	0.02	0,03		0,05	0,0		0,12		0,2
0,1	$\frac{54}{1,2}$	$\frac{50.4}{1,56}$		$\frac{44,8}{2,0}$	41,		$\frac{38,5}{3}$		$\frac{35,7}{4,2}$
0,2	$\frac{44}{2,0}$	$\frac{40,6}{2,4}$		$\frac{36,4}{3,2}$	$\frac{33,}{4}$		$\frac{30,8}{4,6}$		$\frac{28,7}{6,4}$
0,3	$\frac{39}{2,7}$	$\frac{36}{3,3}$		$\frac{32}{4,4}$	$\frac{29}{5,3}$		$\frac{27}{6,2}$		$\frac{25}{8,64}$
Поправочнье коэф¢чициенть									
Твердость чугуна HB^{-}		156	173	207	229	265	285		321
K_{01}		1,5	1,3	1,1	1,0	0,8	0,7		0,6
$K_{N 1}$		1,3	1,2	1,1	1,0	0,9	0,85		0,8
Состояние обрабатывдемой поверхности					Без корки			С коркой	
$K_{v 2}=K_{N g}$.					1,0			0,7	
Диаметр пилы D, мм		$\begin{aligned} & 250, \\ & 315 \end{aligned}$	$\begin{gathered} 400 \\ 500 \end{gathered}$	630	800	1000	1250	1600	2000
$K_{v s}$		1,1	1,1	1,0	1,0	1,0	$\cdot 0,9$	0,8	0,7
$K_{N 3}$		0,4	0,6	0,8	1,0	1,4	1,9	2,5	3.4
Число зуоьев на сегменте Z				4		6		8	
$K_{N 4}$				0,7		1,0		1,3	
Период стоикости T, мин				500		800		1000	
$K_{\text {dd }}=K_{\text {Nb }}$				1,15		1,1		1,0	

Меоные сплавы$\begin{gathered} v=v_{\mathrm{T}} K_{v 1} K_{v 2} K_{v 3} K_{v 4} ; \\ N=N_{\mathrm{T}} K_{N 1} K_{N 2} K_{N 3} K_{N 4} K_{N \mathrm{~s}} . \end{gathered}$						
t / D						
	0,03	0,05	0,08	0,12	0,2	0,3
0,1	$\frac{75,6}{1,7}$	$\frac{67,0}{2,3}$	$\frac{62,0}{3,0}$	$\frac{58,0}{3,6}$	$\frac{53,5}{4,7}$	47,6
0,2	$\frac{61,0}{2,8}$	$\frac{54,5}{3,7}$	$\frac{50,5}{4,8}$	$\frac{46}{5,8}$	- 43	$\frac{38}{9,3}$
0,3	$\frac{54,5}{3,8}$	$\frac{48}{5,0}$	$\frac{44}{6,3}$	$\frac{41}{7,7}$	$\frac{38}{10,2}$	$\frac{33,5}{12,6}$

Поправочнье коэффициентьь

Mapka сплава	Бр52, БрМд5	ААЖ60-1-1; 5рА10Ж3M42; 5pA10 ж4H4Л; БрА11 Ж6H6; ЛЦ23А6Ж3Mu2 ЛЦ23А6ЖЗМц2					ЛЖ $58-1-1$; БрA5; БpA7; БрАМц9-2; БрКМи3-1; БрOL4-3; 5рО $\Phi 6,5-0,4 ;$ БрОФ4—0,25		\#10
$K_{01}=K_{N 1}$	0,2				0,55			,0	1,5
Состояние обрабатываемой поверхности					Без корки			С коркой	
$K_{02}=K_{N 2}$					1,0			0,9	
Диаметр пилы D, мм		$\begin{aligned} & 250, \\ & 315 \end{aligned}$	$\begin{gathered} 400 \\ 500 \end{gathered}$	630	800	1000	1250	1600	2000
$K_{v s}$		1,1	1,1	1,0	1,0	1,0	0,9	0,8	0,7
$K_{N 8}$		0,4	0,6	0,8	1,0	1,4	1,9	2,5	3,4
Число зубьев на сегменте Z					4		6	8	
$K_{N 4}$				0,7		1,0		1,3	

Период стойкости T, мин	500	800	1000
$K_{\partial 4}=K_{N \mathrm{~s}}$	1,15	1,1	1,0

Дисковыесегментныепилы для металла
быстрорежущие, круглыесегментные пилы длялегких сплавов быстрорежущие

Алюминиевье сплаеы

$$
\begin{gathered}
v=v_{\mathrm{T}} K_{v 1} K_{v \mathbf{2}} K_{v \mathbf{3}} K_{v \mathbf{v}} \\
N=N_{\mathrm{T}} K_{N_{1}} K_{N 2} K_{N 3} K_{N 4} K_{N \mathbf{s}}
\end{gathered}
$$

t / D						
	0,02	0,03	0.05	0,08	0,12	0,2
0,1	$\frac{692}{8}$	$\frac{618}{10}$	$\frac{550}{13,2}$	$\frac{507}{16,8}$	472 20,8	$\frac{438}{27}$
0,2	$\frac{541}{12,8}$	$\frac{497}{16}$	$\frac{446}{21,2}$	$\frac{411}{27,2}$	$\frac{374}{33,2}$	$\frac{352}{43,2}$
0,3	$\frac{480}{17,6}$	$\frac{446}{21,6}$	394	$\frac{360}{36,4}$	$\frac{334}{44,4}$	$\frac{308}{58,4}$

Поправочнье кояффициентьь

Марка обрабатываемого сплава	АЛ7, АЛ8, АЛ19, Д16, AK5M7, AK4, AK6, АК8, В95, $\mathbf{B 9 3}$			$\begin{aligned} & \text { 1, AMa, AM } \\ & \text { AM3, AM } \\ & \text { Mr5, AB } \end{aligned}$
$K_{v 1}=K_{N 1}$	0,85	1,0		1,25
Состояние обрабатываемой поверхности			Без корки	С коркой
$K_{02}=K_{N_{2}}$			1,0	0,9

Пилы дисковые сегментные для металла

Диаметр пилы D, мм$250,{ }^{\prime}$ 315	400, 500	630	800	1000	1250	1600	2000	
$K_{v \mathbf{z}}$	1,1	1,1	1,0	1,0	1,1	0,9	0,8	0,7
$K_{N 3}$	0,4	0,6	0,8	1,0	1,4	1,9	2,5	3,4

Пилыкруглые сегментныедля легкихсплавов

Диаметр пилы D, мм	700	1010	1430	2000	2300	3000
$K_{v 3}$	1,0	0,95	0,9	0,7	0,6	0,5
$K_{N 3}$.	0,13	0,17	0,22	0,29	0,4	0,5
Число зубьев на сегменте Z		4	6	8		
$K_{N 4}$		0,7	1,0	1,3		
Период стойкости T, мин	600	800	1000	2000		

Круглыесегментныепилытвердосплавные
Алюминиевые сплавы
$v=v_{T} K_{v 1} K_{v 2} K_{v 3}$

t / D	$v_{\text {т }}$ (м/мин) при поддче на зуб S_{Z}, мм/зуб			
	0,03	0,05	0,08	0,12
0,05	1540	1339	1147	1017
0,1	1242	1080	925	820
0.2	1009	882	751	666
0,3	897	785	668	592

Поправочнье коэффициентья

Марка сплава			АЛ2, АЛ3, АЛ4, АЛ9, АЛ5-1, Д1, АМг6				АЦ0, АД1, АМц, АМцС, АД31, АДЗ 3 , АМР3, AMF5, A B	
$K_{v 1}$				1,0				1,25
Состояние обрабатываемой поверхности					Без корки			С коркой
$K_{v 2}$					1,0			0,9
Диаметр пилы D, мм		710		1000, 1010			1430	2000
$K_{v 3}$		1,1		1,0			0,9	0,85

〔исковые сегментные пилы
Карта 3

ритерии затупления, число переточек расход пил за 1000 ч основного вреени

Диаметр D, Mm	Число аубьев Z	Период стойкости T, мhн	Критерй загупления h_{3}, MM	Величияа стачнва. ния за одну переточку h, Mm	Число переточек k	Суммарный гериод стойкости ΣT, ч	$\begin{gathered} \text { Расход } \\ \text { пил } \\ p_{100 a, ~ m т . ~}^{2} \end{gathered}$

Комструкционные стали и иугуны

250	56	400	0,6	0,5	16	94	11
	84					116	9
	112				22	128	8
315	56	500	0,6	0,5	19	139	8
	- 84				23	167	6
	112				26	187	6
400	72	600	0,6	0,5	23	200	5
	108				27	233	5
	144				30	258	4
500	72	800	0,7	0,5	15	178	6
	108				21	244	4
	144				28	320	4
630	80	900	0,7	0,6	20	263	4
	120				25	325	3
	160				28	363	3
800	96	1000	0,8	0,6	26	391	3
	144				32	478	2
	192				34	507	2
1000	120	1000	0,8	0,7	22	333	3
	180				27	406	3
	240				29	435	3
1250	144	1000	0,8	0,7	18	276	4
	216				24	362	3
	288				27	406	3

Прооолжение картв з

$\underset{D, \text { мм }}{\text { Диаметр }}$	$\begin{gathered} \text { Число } \\ \text { зубьев } \\ Z \end{gathered}$	$\underset{T, \text { мия }}{\substack{\text { Перориод } \\ \text { стоикоси }}}$	Критерий затупления h_{3}. MM	Величння стачива- ния 3 а одну пе. реточку h, Мм	Число переточек k	Суммарный пе рнод сти ΣT, ч	$\begin{gathered} \text { Расход } \\ \text { пил }_{1000, ~ ш т ~}^{2} \end{gathered}$
1600	144	1000	0,8	0,8	23	363	3
	216				29	455	3
	288				33	515	2
2000	176	1000	0,8	1,0	18	288	4
	264				21	334	3
	352				26	409	3

Корровионно-стойкие стали

250	56	300	0,6	0,5	16	71	14
	84				20	90	12
	112				22	96	11
315	56	300	0,6	0,5	19	83	12
	84				23	100	10
	112				26	108	10
400	72	300	0,6	0,5	23	100	10
	108				27	117	9
	140				30	129	8
500	72	400	0,6	0,5	15	82	13
	108				21	121	9
	144				24	138	8
630	80	. 400	0,7	0,6	20	115	9
	120				25	142	7
	160				28	160	7
800	96	500	0,7	0,6	26	195	6
	144				32	238	5
	192				34	253	4
1000	120	500	0,8	0,7	22	166	6
	180				27	201	5
	240				29	216	5

Продолжение карты 3

$\begin{gathered} \text { Диаметр } \\ D, \text { мм } \end{gathered}$	$\begin{gathered} \text { Число } \\ \text { sубьеев } \\ Z \end{gathered}$	$\begin{aligned} & \text { Период } \\ & \text { стоикости } \\ & T, \text { мин } \end{aligned}$	$\begin{gathered} \text { Крите- } \\ \text { риА за- } \\ \text { тупления } \\ h_{3} \text {, мм } \end{gathered}$	Величнна стачива ния за одну переточку h, MM	Число переточек	Суммарный период сти ΣT,	$\begin{gathered} \text { Расход } \\ \text { пил } \\ P_{1000, ~ ш т . ~}^{2} . \end{gathered}$
1250	144	500	0,8	0,7	18	136	8
	216				24	180	6
	288				27	201	5
1600	144	500	0,8	0,8	23	181	6
	216				29	226	5
	288				33	256	4
2000	176	500	0,8	1,0	18	143	7
	264				21	166	6
	352				26	221	5

Алюминиевые сплавы

250	56	600	0,6	0,5	16	141	8
	84				20	175	6
	112				22	191	6
315	56	800	0,6	0,5	19	222	5
	84				23	266	4
	112				26	300	4
400	72	1000	0,6	0,5	23	333	3
	108				27	389	3
	144				30	452	3
500	72	1500	0,7	0,5	15	333	3
	108				21	458	3
	144				24	520	2
630	80	1500	0,7	0,6	20	437	3
	120				25	541	2
	160				28	604	2
800	96	2000	0,8	0,6	26	782	2
	144				32	956	2
	192				34	1013	1

$\begin{aligned} & \text { Диаметр } \\ & D, \text { мм } \end{aligned}$	Число sубьев Z	Период стойости T, мин	Критерий за$\underset{h_{3}, ~ м м ~}{\text { тупления }}$	Величина стачивания 3 a одну переточку b, MM	Число переточек k	Суммар. ный период стойо- сти Σ,	$\begin{gathered} \text { Расход } \\ \text { пил } \\ P_{1000, ~ ш т ~}^{2} . \end{gathered}$
1000	120	2000	0,8	0,7	22	666	2
	180				27	812	2
	240				29	869	2
1250	144	2000	0,8	0,7	18	550	2
	216				24	724	2
	288				27	811	2
1600	144	2000	0,8	0,8	. 23	727	2
	216				29	909	2
	288				33	1030	1
2000	176	2000	0,8	1,0	18	575	2
	264				21	666	2
	352				26	818	2

Приложение 1

ДЛИНЫ ПОДВОДА, ВРЕЗАНИЯ И ПЕРЕБЕГА ИНСТРУМЕНТА

Длину рабочего хода определяют по формуле

$$
L_{\mathrm{p} . \mathrm{x}}=l_{\mathrm{pes}}+y+l_{\text {доп }}
$$

где $l_{\text {рез }}$ - длина резания, мм; y длина подвода, врезания и перебега, мм, $l_{\text {доп }}$ - дополнительная длина рабочего хода, предусматриваемая в ряде случаев в связи с особенностями наладки и конфигурации детали, мм.

Длину подвода при симметричном фрезеровании торцовыми фрезами и торцовой частью концевой фрезы определяют по формулам.

при черновой обработке

$$
\begin{equation*}
y=\frac{D-\sqrt{D^{2}-t^{2}}}{2}+(2 \div 5) \text { мм } ; \tag{1}
\end{equation*}
$$

при чистовой обработке

$$
\begin{equation*}
y=D+(2 \div 5) \text { мм } . \tag{2}
\end{equation*}
$$

Длина подвода при черновом фрезеровании пазов концевым инструментом

$$
\begin{equation*}
y=\frac{D}{2}+(2 \div 5) \text { мм. } \tag{3}
\end{equation*}
$$

При чистовой обработке длину подвода определяют по формуле (2).
Для чернового фрезерования плоских поверхностей и уступов цилиндрической частью концевых фрез, а также цилиндрическими, дисковыми и фасонными фрезами длину подвода находят по формуле

$$
\begin{gathered}
y=\sqrt{\overline{D t-t^{2}}}+(2 \div 5) \text { мм } \\
\text { при } D / 2 \leqslant t,
\end{gathered}
$$

и по формуле (3) при $D / 2>t$.
Для чистовой обработки значение y удваивают. При обработке торцовыми фрезами $t=B$.

П1.1. Длины подводив, врезаний и шеребегов при обработке торцовой частью фрез
Размеры, мм

П11.2. Длины подводов, врезаний и перебегов при обработке цилиндрической частью фрезы
Размеры, мм

Приложение 2

ОСНОВНЫЕ ЗАВИСИМОСТИ, ИСПОЛЬЗОВАННЫЕ ПРИ
 РАЗРАБОТКЕ HOPMATИBOB ПО РЕЖИМАМ РЕЗАНИЯ

Зависимости для расчета подач. Наибольшее значение подачи на зуб для всех типов фрез рассчитывают по одной общей зависимости степенного вида

$$
\begin{equation*}
S_{Z}=\frac{C_{S} \cdot 10^{-3} D^{q_{S}}}{t^{x_{S}} B^{u_{S}} Z^{p S}} \Pi K_{B_{\Phi}} \Pi K_{S_{\sharp}}, \tag{1}
\end{equation*}
$$

где C_{S} - постоянная, характеризующая уровень подачи; q_{S}, x_{S}, u_{S}, P_{S} - степени влияния размеров припуска и инструмента на уровень подачи, $П K_{S \Phi}$ - произведение формализованных поправочных коэффициентов, $П K_{S \mathrm{H}}$ - произведение неформализованных поправочных коэффициентов.

$$
\begin{gather*}
\Pi K_{S_{\Phi}}=\left|\begin{array}{c}
\left(\frac{C_{\sigma_{\mathrm{B}}}}{\sigma_{\mathrm{B}}}\right) \\
\left(\frac{C_{\mathrm{HB}}}{\mathrm{HB}}\right) \\
\left(\frac{C_{\mathrm{HRC}}}{\mathrm{HRC}}\right)
\end{array}\right|_{-}^{n_{S_{1}}} \times \\
\times\left[\begin{array}{l}
\left(\frac{C_{1} D}{l_{\Phi}}\right) \\
\left(\frac{C_{1} d_{\text {onp }}}{l_{\text {oпр }}}\right)
\end{array}\right]_{-}^{n_{S_{2}}}\left(\frac{60}{\varphi}\right)^{n_{S 3}}, \tag{2}
\end{gather*}
$$

где $n_{S 1}$ - степень влияния механических свойств обрабатываемого материала, заданных или НВ (твердостью по Бринеллю, кгс/мм ${ }^{2}$), или $\sigma_{\text {в }}$ (временным сопротивлением, МПа), или HRC (твердостью по Роквеллу, кгс $/$ мм 2), $\quad C_{\sigma_{\mathrm{B}}}, C_{\mathrm{HB}}, C_{\mathrm{HRC}}$ - соответствующие постоянные механических свойств обрабатываемого материала, $n_{S 2}$ - степень влияния закрепления инструмента; $l_{\Phi}, l_{\text {опр }}, D, d_{\text {опр }}$ - вылет фрезы, вылет оправки, диаметр фрезы и диаметр оправки в зависи-

мости or схемы крепления инструмента; C_{1} - постоянная схемы крепления фрез; $n_{S 3}$ - степень влияния главного угла в плане φ при обработке торцовыми фрезами.

Конкретный вид зависимостей, входящих в произведение формализованных поправочных коэффициентов ПК s_{Φ}, обусловлен механическими свойствами обрабатываемых материалов, типом фрезы, методом крепления фрезы на станке и т д.

Произведение неформализованных поправочных коэчфициентов, используемое для коррекгирования подачи, имеет вид

$$
\begin{equation*}
\Pi K_{S_{\mathrm{B}}}=K_{S_{1}} K_{S_{2}} K_{S_{3}} K_{s_{4}} K_{S_{5}} K_{S_{8}}, \tag{3}
\end{equation*}
$$

где $K_{S_{1}}, K_{S 2}, K_{S 3}, K_{S_{4}}, K_{S_{5}}, K_{S_{6}}-$ поправочные коэффициенты на группу обрабатываемого материала, марку материала инструмента, схему фрезерования (только для торцовых фрез), исполнение фрезы, форму обрабатываемой поверхности и тип зуба фрезы

Числовые значения постоянных, вхсдящих в формулы (1)-(3), в зависимости от условий обработки приведены в табл. П.2.1-П.2.10

При расчете подачи для дисковых сегментных пил вместо числа зубьев Z в формулу (1) подставляют шаг зубьев P, а при обработке пазов типа «Ласточкин хвост» (угловые фрезы) вместо глубины резания t - значение угла в плане φ; выраженное в градусах
Зависимости для расчета скоростей резания. Скорость резания для всех типов фреа рассчитывают по общей формуле
$v=\frac{C_{v} D^{q_{v}}}{T^{m} S_{Z}^{y_{v} t^{x_{v}} B^{u_{v}} P^{P_{v}}} \Pi K_{v \Phi} \Pi K_{z_{\mathrm{H}}}, ~}$
где v, S_{Z}, t и B - элементы режима резания; T - период стойкости инструмента; D и Z - соответственно диаметр и число зубьев фрез; C_{v} постоянная, характеризующая уровень скорости резания; $q_{v}, m, y_{v}, x_{v}, u_{v}$, P_{v} - показатели степеней влияния элементов режима резания и периода стойкости фрезы на скорость резания, $\Pi K_{v ф}$ и $П K_{\text {vн }}$ - произведения соответственно формализованных и нефор-

Фреза	Обрабатвваемви материал	Инструментальный материал	Условия обработкв			c_{S}	q_{S}	${ }^{2} S$	${ }^{4}$ S	${ }^{p}$ S
			D, mм	t, mm	$t \times B,$					
Торцовая	Сталь конструкционная	P6M5, T15K6	-	-	-	23	0,48	0,41	0	0
		B3, BOK60	-	-	-	80	0	0,5	0	0
		CTM -	-	-	-	50	0	0	0	0
	Чугуны	BK8	-	-	-	50,6	0,53	0,35	0	0
				До 1,0		150	0	0,5	0	0
			-	Св. 1,0	-	100	0	0,5	0	0
		ВШ-75,		До 1,0		100	0	0	0	0
		Силинит-P	-	Св. 1,0	-	80	0	0	0	0
				До 1,0		200	0	0,5	0	0
		BOK60	-	Св. 1,0 до 2,0	-	150	0	0,5	0	0
				Св. 2,0		80	0	0,5	0	0
-		CTM	-	-	-	50	0	0	0	0
	Коррозионностойкая сталь	BK8	-	-	-	16,1	0,49	0,41	0	0
	Медные и алюминиевые литейные сплавы	BK8	-	-	-	53	0,52	0,35	0	0

Фреза	Обрабатываемыи материал	Инструментальный материал	Условия обработки			c_{s}	${ }^{q_{S}}$	${ }^{x_{S}}$	u_{S}	${ }^{p}$ S
			D, мм	t, mm	$\underset{\mathbf{M M}^{2}}{t \times}$					
Концевая шпоночная	Конструкционная сталь, чугуны, коррозион-но-стойкая сталь, медные и алюминиевые сплавы	БРС, TC	До 10	-	-	5,1	2,0	0,7	0,7	0
					До 30	19	1,0	0,3	0,3	0
			С. 10 до		Св. 30	74	1,0	0,7	0,7	0
			Св. 20	-	-	119	0,5	0,4	0,4	0
Для обработки Тобразных пазов	Конструкционная сталь	P6M5	До 50	-	-	2,6	0,85	0	0	0
			Св. 50			22	0,3	0	0	0
	Серый пугун	P6M5	До 20	-	-	0,35	1,7	0	0	0
			Св. 20			148	0,45	0	0	0
		BK8	До 50	-	-	4,7	0,75	0	0	0
			Св. 50			3,9	0,8	0	0	0
Дисковая тpexсторонняя	Конструкционная сталь, чугуны, медные сплавы	P6M5	-	-	-	350	1,0	0,5	0,2	0,2
	Конструкцион- ные и корро- зионно-стойкие стали	BK8	-	До 10^{-} Св. 10	-	170 250	0	0,23 0,42	0	0
	Чугуны	BK8	-	-	-	340	0	0,44	0	0

Продолосение табл. П2.1

Фреза	Обрабатываемвй материал	Инструментальный материал	Условия обработкв			σ_{s}	${ }^{\text {as }}$	${ }^{*} S$	u^{\prime}	${ }^{p} S$
			D, mm	t, mm	$\underset{\mathbf{M M}^{2}}{t \times B_{2}}$					
Дисковая трехсторонняя	Коррозионностойкая сталь	P6M5	-	-	-	330	1,0	0,5	0,32	0,48
	Алюминиевые сплавы	P6M5	До 100	.	-	60	1,38	0,5	0,32	0,8
			Св. 100			42	1,38	0,5	0,32	0,8
Дисковая: пазовая прорезная (шлицевая) отрезная	Все материалы	P6M5	-	-	-	260	0,82	0,5	0,32	0,48
		P6M5				2,1	0,3	0,5	-0,8	0
		P6M5	-	-	-	0,55	0,8	0,3	-0,4	0
Фасонная полукруглая: вогнутая	Конструкционная сталь	P6M5	-	-	-	3,3	1,2	0,53	0,53	0
выпуклая						4,1	1,2	0,53	0,53	0
Двуугловая несимметричная			-	-	-	5,5	1,2	0,53	0,53	0
Одноугловая			-	-	-	0,19	1,0	-1,14	1,55	0
	Серый чугун					0,21	1,0	$-1,2$	0,6	0
		BK8				25	0,55	0	0,5	0

Фреsa	Обрабатываемыи материал	Инструментальный материал	Условия обработкн			c_{s}	${ }^{\text {as }}$	${ }^{x_{S}}$	${ }^{\prime}{ }_{S}$	p_{S}
			D, Mm	t, mm	$\underset{\mathbf{M M}^{2}}{\boldsymbol{t}},$					
Цилиндрическая	Конструкционная сталь	P6M5	-	-	-	74	1,35	0,75	0,85	0
	То же и серый чугун	T5K10				42,7	1,25	0,7	0,7	0
	Чугуны, корро-зионно-стойкая сталь, медные сплавы					68	1,1	0,78	0,78	0
Для обработки пазов сегментных шпонок	Конструкцион-ная сталь	P6M5	-	-	-	7,4	0,4	0	0	0
Дисковые сегментные пилы			-	-	-	153	0	1,23	-0,08	-2
			-	-	-	283	0	1,48	-0,08	-2
	Чугуны и медные сплавы		-	-	-	282	0	1,38	-0,08	-2
	Алюминиевые сплавы		-	-	-	244	0	1,44	-0,08	-2

12.2. Значения постоянных для определения формализованного поправочного коэффициента на подачу в зависимости от механических свойств обрабатываемого материала

Обрабатываемвй материал	Инструментальнвй материал	HB	$C_{\text {HB }}$	$C_{\text {HRC }}$	$c_{\sigma_{B}}$	${ }^{n_{S 1}}$
Конструкционная сталь	БРС, TC	До 207	207	-	-	0,6
		Св. 207				1,0
	Мннеральная керамика	До 321	-	1,0	-	0
		Св. 321		35		2,4
	CTM	-	1,0	1,0	-	0
f	БPC, TC	-	229	-	-	0,7
Ругуны 4	Минеральная керамика, СТМ		1,0			0
	БPC. TC	-	197	-	650	0,64
ная сталь	Минеральная керамика, СТМ		1		1,0	0
Медные и алюми4иевье сплавы	БPC, TC	-	1	-	1,0	0

役.3. Значение постоянных для определения формализованного поправочного жояффициента на подачу в зависимости от кпепления фрезы

Φ ¢езa	Постояннве при креплении фрезв						
	консольном				с дополнительноп опорой		
	D, m M	$\begin{gathered} t_{\Phi} / D, \\ l_{\mathrm{omp}} / d_{\mathrm{omp}} \end{gathered}$	C_{1}	$n^{n_{2}}$	$l_{\text {orip/ }} / d_{\text {onp }}$	C_{1}	${ }^{n_{S 2}}$
梹орцовая	До 8	1,0	1,0	0	-	-	-
		До 2,5	2,5	0	-	-	-
ая, для обработки		Св. 2,5	2,5	0,55	-	-	--
работки пазов ных шпонок	Св. 8	До 3,0	3,0	0	-	-	-
		Св. 3,0	3,0	0,62	-	-	-
Аисковые, фасонные,	-	До 3,0	3,0	0	До 10	10	0,2
		Св. 3,0	3,0	0,8	Cb. 10	10	0,5

П2.4. Числовое значение степени влияния угла в плане на подачу при черновой обработке торцовыми фрезами

Материал			$n_{S S}$
инструмента	обрабттываемый	HB	
EPC, TC	Конструкционная и коррозионно стойкая стали, медные и алюминиевые сплавы	-	0,6
TC	Чугуны	-	0,7
CTM	Конструкционная сталь	До 320	0
		Св. 320	1,32
	Серый чугун	-	1,0

П2 5 Моправочный коэфњицие нт на подачу в зависимости от группы обрабатываемого мдтериала

$Ф$ ¢еза	Коэффициент $K_{S 1}$					
	Сталь		Чугун		Сплавы	
	$\begin{gathered} \text { кон- } \\ \text { сrрук } \\ \text { ционная } \end{gathered}$	корро- зионно- сгонвая	серый	ковкии, вьсокопоочныи	мед- ные	алюми ниевые
Торцовля	1,0	1,0	1,0	1,0	0,9	. 1,0
Концевая	1,0	0,8	1,2	1,4	1,2	1,3
Дисковая трехсторонняя	1,0	0,9	1,5	1,5	1,5	1,6
Прорезная (шлицевая) и отрезная	1,0	0,8	1,3	1,3	1,3	1,4
Дисковая пазовая	1,0	1,0	1,3	1,3	1,8	2,0
Цилиндрическая	1,0	1,0	1.6	20	2,0	2,5
Пилы сегментные	1,0	0,6	1,0	1,0	1,0	0,5

П2.6 Поправочный коэффициент $\mathcal{K}_{S 2}$ на подачу в зависимости от марки мдтеридла инструмента

©pesa	Коэффициент $K_{S 2}$ при марке материала инструмента					
	$\stackrel{N}{\stackrel{N}{2}}$		($\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \stackrel{1}{6} \\ & \vdots \\ & \vdots \end{aligned}$		
Ториовая, концевая, дигковая трех еторонняя пилинддическая	1,4	1,25	1,1	1,0	0,75	0,65

мализованных поправочных коэффициентов,

$$
\begin{align*}
& i_{i} \quad \Pi K_{v \Phi}=\left[\begin{array}{l}
\left(\frac{C_{\mathrm{HB}}}{\mathrm{HB}}\right) \\
\left(\frac{C_{\mathrm{HRC}}}{\mathrm{HRC}}\right)
\end{array}\right]^{n} \times \\
& \times\left[\begin{array}{l}
\left(\frac{C_{2} D}{l_{\phi}}\right) \\
\left(\frac{C_{1} d_{\mathrm{onp}}}{L_{0 \text { Ip }}}\right)
\end{array}{ }^{n_{v 2}} \quad\left(\frac{60}{\varphi}\right)^{n_{v s}},\right. \tag{5}
\end{align*}
$$

дде $n_{v 1}$ - показатель степени, отражающей влияние механических свойств фбрабатываемого материала, эдданных Или твердостью го Брииеллю (НВ, кгс/мм ${ }^{2}$) или твердостью по Роквеллу $\left(\mathrm{HRC}\right.$, кгс $\left./ \mathrm{mm}^{2}\right), С_{\mathrm{HB}}$ и C_{HRC} - соответствующие постоянные механических євойств обрабатываемого материала, $n_{\nu 2}$ - степень влияния схемы закреп
fения инструмента $l_{\Phi}, l_{\text {опр }}, D$ и $d_{\text {опр }}$ - соответтвенно вылеты фрезы, 4
112.7. Коэффициент $\boldsymbol{K}_{S 3}$ на подачу в зависимости от схемы фрезерования

Фрезы	$\kappa_{S 3}$ при фрезеровании	
	со смеще нием	симметрич- ном
	1,0	0,5
Oстальные	1,0	1,0

вылет оправки, диаметр фрезы и диаметр оппавки в зависимости от схемы закрепления инструмента, C_{1} - постоянная схемы закрепления фрез, $n_{v 3}$ - степень влияния главного угла в плане φ при обработке торцовыми фрезами
Значение ПК चф зависит от формы выражения механических свойств об рабатываемого материала, типа фрезы и метода ее закрепления на гтанке, определение поправочного коэффициента происходит согласно соответствующей ему форме представления

Произведение неформализованных поправочных коэффициентов, исполь-

П2.8. Поправочный коэффициент $\boldsymbol{K}_{S 4}$ на подачу в зависимости от исполнения инструмента

$Ф$ Фезa	Коэффициент $K_{S 4}$ при конструкции фрезы	
	сборнои c СМП	со встав. ными но жами, сосгавной или цель ной
Торцовая, дисковая, трехсторонняя	1,0	0,9
Других типов	1,0	1,0

П2.9. Поправочный коэффициент $\boldsymbol{K}_{S s}$ на подачу в зависимости от типа обрабатываемой поверхности

$\Phi \text { pesa" }$	$\underset{\substack{\text { Кояффнинент } \\ \text { обработке }}}{K_{S 5}}$ при		
	плоской поверхконтура	$\underset{\text { пахт }}{\substack{\text { псту }}}$	
Концевая, дисковая трехсторонняя	1,2	1,0	0,8

зуемых для корректирования скорости резания, выражается зависимостью

$$
\begin{equation*}
\Pi K_{v H}=K_{v 1} K_{v 2} K_{v 3} K_{v 4} K_{v 5} K_{v 6} \tag{6}
\end{equation*}
$$

где $K_{v 1}, K_{v 2}, K_{v 8}, K_{v 4}, K_{v 5}$ и $K_{v 0}$ поправочные коэффициенты соответственно на марку обрабатываемого материала, марку материала инструмента, состояние обрабатываемой поверхности, исполнение фрезы, наличие охлаждения при обработке и характер обработки.
Числовые значения постоянных, входящих в формулы (4)-(6), в зависимости от условий обработки приведены в табл. П.2.11-П.2.20.

Диапазон скоростей резания, рассчитываемых по формуле (4), определяется минимальным и максимальным периодами стойкости инструменґа (табл. П2.21).

Зависимости для расчета мощности резания. Расчет мощности резания для всех типов фрез выполняют по обобщенной зависимости вида

$$
\begin{gather*}
N=C_{N} \cdot 10^{-5} D^{q} N_{Z}^{y_{2}} t^{x} N_{B}{ }^{u} N Z^{2} N \times \\
\times K_{N \Phi} K_{N 1} \tag{7}
\end{gather*}
$$

где C_{N} - постоянная, характеризующая мощность резания; q_{N}, y_{N}, x_{N}, u_{N} и Z_{N} - показатели степеней влияния на мощность диаметра фрезы и

П12.10. Поправочный коэффициевт $\boldsymbol{K}_{S \text { s }}$ на подачу в зависимости от типа зуба фрезы

Φ ¢esa	Коэффициент $K_{\text {Sє }}$ для зуба фрезы		
	$\begin{aligned} & \text { круп- } \\ & \text { ного } \end{aligned}$	среднего	5 ${ }^{\text {co }}$
Торцовая	1,0	1,0	0,7
Концевая	1,0	1,0	0,7
Цилиндрическая	1,0	1,0	0,5
Других типов	1,0	1,0	1,0

элементов режима резания; $K_{N \Phi}$ формализованный поправочный коэффициент влияния механических свойств обрабатываемого материала; $K_{N 1}$ - неформализованный поправочный коэффициент на группу обрабатываемого материала;

$$
K_{N \Phi}=\left[\begin{array}{l}
\left(\frac{\mathrm{HB}}{C_{\mathrm{HB}}}\right) \tag{8}\\
\left(\frac{\mathrm{HRC}}{C_{\mathrm{HRC}}}\right)
\end{array}\right]^{n_{N 1}},
$$

где $n_{N 1}$ - степень влияния на мощность резания механических свойств обрабатываемого материала, заданных тем или иным образом.

Числовые значения постоянных, входящих в формулы (7) и (8), приведены в табл. П2.22-П2.24.

ก2.11. Постовннье, входямие в форшулу дия расяета схорости резания

Tип фрезы	Обрабатв" ваемы материал	Инстру-ментальвый материал	Условия обработки					c_{0}	m	a_{0}	y_{v}	x_{0}	u_{v}	P_{0}
			$\underset{\text { мм/syб }}{s_{Z}}$	t / D	¢ ${ }_{\text {m }}$	\boldsymbol{t}, м M	HRC							
Торцовая	Конструкционная сталь	P6M5	До 0,10	-	-	-	-	96	0,2	0,2	0,2	0,1	0,2	0,1
			Св. 0,10					61	0,2	0,2	0,4	0,1	0,2	0,1
		T15K6	До 0,08	-	-	-	-	1514	0,37	0,2	0,1	0,1	0,2	0,2
			Св. 0,08					673	0,37	0,2	0,4	0,1	0,2	0
		Композит 01	-	-	-	-	35-55	1475	0,64	0,3	0,35	0,13	0,3	0
							55-70	218	0,39	0,3	0,45	0,12	0,3	0
							35-55	176	0,62	0,3	0,75	0,16	0,3	0
		10Д					55-70	59	0,32	0,3	0,55	0,09	0,3	0
	Серын чугум	BK8	-	-	-	-	-	283	0,3	0,2	0,35	0,15	0,2	0
		Композит 01	-	-	-	-	-	$182,6 \times 10^{3}$	1,12	0,25	0,37	0,16	0,25	0
		Композит 10 , 10Д	-	-	-	-	-	65×10^{3}	0,98	0,25	0,61	0,1	0,25	0

Продолжение табл. П2.11

Тип фрезв	Обрабатываемый материал	Инстру-ментальный мате риал	Условия обработки					c_{0}	m	q_{0}	g_{v}	x_{v}	a_{v}	P_{0}
			$\underset{\text { мм/зуб }}{S_{Z}}$	t / D	¢ ${ }_{\text {м }}$,	t, mm	HRC							
Торцовая	Серый чугун	Компо- зит 05	-	-	-	- ,	-	$26,3 \times 10^{3}$	0,76	0,25	0,43	0,19	0,25	0
		BOK60	До 0,1	-	-	$\frac{\text { До } 1,0}{\text { Св. } 1,0}$	-	1766	0,43	0	0,27	$\frac{0,22}{0,46}$	0	0
			Св. 0,1	-	-	$\frac{\text { До } 1,0}{\text { Св. } 1,0}$	-	497	0,43	0	0,82	$\frac{0,22}{0,46}$	0	0
		B3	До 0,1	-	-	До 1,0	-	5428	0,74	0	0,36	0,34	0	0
						Св. 1,0						0,80		
						До 1,0		1680	0,74	0	0,87	0,84		
						Св. 1,0						0,80		
		BOK63	До 0,1	-	-	До 1,0	-	4224	0,68	0	0,36	0,40	0	0
						Св. 1,0						1,08		
			Св. 0,1	-	-	До 1,0	-	570	0,68	0	0,40	0,40		

Продолосение табл. П2.11

Тип фрезз	Обрабаты ваемый материал	Инстру-ментальный материал	Условия обработки					c_{v}	m	q_{v}	g_{0}	x_{v}	u_{0}	P_{0}
			$\underset{\text { мм/зуб }}{S_{Z}}$	t / D	${ }_{\text {M }} \mathrm{D}$,	t, мм	HRC							
Торцовая	Ковкий и высокопрочный чугун	BK8	До 0,18	-	-	-	-	604	0,40	0,22	0,10	0,17	0,22	0
			Св. 0,18					414			0,32			
	Коррозион-но-стойкая сталь	P6M5K5	-	-	-	-	-	87	0,20	0,20	0,25	0,20	0,20	0,10
		BK8	-	-	-	-	-	117	0,30	0,20	0,29	0,07	0,20	0
	Алюминиевые сплавы	P6M5	До 0,1	-	-	-	-	333	0,20	0,20	0,20	0,10	0,20	0
			Cb 0,1					210			0,40			
		BK8	До 0,1	-	-	-	-	900	0,20	0,20	0,20	0,10	0,20	0
			Св. 0,1					580			0,40			
	Медные сплавы	P6M5	До 0,1	-	-	-	-	185	0,20	0,20	0,20	0,10	0,20	0
			Св 0,1					117			0,40			
		BK8	До 0,1	-	-	-	-	500	0,20	0,20	0,20	0,10	0,20	0
			Св. 0,1					315			0,40			

тип фрезя	Обрабатываемыйматериал матери		Условия обработкн					c_{0}	m	90	p_{0}	x_{0}	a_{0}	P_{0}
			$\underset{\mathrm{m} / / \mathrm{syb}}{s_{z}}$	t / D	${ }_{\text {m }}^{\text {m }}$,	t, мм	HRC							
Концевая	Конструкционная сталь	P6M5	-	-	До 8	-	-	22	0,39	0,78	0,20	0,24	0,17	0,1
					Св. 8			67,4	0,42	0,35	0,24	0,22	0,026	
		T15K6	-	-	10-50	-	-	146	0,41	0,35	0,31	0,08	0,07	0,1
	Серый чугун	P6M5	До 0,15	До 0,5	10-63	-	-	45	0,25	0,45	0,20	0,45	0,10	0,1
				Св. 0,5				53,5		0,2		0,2		
			Св 0,15	-	-	-	-	21	0,25	0,45	0,6	0,45	0,1	0,1
		BK8	До 0,15	До 0,5	$10-50$	-	-	135	0,25	0,45	0,2	0,45	0,1	0,1
				Св. 0,5				160,5		0,2		0,2		
			Св. 0,15	-	-	-	-	63	0,25	0,45	0,6	0,45	0,1	0,1
	Ковкий и высокопрочный чугун	P6M5	До 0,15	-	10-63	-	-	96	0,35	0,4	0,2	0,4	0,1	0,1
			Св. 0,15					59,7			0,45			
		BK8	До 0,15	-	10-50	-	-	288	0,35	0,4	0,2	0,4	0,1	0,1
			Св. 0,15					179			0,45			

Продолжение табл. П2.11

Тип фрезы	Обрабатываемый материал	Инстру-ментальный материал	Условня обработкв					c_{0}	m	a_{0}	80	x_{0}	${ }_{0}$	P_{0}
			$\underset{\text { Mм/3yб }}{s_{Z}}$	t / D	${ }_{\text {D }}{ }_{\text {M }}$	t, m	HRC							
Концевая	Коррозион-но-стойкая сталь	P6M5K5	До 0,1	-	До 8	-	-	13,1	0,28	0,7	0,2	0,22	0,14	0,1
			До 0,1		Св. 8			13,1	0,31	0,35	0,17	0,2	-0,04	
			Св. 0,1		Св. 8			10,3	0,31	0,35	0,65	0,2	-0,04	
	Алюминиевые сплавы	P6M5	-	-	До 8	-	-	12	0,3	1,69	0,2	0,32	0,24	0,1
					Св. 8			156	0,33	0,45		0,2	0,1	
	Медные сплавы	P6M5	-	1-	До 8	-	-	5,3	1,1	2,76	0,69	0,81	0,38	0,1
					Св. 8			107	0,33	0,45	0,2	0,3	0,1	
Цилиндри-ческая	Конструкционная сталь	P6M5	До 0,1	-	-	-	-	49,5	0,33	0,45	0,2	0,3	0,1	0,1
			Св. 0,1					31,2			0,4			
		T15K6	-	-	-	-	-	810	0,33	0,17	0,28	0,38	0,08	0,1
	- Серый чугун	P6M5	До 0,15	-	-	-	-	55,8	0,25	0,7	0,2	0,5	0,3	0,3
			Св. 0,15					24,3			0,6			
		BK8	До 0,2	-	-	До 2,5	-	923	0,42	0,37	0,19	0,13	0,23	0,14
						Св. 2,5		1180				0,40		

Тип фрезы	Обрабатываемыи материал	Инстру-ментальный материал	Условия обработки					c_{v}	m	q_{0}	g_{0}	x_{0}	u_{0}	P_{0}
			$\underset{\text { мм/зуб }}{S_{Z}}$	t / D	D,	t, мм	HRC							
Цилиндри-	Серый чугун	BK8	Св. 0,2	-		До 2,5	-	607	0,42	0,37	0,47	0,13	0,23	0,14
						Св. 2,5		777				0,4		
	Ковкий и высокопрочный чугун	BK8	До 0,1	-	-	-	-	69,3	0,33	0,45	0,2	0,3	0,1	0,1
			Св. 0,1					43,7			0,4			
	Коррозион-но-стойкая сталь	P6M5K5	-	-	--	-	-	39,6	0,24	0,29	0,34	0,3	0,1	0,1
	Медные сплавы	P6M5	До 0,1	-	-	-	-	104	0,33	0,45	0,2	0,3	0,1	0,1
			Св 0,1					65,6			0,4			
Дисковая трехсторонняя	Конструкционная сталь	P6M5	-	-	-	-	-	68,5	0,2	0,25	0,2	0,3	0,1	0,1
		T5K10	До 0,06	-	-	-	-	689	0,35	0,2	0,12	0,3	0,1	0,1
								314	0,35	0,2	0,4	0,3	0,1	0,1
	Серый чугун	P6M5	-	-	-	-	-	72	0,15	0,2	0,4	0,5	0,1	0,1
		BK8	-	-	-	-	-	362	0,3	0,18	0,14	0,48	0	0

Продолжекие табл. П2.7T

Тип фрезм	$\begin{gathered} \text { Обрабаты- } \\ -\quad \text { ваемый } \\ -\quad \text { материал } \end{gathered}$	Инстру-ментальный мате риал	Условия обработки					c_{0}	m	q_{0}	B_{0}	x_{v}	u_{0}	P_{0}
			$\underset{\text { мм/зуб }}{S_{Z}}$	t / D	${ }_{\text {M }}$,	t, mm	HRC							
Дисковая трехсторонняя	Ковкий и высокопрочный чугун	P6M5	-	-	-	-	-	96	0,2	0,25	0,2	0,3	0,1	0,1
		BK8	-	-	-	-	-	381	0,35	0,2	0,34	0,3	0,1	0
	Коррозион-но-стойкая сталь	P6M5K5	-	-	-	-	-	38,3	0,25	0,15	0,28	0,18	0,1	0,1
		BK8	-	-	-	-	-	93,7	0,31	0,3	0,39	0,43	0,1	0,1
	Алюминиевые сплавы	P6M5	-	-	-	-	-	240	0,2	0,25	0,2	0,3	0,1	0,1
	Медные сплавы	P6M5	-	-	-	-	-	144	0,2	0,25	0,2	0,3	0,2	0,15
Пазовая, прорезная (шлицевая) и отрезная	Конструкционная сталь	P6M5	-	-	-	-	-	53	0,2	0,25	0,2	0,3	0,2	0,1
	Серый чугун	P6M5	-	-	-	-	-	31,4	0,15	0,2	0,4	0,5	0,2	0,1
	Ковкий и высокопрочный чугун	P6M5	-	-	-	-	-	74	0,2	0,25	0,2	0,3	0,2	0,1

Tид фрезв	Обрабатвваемый материал	Инстру-ментальный материал	Условия обработки					c_{0}	m	q_{0}	g_{0}	x_{0}	u_{0}	P_{0}
			$\underset{\text { мм/зуб }}{s_{Z}}$	t / D	м ${ }_{\text {м }}$	t t, m	HRC							
Пазовая, продезная (шлицевая) и отрезная	Коррозион-но-стойкая сталь	P6M5K5	-	-	-	-	-	45	0,25	0,25	0,2	0,3	0,2	0,1
	Алюминиевые сплавы	P6M5	-	-	-	-	-	80,5	0	0,25	0,2	0,3	0,2	0,1
	Медные сплавы	P6M5	-	-	-	-	-	78	0,2	0,25	0,2	0,3	0,2	0,1
Для обработки Т-образных пазов	Конструкционная сталь	P6M5	-	-	-	-	-	26	0,30	0,35	0,2	0,22	0,026	0,1
	Серый чугун	P6M5	-	-	-	-	-	14	0,25	0,60	0,2	0,45	0,1	0,1
		BK8						276	0,42	0,37		0,4	0,23	0,14
	Коррозион-но-стойкая сталь	P6M5K5	-	-	-	-	-	14,3	0,25	0,4	0,2	0	0,1	0,1

Продолжение пабл. \#2.

Тип фрезв	Обрабатвваемый материал	Инстру-ментальный материал	Условия обработки					c_{0}	\boldsymbol{m}	q_{0}	g_{0}	x_{0}	a_{0}	P_{0}
			$\underset{m \times / \mathbf{s y \sigma}}{s_{z}}$	t / D	${ }_{\text {M }}^{\text {M }}$	t, мм	HRC							
Шпоночная (с маятниковой подачей)	Конструкционная сталь	P6M5	-	-	-	-	-	11	0,26	0,3	0,25	0	0,3	0
Шпоночная (при обраболке в один проход)								62	0,42	0,23	0,2	0	0,03	0
Одноугловая («Ласточкин хвост»)								49	0,42	0,35	0,2	0,22	0,1	0,1
	Серый чугун	P6M5	-	-	-	-	-	34	0,25	0,45	0,2	0,45	0,2	0,1
		BK8						326	0,42	0,37	0,19	0,1	0,23	0,14
Фасонная полукруглая выпуклая	Конструкционная сталь	P6M5	-	-	-	-	-	48	0,33	0,45	0,2	0,3	0,1	0,1
вогнутая и двуугловая несим метричная								40						

$\psi^{\text {3 }}$ (Обрабатываемыи материал		$\begin{gathered} K_{v 1} \text { при ма- } \\ \text { териале } \\ \text { инструмента } \end{gathered}$	
Наименование	Марка	EPC	TC
Качественная конструкционная сталь по ГОСТ 1050-74	$\begin{aligned} & 08,10,15,20,25,30,35,40 \\ & 45,50,60,65 \end{aligned}$	1,0	1,0
Легированная конструкционная сталь по ГОСТ 4543-71: хромистая	$\begin{aligned} & \text { 15X, 15XA, 20X, 30X, 35X, } \\ & 38 \mathrm{XA}, 40 \mathrm{X}, 45 \mathrm{X}, 50 \mathrm{X} \end{aligned}$	0,8	0,9
хромоникелевая	$\begin{aligned} & 20 \times \mathrm{XH}, 40 \mathrm{XH}, 45 \mathrm{XH}, 50 \mathrm{XH}, \\ & \text { 20XHP, 12XHA, } 12 \mathrm{XXH} 3 \mathrm{~A}, \\ & \text { 20XH3A, } 30 \mathrm{XH} 3 \mathrm{~A}, 12 \mathrm{X} 2 \mathrm{H} 14 \mathrm{~A}, \\ & \text { 20X2H4A } \end{aligned}$	0,8	0,9
' хромованадиевая	$15 \mathrm{X} \Phi, 40 \mathrm{X} \Phi$ A	0,8	0,9
марганцовистая	15Г, 20Г, 30Г, 40Г, 50Г, 60Г, $65 \Gamma, 70$ Г, 50 Г2, $35 \Gamma 2,40$ Г 2 , $45 \Gamma 2$	0,7	0,8
хромомарганцевая	18ХГ, 35ХГ2, 18ХГТ, 20ХГР, 27ХГР, 25ХГТ, 40ХГТР, 35ХГФ, 25ХГМ	0,7	0,8
хромокремнистая хромоалюминиевая хромомолибденовая		$\begin{aligned} & 0,7 \\ & 0,7 \\ & 0,7 \end{aligned}$	$\begin{aligned} & 0,8 \\ & 0,8 \\ & 0,8 \end{aligned}$
хромокремнемарганцовая	$\begin{aligned} & \text { 20ХГСА, 25ХГСА, } 30 \times Г С \text {, } \\ & 35 \text { ХГСА, } 39 \times Г С Н 2 А ~ \end{aligned}$	0,7	0,8
хромоникельмолибденовая	14X2H3MA, 20XH2M, 30XH2MA, 40 XH2MA, 38XH3MA, 18X2H4MA, 25X2H4MA	0,7	0,8
хромоникельмолибденовая и хромоникельванадиевая	$\begin{aligned} & \text { 30ХН2MФA, } 36 \mathrm{X} 2 \mathrm{H} 2 \mathrm{M} \mathrm{\Phi A}, \\ & \text { 38ХНЗМФА, } \\ & \text { 45ХН2МФA, } 20 \mathrm{XH} 4 Ф \mathrm{~A} \end{aligned}$	0,7	0,8
Инструментальная углеродистая сталь по ГОСТ 1435-74	у7, у8, у8Г, у9, У10, У11, y12, У13, y7A, У8A, У9A, У8ГА, У10А, У12A, У13А	0,7	0,8

Продолжение табл. П2.12

Обрабатываемый материал		$\begin{gathered} K_{\text {б1 }} \text { при ма- } \\ \text { териале } \\ \text { ннструмента } \\ \hline \end{gathered}$	
Наименование	Марка	EPC	TC
Инструментальная легированная сталь по ГОСТ 5950-73	$\text { 9ХФ, ХВ4, } 9 Х С, ~ Х Г С, ~ 9 Х В Г, ~$ $\text { ХВГ, ХВСГ, } 6 \text { ХВГ, } 6 \mathrm{XB} 2 \mathrm{C}$	0,6	0,7
Шарико-и роликоподшипниковая сталь по ГОСТ 801-78	ШХ 15, ШХ 15СГ	0,6	0,7
Инструментальная быстрорежущая сталь по ГОСТ 19265-73	P18, P12, P9, P6M5, P18Ф2, P18K5Ф2, P9K5, P6M5K5, P9M4K8, P10K5Ф2, P6M3, P14Ф4, P9Ф5	0,5	0,6
Серый чугун по ГОСТ 1412-85	$\begin{aligned} & \text { СЧ40, СЧ15, СЧં18, СЧ20, } \\ & \text { СЧ21, СЧ24, СЧ25, СЧ30, } \\ & \text { СЧ35 } \end{aligned}$	1,0	1,0
Ковкий и высокопрочный чугуны по ГОСТ 7293-85	ВЧ35, ВЧ40, ВЧ45, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100	1,0	1,0
Коррозионно-стойкая сталь по ГОСТ 5632-72	12X13, 25X13H2	1,4	1,4
	20X13	1,3	1,3
	30X13	1,2	1,2
	09X16H4Б, 14X17H2, 09X15H8Ю, 12X18H9T, 07X16H4	1,0	1,0
	12X21M5T	0,85	0,85
Медноцинковые сплавы, обрабатываемые давлением, по ГОСТ 15527—70	ЛАЖ60-1-1, ЛЖМц59—1-1	0,4	0,4
	Л63, Л062-1	0,55	0,55
	ЛЖС58-1-1	0,55	0,55
	ЛС63-3, ЛС59-1	1,5	1,5
Безоловянные бронзы, обрабатываемые давлением, по ГОСТ 18175—78	$\begin{aligned} & \text { БрБ2, БрМцц5, БрАЖ9—4, } \\ & \text { БрАЖМц10-3-1,5 } \end{aligned}$	0,2	0,2
	БрАЖН10-4-4	0,55	0,55
	БрА5, БрА7, БрАМц9-2, БрКМцЗ-1	1,0	1,0

Обрабатываемый материал		$\begin{aligned} & K_{\text {о1 }} \text { при ма } \\ & \text { териале } \\ & \text { инструмента } \end{aligned}$	
Наименование	Марка	EPC	TC
Оловянные бронзы，обрабаты－ ваемые давлением，по ГОСТ 5017－74	$\begin{aligned} & \text { БрОФ6,5-0,4; БрОФ4-0,25; } \\ & \text { БрОЦ4-3 } \end{aligned}$	1，0	1，0
	БрОЦС4—4－2，5	1，5	1,5
Безоловянные литейные брон－ зы пө ГОСТ 493－79	БрА10Ж3Мц2，БрА10Ж4Н4Л， БрА11Ж6H6	0，4	0，4
	БрА9Мц2Л	0，55	0，55
Медноцинковые литейные спла－ вы по ГОСТ 17711—80	ЛСЗ8Мц2С2	1，0	1，0
	ЛЦЗ0АЗ，ЛЦ16К4	0，55	0，55
	ЛЦ23А6Ж3Мц2	0，4	0，4
Алюминиевые литейные сплавы ппо ГОСТ 1583－89	АК12（АЛ2），АК9ч（АЛ4）， АК5Мч（АЛ5－1），АК7ч（АЛ9）， AM5（АЛ19）	1，0	1，0
	AK5M7	0，85	0，85
Алюминиевые деформируемые сплавы по ГОСТ 4784－74	АД0，АД1，АМュ，АМцС， АД31，АД33，АМг3，АМг5， AB	1，25	1，25
	Д1，AMr6	1，0	1，0
	Д16，АК4，АК6，AK8，В95	0，85	0，85

П2．13．Значения постоянных для определения формализованного поправочного коэффициента на скорость резания в зависимости от механических свойств обрабатываемого материала

Материал		HB	$C_{\text {HB }}$	$C_{\text {HRC }}$	$n_{v 1}$
－обрабатвваемва	инструмента				
Сталь конструкционная	БРС	До 250	207	－	1，0
		Св． 250	229		2，0
	TC	－	207	－	1，0
	Композит 01， композит 10	До 220	－	10	0，15
		》 290	－	13，9	0，29
		》 420 》 550	－	35 41	0,42 3,16
		Св 550	－	62，5	－

Продолжение табл. П2.18

Материал		HB	$C_{\text {HB }}$	$C_{\text {HRC }}$	$n_{\text {V1 }}$
обрабатываемый	инструмента				
Серый чугун	БРС, TC	До 229	229	-	1,0
		Cв. 229			1,5
	Композит 01	До 245	147	-	0,44
		Св. 245	210		1,4
	Композит 05	До 245	147	-	0,6
		Св. 245	210		2,2
	Композит 10	До 245	147	-	0,72
		Св. 245	210		1,85
Ковкий и высокопрочный чугун	БPC, TC	До 170	170	-	1,0
		Св. 170			1,4
Медные и алюминиевые сплавы		-	1,0	1,0	0

П2.14. Значение постоянных для определения формализованного поправочного коэффициента на скорость резания в зависимости от закрепления фрезы

$Ф$ реsa	Условия фрезерования и постоянные в формулах при креплении фрезы						
	консольном				с дополнительной опорой		
	$\underset{\mathrm{MM}}{\mathrm{D}}$	$\begin{gathered} l_{\Phi} / D \\ t_{\mathrm{omp}} / d_{\mathrm{omp}} \end{gathered}$	C_{1}	$n_{\text {v2 }}$	$l_{\text {omp }} / d_{\text {onp }}$	C_{1}	$n_{v 2}$
Торцовая	-	1,0	1,0	0	-	-	-
Концевая, шпоночная, для обработки Т-образных пазов, для обработки пазов сегментных шпонок	До 8	До 2,5	2,5	0	-	-	-
		Св. 2,5	2,5	0,55			
	Св. 8	До 3,0	3,0	0	-	-	-
		Св. 3,0	3,0	0,62			
Дисковая, фасонная, угловая, цилиндрическая	-	До 3,0	3,0	0	10	10	0,2
		Св 3,0		0,8			0,5

Обрабатываемыи материал	Материал инструмента	${ }^{\text {v3 }}$
	БPC	0,44
өнструкционная сталь	TC	0,32
Чугуны	БРС, T.C	0,3
Коррозионно-стойкая сталь		0,35
Медные и алюминиевые сплавы		0,28

П2.16. Поправочный коэффициент K_{02} на скорость резания в зависимости от марки твердого сплава

материал инстру- мента	BK3, BK6M	BK4, BK6	T15K6, BK8	BK88 T14K8	BK10-OM	T5K10	TT7K12
K_{02}	1,3	1,2	1,0	0,8	0,7	0,65	0,45

П2.17. Поправочный коэффициент $K_{v 3}$ на скорость резания в зависимости от обрабатываемого материала и состояния обрабатываемой поверхности

Обрабатываемпй материал	$K_{v 3}$ при обработке заготовки				
	без корки и проката	штампованной	поковки	отливки	отливки с очи: щеннои коркод
Сталь конструкционная	1,0	1,0	0,9	0,8	0,8
Чугуны	1,0	-	-	0,7	0,8
Сталь коррозионно-стойкая	1,0	-	-	0,7	0,7
Сплавы медные	1,0	1,0	-	0,9	0,9
Сплавы алюминиевые	1,0	0,95	0,9	0,8	0,8

П2.18. Поправочный коэффициент $K_{\text {бє }}$ на скорость резания в зависимости от исполнения инструмента

¢pesa	$K_{v 4}$ при конструкции фрезы	
	сб̈орной с СМП, со вставными	составнои или цельной
Торцовая	1.1	1,0

П2.19. Поправочный коэффициент $K_{v /}$ на скорость резания в зависимости от обрабатываемого материала и наличия охлаждения

Обрабатываемвя материал	$К_{\text {ә5 }}$ при обработке	
	c охлаждением	без охлаждения
Конструкционнал сгаль, ковкий и высокопрочный чугун, медные и алюминиевые сплавы	1,0	0,8
Серый чугун	1,15	1,0
Коррозионно-стойкая сталь	1,0	0,65

П2.20. Поправочный коэффициент $K_{\text {चє }}$ на скорость резания в зависимости от характера обработки

Материял инструмента	$K_{\nu \epsilon}$ при обработке	
	черновой	qпстовов
EPC, TC	1,0	0,85
Минеральная керамика, СТМ	1,0	1,0

П2.21. Периоды стойкости фрез, мин

Фpesa	Обрабатываемыи материал	Диапазон изменения периода стойкости фрез в зависимости от инетрументального материала			
		5PC	TC	Минеральная керамика	CTM
Торцовая	Констр) кционная сталь	30-800	30-500	60-90	60-300
	Чугуны	30-800	30-1700	60-300	60-600
	Коррозионностойкая сталь	30-400	30-400	-	-
	Аломиниевые и медные сплавы	30-600	30-600	-	-

Фреяа	Обрабалываемыя матсриал	Диапазон иэменения периода стойкости фрез в эависимости от инструментального - материала			
		5PC	TC	$\begin{gathered} \text { Mине- } \\ \text { рапвндя } \\ \text { heрамика } \end{gathered}$	CTM
Концевая	Конструкционная сталь, чугуны	30-300	20-500	--	-
	Коррозионностойкая сталь	$30-300$	20-500	--	-
	Алюминиевые и медные сплавы $20-300$		-	-	-
Шпоночная	Сталь консгрукционная	20-200	-	-	-
保	Сталь конструкционная Чугуны	$\begin{aligned} & 20-300 \\ & 20-300 \end{aligned}$	$20-300$	-	-
Дисковая	Bce абрабатываемые материалы	30-500	$30-500$	-	-
Фасонная полу- двух- жуглая, жловая несим-	Конструкционная сталь	40-300	-	-	-
2иноугловая (для 4бработки пазов ॠпа «Ласточкин (вост»)	Конструкционная сталь, чугуны	30-180	80-180	-	-
илиндрическая	Bсе обрабатываемые материалы	60-500	60-500	-	-
яля обработки па-	Конструкционная сталь, чугуны	30-180	-	-	-
монок	Коррозчонностойкая сталь	15-75	-	-	-
嗳илы дисковые germeнтные	Bce обрабатывае мые wатериалы	300-2000	-	-	-

П2.22. Постоянные, входящие в формулу для расчета мощности резания

Фреза	Материал		Условия обработки			c_{N}	q_{N}	y_{N}	x_{N}	${ }^{\prime} N$	${ }^{2} N$
	обрабатываемвй	инструмента	HRC	$\underset{\text { мм/sуб }}{s_{Z}}$	t / D						
Торцовая	Конструкционная сталь	P6M5 T15K6 Композит 01	- $10-35$	-	-	4,1 4,64 154	$-0,1$ $-0,1$ 1,96	0,8 0,75 0,83	$\begin{aligned} & 0,95 \\ & 1,0 \\ & 1,02 \end{aligned}$	1,1 1,1 1,23	1,0 1,0 0,72
		$\begin{aligned} & \text { Композит } 10, \\ & 10 Д \end{aligned}$	$\begin{aligned} & 35-55 \\ & 55-70 \end{aligned}$	-	-	74,2 35,8	2,01 2,05	$\begin{aligned} & 0,73 \\ & 0,62 \end{aligned}$	$\begin{aligned} & 1,05 \\ & 0,98 \end{aligned}$	1,23 1,23	0,78 0,88
	Серый чугуу	BK8	-	-	-	2,83	-0,14	0,72	0,9	1,14	1,0
		Минеральная керамика	-	-	-	78	2,02	0,75	1,07	1,2	0,82
							1,8	0,75	1,01	1,23	0,57
	Коррозионно-стойкая сталь	P6M5K5	-	-	-	4,46	-0,15	0,78	1,0	1,15	1,0
		BK8				5,53	-0,15	0,78	0,92	1,15	1,0
	Медные сплавы	P6M5, BK8	-	-	-	1,92	-0,1	0,8	0,95	1,1	1,0
	Алюминиевые сплавы	P6M5, BK8	-	-	-	1,19	-0,25	0,67	0,87	1,25	1,0
Концевая, шпоночная, цилиндрическая	Конструкционная, коррозионно-стойкая сталь	P6M5, P6M5K5	-	До 0,1	До 0,5	1,22	0,3	0,3	0,7	1,0	1,0
					Св. 0,5	1,42	0,1	0,3	-0,9		

Фреза	Матернал		Условия обработки			c_{N}	q_{N}	${ }^{g_{N}}$	${ }^{x_{N}}$	${ }^{u_{N}}$	${ }^{2} N$
	обрабатываемыв	инструмента	HRC	$\underset{\text { мм }}{s_{Z}, \mathbf{y б}}$	t / D						
Концевая, шпоночная, цилиндри ческая	Конструкционная коррозионно-стойкая сталь	P6M5, P6M5K5	-	Св. 0,1	До 0,5	2,45	0,3	0,6	0,7	1,0	1,0
					Св. 0,5	2,83	0,1	0,6	0,9		
		BK8	-	До 0,1	До 0,5	1,32	0,2	0,5	0,8	1,0	1,0
					Св. 0,5	1,45	0,1	0,5	0,9		
				Св. 0,1	До 0,5	2,39	0,2	0,75	0,8	1,0	1,0
					Св. 0,5	2,58	0,1	0,75	0,9		
	Серый чугун.	P6M5	-	-	-	1,54	0,17	0,65	0,83	1,0	1,0
		BK8				1,93					
	Ковкий и высокопрочный чугун	P6M5	-	-	-	1,54	0,14	0,72	0,86	1,0	1,0
		BK8				1,93					
	Медные сплавы	P6M5	-	-	-	1,16	0,14	0,72	0,86	1,0	1,0
	Алюминиевые сплавы	P6M5	-	-	-	0.87	0,14	0,72	0,86	1,0	1,0

Продоязсние табя П2 22

Фреза	Материал		условия обработки			c_{N}	${ }^{q_{N}}$	y_{N}	\boldsymbol{x}_{N}	u_{N}	${ }^{2} N$
	обрабатываемыи	инструмента	HRC	$\underset{\mathrm{MM} / 3 \mathrm{syb}}{s_{z}}$	t / D						
Дисковая, фасонная, двухугловая, несимметричная, для обработки па-зовсегментных зов сщпонок	Конструкционная сталь	P6M5	-	-	-	13,4	-0,1	0,8	0,9	1,1	0,9
		T15K6				3,5	0,14	0,72	0,86	1,0	1,0
	Серый чугун	P6M5	-	-	-	1,54	0,17	0,65	0,83	1,0	1,0
		BK8				4,8	$1 .-0,1$	${ }_{0} 0,8$	0,9	1,1	0,9
	Ковкий и высокопрочный чугун	P6M5	-	$-$	-	1,54	0,14	0,72	0,86	1,0	1,0
		BK8				8,00	-0,1	0,8	0,9	1,1	0,9
	Коррозионно-стойкая сталь	P6M5K5	-	-	-	4,2	0,14	0,6	0,75	1,0	1,0
	Медные сплавы	P6M5	-	-	-	1,16	0,14	0,72	0,85	1,0	$1,{ }^{\circ}$
	Алюминиевые сплавы	P6M5	-	-	-	0,87	0,14	0,72	0,86	1,0	1,0
Для обработки Тобразных пазов	Конструкционная сталь	P6M5	-	-	-	7,0	0,14	0,72	0,86	1,0	1,0
	Серый чугун	P6M5	-	-	-	3,0	0,17	0,65	0,83	$1,0$	1,0
		BK8				5,4	-0,1	0,8	0,9		

Фреза	Материал		Условия обработки			C_{N}	${ }^{9} N$	${ }^{8} N$	${ }^{x_{N}}$	u_{N}	${ }^{2} N$
	обрабатываемыи	инструмента	HRC	$\underset{\text { мм/зуб }}{s_{Z}}$	t / D						
Одноугловая	Конструкционная . сталь	P6M5	-	-	-	16,3	0,14	0,72	0,86	1,0	1,0
	Серый чугун	P6M5	-	-	-	6,2	0,17	0,65	0,83	1,0	1,0
		BK8				3,2	-0,1	0,8	0,9		
Дисковые сегментные пилы	Конструкционная сталь	P6M5	-	-	-	1,5	0,14	0,72	1,0	1,0	1,0
	Коррозионно-стойкая сталь	P6M5	-	-	-	0,5	0,14	0,6	1,0	1,0	1,0
	Серый чугун	P6M5	-	-	-	0,7	0,17	0,65	1,0	1,0	1,0
	Ковкий и высокопрочный чугун	P6M5	-	-	-	0,66	0,14	0,72	1,0	1,0	1,0
	Алюминиевые сплавы	P6M5	-	-	-	0,3	0,14	0,72	1,0	1,0	1,0
	Медные сплавы	P6M5	-	-	-	0,5	0,14	0,72	1,0	1,0	1,0

П2.23. Значения постоянных в формулах для определения формализованного поправочного коэффициента на мощность резания в зависимости от механических свойств обрабатываемого материала

Материал		HB	$c_{\text {HB }}$	$c_{\text {HRC }}$	${ }^{n}{ }_{N 1}$
обрабатываемый	инструмента				
Сталь конструкционная	EPC	$\begin{array}{cr}\text { До } 170 \\ \text { » } & 229 \\ \text { Св. } & 229\end{array}$	170 1 229	二	$\begin{gathered} -1,25 \\ 0 \\ 2,5 \end{gathered}$
	TC	До 250	1 250	-	$\begin{aligned} & 0 \\ & 2,5 \end{aligned}$
	$\begin{aligned} & \text { Композит } 01 \text {, } \\ & 10,10 \text { Д } \end{aligned}$	$\begin{array}{cc} \text { До } 290 \\ » & 550 \\ \text { Св. } & 550 \end{array}$	二	$\begin{aligned} & 10 \\ & 35 \\ & 60 \end{aligned}$	0,23 1,7 1,7
Чугуны	БРС, TC	$\stackrel{-}{-}$	229	-	0,7
	Минеральная керамика, СТМ	-	147	-	0,4

П2.24. Поправочный коэффициент $K_{N 1}$ на мощность резания в зависимости от свойств обрабатываемого материала

Обрабатываемый материал		$\begin{gathered} \text { Значение } \\ \text { коэффициента } \\ K_{N 1} \end{gathered}$	
Группа	Ма́рка	БPC	TC
Углеродистая качественная конструкционная сталь по ГОСТ 1050-74	$\begin{aligned} & 08,10,15,20,25,30,35,40 \\ & 45,50,60,65 \end{aligned}$	1,0	1,0
Легированная конструкционная сталь по ГОСТ 4543-71: хромистая	$\begin{aligned} & 15 \mathrm{X}, 15 \mathrm{XA}, 20 \mathrm{X}, 30 \mathrm{X}, 35 \mathrm{X}, \\ & 38 \mathrm{XA}, 40 \mathrm{X}, 45 \mathrm{X}, 50 \mathrm{X} \end{aligned}$	1,0	1,05
хромоникелевая	20XH, 40XH, 45XH, 50XH, 20XHP, 12XHA, 12XH3A, 20XH3A, 30XH3A, 12X2H4A, 20X2H4A	1,0	1,05
хромованадиевая	15XФ, 40XФA	1,0	1,05
марган цовистая	15Г, 20Г, 30Г, 40Г, 50Г, 60Г, $65 \Gamma, 70 \Gamma, 30 \Gamma 2,35 \Gamma 2,40 \Gamma 2$, 45Г2, $50 \Gamma 2$	1,0	1,05

Обрабатываемый материал		$\begin{gathered} \text { Значение } \\ \text { коэффициента } \\ K_{N 1} \end{gathered}$	
Группа	Марка	BPC	TC
(хромокремнистая	$33 \mathrm{XC}, 38 \mathrm{XC}, 40 \mathrm{XC}$	1,05	1,05
ххомоалюминиевая	38XЮ, 38X2MЮA	1,05	1,05
хромомолибденовая	$\begin{aligned} & \text { 15XM, 20ХM, } 30 \times \mathrm{XM}, 30 \times M A, \\ & \text { 35ХМ, 38ХМ, } \\ & \text { 40ХММФ } \end{aligned}$	1,05	1,05
גромокремнемарганцовая	$\begin{aligned} & \text { 20ХГСА, 25ХГСА, } 30 \times Г С \text {, } \\ & 35 \text { ХССА, } 39 \times \text { СН } 2 \mathrm{~A} \end{aligned}$	1,05	1,05
хромоникельмолибденовая	$\begin{aligned} & \text { 14X2H3MA, } \quad \text { 20XH2M, } \\ & \text { 30XH2MA, 40XH2MA, } \\ & \text { 38XH2MA, 18X2H4MA, } \\ & \text { 25X2H4MA } \end{aligned}$	1,05	1,05
хромоникельмолибденовая и ххомоникельванадиевая	$\begin{array}{ll} \text { 30ХН2МФА, } & 36 Х 2 \mathrm{H} 2 М Ф А, \\ \text { 38ХНЗМФА, } & 45 \mathrm{XH} 2 М Ф А, ~ \\ \text { 20ХН4ФА } & \end{array}$	1,05	1,05
яструментальная углеродифая сталь по ГОСТ 1435-74	У7, У8, У8Г, У9, У10, У11, У12, У13, У7А, У8А, У9А, У8ГА, У10А, У12А, У13А	1,05	1,05
нструментальная легирован-解 сталь по ГОСТ 5950-78	$\begin{aligned} & 9 Х \Phi, ~ Х В 4,9 Х С, ~ Х Г С, 9 Х В Г, ~ \\ & \text { ХВГ, ХВСГ, 6ХВГ, 6ХВ2С } \end{aligned}$	1,85	1,55
Марико- и роликоподшипниювая сталь по ГОСТ 802-60	ШХ 15, ШХ 15CГ	1,85	1,55
нструментальная быстроре- ущая сталь по OCT 19265-73	P18, P12, P9, P6M5, P18Ф2, Р18K5Ф2, Р9K5, P6M5K5, P9M4K8, P10K5Ф2, P6M3, P14Ф4, Р9Ф5	2,6	2,1
угуны	-	1,0	1,0

Обрабатываемый материал		Значениекоэффициента$K_{N 1}$ приматералефрезы	
Группа	Марка	EPC	TC
Коррозионно-стойкая сталь по	12X13, $25 \times 13 \mathrm{H} 2$	1,4	1,4
ГОСТ 5632-72	20X13	1,3	1,3
	30X13	1,3	1,3
	40X13, 09X16H45,	1,0	1,0
	$14 \mathrm{X} 17 \mathrm{H} 2,09 \mathrm{X} 15 \mathrm{H} 8 \mathrm{~F},$		
	$12 \mathrm{X} 18 \mathrm{H} 9 \mathrm{~T}, 07 \mathrm{X} 16 \mathrm{H} 6$ $12 \times 21 \mathrm{M} 5 \mathrm{~T}$	0,85	0,85
Медные сплавы	-	1,0	1,2
Алюминиевые сплавы	-	1,0	1,2

Приложение 3

ОСНОВНЫЕ ЗАВИСИМОСТИ ДЛЯ ОПРЕДЕЛЕНИЯ РАСХОДА ФРЕЗ

Раслод всех видов фрез за 1000 ч основного времени рассчитывают по суммарной стойкости инструмента:

$$
P_{1000}=\frac{1000}{\sum T}
$$

Суммарную стойкость инструмента рассчитывают с учетом коэффициента -случайной убыли:

для перетачиваемого инструмента

$$
\sum T=\frac{k+1}{K_{\mathrm{y}}} T
$$

где k - число переточек; K_{y} - коэффициент случайной убыли инструмента (табл. ПЗ.1); T - период стойкости инструмента в часах машинной работы.

Для фрез с механическим креплением твердосплавных неперетачиваемых пластин

$$
\sum T=\frac{k^{\prime}}{K_{\mathrm{y}}} T
$$

где k^{\prime} - число граней или переустановок многогранной неперетачиваемой пластины (табл. ПЗ 2).

Для определения расхода общего числа пластин твердого сплава на один типоразмер *фрезы с СМП необходимо значение P_{1000} умножить на число зубьев фрезы:

$$
P_{1000 \text { пл }}=P_{1000} Z
$$

где Z - число зубьев фрезы.
Расход корпусов торцовых фрез с СМП за 1000 ч основного времени

$$
P_{1000 \mathrm{~K}}=\frac{1000}{\sum T_{1}} Z
$$

где $\sum T_{1}$ - суммарная стойкость корпуса фрезы, часы машинной работы

Суммарную стойкость корпуса фрезы определяют по формуле

$$
\sum T_{1}=T k_{1}
$$

где k_{1} - число периодов стойкости, выдерживаемое корпусом фрезы до потери работоспособности (табл. ПЗ 3)

Расход державок торцовых фрез c СМП

$$
P_{1000 \text { д }}=\frac{1000}{\sum T_{2}} Z
$$

15．1．Коэффициенты случайной убыли $K_{\text {у }}$ перетачиваемых инструментов

Фреза	Размеря фрезя，мм		$K_{\text {у }}^{\text {инструмента }}$	
	$\underset{B}{\text { Ширина }}$	$\begin{gathered} \text { Днаметр } \\ D \end{gathered}$	TC	EPC
Tорцовая	－	－	1，1	1，05
（онцевая и шпоночная	二	$\begin{gathered} 4-8 \\ 10-25 \\ 32-63 \end{gathered}$	$\overline{1,15}$ 1,15	$\begin{aligned} & 1,2 \\ & 1,1 \\ & 1,05 \end{aligned}$
迷拉индрическая	－	－	1，2	1，05
фисковая двух－и трехсторон－ Fig	－	－	1，2	1，05
нсковая прорезная и от－ жная	До 1，6 $1,6-2,5$ Св． 2,5	－	三	1,3 1,2 1,05
\％исковая пазовая	－	－	－	1，05
भяя обработки Т－образных па－	三	До 18 $21-40$ Св． 40	1,15 1,1	$\begin{aligned} & 1,15 \\ & 1,1 \\ & 1,05 \end{aligned}$
обработки пазов сегмент－ шпонок	－	－	－	1，15
сонная	－	－	－	1，05
дя обработки пазов типа Пасточкин хвост»	二	$\begin{gathered} 10 \\ 16 \\ 25-50 \\ 63-100 \\ 125-160 \\ \text { Св. } 200 \end{gathered}$	二 1,2 1,15 1,1	$\begin{aligned} & 1,2 \\ & 1,15 \\ & 1,1 \\ & 1,05 \end{aligned}$
дсковые сегментные пилы	二	$\begin{gathered} \text { До } 630 \\ 800-1250 \\ \text { Св. } 1600 \end{gathered}$	－	i，2 1,15 1,1

П3.2. Коэффициенты случайной убыли $\boldsymbol{K}_{\mathbf{y}}$ СМП при торцовом фрезеровании

Форма пластины	Форма передней поверхности	Число граней или переустановок пластины	K_{y}
Пяти- гранная	Плоская	10	1,15
	С выкружкой	5	1,1
Четы-рехгранная	Плоская	8	1,14
	С вы- кружкой	4.	1,05
Круглая	Плоская	8	1,18
	С выкружкой	4	1,14
Ромбическая	Плоская	2	1,2

где $\sum T_{2}$ - суммарный период стойкости державок торцовых фрез с СМП, часы машинной работы; Z - число зубьев (державок) фрезы.

П3.3. Число периодов стойкости корпусов k_{1} торцовых фрез с СМП и державок k_{2} пластин до полной потери работоспособности

Обработка	Число периодов стоикоси до потери работоспособности	
	Корпус фрезы k_{1}	Держаака k_{2}
	250	100
350	150	

Суммарный период стойкости державок торцовых фрез с СМП определяют по формуле

$$
\sum T_{2}=T k_{2}
$$

где k_{2} - число периодов стойкости фрезы, выдерживаемое ее державкой до потери работоспособности (см. табл. ПЗ.3).

Значения периодов стойкости фрез и число их переточек или число граней СМП приведены в картах 3 соответствующих разделов нормативов.

РАЗдел III ОБРАБОТКА ОТВЕРСТИЙ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ СОКРАЩЕНИЯ

Элементы режимов резания: $\mathbf{0}_{\mathrm{T}}, S_{\mathrm{o}}, S_{\text {o }_{\text {ф }}}$ - подачи на оборот: абличная, скорректированная приметельно к условиям обработки и очненная по паспорту станка, об;
кин - минутная подача, мм/мин;
f. v - скорости резания: табличная скорректированная применительно условиям обработки, м/мин;
t - глубины резания: табличная скорректированная для выбранной следовательности переходов, мм.
Флементы деталей и инструмента: - диаметр инструмента и обрабадваемого отверстия, мм;
d - диаметр в предшествующем пере-
дде или заготовке, мм;
4- наибольший диаметр центровочөто отверстия, мм;

- диаметр сердцевины сверла, мм; глубина отверстия, мм;
- длина рабочей части сверла, мм; - размер фаски, мм;

4 - табличное значение диаметра инрумента, мм;
в - твердость обрабатываемого мариала по Бринеллю;
ह- временное сопротивление обра.тываемого материала, МПа.
Графические обозначения:

- цилиндрическое отверстие;
- плоское дно;
- цекование. зенкование или

ентрование.
Другие обозначения:
$T_{\text {d }}$ - периоды стойкости инстру-

мента: нормативный и фактический, мин;
$P_{\text {o }_{\mathrm{T}}}, P_{\mathrm{o}}$ - осевые составляющие силы резания: табличная и скорректированная применительно к условиям обработки, H ,
N_{T}, N - значения мощности резания: табличное и скорректированное применительно к условиям обработки, кВт;
$M_{\text {кр. т }}$ - значение крутящего момента табличное, $\mathrm{H} \cdot \mathrm{m}$;
$n_{T}, n, n_{\phi}, n_{\text {л }}$ - частоты вращения шпинделя: табличная, скорректированная применительно к условиям обработки, уточненная по паспорту станка и уточненная по лимитирующей головке, мин ${ }^{-1}$;
$N_{\text {д }}$ - мощность электродвигателя, кВт;
η - коэффициент полезного действия станка;
$P_{\text {ост }}$ - наибольшая осевая сила, допускаемая прочностью механизма подачи станка, H ;
L_{p} - длина рабочего хода инструмента, мм;
l_{1}, l_{2}, l_{3} - длины: подвода, врезания и перебега, мм;
$T_{\text {о }}$ - основное время, мин;
$T_{\text {всп }}, \quad T_{\text {доп }}$ - время на операцию: вспомогательное и дополнительное, мин;
$R a$ и $R z$ - параметры шероховатости обработанной поверхности, мкм;
$R z_{i-1}$ - параметр шероховатости поверхности, обработанной на предшествующем переходе, мкм;
$K_{1}, \quad K_{2}, \ldots, K_{16}$ - поправочные коэффициенты на измененные условия обработки (карта 5);
$K_{\text {c }}$ - коэффициент смещения начала или окончания работы головок во времени;
$K_{\text {: }}$ - коэффициент относительной точности перехода;
$i_{\text {II }}$ - число шпинделей;
i_{Γ} - число головок;
i_{0} - номер обрабатываемого отверстия;
Q_{i} - число обрабатываемых отверстий; m - число инструментов, установленных в головке;
$T_{\mathrm{c}_{i-1}}$ - глубина измененного слоя, образовавшегося на предшествующем переходе, мкм;
ρ_{i}, ρ_{i-1} - точность расположения отверстий на выполняемом и предшествующем переходах, мкм;
δ_{i}, δ_{i-1} - допуск размера на выполняемом и предшествующем переходе, мкм;
$\sum N$ - суммарная мощность всех одновременно работаюุщих инструментов, $\mathbf{x B t}^{2}$;
l / D - табличное значение относительной глубины отверстия;
$h_{\text {л }}, h_{3}, h_{\text {у }}$ - износ инструмента: по ленточке, по задней поверхности и уголку, мм;
T_{1} - расчетное время работы инструмента, ч (мин);
H_{p} - расход инструмента за 1000 ч основного времени, шт.;
Δl - величина стачивания за одну переточку, мм;
M - допустимое стачивание, мм;
K_{y} - коэффициент случайной убыли; K_{1000} - расход мелкоразмерных сверл за 1000 мин основного времени, шт.; p - число переточек инструмента;
l_{r} - длина тластинки твердого спла'1, MM;
i_{n} - длина калибрующей части, мм;
l_{B} - расстояние от торца выточки в посадочном отверстии насадного зенкера, мM;
H - нормальная форма заточки;
НП - нормальная форма заточки с подточкой поперечной кромки; Д- двойная форма заточки; ДП - двойная форма заточки с подточкой поперечной кромки; R - радиусная форма заточки;
$R \Pi$ - радиусная форма заточки с подточкой поперечной кромки. .

Сокращения:

БРС - быстрорежущая сталь;
ТС - твердый сплав;
КВ - квалитет,
прил. - приложение.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Выбор режимов резания на любой технологический переход осуществляется с учетом наследственных явлений, т.е. с учетом влияния предшествующего перехода на последующий, что позволяет получить наиболее рациональный процесе обработки как по качеству изделия, так и по затратам.

Указанная особенность обусловлена введением в нормативы рекомендаций по выбору вариантов технологического процесса обработки отверстий (см. прил. 1). Благодаря этому можно рассчитать припуски на каждый переход, учитывая ппраметры двух смежных переходов. Дифференци рованный подход к определению припусков приводит к снижению (по сравнению с обработкой усредненными табличными припусками) нагрузки при. зенкеровании и развертывании, что увеличивает стойкость инструмента и создает предпосылки для повышения уровня режимов резания без ухудшения конечных технологических параметров отверстий. Таких же результатов можно достичь в результате применения осевых инструментов с нелинейной режущей кромкой.

Приведенный вариант нормативов является базовым для перехода к системе автоматизированного проектирования (САПР) сверлильных операций. С этой целью уточнены математические модели для расчета подач, скоростей, сил резания, крутящих моментов и мощностей практически для всех использованных в нормативах переходов.

В разделе даны рекомендации по выбору режимов резания для различных вариантов технологического процесса обработки отверстий диаметром $4-100$ мм. Для отверстий малых диаметров ($0,4-3$ мм) приведены режимы сверления.

Нормативные карты 1 и 2 используют для определения режимов резания при работе на вертикальных и радиально-сверлильных станках общего назначения, на станках с ЧПУ, а также на многоцелевых станках для следующих переходов: сверление, рассверливание, развертывание и зенкерование с подрезкой и без подрезки дна отверстия, зенкование, цекование и центрование. Нормативы могут быть использованы также для ерстий на токарных，револьверных， усельных и расточных станках ІПУ，т．е．для случая обработки от－ стий при вращающейся заготовке． том случае обеспечение технологи－ ких требований，указанных в карте фыбору вариантов технологического ощесса обработки отверстий，будет нее надежным по сравнению со емами，где вращается инструмент． 3 картах 4 и 5 даны поправочные фффииенты для измененных усло－ работы и формулы корректирова－ режимов резания для этих усло－ на конкретном переходе．
прил．1－13 приведены：маршруты аботки отверстий；рекомендуемые Зки инструментального материала СОЖ；нормативная стойкость ин－ умента при одноинструментной и фгоинструментной обработке；глу－ ыы резания для различных перехо－ математические модели для рас－ подачи，скорости，осевой состав－ бщей силы резания，крутящего мо－ та и мощности，необходимой для ществления резания на каждом еходе；длины подвода，врезания， еебега；средний допустимый износ жущей части инструмента．
Назначение последовательности пе－ родов и расчет режимов резания іолняют в несколько этапов．
1а этапе 1 проставляют номера рбатываемых отверстий（ i_{0} ）и под－ \＄ывают их число $\left(Q_{i}\right)$ ．Для много－ индельных станков расчет режимов ＊но проводить параллельно для女ольких отверстий．
На этапе 2 проводят выбор маршрута работки．В зависимости от требова－ A，предъявляемых к отверстию по ности размера и шероховатости ерерности，с учетом конструктивных \％бенностей（наличие плоского дна， ски или цековки）для заданного秋метра по прил． 1 выбирают вариант §ледовательности переходов при об－
Эотке данного отверстия．Причем hск необходимого варианта целе－ 30разно начинать с конечного（чи－ вого）перехода с последующим дви－ нием через промежуточные пере－秀ы к первому（черновому）．
для выбранной последовательности \＄еходов необходимо выписать но－ （\％）варианта．Например，для после－ рательности переходов «сверление， дучистовое зенкерование，получи－

стовое развертывание» в интервале диаметров $4-12$ мм обработку вы－ полняют по варианту 4．Для каждого перехода указывают номер карты и номер листа，по которым выбирают режимы резания．Переходы цекования， зенкования и центрования，которые при необходимости могут быть вклю－ чены в любой из вариантов технологи－ ческого процесса обработки отверстий， условно показаны штриховой линией．

При проектировании технологиче－ ского процесса обработки отверстий разработчик для достижения заданных требований может сформировать ва－ риант，отличающийся от предусмо－ тренного в нормативах．При этом корректирование табличных значений режимов（этап 7，табл．1）проводят с учетом связи выполняемого перехода с предыдущим（поправочные коэффи－ циенты $K_{10}, K_{13}, K_{12}, K_{11}$ см．в кар－ те 5）．

На этапе 3 назначают припуск （глубину резания）на каждом переходе． Приведенные в нормативах значения режимов резания（ $v_{T}, N_{T}, P_{\text {or }^{\prime}}$ ）даны для глубин резания，указанных в кар－ тах 1 и 2 или в прил． 4 ，которое со－ ставлено для последовательности пере－ ходов，принятой в прил．1：сверление， рассверливание，черновое зенкерова－ ние，получистовое зенкерование，чи－ стовое зенкерование，черновое развер－ тывание，получистовое развертывание и чистовое развертывание．

При изменении последовательности переходов глубину резания необхо－ димо скорректировать на поправочный коэффициент K_{10}（см．карту 5）：$t=$ $=t_{\mathrm{T}} K_{10 t}$ ．Например，вариант 17 （прил．1，с．509）содержит переходы： сверление，чистовое зенхерование и получистовое развертывание；$K_{10}=$ $=1,75$ для перехода «чистовое зен－ керование»，$K_{10}=2,8$ для перехода «получистовое развертывание»．

Табличные значения глубин реза－ ния рассчитаны по формуле

$$
\begin{gathered}
t_{i}=R z_{i-1}+T_{c_{i-1}}+ \\
+\frac{\delta_{i}+\delta_{i-1}+\rho_{i}+\rho_{i-1}}{2}
\end{gathered}
$$

где $R z_{i-1}$－шероховатость поверхно－ сти，образовавшаяся на предшествую－ щем переходе，мкм；$T_{c_{i-1}}$－глубина

измененного слоя, образовавшегося на предшествующем переходе, мкм; ρ_{i}, ρ_{i-1} - точность расположения отверстия на переходах соответственно выполняемом и предшествующем, мкм; δ_{i}, δ_{i-1} - допуск размера на переходах соответственно выполняемом и предішествующем, мкм.

На этапе 4 рассчитывают диаметры инструментов на каждом переходе, начиная с последнего: $D_{i}=D_{i+1}$ -$-2 t_{i+1}$. Для зенкования $D=D_{0}+$ $+2 f$.

После округления рассчитанных диаметров выбирают инструмент по действующим стандартам. Рекомендации по выбору марки инструментального материала в зависимости от обрабатываемого материала приведены в прил. 2 и 3

Для повышения надежности работы инструмента в неблагоприятных условиях (труднообрабатываемые материалы, отливки низкого качества) в нормативах предусмотрено использование различного конструктивного оформления режущей части инструмента.

На этапе 5 по карте 1 или 2 (в зависимости от материала инструмента) выбирают табличные значения подачи, скорости, осевой силы и мощности резания для принятого варианта технологии по ближайшему наибольшему табличному значению диаметра инструмента для каждого перехода.

Табличные значения подачи при сверлении соответствуют подачам группы 1 ; их назначают в зависимости от отношения глубины сверления к диаметру и с учетом других условий.
Подачи группы 1 назначают при сверлении глухих отверстий глубиной $l \leqslant 3 D$; подачи группы 2 - при сверлении отверстий глубиной $l \leqslant 8 D$; подачи группы 3 - отверстий глубиной $l=(8 \div 12) D$ для деталей с пониженной жесткостью; подачи группы IV - отверстий глубиной $l=(8 \div$ 16) D с выходом в каналы с наклонной осью или при других аналогичных условиях.

Значения подач групп 1, 2 и 3 могут быть получены умножением табличного значения подачи группы 1 на поправочный коэффициент $K_{4 S_{0}}$ (карта 5).
При зенкеровании и развертывании используют шесть групп подач:

группа 1 соответствует черновому зенкерованию (развертыванию);

группа 2 - черновому зенкерованию (развертыванию) с подрезкой дна отверстия;

группа 3 - получистовому зенке рованию (развертыванию);

группа 4 - получистовому зенкерованию (развертыванию) с подрезкой дна отверстия;

группа 5- чистовому зенкерова нию (развертыванию);

группа 6 - чистовому зенкерова нию (развертыванию) с подрезкой дн отверстия.

Табличные значения подачи длs рассверливания рассчитаны для l / D $=5$: Табличные значения скорости резания рассчитаны для инструмент? (стойкость указана в прил. 5 и 7) при обработке углеродистой сталя (203 HB), серого чугуна (186 HB), алюминия (78 HB) и меди (120 HB)

На этапе 6 выбирают станок мощ ностью $N_{\text {д }} \geqslant \sum N / \eta$. Если станок задан, $\sum N$ сопоставляют с мощностьи электродвигателя станка $\sum N \leqslant N_{\text {д }} \mathbf{r}_{3}$ и, в случае необходимости, принятый режим резания корректируют По нормативам для данного перехода и об рабатывәемого материала выбираю, мощность, равную $\sum N / \eta$, и соответ ствующие ей $S_{0_{T}}, v_{T}, P_{0_{T}}$.

На этапе 7 табличные значенбя подачи и скорости корректируют в сп ответствии с условиями обработки Необходимые поправочные .коэффици енты определяют по карте 5.

В карте 5 (с. 499) приведены по правочные коэффициенты, устанавли вающие зависимость глубины резания подачи, скорости, осевой силы и мош ности резания от различных условий и формулы корректирования этих вє личин с учетом условий резания нє конкретном переходе.

Например, требуется откорректиро вать подачу на оборот $S_{\text {o }_{\text {т }}}$ для полу чистового развертывания. По карте $\hat{\varepsilon}$ (c. 499) определяют условия и соот ветствующие им поправочные коэф фициенты на табличное значение по дачи $S_{\mathbf{O}_{\mathbf{T}}}$ - механические свойства об рабатываемого материала (поправоч ный коэффициент $K_{1 S_{o}}$) и глубинз обрабатываемого отверстия (коэффи циент $K_{4 S_{0}}$).

Wарте 5 （с．500）приведены фор－ \＃）корректирования табличного зна－ （⿺辶 нодачи $S_{\text {o }_{\text {т }}}$ для получистового ввертывания（ $S_{0}=S_{0_{т}} K_{1} S_{0}$ ）и зна－ （діия всех поправочных коэффици－ тов．
Ha этапе 8 скорректированные по－ ни и частоты вращения уточняют паспортным данным станка．При－ иаются ближайшие меньшие зна－ ния из имеющихся на станке подач и чисел оборотов n_{ϕ} ．
На этапе 9 определяют длину рабо－ о хода инструмента L_{p} для каж－ то перехода применительно к одно－ нндельным станкам．Для много－ индельных станков L_{p} определяют инструменту，имеющему максималь－ длину перемещения，

$$
L_{\mathrm{p}}=l+l_{1}+l_{2}+l_{3}
$$

l_{1}, l_{2}, l_{3}－длины соответственно вода，врезания и перебега для ＊дого перехода；значения длин опре－ нют по прил． 9.
Аа этапе 10 рассчитывают основное ммя на переход：

$$
T_{\mathrm{o}}=\frac{L_{\mathrm{p}}}{S_{\mathrm{o}_{\Phi} n_{\Phi}}}
$$

1ля станков с одной многошпин－ ॠной головкой расчет проводят лимитирующего шпинделя，вы－ раемого на этапе 17 ；для много－ ओддельных станков с несколькими овками－для лимитирующей го－ \％ки，выбираемой на этапе 20.
4а этапе 11 рассчитывают режимы能，следующего отверстия．
1а этапе 12 корректируют таблич－ ब значения мощности $N_{\text {т }}$ и осевой 4 $P_{o_{T}}$ ，олределенные на этапе 5. карте 5 определяют поправочные
фффициенты и корректировочные ямулы．
\＆а этапе 13 проводят проверку дви－ еляя по мощности $N_{\text {д }}$ и допусти－ усилию подачи станка：

$$
\begin{aligned}
\sum N & \leqslant N_{\text {Д }} \eta ; \\
\Sigma \cdot P_{\mathrm{o}} & <P_{\mathrm{o} \text { cт }} .
\end{aligned}
$$

Мри необходимости принятые ре－ мы корректируют．
\＄а этапе 14 по прил． 6 уточняют新кость инструментов для много－ ओндельных станков в зависимости от

диаметра инструмента D и числа шпинделей $i_{\text {ШI }}$ ，а также находят от－ ношение $T_{\Phi} / T_{\text {н }}$ для определения по－ правочного коэффициента $K_{\text {рv }}$ Hop－ мативная стойкость указана в прил． 5 ．

На этапе 17 выбирают лимитирую－ щий шпиндель по минимальной ми－ нутной подаче；на этапе 20 －лими－ тирующую головку по наименьшей из подач min $S_{\text {мин }}$ ，определенных для каждой головки на этапе 17.

На этапе 21 для многошпиндельной обработки вводится коэффициент $K_{\text {с }}$ смещения во времени начала или окон－ чания работы головок．

При одновременной работе несколь－ ких многошпиндельных головок с раз－ личным нагружением на разных пози－ циях в практике наблюдается взаим－ ное влияние позиций－более нагру－ женные позиции при наличии колеба－ ний сил（особенно в период врезания， осложненного появлением вибраций и деформаций элементов приспособле－ ний）оказывают неблагоприятное влия－ ние на менее нагруженные чистовые позиции．Например，при совмещении сверления и развертывания в момент врезания сверл наблюдается ухуд－ шение качества поверхности（щерохо－ ватости）развертываемых отверстий．

При выполнении на одном агрегате сверления и нарезания резьбы воз－ никает явление «разбивания» резьбы по среднему диаметру в период，когда начинается и оканчивается работа сверл．Поэтому для обеспечения за－ данного качества изделия начало и окончание работы инструмента на раз－ личных позициях многошпиндельных станков целесообразно сместить во времени．

На этапе 23 корректируют частоту вращения нелимитирующих головок с учетом определенного по лимитирую－ щей головке основного времени．

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ НОРМАТИВОВ

Пример 1．Рассчитать режимы резания при обработке мелкоразмерных от－ верстий．

Исходные данные：деталь－втулка （рис．1）；обрабатываемый материал－ сталь 45 （ 216 HB ）；операци́я－обра－ ботка отверстия $\varnothing 0,6^{+0,1}$（H12）мм с шероховатостью поверхности $R a=$ $=40$ мкм；заготовка－штамповка， инструмент－спиральное сверло

Pис. 1. Вгулка
(ГОСТ 886-77) из быстрорежущей сгали Р6М5, оборудование - вертикально сверлильный сганок 2 M103п1 (сверление выполняется без охлаждения)

Расчет режимов резания выполняют в соответствии с последовательностью, изложенной в табл. 1.

Этапы 1-4-выбор маршрута обработки, назначение пррипуска и диаметра обрабатываемого отверстія.

При обработке отверстия $(D=$ $=0,6 \mathrm{mм}, l=2,0 \mathrm{mм}, R a=40$ мкм) выполняют сверление, характеризуемое отношением $l / D=3,3$ и вылетом сверла $l_{4}=6$ мм ($l_{4} / D=10$).

Этап 5 - выбор табличных значений подачи, скорости резания, осевой силы и мошности.

По карэе 3 определяют группу подач - 2 .

По карте 1 выбирают табличные значения параметров режима: $S_{\mathrm{O}_{\mathrm{T}}}=$ $=0,007 \mathrm{mM} /$ об, $v_{\mathrm{T}}=12,1 \mathrm{~m} /$ мин,$P_{\text {OT }}=$ $=19,5 \mathrm{HI}, N_{\mathrm{T}}=0,0027 \mathrm{\kappa Bт}$.

Рассчитывают частоту вращения сверла, соответствующую табличной скорости, $n_{\mathrm{T}}=6419$ мин $^{-1}$.

Этапп 6 - выбор станка (мод. 2M103П)

Этап 7 - корректирование табличных значений подачи, скорости и частоты вращения

По карте 4 выбирают необходимые попраьочные коэффициенты $K_{1 S}=$ $=1,0, \quad K_{2 S}=0,9 ; \quad K_{3 S}=1,0 ; \quad K_{10}=$ $=0,8 ; \quad K_{2 v}=1,01 K_{3 v}=1,0, \quad K_{1 p}=$ $=1,0, K_{1 м}=2,45$; по карте 3 - формулы для корректирования табличных значений режимных параметров:

$$
\begin{gathered}
S_{\mathrm{o}}=0,007 \cdot 1,0 \cdot 0,9 \cdot 1,0= \\
=0,0063 \mathrm{mм} / 06 ; \\
v=12,1 \cdot \mathrm{C}, 8 \quad 1,0 \cdot 1,0=9,68 \mathrm{~m} / \mathrm{mин} ; \\
P_{0}=19,5 \cdot 1,0=19,5 \mathrm{H} ; \\
N=0,0027 \cdot 2,45=0,006615 \mathrm{kBr} ; \\
n=5135 \mathrm{mин}^{-1} .
\end{gathered}
$$

Рис. 2. Фланец

Этап 8 - уточнение подачи и часх, ты вращения сверла по паспортрь данным станка, в соответствии с и торыми

$$
\begin{aligned}
S_{0_{\Phi}} & =0,006 \mathrm{mм} / \mathrm{oб} \\
n_{\Phi} & =5200 \text { мин }^{-1}
\end{aligned}
$$

Этапы 9-10 - определение длия рабочего хода и основного времея

Расчет основного времени выпо няют па упрощенной формуле (пғ $L_{\mathrm{p}}=l$):

$$
\begin{gathered}
T_{0}=\frac{l}{n_{\phi} S_{0 \Phi}}= \\
=\frac{2,0}{5200 \cdot 0,006}=0,064 \text { мин. }
\end{gathered}
$$

Пример 2. Рассчитать режимы p зания при одноинструментной обр ботке отверстия.
Исходные данные: деталь - флань (рис 2), обрабатывдемый материал сталь $30 \mathrm{X}(183,4 \mathrm{HB})$; операция обработка отверстия $\varnothing 16^{+0.018}(H 7)$ м ${ }^{\text {. }}$ длиной $l=98$ мм, с шероховатостповерхности $R a=1,25$ мкм; загото ка - штамповка; материал инструме: та - быстрорежущая сталь P6M5, с лаждение осуществляегся эмульсии приспособление - специальное с пне мозажимом

Назначение последовательности ワ. реходов и расчет режимив резаня выполняют в соответствии с порядкс расчета режимов резания и основно времени на сверлильных операция приведенных в табл. 1.
Этап 1 - назначение последоватсл ности переходов и расчет режим резания для одного отверстия: $i_{0}=$ $Q=1$.

Этап 2 - выбор маршрута обработк
По прил. 1 (с. 509) для $D=16$, $R a=1,25$ квалитета 7 выбирает 14 -й вариант, включающий переход

	Содержание этапа	Источник даннвх, расчетные формулы	Исходнве данные
10	Определение основного времени	$T_{0}=\frac{L_{\mathrm{p}}}{S_{\mathrm{o}_{\Phi}} n_{\Phi}}$	$\begin{aligned} & L_{\mathrm{p}}(\text { см. этап } 9), S_{\mathrm{o}_{\Phi}} \\ & n_{\Phi}(\text { см. этап } 8) \end{aligned}$
11	См. өтап 1	$\begin{gathered} i_{0}=i_{0}+1 \\ i_{0} \leqslant Q_{i} \end{gathered}$	-
12	Корректирование табличных значений мощности и осевой силы	$\begin{gathered} N=N_{\mathrm{T}} K_{i} \\ P_{\mathrm{o}}=P_{\mathbf{o}_{\mathbf{T}}} K_{i} \end{gathered}$	$N_{\mathrm{T}}, P_{\text {O }_{\mathrm{T}}}$ (см. өтап 5). Поправочные коэф-
13	Проверка подачи станка по мощности двигателя $N_{\text {д и }}$ допустимому усилию	Паспортные данные станка; $\begin{aligned} & \Sigma N_{i} \leqslant N_{\text {д }} \eta ; \\ & \Sigma P_{0}<P_{\text {ост }} \end{aligned}$	карты 4 и

$$
\text { II. Число многошпиндельных головок } i_{\Gamma}=1
$$

$14 \mid$ См. өтапы 1-6

15	Уточнение стойкости	Прил. 5-7; карта 5	$D, \mathrm{HB}, i_{\text {m }}$
16	См. өтап 7		
17	Выбор лимитирующего шпинделя	$\min S_{\text {MUF }} ; S_{\text {MUI }}=S_{\mathrm{o}} n$	S_{0}, n (cm. өтап 8)
18	См. этапы 8-13		

III. Число многошпиндельных головок $i_{\Gamma}>1$

19 См. этапы 1-5, 7, 15, 17
$20 \mid$ Выбор лимитирующей головки по $\min S_{\text {мй }}$
21 Введение коэффициента K_{c} смещения во времени начала или окончания работы головок по схеме цикла операции

22	См. этапы 9 и 10

23 Корректирование n_{π} нелимитирующих головок
24 См. этапы 6, 11, 12

4ерление, зенкерование чистовое, язвертывание черновое, развер\%вание получистовое. Табличные आачения подачи, скорости, осевой плы и мощности резания указаны карте 1 (материал инструмента 6астрорежущая сталь P6M5).

Этап 3 - назначение припусков на оработку.
Припуск (глубину резания) на кажом переходе определяют по прил. 4 корректируют с учетом последоваПлльности переходов маршрута [исфользуют поправочный коэффициент Kıot (см. карту 5)]:

$$
t=t_{\mathrm{T}} K_{10 t}
$$

При чистовом зенкеровании $t=$ $0,41 \cdot 1,75=0,72$ мм; при черновом азвертывании $t=0,23 \cdot 1,0=0,23$ мм; ри получистовом развертывании $t=$ $0,10 \cdot 1,0=0,10 \quad$ мм.
Этап 4 - расчет диаметров обрабаываемого отверстия по переходам аршрута и выбор инструмента по рормуле

$$
D_{i}=D_{i+1}-2 t_{i+1} .
$$

При получистовом развертывании $=16$ мм; при черновом развертывани $D=16-2 \cdot 0,10=15,80$ мм; при 4истовом зенкеровании $D=15,80$ -- $2 \cdot 0,23=15,34$ мм; при сверлении $0=15,34-2 \cdot 0,72=13,90 \mathrm{mм}$.
Округленные размеры инструментов аринимают следующими: при сверлении $D=13,9$ мм; при чистовом зенкеровании $D=15,3$ мм; при черновом азвертывании $D=15,80$ мм; при по(\%чистовом развертывании $D=16$ мм. Сверло выбирают по ГОСТ 12121—77; фстальной инструмент является спедиальным. Форма заточки инструмента - нормальная.

Этап 5 - выбор табличных значений подачи, скорости резания, осевой силы и мощности резания.

Вначале выполняют расчет частоты вращения n_{T}, соответствующей табпичному значению скорости резания. Табличные значения подачи $S_{0_{T}}$, скорости v_{T}, мощности N_{T} и осевой силы $P_{\text {OT }}$ выбирают по карте 1 для ближайшего большего табличного значения диаметра инструмента. Частоту вращения определяют по формуле

$$
n_{\mathrm{T}}=1000 v /\left(\pi D_{\mathrm{T}}\right)
$$

При сверлении $D=13,9$ мм для $D_{\mathbf{T}}=16 \quad \mathrm{Mm} ; \quad S_{\mathrm{O}_{\mathbf{T}}}=0,35 \quad \mathrm{mм} / \mathrm{oб}_{;}$
$v_{\mathrm{T}}=17,6$ м/мин; $n_{\mathrm{T}}=350$ мин $^{\mathbf{- 1}}$; $N_{\mathrm{T}}=1.24 \mathrm{kBT} ; P_{\mathrm{O}_{\mathrm{T}}}=5205 \mathrm{H}$.

При чистовом зенкеровании $D=15,3$ мм для $D_{\mathrm{T}}=16$ мм; $S_{0_{\mathrm{T}}}=0.37 \mathrm{mм} /$ об; $v_{\mathrm{T}}=30,7 \mathrm{~m} /$ мин; $n_{\mathrm{T}}=611$ мин $^{-1} ; \quad N_{\mathrm{T}}:=0,87$ кВт; $P_{\text {от }}=123,6 \mathrm{H}$.

При черновом развертывании $D=15.84 \quad$ мм для $\quad D_{\mathrm{T}}=16$ мм; $S_{\mathrm{O}_{\mathrm{T}}}=0.99 \mathrm{mм} /$ об; $\quad v_{\mathrm{T}}=8,4 \mathrm{~m} /$ мин; $n_{\mathrm{T}}=167$ мин $^{-1} ; \quad N_{\mathrm{T}}=0,91 \quad$ кВт; $P_{\mathrm{OT}}=114,4 \mathrm{H}$.
При получистовом развертывании; $D=D_{\mathrm{T}}=16 \mathrm{mм} ; S_{0_{-}}=0.82 \mathrm{~mm} /$ об; $v_{\mathrm{T}}=11,2 \mathrm{~m} /$ мин $^{2} ; n_{\mathrm{T}}=223$ мин $^{-1} ; N_{\mathrm{T}}=$ $=0,49 \mathrm{\kappa Bт} ; P_{\text {от }}=37,3 \mathrm{H}$.

Этап 6 - выбор станка.
Для выбора станка определяют мощность электродвисателя (кВт) из условия $N_{\text {д }} \geqslant \sum N_{\mathrm{T}} / \eta, \quad$ где $\quad \sum N_{\mathrm{T}}-$ суммарная мощность резания одновременно работающих инструментов, наибольшая на выполняемых.переходах;

$$
N_{\text {ᄑ }} \geqslant 1,24 / 0,81=1.53 \mathrm{\kappa Вт.}
$$

Выбирают вертикально-сверлильный станок 2 H 125 с электродвигателем мошностью $N_{\text {д }}=2,2$ кВтт.
Паспортные данные станка 2 Hl 25 :
Частота вращения
шпинделя n_{Φ},
мин $^{-1}$. 45; $63 ; 90 ; 125 ; 180$; 250; 355; 500; 710; 1000; 1400; 2000
Подача $S_{\text {оф, мм }}$ /об $\quad 0.1 ; 0,14 ; 0,20 ; 0,28$; 0,$40 ; 0,56: 0.8 ; 1,12 ;$

1,6
Наибольшая сила подачи $P_{\text {ост }}$, допускаемая прочностью механизма станка, H 9000 Мошность электродвигателя $N_{\text {д }}$, кВт 2,2
η 0.81

Этап 7 - корректирование табличных значений подачй, скорости и частоты вращения.

Необходимые поправочные коэффициенты на подачу и скорость определяют по карте 5.

Для сверления

$$
\begin{aligned}
S_{\mathrm{o}}= & S_{\mathrm{O}_{\mathrm{T}}} K_{1 S_{\mathrm{o}}} K_{4 S_{0}} ; \quad v=v_{\mathrm{T}} K_{10} K_{3 v} \times \\
& \times K_{3 v} K_{4 v} K_{5 v} K_{8 v} K_{7 p} K_{80} K_{90} .
\end{aligned}
$$

Для чистового зенкерования, чернового н получистового развертывания

$$
\begin{gathered}
S_{0}=S_{0_{\mathrm{T}}} K_{1 \delta_{0}} \\
0=v_{\mathrm{T}} K_{10} K_{20} K_{30} K_{\mathrm{sD}} K_{80} K_{70} K_{1 s 0}
\end{gathered}
$$

Поправочные коэффициенты:
$K_{1 s_{0}}=K_{1 v}=0,94$ (для хромистой стали, 183 HB);
$K_{4 S_{0}}=0,7(l / D<8)$;
$K_{s 0}=1,0$ (обработка с охлаждением);
$K_{40}=0,8(l / D<8) ;$
$K_{50}=1,0 \quad\left(T_{\phi} / T_{\mathbf{H}}=1,0\right) ;$
$K_{60}=0,8$ для сверления;
$K_{\text {өо }}=1,0$ для чистового зенкерования, чернового развертывания, нолучистового развертывания;
$K_{70}=1,0$ (марка материала инструмента P6M5);
$K_{80}=1,0$ (без покрытия);
$K_{90}=1,0$ (сверло по ГОСТ 12121-77);
$K_{13 v}=0,89$ для чистового зенкерова.ния;
$K_{13 v}=1,0$ для переходов чернового развертывания и получистового развертывания.

Для сверления
$S_{0}=0,35 \cdot 0,94 \cdot 0,7=0,23 \mathrm{mм} / \mathrm{oб}$; $v=17,6 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 0,8 \cdot 1.0 x$
$\times 0,8 \cdot 1,0 \cdot 1,0 \cdot 0.9=13,23 \mathrm{~m} /$ мин;
$n=\frac{1000 v}{\pi D}=\frac{13230}{3.14 \cdot 13,9}=303$ мин $^{-1}$.
Для чистового зенкерования

$$
\begin{gathered}
S_{o}=0,37 \cdot 0,94=0,35 \mathrm{mм} / \mathrm{oб} \\
v=30,7 \cdot 0,94 \cdot 1.0 \cdot 1,0 \cdot 1,0 \cdot 1,0 X \\
\quad \times 1,0 \cdot 0,89=25,7 \mathrm{~m} / \text { мин; } \\
n=\frac{25700}{3,14 \cdot 15,3}=534 \text { мин }^{-1}
\end{gathered}
$$

Для чернового развертывания

$$
\begin{aligned}
S_{0}= & 0,99 \cdot 0,94=0,93 \mathrm{mм} / \text { об } \\
v= & 8,4 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 1,0 \cdot 1,0 \times \\
& \times 1,0 \cdot 1,0=7,9 \mathrm{~m} / \text { мин; } \\
n= & \frac{7900}{3,14 \cdot 15,8}=159 \mathrm{mин}^{-1} .
\end{aligned}
$$

Для получистового развертывання

$$
\begin{gathered}
S_{0}=0,82 \cdot 0,94=0.77 \mathrm{mм} / \text { об; } \\
v=11,2 \cdot 0,94 \cdot 1,0 \cdot 1.0 \cdot 1,0 \cdot 1,0 \times \\
\quad \times 1,0 \cdot 1,0=10,5 \mathrm{~m} / \text { мин }
\end{gathered}
$$

$$
n=\frac{10500}{3,14 \cdot 16}=209 \text { мин }^{-1}
$$

Этап 8 - уточнение подач и частот вращения по паспортным данным станка.

По паспортным данным станка выбираются ближайшие меньшие имеющиеся подачи $S_{\mathbf{O}_{\boldsymbol{\phi}}}$ и частоты вращения $n_{\phi}:$

для сверления $S_{0 \text { п }}=0.20 \mathrm{mм} / о б$; $n_{\varnothing}=250$ мин $^{-1}$;

для чистового зенкерования $S_{\text {O }_{\text {ф }}}=$
$=0,28 \mathrm{mм} /$ об: $n_{\Phi}=500$ мин $^{-1}$;
для чернового развертывания $S_{\mathbf{0}_{\text {ф }}}=$
$=0,8 \mathrm{mм} /$ об; $n_{\Phi}=125$ мин $^{-1}$;
для получистового развертывания $S_{\mathbf{o}_{\Phi}}=0.56$ мм/об, $n=180$ мин $^{-1}$.

Этап 9 - определение длины рабочего хода:

$$
L_{n}=l+l_{1}+l_{2}+l_{9} .
$$

Длину подвода (l_{1}), врезания (l_{2}) и перебега (l_{3}) для каждого перехода определяют по прил. 9.

Для сверления $L_{\mathrm{p}}=98+5+5+$ $+5=113$ мм.

Для чистового зенкерования $L_{\mathrm{p}}=$ $=98+2+5+2=105$ мм .

Для чернового и получистового развертывания $L_{\mathrm{p}}=98+2+3+2=$ $=115$ мм.

Этап 10-определение основного времени:

$$
T_{0}=\frac{L_{\mathrm{p}}}{S_{\mathrm{o}_{\boldsymbol{\phi}} n_{\Phi}}}
$$

Для сверления

$$
T_{\mathrm{o}}=\frac{113}{0,20 \cdot 250}=2,26 \text { мин }
$$

Для чистового зенкерования

$$
T_{\mathrm{o}}=\frac{105}{0,28 \cdot 500}=0,75 \text { мин }
$$

Для чернового развертывания

$$
T_{0}=\frac{115}{0,8 \cdot 125}=1,15 \text { мин. }
$$

Для получистового развертывания

$$
T_{0}=\frac{115}{0.56 .180}=1.14 \mathrm{muH}
$$

Этап 12 - корректирование табличных значений мощности и осевой силы, определяемых на этапе 5.

Hо карте 5 определяют поправочные ффффициенты на мощность и осевую xy.
Для сверления

$$
\begin{gathered}
P_{0}=P_{\mathbf{o}_{\mathrm{T}}} K_{16 P P} / K_{1 P} ; \\
N=N_{\mathrm{T}} K_{14 N} K_{16 N} / K_{1 N} .
\end{gathered}
$$

Для чистового зенкерования, черфвого развертывания и полүчистового эввертывания

$$
\begin{gathered}
P_{\mathrm{o}}=P_{\mathrm{o}_{\mathrm{T}}} K_{12 P} K_{\mathrm{\lambda B} P} / K_{1 P} ; \\
N=N_{\mathrm{T}} K_{11 N} K_{14 N} K_{\mathrm{Q} A N} / K_{1 N} .
\end{gathered}
$$

Поправочные коэффициенты:

$K_{1 N}=K_{1 P}=0,94 ;$
$K_{11 N}=1,6$ для чистового зенкерования;
$K_{11 N}=1,0$ для чернового и получистового развертывания;
$K_{12 P}=2,0$ для чистового зенкерования;
$K_{12 P}=1,0$ для чернового и получистового развертывания.

Коэффиииенты $K_{14 N}, K_{15 P}$ и $K_{16 N}$ определяют в зависимости от отношений $S_{\mathbf{O}_{\Phi}} / S_{\mathbf{o}_{\boldsymbol{T}}}$ и n_{ϕ} / n_{T}.

Для сверления
$=1,48 \cdot 0,84 \cdot 0,8 / 0,94=1,06 \kappa В т ;$
$\mathrm{o}_{\mathrm{o}}=6124,0 \cdot 0,85 / 0.94=5537,6 \mathrm{H}$
Для чистового зенкерования
$=0,87 \cdot 1,6 \cdot 0,8 \cdot 0,64 / 0,94=0,76 \mathrm{kBT} ;$
$P_{0}=123,6 \cdot 2,0 \cdot 0,88 / 0.94=231,4 \mathrm{H}$.
Для чернового развертывания
$=0,91 \cdot 1,0 \cdot 0,84 \cdot 0,8 / 0.94=0.65 \mathrm{kBT}$;
$P_{0}=114,4 \cdot 1,0 \cdot 0,88 / 0,94=107,1$.
Для получистового развертывания $=0,40 \cdot 1,0 \cdot 0,84 \cdot 0,8 / 0.94=0,35 \mathrm{\kappa Br}$;
$P_{0}=37,3 \cdot 1,0 \cdot 0,88 / 0.94=34,9 \mathrm{H}$.

Этап 13 - проверка двигателя по мощности $N_{\text {д }}$ и станка по допустимому усилию подачи $P_{\text {ост }^{\prime}}$.

Выбранные режимы пезания для каждого перехода (сверления, чистового зенкерования, чернового развертывания, получистового развертывания) должны-удовлетворять следующим условиям:

$$
\begin{aligned}
& \sum N_{i} \leqslant N_{\text {I } \eta} ; \\
& \sum P_{\mathbf{o l}_{i}}<P_{\mathbf{o c c t r}^{c} .} .
\end{aligned}
$$

$N_{\text {д }}=2,2$ кВт; $\eta=0,81 ; N_{\text {д }} \eta=2,2 \times$ $\times 0.81=1,78 \mathrm{kBT} ; P_{\mathrm{o}_{3 \pi}}=9000 \mathrm{H}$.

Проверка соблюдения указанных условий на каждом из переходов:

ΣN_{t}	$N_{\text {д }} \boldsymbol{\eta}$	$\Sigma^{P}{ }_{0 i}$	$P_{\mathrm{O}_{\text {ct }}}$
1,06		5537,6	
0,76	1,78	231.4	9000
0,65		107,1	
0.35		34,9	

Далее необходимо определить норму штучного времени на опе̨рацию, установив по справочнику $T_{\text {вси }}$ и $T_{\text {доп }}$

Рис. 3. Фланец

на операцию (Общемашиностроительные нормативы вспомогательного времени, на обслуживание рабочего места и подготовительно-заключительного для технического нодмирования станочных работ. Среднесерийное и крупносерийное производство. М.: Машиностроение, 1984).

Пример 3. Рассчитать режимы резания при многоинструментной обработке отверстий.

Исходные данные: деталь - фланец (рис. 3); обрабатываемый материал сталь $30 \mathrm{X}, 183,4 \mathrm{HB}$; операция обработать 4 отв. $\varnothing 12^{+0,27}$ (H8) с шероховатостью поверхности $R a=$ $=2,5$ мкм и 4 отв. $\varnothing 6.8^{+0.15}(H 12)$ с фасками $1,5 \times 45^{\circ}$; заготовка - штамповка, материал инструмента быстрорежущая сталь Р $\mathbf{6 M} 5$; охлаждение - эмульсия: станок - агрегатный.

Назначение последовательности переходов и расчет режимов резания выполняют в соответствии с порядком расчета режимов резания и основного времени на сверлильных операциях (см. табл. 1).

Этап 1 - проставление номеров (i_{0}) обрабатываемых отверстий и определение их числа (Q_{i}): $i_{0}=1 Q_{1}=4$; $i_{0}=2 \quad Q_{2}=4$. Расчет режимов резания для отверстий $i_{0}=1$ и $i_{0}=2$ выполняют параллельно.

Этап 2 - выбор маршрута обработки.

По прил. 1 для отверстий $i_{0}=1$, $D=12$ мм (8-й квалитет) $R a=2,5$ мкм выбирают четвертый вариант, включа-

ющий переходы: сверление, получисто вое зенкерование, получистовое ра вертывание, цекование.

Для отведстия $i_{0}=2, D=6,8 \mathrm{~m}$ (12 -й квалитет) $R a=20$ мкм выби рают вгорой вариант, включаюций переходы: сверление и зенкование.

Табличные значения подачи, скоро сти, осевой силы и мощности резания для этих вариантов пориведены в карте) (материал инструмента - быстрорє жущая сталь P 6 M 5).

Для осуществления выбранных ва риантов обработки используют спе циальный агрегатный станок, осна щенный шестью четырехшпиндель ными головками, и семипозиционныи поворотный стол Первая позиция загрузочная, на второй позиции вы полняется сверление (вариант 4) на третьей - получистовое зенкерова ние, на четвертой - получистовое развертывание, на пятой -- цекование, на шестой - сверление (вариант 2) на седьмой - зенкфвание.

Этап 3 - назначение припусков на обработку.

Припуск (глубину резания) на каж дом переходе определяют по прил. 4 и корректируют с учетом последовательности переходов маршрута (поправочный коэффициент $K_{10 t}$, карта 5)

$$
t=t_{\mathrm{T}} K_{\mathbf{1 o t}}
$$

Вариант 4: для получистового зенкерования $t=0,48 \cdot 1,1=0,53 \mathrm{mм}$,
для получистового развертывания $t=0.10 \cdot 2,4=0.24 \mathrm{~mm} ;$

для цекования $t=(16 \div 12) / 2=$ $=2 \mathrm{~mm}$.

Этап 4 - расчет диаметров D_{\imath} обрабатываемого отверстия по переходам маршрутов и выбор инструмента по формуле

$$
D_{i}=D_{i+1}-2 t_{i+1}
$$

Для получистового развертывания $D=12$ мм, для получистового зенкерования $D=12-2 \cdot 0,24=11,52$ мм; для сверления $D=11,52-2 \cdot 0,53=$ $=10,46$ мм (вариант 4); для цекования $D=16$ мм; для сверления $D=6,8$ мм (вариант 2); для зенкования $D=$ $=6.8+2 \cdot 1,5=9,8$ мм .

C учетом округления принимают следующие размеры инструментов: для получистового развертывания $D=12$ мм; для получистового зенкерования $D=11.5$ мм; для сверления $D=10,4$ мм (вариант 4); для цекова-

ния $D=16$ мм; для сверления $D=6,8$ мм (вариант 2); для зенкования $D=10$ мм.

Сверло выбирают по ГОСТ 10903-77, 'остальной инструмент является специальным. Форма заточки инструмента - нормальная.

Этап 5 - выбор табличных значений подачи, скорости резания, мощности и осевой силы. Расчет частоты вращения n_{T}, соответствующей табличному значению скорости резания v_{T}.

Табличные значения $S_{0_{\mathrm{T}}}, v_{\mathrm{T}}, N_{\mathrm{T}}$ и $P_{\text {ө }_{\text {т }}}$ определяют по карте 1 для ближайшего большего табличного значения диаметра инструмента: частоту вращения - по формуле $n_{T}=$ $h=1000 v_{T} /\left(\pi D_{T}\right)$.

Для сверления (вариант 4) $D=$ $=10,4 \mathrm{~mm}$.
При $D_{\mathrm{T}}=12$ мм $S_{\text {O }}=0,26$ мм $/$ об, $v_{\mathrm{T}}=18,9$ м $/$ мин, $n_{\mathrm{T}}=502$ мин $^{-1}, N_{\mathrm{T}}=$ $=0,8 \mathrm{kBT}, \quad P_{\mathrm{o}_{\mathrm{T}}}=3191 \mathrm{H}$.

Для получистового зенкерования $D=11,5$ мм.

При $D_{\mathrm{T}}=12 \mathrm{mм}, S_{\text {OT }=0,43 \mathrm{mм} / \mathrm{oб}, ~}^{\text {, }}$ $v_{\mathrm{T}}=26,6 \mathrm{~m} /$ мин, $n_{\mathrm{T}}=706$ мин $^{-1}$, $N_{\mathrm{T}}=0,92 \mathrm{kBr}, P_{\mathrm{O}_{\mathrm{T}}}=164,8 \mathrm{H}$.

Для получистового развертывания $D=D_{\mathrm{T}}=12 \mathrm{mм}, \quad S_{\text {о }_{\mathrm{T}}}=0,71 \mathrm{~mm} /$ об, $v_{\mathrm{T}}=11,6 \mathrm{~m} /$ мин,$\quad n_{\mathrm{T}}=308$ мин $^{-1}$, $N_{\mathrm{T}}=0,46 \mathrm{kBT}, P_{\mathrm{o}_{\mathrm{T}}}=34,3 \mathrm{H}$.

Для цекования $D-D_{\mathbf{T}}=16$ мм и $D-D_{\mathrm{o}}=4 \mathrm{mм}$.

При $\left(D-D_{0}\right)_{\mathbf{T}}=5 S_{0_{\mathrm{m}}}=0,27$ мм $/$ об, $v_{\mathrm{T}}=9,0$ м $/$ мин, $n_{\mathrm{T}}=179$ мин $^{-1}, N_{\mathrm{T}}=$ $=5,11 \mathrm{kBT}, P_{\mathrm{o}_{\mathrm{T}}}=903,2 \mathrm{H}$.

Для сверления $D=6,8$ мм.
При $D_{\mathrm{m}}=8 \mathrm{mм} S_{0_{\mathrm{T}}}=0,18 \mathrm{mм} / \mathrm{oб}$, $v_{\mathrm{T}}=23,2 \mathrm{~m} /$ мин,$\quad n_{\mathrm{T}}=924$ ми $^{-1}$, $N_{\mathrm{T}}=0,56 \mathrm{kBT}, P_{0_{\mathrm{T}}}=1885 \mathrm{H}$.

Для зенкования $D=10 \mathrm{mм}, f=$ $=1,5$ мм.

При $\quad D_{\mathrm{T}}=12 \mathrm{mм} \quad f_{\mathrm{T}}=1,5 \mathrm{mм}$, $S_{\text {O }_{T}}=0,04 \mathrm{mм} /$ об, $\quad v_{\mathrm{T}}=13,8 \mathrm{~m} /$ мин, $n_{\mathrm{T}}=366$ мин $^{-1}, N_{\mathrm{T}}=0,29 \mathrm{\kappa BT}, P_{\mathrm{o}_{\mathrm{T}}}=$ $=159,4 \mathrm{H}$.

Номера этапов дальнейшего расчета проставлены в соответствии с последовательностью, указанной в порядке расчета режимов резания применительно к многоіпиндельным наладкам (см. табл. 1).

Этап 15 - уточнение стойкости инструментов. Нормативная стойкость инструментов указана в прил. 5.

При сверлении (вариант 4) $D=$ $=10,4$ мм, $T_{\text {н }}=45$ мин; при получистовом зенкеровании $D=11,5$ мм, $T_{\mathbf{H}}=25$ мин: при получистовом развертывании $D=12$ мм, $T_{\mathrm{H}}=40$ мин; при цековании $D=16$ мм, $T_{\mathrm{H}}=$ $=30$ мин; при сверлении (вариант 2) $D=6,8$ мм, $T_{\text {н }}=25$ мин; при зенковании $D=10$ мм, $T_{\text {н }}=25$ мин

Стойкость инструментов для многошпиндельных станков T_{Φ} назначают в зависимости от диаметраинструмента D и числа шпинделей i_{m} по прил. 6. Принимают $T_{\Phi}=100$ мин.

Этап 7 - корректирование табличных значений подачи, скорости, частоты врашения и крутящего момента в соответствии с условиями обработки.

Необходимые поправочные коэффициенты на подачу и скорость определяют по карте 5:

при сверлении $S_{0}=S_{0_{\mathrm{T}}} K_{1 S_{0}} K_{4 S_{0}}$;
при получистовом зенкеровании, получистовом развертывании, цековании, зенковании

$$
S_{\mathrm{o}}=S_{\mathrm{o}_{\mathrm{q}}} K_{1 \mathrm{~S}_{\mathrm{o}}}
$$

при сверлении

$$
v=v_{\mathrm{T}} K_{1 v} K_{2 v} K_{s v} K_{4 v} K_{5 v} K_{8 v} K_{7 v} K_{8 v} K_{9 v}
$$

при получистовом зенкеровании, получистовом развертывании

$$
v=v_{\mathrm{T}} K_{1 v} K_{2 v} K_{s v} K_{5 v} K_{6 v} K_{7 v} K_{8 v} K_{13 v}
$$

при 'зенковании и цековании

$$
v=v_{\mathrm{T}} K_{1 v} K_{2 v} K_{3 v} K_{5 v} K_{8 v} K_{7 v} K_{8 v}
$$

Поправочные коэффициенты:
$K_{1 S_{0}}=K_{10}=0.94$ (для хромистой стали твердостью 183 HB),
$K_{2 v}=1,0$ (для инструмента с нормальной формой заточки);
$K_{30}=1,0$ (обработка с пхлаждением); $K_{4 S_{0}}=1$ при ($\left.l / D\right)_{T} \leqslant 3$ (вариант 4); $K_{4 S_{0}}=0,7$ при (l/D) $)_{T} \leqslant 8$ (вариант 2); $K_{4 v}=1$ при ($\left.l / D\right)_{T} \leqslant 3$ (вариант 4); $K_{4 v}=0,8$ при ($\left.l / D\right)_{\mathrm{T}} \leqslant 8$ (вариант 2); $K_{5 v}=0,8$ для сверления (вариант 4), $\frac{T_{\Phi}}{T_{\mathrm{H}}}=\frac{100}{45}=2,2 ;$
$K_{5 v}^{\text {н }}=0,66$ для получистово̀го зенкерования, $\frac{T_{\phi}}{T_{\mathrm{H}}}=\frac{100}{25}=4$;
$K_{\text {so }}=0,64$ для получистового развертыванйя, $\frac{T_{\Phi}}{T_{\mathbf{H}}}=\frac{100}{40}=2,5$;
$K_{\text {в }}=0,66$ для цекования, $\frac{T_{\Phi}}{T_{\mathbf{B}}}=$ $=\frac{100}{30}=3,3$;
$K_{\text {5v }}=0,75$ для сверления (вариант 2), $\frac{T_{\Phi}}{T_{\mathrm{H}}}=\frac{100}{25}=4 ;$
$K_{\mathrm{bv}}=0,66$ для зенкования, $\frac{T_{\phi}}{T_{\mathrm{H}}}=$
$=\frac{100}{25}=4$;
$K_{60}=0,8$ для сверления (состояние обрабатываемой поверхности - штамповка),
$K_{60}=1,0$ для получистового зенкерования, получистового развертывания, цекования, зенкования (обрабатываемая поверхность - без корки);
$K_{7 v}=1,0$ (материал инструмента -
быстрорежушая сталь Р6M5),
$K_{8 v}=1,0$ (без покрытия);
$K_{90}=1$ (сверло по ГОСТ 10903-77); $K_{1 s v}=0,98$ для получистового зенкерования;
$K_{130}=0,84$ для получистового развертывания.

При сверлении (вариант 4):

$$
\begin{gathered}
S_{0}=0,26 \cdot 0,94 \cdot 1,0=0,24 \text { мм } / \mathrm{oб;} ; \\
v=18,9 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 1,0 \cdot 0.8 \cdot 0,8 \times \\
\times 1,0 \cdot 1,0 \cdot 1,0=11,4 \mathrm{~m} / \text { мин; } \\
n=\frac{1000 v}{\pi D}= \\
=\frac{1000 \cdot 11,4}{3,14 \cdot 10,4}=349 \text { мин }^{-1} .
\end{gathered}
$$

При получистовом зенкеровании

$$
\begin{gathered}
S_{0}=0,43 \cdot 0,94=0,40 \mathrm{mм} / 06 ; \\
v=26,6 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 0,66 \cdot 1,0 \cdot 1,0 \times \\
\\
\times 0,98=16,2 \mathrm{~m} / \text { мин; } \\
n= \\
\frac{1000 \cdot 16,2}{3,14 \cdot 11,5}=449 \text { мин }^{-1} .
\end{gathered}
$$

При получистовом развертывании

$$
S_{\mathrm{o}}=0,71 \cdot 0,94=0,68 \mathrm{mм} / 06 ;
$$

Пои сверлении (вариант 2)

$$
S_{\mathrm{o}}=0,18 \cdot 0,94 \cdot 0,7=0,12 \mathrm{mм} / \text { об, }
$$

$$
v=23.2 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 0,8 \cdot 0,75 \cdot 0,8 \times
$$

$$
\times 1,0 \cdot 1,0 \cdot 1,0=10,5 \mathrm{~m} / \text { мин; }
$$

$$
n=\frac{1000 \cdot 10,5}{3,14 \cdot 6,8}=492 \text { мин }^{-1} .
$$

При зенковании

$$
\begin{gathered}
S_{0}=0,04 \cdot 0,94=0,04 \mathrm{mм} / \text { об; } \\
v=13,8 \cdot 0,94 \cdot 1.0 \cdot 1,0 \cdot 0,66 \cdot 1,0 \cdot 1,0= \\
=8,6 \mathrm{~m} / \text { мин; } \\
n=\frac{1000 \cdot 8,6}{3.14 \cdot 10}=274 \text { мин }^{-1} .
\end{gathered}
$$

Этап 20 - выбор лимитирующей головки по минутной подаче:
Номер головки $\quad S_{\text {мин }}=S_{\text {мм } / \text { мин }}{ }^{n}$,

I	$0,24 \cdot 349=83,8$
II	$0,40 \cdot 449=179,6$
III	$0,68 \cdot 154=104,72$
IV	$0,25 \cdot 112=28,0$
V	$0,14 \cdot 492=68,88$
	. $0,04 \cdot 274=10,96$.

$$
\begin{aligned}
& 0=11,6 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 0,64 \cdot 1,0 \cdot 1,0 \times \\
& \times 0,84=5,8 \text { м/мин; } \\
& n=\frac{1000 \cdot 5,8}{3,14 \cdot 12}=154 \text { мин }^{-1} . \\
& \text { При цековании } \\
& S_{0}=0,27 \cdot 0,94=0,25 \mathrm{mм} / \text { об; } \\
& v=9,0 \cdot 0,94 \cdot 1,0 \cdot 1,0 \cdot 0,66 \cdot 1,0 \cdot 1,0= \\
& =5,6 \mathrm{~m} / \text { мин; } \\
& n=\frac{1000 \cdot 6,2}{3.14 \cdot 16}=112 \text { мин }^{-1} \text {. }
\end{aligned}
$$

Корректирование табличных значений мощности N_{T} и осевой силы $P_{\text {O }_{\mathbf{T}}}$.

По карте 5 определяют поправочные

коэффициенты на мощность и осевую силу и находят значения N и P_{0} с учетом этих коэффициентов для следующих переходов:

N, KBy	P_{0}, H
Сверление, цекование, зенхование $m N_{\mathrm{T}} K_{14 N} K_{16 N} / K_{1 N}$	$m P_{T} K_{15 P} / K_{1 P}$
Получистовое венкерование, получистовое развертывание $m N_{\mathrm{T}} K_{11 N} K_{14 N} K_{16 N} / K_{1 N}$ $(m$ - количество инструментов, установленных в головке).	$m P_{T} K_{12 P} K_{15}{ }_{P} / K_{1 P}$

Поправочные коэчфициенты:
$K_{\mathbf{N N}}=K_{1 P}=0,94$ для сверления;
$K_{11 N}=1,08$ для зенкерования получистового,
$K_{11 N}=2,2$ для развертывания полу-

чистового;
$K_{12 P}=1,1$ для зенкерования получистового,
$K_{12 P}=2,9$ для развертывания получистового

Номер головки	Переход	$\frac{s_{0}}{s_{o_{T}}}$	$K_{14 N}$	$K_{15 P}$	$\frac{n_{\pi}}{n_{T}}$	$K_{16 N}$
I.	. Сверление	$\frac{0,24}{0,26}=0,92$	1,0	1,0	$\frac{155}{502}=0,30$	0,4
II	Получистовое зенкерование	$\frac{0,40}{0,43}=0,93$	1,0	1,0	$\frac{101}{706}=0,14$	0,04
III	Получистовое развертывание	$\frac{0,68}{0,71}=0,96$	1,0	1,0	$\frac{68}{308}=0,22$	0,4
IV	Цекование	$\frac{0,25}{0,27}=0,93$	1,0	1,0	$\frac{44}{179}=0,25$	0,16
V	Сверление	$\frac{0,12}{0,18}=0,66$	0,84	0,85	$\frac{492}{924}=0,53$	0,6
VI .	. Зенкование	$\frac{0,04}{0,04}=1,0$	1,0	1,0	$\frac{168}{366}=0,46$	0,36
Номер	головки	N, xBr			$\mathrm{P}_{\mathrm{Q}}, \mathrm{H}$	
I.	. . . $\frac{4 \cdot 0,95 \cdot 1,0}{0,94}$	$\cdot 0,4=1,6$			$\frac{5 \cdot 1,0}{34}=1597$	
II	$\ldots .$	$\frac{8 \cdot 1,0 \cdot 0,04}{94}=$			$\frac{4,8 \cdot 1,1 \cdot 1,0}{0,94}=$	$771,4$
III	$. \cdot \frac{4 \cdot 0,46 \cdot 2,2}{0,94}$	$\underline{1,0 \cdot 0,4}=1,72$			$\frac{3 \cdot 2,9 \cdot 1,0}{0,94}=$	$423,3$
IV $\frac{4 \cdot 5,11 \cdot 1,0}{0,94}$	$\cdot 0,16=3,5$			$\frac{3,2 \cdot 1,0}{, 94}=384$	
V . .	$\cdots . \frac{4 \cdot 0,56 \cdot 0,8}{0,94}$	$\underline{4 \cdot 0,6}=1,2$			$\frac{55 \cdot 0,85}{94}=68$	
VI $\frac{4 \cdot 0,29 \cdot 1,0 \cdot}{0,94}$	0,36 $=0,44$			$\frac{9,4 \cdot 1,0}{94}=678$	

Станок выбирают с учетом условия

$$
N_{\text {д }} \geqslant \frac{\sum N_{i}}{\eta}
$$

Далее определяют норму штучного времени на операцию, установив по соответствующим справочникам $T_{\text {всп }}$

и $T_{\text {доп на опрацию (Общемашино }}$ строительные нормативы времени вспомогательного, на обслуживание рабочего места и подготовительнозаключительного для технического нормирования станочных работ. Среднесерийное и крупносерийное производство. М.: Машиностроение, 1984).'

Сверление, рассверливание, зенкерование, развертывание, зенковдние, цекование,

центрование

Карта 1

Инструмент из P6M5

Переход	Характеристика инструмента			$\dot{\Delta}$ 飠 	Подача $S_{\text {O }_{\text {т }}}$ мм м $/ о б$, скорость v_{T}, м/мин, сила резания $\mathrm{P}_{\mathrm{O}_{T}}, \mathrm{H}$, мощность N_{T}, ${ }^{\text {кВт }}$			
					Обрабатываемнй материал			
					$\begin{gathered} \text { Crass } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$	$\begin{aligned} & \text { Серын } \\ & \text { ұгун } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 186) \end{aligned}$		Медные сплавы $\underset{\leqslant 120)}{\leqslant}$ $\leqslant 120$)
\%	Мелко-размерные сверла диаметром 0,43,0 мм	0,4	0,2	$S_{O_{T}}$ U_{T} $P_{\mathrm{o}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 0,005 \\ 8,4 \\ 11,7 \\ 0,0011 \end{gathered}$	$\begin{gathered} 0,015 \\ 7,4 \\ 10 \\ 0,0015 \end{gathered}$	$\begin{gathered} 0,018 \\ 14,3 \\ 6 \\ 0,0010 \end{gathered}$	$\begin{gathered} 0,020 \\ 12,8 \\ 5 \\ 0,0008 \end{gathered}$
		0,6	0,3	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & \mathrm{o}_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,007 \\ 12,1 \\ 19,5 \\ 0,0027 \end{gathered}$	$\begin{gathered} 0,020 \\ 9,8 \\ 18 \\ 0,0036 \end{gathered}$	$\begin{gathered} 0,022 \\ 22,4 \\ 11 \\ 0,0026 \end{gathered}$	$\begin{gathered} 0,025 \\ 18,6 \\ 9 \\ 0,0020 \end{gathered}$
		0,8	0,4	$\begin{gathered} S_{O_{T}} \\ v_{T} \\ P_{O_{T}} \\ N_{T} \end{gathered}$	$\begin{gathered} 0,008 \\ 15,4 \\ 28,5 \\ 0,0082 \end{gathered}$	$\begin{gathered} 0,026 \\ 13,8 \\ 30 \\ 0,0070 \end{gathered}$	$\begin{gathered} 0,028 \\ 27,8 \\ 17 \\ 0,0057 \end{gathered}$	$\begin{gathered} 0,030 \\ 23,2 \\ 14 \\ 0,0044 \end{gathered}$
Сверление		1,0	0,5	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,010 \\ 16,8 \\ 41,7 \\ 0,009 \end{gathered}$	$\begin{gathered} 0,027 \\ 13,9 \\ 38 \\ 0,0114 \end{gathered}$	$\begin{gathered} 0,028 \\ 38,5 \\ 21 \\ 0,0100 \end{gathered}$	$\begin{gathered} 0,030 \\ 32,4 \\ 16 \\ 0,0072 \end{gathered}$
		1,2	0,6	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,012 \\ 17,5 \\ 55,8 \\ 0,0135 \end{gathered}$	$\begin{gathered} 0,035 \\ 14,1 \\ 55 \\ 0,018 \end{gathered}$	$\begin{gathered} 0,035 \\ 38,6 \\ 29,4 \\ 0,0155 \end{gathered}$	$\begin{gathered} 0,035 \\ 34,8 \\ 23 \\ 0,0114 \end{gathered}$
		1,6	0,8	$S_{O_{0}}$ v_{T} $P_{O_{O}}$ N_{T}	$\begin{gathered} 0,016 \\ 19,5 \\ 92,7 \\ 0,027 \end{gathered}$	$\begin{gathered} 0,045 \\ 15,9 \\ 87 \\ 0,035 \end{gathered}$	$\begin{gathered} 0,045 \\ 46,6 \\ 47 \\ 0,032 \end{gathered}$	$\begin{gathered} 0,050 \\ 38,7 \\ 39 \\ 0,0244 \end{gathered}$

Продолисение карть

Продоложение карть 1

Проӧолокение карты 1

Переход	Характеристика инструмента		 	灾 	Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/мин; сила резания $P_{\text {O }_{T}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \begin{array}{l} \text { Сталь } \\ \text { (НB } \\ \leqslant \\ \leqslant \end{array} \leqslant \end{aligned}$	$\begin{gathered} \text { Серыи } \\ \text { чугун } \\ \left(\text { HB }^{5} \leq\right. \\ \leqslant 186) \end{gathered}$	Алюми ний $\underset{\leqslant}{(\mathrm{HB}} \leqslant$	Медные сплавы $\leqslant 120$)
Рассверливание	Спиральные сверла диаметром 4090 мм	50	9,0	$S_{\mathrm{o}_{\mathrm{T}}}$	1,03	1,35	2,07	1,35
				$v_{T}{ }^{\text {r }}$	14,3	15,6	27,6	18,7
				$P_{\mathrm{o}_{\mathrm{T}}}$	9558	3695	1467	3695
				$N_{\mathrm{T}}{ }^{\text {T }}$	3,25	1,76	0,93	2,12
			14,0	$S_{0_{T}}$	1,14	1,48	2,28	1,48
				$v_{T}{ }^{T}$	12,9	14,3	- 25,0	17,2
		60		$P_{\mathrm{O}_{\mathrm{T}}}$	17241	6526	2442	6526
				$N_{\text {T }}{ }^{\text {T }}$	4,70	2,60	1,36	3,13
		70	10,0	$S_{\mathrm{o}_{\mathrm{T}}}$	1,19	1,55	2,38	1,55
				v_{T}	13,5	14,9	26,2	18,0
				$P_{\mathrm{o}_{\mathrm{T}}}$	11833	4436	1799	4436
				$N_{\text {T }}{ }^{\text {T }}$	3,77	2,08	1,09	2,50
			15,0	$S_{o_{r}}$	1,29	1,67	2,57	1,67
				v_{r}	12,1	13,8	24,3	16,6
				$P_{o_{T}}$	20193	7442	2848	7442
				$N_{\text {T }}{ }^{\text {T }}$	5,19	2,95	1,55	3,55
		80	20,0	$S_{o_{\mathrm{T}}}$$v_{\mathrm{T}}$$P_{\mathrm{o}_{\mathrm{T}}}$$N_{\mathrm{T}}$	1,39	1,80	2,77	1,80
					11,6	13,2	23,3	15,9
					29882	10832	4003	10832
					6,85	3,89	2,04	4,68
		100	25,0	$S_{O_{T}}$	1,7	2,3	3,3	2,3
				$v_{T}{ }^{\text {r }}$	10,7	12,3	21,5	14,8
				$P_{\mathrm{o}_{\text {T }}}$	45405	15603	5601	15603
				$N_{T}{ }^{\text {T }}$	9,42	5,35	2,81	6,4

Продолокение карты 1

Продолжение карть 1

Переход	Характеристика инструмента				Подача $S_{\mathrm{O}_{\boldsymbol{T}}}$, мм/об, скорость v_{T}, м/мин сила резания $P_{\text {O }_{T}}$, H , мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{gathered} \text { Сталь } \\ \stackrel{(H B}{*} \leq \\ \leqslant 203) \end{gathered}$		Алюминй $\leqslant 78$)	Медные стлавы $(\mathrm{HB} \leqslant$ $\leqslant 120)$
$\begin{gathered} \text { Черно- } \\ \text { вое зен- } \\ \text { керо- } \\ \text { вание } \\ \text { без под- } \\ \text { резки } \\ \text { дна } \end{gathered}$	Черно- вые зенкеры диаметром 16100 мм	70	5,00	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,87 \\ 9,3 \\ 6804,4 \\ 4,90 \end{gathered}$	$\begin{gathered} 2,42 \\ 14,7 \\ 2309,9 \\ 5,65 \end{gathered}$	$\begin{gathered} 2,91 \\ 16,3 \\ 1035,2 \\ 1,52 \end{gathered}$	$\begin{gathered} 2,42 \\ 17,7 \\ 2309,9 \\ 5,51 \end{gathered}$
		80	5,00	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,94 \\ 8,9 \\ 6968,9 \\ 4,54 \end{gathered}$	$\begin{gathered} 2,52 \\ 14,7 \\ 2345,7 \\ 5,63 \end{gathered}$	$\begin{gathered} 3,03 \\ 15,9 \\ 1063,5 \\ 1,45 \end{gathered}$	$\begin{gathered} 2,52 \\ 17,6 \\ 2345,7 \\ 5,49 \end{gathered}$
		100	5,94	$S_{O_{\mathrm{O}}}$ v_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 1,99 \\ 8,6 \\ 8694,8 \\ 4,81 \end{gathered}$	$\begin{gathered} 2,58 \\ 11,9 \\ 2911,6 \\ 6,07 \end{gathered}$	$\begin{gathered} 3,10 \\ 15,4 \\ 1294,5 \\ 1,55 \end{gathered}$	$\begin{gathered} 2,60 \\ 17,0 \\ 2911,6 \\ 5,91 \end{gathered}$
Получистовое зенкерование без подрезки дна	Получистовые зенкеры диаметром 10100 мm	10	0,46	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,37 \\ 29,2 \\ 143,1 \\ 0,98 \end{gathered}$	$\begin{aligned} & 0,48 \\ & 28,7 \\ & 69,2 \\ & 0,45 \end{aligned}$	$\begin{aligned} & 0,58 \\ & 49,8 \\ & 30,9 \\ & 1,11 \end{aligned}$	$\begin{aligned} & 0,48 \\ & 34,5 \\ & 69,2 \\ & 0,44 \end{aligned}$
		12	0,48	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,43 \\ 26,6 \\ 164,8 \\ 0,92 \end{gathered}$	$\begin{aligned} & 0,56 \\ & 27,2 \\ & 77,2 \\ & 0,46 \end{aligned}$	$\begin{aligned} & 0,67 \\ & 42,9 \\ & 35,6 \\ & 0,94 \end{aligned}$	$\begin{gathered} 0,56 \\ 32,7 \\ 77,2 \\ 0,45 \end{gathered}$
		16	0,70	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}}^{N_{\mathrm{T}}} \end{aligned}$	$\begin{gathered} 0,54 \\ 22,8 \\ 297,6 \\ 1,05 \end{gathered}$	$\begin{gathered} 0,70 \\ 24,8 \\ 132,8 \\ 0,59 \end{gathered}$	$\begin{aligned} & 0,84 \\ & 37,6 \\ & 60,7 \\ & 1,12 \end{aligned}$	$\begin{gathered} 0,70 \\ 29,8 \\ 132,8 \\ 0,58 \end{gathered}$
		20	0,74	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,64 \\ 22,2 \\ 352,8 \\ 1,16 \end{gathered}$	$\begin{array}{r} 0,83 \\ 24,1 \\ 151,7 \\ 0,65 \end{array}$	$\begin{aligned} & 0,99 \\ & 36,6 \\ & 72,2 \\ & 1,22 \end{aligned}$	$\begin{gathered} 0,83 \\ 29,0 \\ 151,7 \\ 0,63 \end{gathered}$

Перегод	Характеристнка инструмента				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об, скорость v_{T}, м/мнн; сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый матернал			
					Сталь (НВ $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{K}$	$\begin{gathered} \text { Серыа } \\ \text { чууун } \\ (\mathrm{HB} \underset{186)}{\leqslant} \end{gathered}$	Алюми($\mathrm{HB}{ }^{\mathrm{H}} \leqslant$ $\leqslant 78$)	Медные (HB c $\leqslant 120$)
Получи- стовое зенке- рование без под- резки дна	Получистовые зенкеры диаметром 10100 мм	25	0,74	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0,75	0,97	1,17	0,97
					20,1	22,8	33,4	27,4
					389,6	161,8	80,7	161,8
					1,04	0,64	1,12	0,62
		32	0,79	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{r}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0,88	1,15	1,38	1,15
					19,6	22,3	32,7	26,8
					467,1	187,0	96,8	187,0
					1,16	0,71	1,25	0,69
		40	0,79	$\begin{aligned} & S_{o_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	1,01	1,31	1,58	1,31
					17,8	21,2	30,1	25,5
					508,7	197,6	106,6	197,6
					1,03	0,69	1,14	0,67
		50	0,79	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$			1,78	1,48
					16,7	20,5	28,8	24,6
					548,5	207,4	116,0	207,4
					0,95	0,68	1,11	0,67
		60	0,84	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	1,24	1,61	1,94	1,61
					16,7	20,4	28,8	24,5
					622,1	230,9	130,9	230,9
					1,04	0,74	1,21	0,72
		70	0,84	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	1,32	1,71	2,06	1,71
					15,7	20,2	27,8	24,3
					644,8	236,3	136,3	236,3
					0,94	0,74	1,14	0,72
		80	0,84	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	1,37	1,78	2,14	1,78
					15,1	20,1	27,1	24,2
					660,4	240,0	140,0	240,0
					0,87	0,73	1,09	0,71

Переход	Характеристика инстру мента			$\stackrel{\dot{\circ}}{\stackrel{0}{0}}$ 	Подача $S_{\text {O }_{T}}$, мм/об; скорость ${ }^{*} v_{T}$, м/Мин сила резания $P_{\text {O }_{T}}, \mathrm{H}$; мощность N_{T}, кВт			
					ОбрабатываемыЯ материал			
					$\begin{gathered} \text { Сталь } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$	Серыа чугун (Нв $-186)$ $\leqslant 186$)	$\begin{aligned} & \text { Алюми- } \\ & \text { Нй } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 78) \end{aligned}$	Медные сплавы $(\mathrm{FB}$ $\leqslant 120)$
Получистовое зенкерование без подрезки дна	Получистовые зенкеры диаметром 10100 мм	90	0,91	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{array}{r} 1,40 \\ 14,8 \\ 737,7 \\ 0,89 \end{array}$	$\begin{array}{r} 1,82 \\ 19,8 \\ 266,7 \\ 0,75 \end{array}$	$\begin{gathered} 2,19 \\ 26,7 \\ 154,2 \\ 1,12 \end{gathered}$	$\begin{array}{r} 1,82 \\ 23,8 \\ 266,7 \\ 0,73 \end{array}$
		100	0,91	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{array}{r} 1,42 \\ 14,9 \\ 742,9 \\ 0,88 \end{array}$	$\begin{array}{r} 1,84 \\ 19,7 \\ 267,9 \\ 0,73 \end{array}$	$\begin{gathered} 2,21 \\ 26,9 \\ 155,4 \\ 1,12 \end{gathered}$	$\begin{gathered} 1,84 \\ 23,7 \\ 267,9 \\ 0,71 \end{gathered}$
1		16	0,41	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,37 \\ 30,7 \\ 123,6 \\ 0,87 \end{gathered}$	$\begin{aligned} & 0,48 \\ & 30,4 \\ & 60,0 \\ & 0,40 \end{aligned}$	$\begin{aligned} & 0,57 \\ & 50,7 \\ & 27,2 \\ & 0,92 \end{aligned}$	$\begin{aligned} & 0,48 \\ & 36,6 \\ & 60,0 \\ & 0,39 \end{aligned}$
		20	0,43	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,43 \\ 29,9 \\ 145,2 \\ 0,95 \end{gathered}$	$\begin{aligned} & 0,56 \\ & 29,6 \\ & 67,9 \\ & 0,44 \end{aligned}$	$\begin{aligned} & 0,68 \\ & 49,4 \\ & 32,1 \\ & 1,00 \end{aligned}$	$\begin{aligned} & 0,56 \\ & 35,6 \\ & 67,9 \\ & 0,43 \end{aligned}$
Чистовое зенкерование без подрезки дна	Чистовые зенкеры диаметром 16100 мм	25	0,43	$\begin{gathered} S_{o_{\mathrm{O}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,51 \\ 27,1 \\ 160,3 \\ 0,86 \end{gathered}$	$\begin{aligned} & 0,66 \\ & 28,0 \\ & 72,4 \\ & 0,44 \end{aligned}$	$\begin{aligned} & 0,80 \\ & 45,0 \\ & 35,9 \\ & 0,92 \end{aligned}$	$\begin{aligned} & 0,66 \\ & 33,7 \\ & 72,4 \\ & 0,42 \end{aligned}$
		40	0,48	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathbf{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,69 \\ 23,8 \\ 220,9 \\ 0,86 \end{gathered}$	$\begin{aligned} & 0,90 \\ & 25,9 \\ & 93,3 \\ & 0,48 \end{aligned}$	$\begin{aligned} & 1,08 \\ & 40,2 \\ & 49,6 \\ & 0,95 \end{aligned}$	$\begin{aligned} & 0,90 \\ & 31,2 \\ & 93,3 \\ & 0,47 \end{aligned}$
		50	0,48	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,78 \\ 22,3 \\ 238,2 \\ 0,80 \end{gathered}$	$\begin{aligned} & 1,01 \\ & 25,0 \\ & 97,9 \\ & 0,48 \end{aligned}$	$\begin{aligned} & 1,22 \\ & 38,5 \\ & 54,0 \\ & 0,93 \end{aligned}$	$\begin{aligned} & 1,01 \\ & 30,1 \\ & 97,9 \\ & 0,47 \end{aligned}$

Переход	Характеристика инстру. мента				Подача $S_{\mathrm{O}_{T}}$, мм/об; скорость v_{T}, м/мин; сила резания $P_{\mathrm{o}_{\underline{T}}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый материал			
						$\begin{aligned} & \text { Серый } \\ & \text { ұугун } \\ & \stackrel{\text { HB }}{\leqslant} \leqslant 186) \end{aligned}$	$\begin{aligned} & \text { Алюми } \\ & \begin{array}{l} \text { нй } \\ \stackrel{H B}{\leqslant} \leqslant \end{array} \end{aligned}$	Медные сплавы ($\mathrm{HB} \underset{5}{\leqslant}$ $\leqslant 120$)
	Чистовые зенкеры диаметром 16-. 100 мм	60	0,53	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{T} \end{gathered}$	$\begin{gathered} 0,85 \\ 22,1 \\ 282,6 \\ 0,88 \end{gathered}$	$\begin{gathered} 1,10^{\prime} \\ 24,9 \\ 114,1 \\ 0,53 \end{gathered}$	$\begin{array}{r} 1,32 \\ 38,3 \\ 63,2 \\ 1,02 \end{array}$	$\begin{gathered} 1,10 \\ 29,9 \\ 114,1 \\ 0,51 \end{gathered}$
		70	0,53	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{array}{r} 0,90 \\ 20,9 \\ 292,9 \\ 0,80 \end{array}$	$\begin{gathered} 1,17 \\ 24,6 \\ 116,8 \\ 0,53 \end{gathered}$	$\begin{aligned} & 1,40 \\ & 36,8 \\ & 65,9 \\ & 0,97 \end{aligned}$	$\begin{gathered} 1,17 \\ 29,7 \\ 116,8 \\ 0,51 \end{gathered}$
пстовое венкерование *s подрезки дна		80	0,53	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,94 \\ 20,1 \\ 300,0 \\ 0,74 \end{gathered}$	$\begin{gathered} 1,21 \\ 24,6 \\ 118,6 \\ 0,53 \end{gathered}$	$\begin{aligned} & 1,46 \\ & 35,9 \\ & 67,7 \\ & 0,92 \end{aligned}$	$\begin{gathered} 1,21 \\ 29,6 \\ 118,6 \\ 0,51 \end{gathered}$
		90	0,56	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,96 \\ 19,8 \\ 325,2 \\ 0,75 \end{gathered}$	$\begin{gathered} 1,24 \\ 24,2 \\ 127,9 \\ 0,53 \end{gathered}$	$\begin{aligned} & 1,49 \\ & 35,6 \\ & 72,7 \\ & 0,94 \end{aligned}$	$\begin{gathered} 1,24 \\ 29,1 \\ 127,9 \\ 0,51 \end{gathered}$
		100	0,56	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{array}{r} 0,97 \\ 19,8 \\ 327,5 \\ 0,74 \end{array}$	$\begin{gathered} 1,26 \\ 24,1 \\ 128,4 \\ 0,51 \end{gathered}$	$\begin{aligned} & 1,51 \\ & 35,9 \\ & 73,3 \\ & 0,94 \end{aligned}$	$\begin{gathered} 1,26 \\ 28,9 \\ 128,4 \\ 0,50 \end{gathered}$
Черноке зен-керо-	Черновые зенкеры	16	1,44	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}}^{N_{\mathrm{T}}} \end{gathered}$	$\begin{gathered} 0,37 \\ 23,9 \\ 558,3 \\ 2,29 \end{gathered}$	$\begin{gathered} 0,48 \\ 26,8 \\ 270,9 \\ 1,29 \end{gathered}$	$\begin{aligned} & 0,57 \\ & 39,4 \\ & 95,7 \\ & 0,51 \end{aligned}$	$\begin{gathered} 0,48 \\ 32,3 \\ 270,9 \\ 1,26 \end{gathered}$
с подрезкой дна	$\begin{gathered} \text { тром } \\ 16- \\ 100 \mathrm{~mm} \end{gathered}$	20	2,34	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,43 \\ 21,3 \\ 1108,8 \\ 2,99 \end{gathered}$	$\begin{gathered} 0,56 \\ 25,0 \\ 518,6 \\ 1,83 \end{gathered}$	$\begin{gathered} 0,68 \\ 35,2 \\ 174,8 \\ 0,66 \end{gathered}$	$\begin{gathered} 0,56 \\ 30,1 \\ 518,6 \\ 1,78 \end{gathered}$

Продолжение карть

Продолжение карть 1

Перемод	$\begin{aligned} & \text { Харакхе- } \\ & \text { ристика } \\ & \text { инсруру- } \\ & \text { мента } \end{aligned}$				Подача $S_{\text {o }_{T}}$, мм/об, скорость v_{T}, m/мин, сила резания $P_{\mathrm{o}_{T}}$, Н, мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{gathered} \text { Craлs } \\ \left(\begin{array}{c} \text { (HB } \\ \leqslant 203) \end{array}\right. \end{gathered}$	$\begin{gathered} \text { Cepur } \\ \text { (qyyy } \\ \left(\begin{array}{c} \text { HB } \end{array}\right. \\ \leqslant 186) \end{gathered}$	$\begin{aligned} & \text { Алюми- } \\ & \left(\begin{array}{l} \text { нй } \\ \leqslant \\ \leqslant \end{array}\right) \end{aligned}$	Медные спиа \leqslant $\leqslant 120$)
Получистовое зенкерование с поддна	Получистовые зенкеры диаметром 100 мм	32	0,79	$S_{o^{3}}$	0,40	0,51	0,62	0,51
				v_{r}	29,3	30,7	48,8	36,6
				$P_{o_{T}}$	284,0	135,6	55,2	135,6
				$N_{\text {T }}{ }^{\text {T }}$	1,20	0,63	1,30	0,61
		40	0,79	$S_{0_{r}}$	0,45	0,59	0,71	0,59
				v_{T}	26,6	29,2	44,9	35,1
				$P_{\mathrm{o}_{T}}$	309,3	143,3	60,8	143,3
					1,07	0,61	1,19	0,60
		50	0,79	$S_{o_{T}}$	0,51	0,67	0,80	0,67
				$v_{\mathrm{T}}{ }^{\text {r }}$	24,9	28,2	43,1	33,9
				$P_{\mathrm{o}_{\text {T }}}$	333,5	150,4	66,2	150,4
				$N_{\text {T }}{ }^{\text {r }}$	0,99	0,61	1,16	0,59
		60	0,84		0,56	0,72	0,87	0,72
				$v_{\text {T }}{ }_{\text {T }}$	24,9	28,1	43,1	33,8
				$P_{\mathrm{o}_{\text {T }}}$	378,2	167,5	74,6	167,5
				$N_{\mathrm{T}}{ }^{\text {T }}$	1,08	0,65	1,26	0,64
		70	0,84	$S_{o_{\text {o }}}$	0,59	0,77	0,92	0,77
				$v_{\text {T }}$	23,5	27,9	41,5	33,5
				$P_{\mathrm{o}_{T}}$	392,0	171,4	77,7	171,4
				$N_{\text {T }}{ }^{\text {T }}$	0,98	0,65	1,19	0,64
		80	0,84		0,61	0,80	0,96	0,80
				$v_{T}{ }^{\text {r }}$	22,6	27,8	40,4	33,4
				$P_{\mathrm{o}_{\text {T }}}$	401,5	174,1	79,8	174,1
				$N_{\text {T }}{ }^{\text {r }}$	0,91	0,65	1,13	0,63

Продолокение карть 1

Переход	Характеристика инстру мента				Подача $\mathrm{S}_{\mathrm{O}_{\mathrm{T}}}$ мм/об; скорость v_{T}, $\mathrm{M} / \mathrm{Mин}$; сила резания $P_{o_{T}}, H_{;}$мощность N_{T}, кBs			
					Обрабатываемыи материал			
					$\begin{aligned} & \text { Сталь } \\ & \text { (НB } \\ & \leqslant 203) \end{aligned}$	Серый 4угу \leq $\leqslant 186$)	Алюми - ($\mathrm{HB} \leqslant$ $\leqslant 78)$	Медные снлавы ($\mathrm{HB} \underset{1}{\leq}$ $\leqslant 120)$
Чистовое зенкерование с подрезкой дна	Чистовые зенкеры диаметром 16100 мм	50	0,48	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	0,41	0,53	0,64	0,57
					30,8	32,5	53,3	39,1
					159,2	75,5	34,3	75,5
					0,82	0,43	0,96	0,42
		60	0,53	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	0,44	0,58	0,69	0,58
					30,6	32,3	52,9	38,8
					188,9	88,0	40,1	88,0
					0,91	0,48	1,05	0,47
		70	0,53	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	0,47	0,61	0,73	0,61
					28,9	32,0	51,0	38,5
					195,8	90,0	41,8	90,0
					0,82	0,48	1,00	0,47
		80	0,53	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	0,49	0,63	0,76	0,63
					27,8	31,9	49,7	38,3
					200,5	91,4	42,9	91,4
					0,76	0,48	0,95	0,46
		90	0,56	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0,50	0,65	0,78	0,65
					27,4	31,3	49,3	37,7
					217,3	98,6	46,1	98,6
					0,77	0,48	0,97	0,47
			0,56	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0,51	0,66	0,79	0,66
					27,4	31,2	49,6	37,5
					218,9	99,0	46,5	99,0
					0,76	0,47	0,97	0,46

Продолжение карть

	Характеристика инструмента			炭 	Подача $S_{\text {O }_{T}}$, мм/об; скорость $v_{\mathrm{T}}, \mathrm{m} /$ мин; сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый материал			
						$\begin{gathered} \text { Серни } \\ \text { ұуун } \\ (\mathrm{HB} \leq \\ \leqslant 186) \end{gathered}$	$\begin{aligned} & \text { Алюмин- } \\ & \text { ннв } \\ & \stackrel{\text { HB }}{ } \leqslant \end{aligned}$	Медняе сплавя $\underset{\leqslant 120)}{\lessgtr}$ $\leqslant 120$)
	Черновые развертки диаметром 4-100 mm	4	0,18	$\begin{gathered} S_{o_{\mathrm{o}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,55 \\ 9,6 \\ 59, i \\ 0,49 \end{gathered}$	$\begin{aligned} & 1,37 \\ & 12,0 \\ & 34,1 \\ & 0,58 \end{aligned}$	$\begin{aligned} & 0,69 \\ & 11,6 \\ & 13,6 \\ & 0,13 \end{aligned}$	$\begin{aligned} & 1,37 \\ & 14,5 \\ & 34,1 \\ & 0,70 \end{aligned}$
		6	0,18	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,65 \\ & 10,1 \\ & 65,8 \\ & 0,59 \end{aligned}$	$\begin{array}{r} 1,63 \\ 10,2 \\ 36,5 \\ 0,56 \end{array}$	$\begin{aligned} & 0,82 \\ & 12,6 \\ & 15,3 \\ & 0,17 \end{aligned}$	$\begin{aligned} & 1,63 \\ & 12,2 \\ & 36,5 \\ & 0,68 \end{aligned}$
		8	0,20	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,74 \\ & 10,0 \\ & 80,5 \\ & 0,71 \end{aligned}$	$\begin{gathered} 1,85 \\ 8,7 \\ 43,6 \\ 0,58 \end{gathered}$	$\begin{aligned} & 0,92 \\ & 12,4 \\ & 18,5 \\ & 0,20 \end{aligned}$	$\begin{aligned} & 1,85 \\ & 10,5 \\ & 43,6 \\ & 0,69 \end{aligned}$
		10	0,20	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,81 \\ & 10,0 \\ & 85,4 \\ & 0,77 \end{aligned}$	$\begin{gathered} 2,03 \\ 7,8 \\ 45,2 \\ 0,55 \end{gathered}$	$\begin{aligned} & 1,02 \\ & 12,5 \\ & 19,8 \\ & 0,21 \end{aligned}$	$\begin{gathered} 2,03 \\ 9,3 \\ 45,2 \\ 0,66 \end{gathered}$
		12	0,21	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,88 \\ 8,8 \\ 95,1 \\ 0,79 \end{gathered}$	$\begin{gathered} 2,20 \\ 6,2 \\ 49,5 \\ 0,52 \end{gathered}$	$\begin{aligned} & 1,10 \\ & 10,4 \\ & 22,0 \\ & 0,21 \end{aligned}$	$\begin{gathered} 2,20 \\ 7,5 \\ 49,5 \\ 0,62 \end{gathered}$
		16	0,23	$\begin{gathered} S_{o_{\mathrm{O}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{O}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,99 \\ 8,4 \\ 114,4 \\ 0,91 \end{gathered}$	$\begin{gathered} 2,49 \\ 5,3 \\ 58,0 \\ 0,52 \end{gathered}$	$\begin{gathered} 1,24 \\ 9,9 \\ 26,2 \\ 0,23 \end{gathered}$	$\begin{gathered} 2,49 \\ 6,4 \\ 58,0 \\ 0,63 \end{gathered}$
		20	0,24	$\begin{aligned} & S_{o_{T}} \\ & v_{T} \\ & P_{o_{T}} \\ & N_{T} \end{aligned}$	$\begin{gathered} 1,09 \\ 8,1 \\ 127,8 \\ 0,98 \end{gathered}$	$\begin{gathered} 2,73 \\ 4,7 \\ 63,4 \\ 0,52 \end{gathered}$	$\begin{gathered} 1,37 \\ 9,5 \\ 29,3 \\ 0,25 \end{gathered}$	$\begin{gathered} 2,73 \\ 5,7 \\ 63,4 \\ 0,62 \end{gathered}$

Продолжение картья

Переход	Характе－ ристика инстру． мента		 留 忩		Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об；скорость ${v_{\mathrm{T}}}$ ，м／мин сила резания $P_{\mathrm{o}_{T}}, \mathrm{H}$ ；мощность N_{T} ，кВ			
					Обрабатываемыи материал			
					Сталь （HB \leqslant $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{K} 03$ ）	Серыи чугун $\begin{aligned} & (\mathrm{HB} \\ & \leqslant 186) \end{aligned}$	$\begin{aligned} & \text { Алюми } \\ & \text { нй } \\ & \stackrel{\text { HB }}{\leqslant} \leqslant \end{aligned}$	Медные （HB $\stackrel{ }{ }$ $\leqslant 120$ ）
Черно－ вое раз－ верты－ вание без под－ резки дна	Черно－ вые раз－ вертки диаме－ $\stackrel{\text { тром }}{4-}$ 100 мм	25	0，24	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,20 \\ 6,6 \\ 135,5 \\ 0,86 \end{gathered}$	$\begin{gathered} 3,01 \\ 3,9 \\ 35,9 \\ 0,46 \end{gathered}$	$\begin{gathered} 1,50 \\ 8,3 \\ 31,3 \\ 0,23 \end{gathered}$	$\begin{gathered} 3,01 \\ 4,7 \\ 65,9 \\ 0,56 \end{gathered}$
		32	0，26	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,34 \\ 5,5 \\ 159,3 \\ 0,88 \end{gathered}$	$\begin{gathered} 3,34 \\ 3,1 \\ 75,6 \\ 0,44 \end{gathered}$	$\begin{gathered} 1,67 \\ 7,0 \\ 36,5 \\ 0,24 \end{gathered}$	$\begin{gathered} 3,34 \\ 3,7 \\ 75,6 \\ 0,53 \end{gathered}$
		40	0，26	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,47 \\ 5,2 \\ 169,0 \\ 0,94 \end{gathered}$	$\begin{gathered} 3,68 \\ 2,8 \\ 78,6 \\ 0,45 \end{gathered}$	$\begin{gathered} 1,84 \\ 6,8 \\ 39,0 \\ 0,26 \end{gathered}$	$\begin{gathered} 3,68 \\ 3,3 \\ 78,6 \\ 0,53 \end{gathered}$
		50	0，26	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,62 \\ 4,5 \\ 179,3 \\ 0,88 \end{gathered}$	$\begin{gathered} 4,04 \\ 2,3 \\ 81,6 \\ 0,40 \end{gathered}$	$\begin{gathered} 2,02 \\ 6,1 \\ 41,7 \\ 0,25 \end{gathered}$	$\begin{gathered} 4,04 \\ 2,8 \\ 81,6 \\ 0,48 \end{gathered}$
		60	0，27	$S_{\mathrm{O}_{\mathrm{T}}}$ V_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 1,75 \\ 4,0 \\ 196,8 \\ 0,85 \end{gathered}$	$\begin{gathered} 4,37 \\ 2,1 \\ 88,1 \\ 0,39 \end{gathered}$	$\begin{gathered} 2,19 \\ 5,5 \\ 45,7 \\ 0,25 \end{gathered}$	$\begin{gathered} 4,37 \\ 2,5 \\ -88,1 \\ 0,47 \end{gathered}$
		70	0，27	$S_{\mathrm{O}_{\mathrm{T}}}$ V_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 1,87 \\ 3,6 \\ 205,0 \\ 0,80 \end{gathered}$	$\begin{gathered} 4,67 \\ 1,9 \\ 90,4 \\ 0,38 \end{gathered}$	$\begin{gathered} 2,33 \\ 5,0 \\ 47,9 \\ 0,24 \end{gathered}$	$\begin{gathered} 4,67 \\ 2,3 \\ 90,4 \\ 0,45 \end{gathered}$

Переход	Характеристика инструмента		 	兑 	Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/мин; сила резания $P_{\mathrm{o}_{\mathrm{T}}}, \mathrm{H}$; мощность $N_{\mathrm{T}}, \mathrm{\kappa Bт}$			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \underset{ }{\leqslant 20.3)} \end{aligned}$	Серый чугун (Нв $\leq 186)$	Алюми($\mathrm{HB}{ }^{\mathrm{H}} \leqslant$ $\leqslant 78)$	Медные сплавы $\leqslant 120$)
	Черновые развертки диаметром 4100 мм	80	0,27	$S_{\mathrm{o}_{\text {T }}}$	1,98	4,94	2,47	4,94
				$v_{T}{ }^{\text {T }}$	3,4	1,8	4,9	2,2
				$P_{\mathrm{o}_{\mathrm{T}}}$	212,4	92,5	49,8	92,5
				$N_{\text {T }}{ }^{\text {T }}$	0,85	0,40	0,26	0,48
		100	0,30	$S_{\mathrm{o}_{\mathrm{T}}}$	2,17	5,44	2,70	5,44
				v_{T}	3,2	1,7	4,5	2,1
				$P_{\mathrm{O}_{\mathbf{T}}}$	248,7	107,1	57,4	107,1
				$N_{\text {T }}{ }^{\text {r }}$	0,93	0,43	0,27	0,51
	Получистовые развертки диаметром 4100 mm	4	0,09	$S_{\mathrm{O}_{\mathrm{T}}}$	0,42	1,06	0,53	1,06
				v_{T}	13,0	7,6	18,7	9,1
				$P_{\mathrm{o}_{\mathrm{T}}}$	21,9	13,4	5,7	13,4
				$N_{\text {T }}{ }^{\text {r }}$	0,29	0,18	0,10	0,21
		6	0,09	$S_{O_{T}}$	0,51		0,64	1,29
				v_{T}	13,6	7,5	20,1	9,0
				$P_{\mathrm{o}_{\mathrm{T}}}$	24,7	14,5	-6,5	14,5
				$N_{\text {T }}$	0,35	0,20	0,13	0,24
		8	0,10	$S_{\mathrm{O}_{\mathrm{T}}}$	$0,59$	$1,47$		1,47
				v_{T}	13,4	7,3	19,6	8,8
				$P_{o_{T}}$	30,5	17,3	7,9	17,3
				$N_{\text {T }}{ }^{\text {T }}$	0,42	0,24	0,15	0,29
		10	0,10	$S_{\mathrm{O}_{\mathrm{r}}}$	0,66	1,64	0,82	1,64
				U_{T}	13,3	7,2	19,7	8,7
				$P_{\mathrm{O}_{\mathrm{T}}}$	32,5	18,1	8,5	18,1
				$N_{\text {T }}{ }^{\text {T }}$	0,46	0,26	0,17	0,31
		12	0,10	$S_{\mathrm{O}_{\mathrm{T}}}$	0,71	1,79	0,89	1,79
				v_{T}	11,6	6,3	16,7	7,6
				$P_{0_{\text {o }}}$	34,3	18,7	9,1	18,7
				$N_{\text {T }}{ }^{\text {r }}$	0,46	0,26	0,16	0,31

Переход	- Характеристика инстру. мента		 	惫 	сила реяания $P_{\mathrm{O}_{-}}$. H ; мощность N_{T}, кВт			
					Обрабатываемып материал			
					$\begin{gathered} \text { Craль } \\ (\mathrm{HB} \leftrightarrows \\ \leqslant 203) \end{gathered}$	$\begin{aligned} & \text { Серыи } \\ & \text { ұгун } \\ & \left(\begin{array}{l} \text { Hв } \\ \leqslant 186) \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { Алюми- } \\ & \text { нй } \\ & (\stackrel{H B}{ } \leqslant \\ & \leqslant 78) \end{aligned}$	Медные сплавы $\leqslant 120$)
Получистовое развертыванке без подрезки дна	Получистовые разверт. ки диаметром 4100 мм	16	0,10	$S_{o_{T}}$	0,82	2.05	1.02	2,05
				v_{T}	11,2	6,2	16,5	7,2
				$P_{0_{T}}$	37,3	19,7	10,0	19,7
				$N_{\text {T }}{ }^{\text {r }}$	0,49	0,28	0,18	0,34
		20	0,10	$S_{o_{7}}$	0,91	2,27	1,14	2,27
				$v_{T}{ }^{2}$	10,8	6,1	16,2	7,3
				P_{0}	39,9	20,6	10,7	20,6
				$N_{T}{ }^{\text {T }}$	0,52	0,30	0,19	0,36
		25	0,10	$S_{o_{\text {T }}}$	1,01	2,53	1,26	2,53
				v_{T}	8,8	5,5	14.0	6,6
				$P_{0}{ }_{\text {or }}$	42,6	21.5	11,5	21,5
				$N_{T}{ }^{\text {T }}$	0,46	0,29	0,18	0,35
		32	0,10	$S_{\text {orr }}$	1,14	2.84	1,42	2,84
				$v_{T}{ }^{\text {T }}$	7,4	4.8	12,3	5,7
				$P_{\rho_{T}}$	45,8	$22,5$	12.5	22,5
				$N_{\text {r }}{ }^{\mathbf{T}}$	0,44	0,29	0,18	0,35
		40	0,10	$S_{O_{T}}$	1,26	3,16	1.58	3,16
				v_{T}	7,0	4,7	11,8	5,6
				P_{0}	48,8	23,5	13,5	23,5
				$N_{T}{ }^{\text {T }}$	0,47	0,32	0,20	0,39
		50	0,10	$S_{\mathrm{o}_{\mathbf{T}}}$	1,40	3,51	1,75	3,51
				$v_{T}{ }^{\text {r }}$	6,0	4,2	10,5	5,0
				P_{0}	52,1	24,5	14.5	24,5
				$N_{\text {T }}{ }^{\text {r }}$	0,44	0,32	0,19	0,38
		60	0,11				1,91	3.82
				$v_{T}{ }^{T}$	5,2	3,9	9.2	4,7
				$P_{\text {OT }}$	61,7	28,4	17,0	28,4
				$N_{\text {T }}{ }^{\text {T }}$	0,44	0,34	0,19	0,41

Продолжение карть

\％репод	Характе－ ристика инстру мевта			宽 	Подача $S_{\mathrm{O}_{m}}$ ．мм／об；скорость σ_{T} ，м／мин； сила реяания $P_{\mathrm{O}_{-}}$， H ；мощность N_{T} ．кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Craль } \\ & (\text { HB } \\ & \leqslant 203) \end{aligned}$	Серыя qугyн （HB \leqslant \leqslant	$\begin{aligned} & \text { Алюмин } \\ & \text { (Ннй } \\ & \leqslant 78) \end{aligned}$	Медные сплав $\leqslant 120$ ）
	Получи－ стовые разверт－ ки диа． метром 4－ 100 мм	70	0，11	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & U_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1.64 \\ 4,7 \\ 64,5 \\ 0,42 \end{gathered}$	$\begin{gathered} 4,11 \\ 3.8 \\ 29,3 \\ 0.34 \end{gathered}$	$\begin{gathered} 2,06 \\ 8,4 \\ 17,9 \\ 0,18 \end{gathered}$	$\begin{gathered} 4,11 \\ 4,5 \\ 29,3 \\ 0,41 \end{gathered}$
啫 млучи－ ровое （звер－		80	0，11	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,75 \\ 4,5 \\ 67,1 \\ 0,45 \end{gathered}$	$\begin{gathered} 4,38 \\ 3,7 \\ 30,0 \\ 0,38 \end{gathered}$	$\begin{gathered} 2,19 \\ 8,1 \\ 18,7 \\ 0,20 \end{gathered}$	$\begin{gathered} 4,38 \\ 4,4 \\ 30,0 \\ 0,45 \end{gathered}$
		90	0，12	$\begin{aligned} & S_{o_{\mathrm{o}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,85 \\ 4.2 \\ 77,1 \\ 0.48 \end{gathered}$	$\begin{gathered} 4,63 \\ 3,6 \\ 34,1 \\ 0,41 \end{gathered}$	$\begin{gathered} 2,32 \\ 7,5 \\ 21,2 \\ 0,21 \end{gathered}$	$\begin{gathered} 4,63 \\ 4,3 \\ 34,1 \\ 0,50 \end{gathered}$
		100	0，12	$S_{\mathrm{O}_{\mathrm{T}}}$ v_{T} $P_{\mathrm{o}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 1,95 \\ 4,1 \\ 79,5 \\ 0,48 \end{gathered}$	$\begin{gathered} 4,87 \\ 3,6 \\ 34,8 \\ 0,43 \end{gathered}$	$\begin{gathered} 2,43 \\ 7,3 \\ 21,9 \\ 0,21 \end{gathered}$	$\begin{gathered} 4,87 \\ 4,3 \\ 34,8 \\ 0,51 \end{gathered}$
	Чистовые разверт－ ки диа－ метдом 16－ 100 mm	16	0，06	$S_{\mathrm{O}_{\mathrm{T}}}$ O_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{aligned} & 0,68 \\ & 14,1 \\ & 18,0 \\ & 0,33 \end{aligned}$	$\begin{gathered} 1,69 \\ 7,2 \\ 9,9 \\ 0,19 \end{gathered}$	$\begin{gathered} 0,84 \\ 23,5 \\ 5,2 \\ 0,15 \end{gathered}$	$\begin{gathered} 1,69 \\ 8,6 \\ 9,9 \\ 0,23 \end{gathered}$
		20	0，06	$S_{O_{O}}$ O_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{aligned} & 0,76 \\ & 13,5 \\ & 19,3 \\ & 0,35 \end{aligned}$	$\begin{aligned} & 1,90 \\ & 7,0 \\ & 10,4 \\ & 0,20 \end{aligned}$	$\begin{gathered} 0,95 \\ 22,8 \\ 5,7 \\ 0,16 \end{gathered}$	$\begin{gathered} 1,90 \\ 8,4 \\ 10,4 \\ 0,24 \end{gathered}$
		25	0，06	$S_{O_{0}}$ U_{T} $P_{O_{O}}$ N_{T}	$\begin{aligned} & 0,85 \\ & 10,9 \\ & 20,8 \\ & 0,31 \end{aligned}$	$\begin{gathered} 2,14 \\ 6,3 \\ 10,9 \\ 0,20 \end{gathered}$	$\begin{array}{r} 1,07 \\ 19,7 \\ 6,2 \\ 0,15 \end{array}$	$\begin{gathered} 2,14 \\ 7,6 \\ 10,9 \\ 0,24 \end{gathered}$

Переход	Характеристика инстру мент				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об; скорость $v_{\mathrm{F}_{2}}, \mathrm{~m} /$ мин сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, кB			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \underset{\leqslant}{\leqslant} \underset{\sim}{5} \end{aligned}$	$\begin{gathered} \text { Серын } \\ \text { чууу } \\ (\text { HB } \leq \\ \leqslant 186) \end{gathered}$		Медные сплавы $\leqslant 120$)
Чистовое развертывание без подрезки дна	Чистовые развертки диаметром 16100 мм	32	0,07	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	0,97	2,43	1,22	2,43
					8,8	5,3	15,9	6,4
					27,1	13,8	7,9	13,8
					0,34	0,22	0,16	0,27
		40	0,07	$\begin{gathered} S_{o_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$				2,74
					8,3	5,2	- 15,2	6,2
					29,1	14,5	8,5	14,5
					0,36	0,25	0,17	0,29
		50	0,07	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,23 \\ 7,0 \\ 31,4 \\ 0,34 \end{gathered}$	$\begin{gathered} 3.08 \\ 4,6 \\ 15,2 \\ 0,24 \end{gathered}$	$\begin{gathered} 1,54 \\ 13,4 \\ 9,3 \\ 0,17 \end{gathered}$	$\begin{gathered} 3,08 \\ 5,6 \\ 15,2 \\ 0,29 \end{gathered}$
		60	0,07	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	1,36	3,39	1,69	3,39
					6,2	4,4	12,2	5,3
					33,3	15,7	9,9	15,7
					0,32	0,25	0,16	0,29
		70	0,07	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,47 \\ 5,5 \\ 35,0 \\ 0,30 \end{gathered}$	3,68	1,84	3,68
						4,2	11,1	5,0
						16,3	10,5	16,3
						0,25	0.16	0,30
		80	0,07	$S_{O_{T}}$$v_{T}$$P_{O_{O}}$$N_{T}$	1,58	3,94	1,97	3,94
					5,2	4,1	10,7	4,9
					36,6	16,7	11,0	16,7
					0,32	0,27	0,17	0,33

Mepezoд	Характе－ ристика инстру－ мента			$\dot{\otimes}$ $\stackrel{0}{0}$ 	Подача $S_{\text {O }_{T}}$ ，мм／об；скорость v_{T} ，м／мин； сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$ ；мощность N_{T} ，кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & \stackrel{\text { HB }}{\lessgtr} \\ & \leqslant 203) \end{aligned}$	Серыи мугун （HB \leqslant \leqslant \leqslant		Медные сплавы $\xrightarrow[(\mathrm{HB}]{\leqslant 120)}$ $\leqslant 120$ ）
	Чистовые разверт－ ки диа－ метром 16－ 100 mм	90	0，08	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathbf{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,68 \\ 4,9 \\ 44,6 \\ 0,36 \end{gathered}$	$\begin{gathered} 4,20 \\ 4,0 \\ 20,1 \\ 0,31 \end{gathered}$	$\begin{gathered} 2,10 \\ 9,6 \\ 13,2 \\ 0.18 \end{gathered}$	$\begin{gathered} 4,20 \\ 4,8 \\ 20,1 \\ 0,32 \end{gathered}$
		100	0.08	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,77 \\ 4,7 \\ 46,2 \\ 0,36 \end{gathered}$	$\begin{gathered} 4,44 \\ 3,9 \\ 20,6 \\ 0,32 \end{gathered}$	$\begin{gathered} 2,22 \\ 9,3 \\ 13,7 \\ 0,18 \end{gathered}$	$\begin{gathered} 4,44 \\ 4,7 \\ 20,6 \\ 0,38 \end{gathered}$
	Черно－ вые раз－ вертки диаме－ тром 4－ 100 мм	4	0，18	$\begin{aligned} & S_{o_{\mathrm{O}}} \\ & v_{\mathrm{T}} \\ & P_{o_{\mathrm{O}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,42 \\ & 11,3 \\ & 50,3 \\ & 0,47 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 13,7 \\ & 30,8 \\ & 0,54 \end{aligned}$	$\begin{aligned} & 0,53 \\ & 13,2 \\ & 11,3 \\ & 0,12 \end{aligned}$	$\begin{aligned} & 1,06 \\ & 16,4 \\ & 30,8 \\ & 0,64 \end{aligned}$
		6	0，18	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,51 \\ & 11,8 \\ & 56,7 \\ & 0,57 \end{aligned}$	$\begin{aligned} & 1,29 \\ & 11,5 \\ & 33,2 \\ & 0,52 \end{aligned}$	$\begin{aligned} & 0,64 \\ & 14,2 \\ & 13,0 \\ & 0,16 \end{aligned}$	$\begin{aligned} & 1,29 \\ & 13,8 \\ & 33,2 \\ & 0,63 \end{aligned}$
		8	0，20	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 0,59 \\ & 11,6 \\ & 70,0 \\ & 0,69 \end{aligned}$	$\begin{gathered} 1,47 \\ 9,8 \\ 39,8 \\ 0,54 \end{gathered}$	$\begin{aligned} & 0,74 \\ & 13,8 \\ & 15,8 \\ & 0,18 \end{aligned}$	$\begin{aligned} & 1,47 \\ & 11,7 \\ & 39,8 \\ & 0,65 \end{aligned}$
		10	0，20	$\begin{aligned} & S_{\mathrm{O}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0.66 \\ & 11,5 \\ & 74,7 \\ & 0,74 \end{aligned}$	$\begin{gathered} 1,64 \\ 8,7 \\ 41,5 \\ 0.52 \end{gathered}$	$\begin{aligned} & 0,82 \\ & 13,9 \\ & 17,0 \\ & 0,20 \end{aligned}$	$\begin{array}{r} 1,64 \\ 10,4 \\ 41,5 \\ 0,62 \end{array}$
		12	0，21	$\begin{aligned} & S_{\mathbf{o}_{\mathrm{T}}} \\ & \boldsymbol{v}_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & 0,71 \\ & 10,0 \\ & 83,6 \\ & 0,77 \end{aligned}$	$\begin{gathered} 1,79 \\ 6,9 \\ 45,6 \\ 0,49 \end{gathered}$	$\begin{aligned} & 0,89 \\ & 11,6 \\ & 19,0 \\ & 0,20 \end{aligned}$	$\begin{gathered} 1,79 \\ 8,3 \\ 45,6 \\ 0,59 \end{gathered}$

Переход	Характеристика инструмента		 		Подача $S_{\mathrm{O}_{T}}$, мм/об; скорость v_{m}, м/мин сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, к B_{T}			
					Обрабатываемыи материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 203) \end{aligned}$	$\begin{aligned} & \text { Серый } \\ & \text { чугун } \\ & (\mathrm{H} \mathrm{~B} \leq \\ & \leqslant 186) \end{aligned}$	$\begin{aligned} & \text { Алюми } \\ & \text { нй } \\ & \stackrel{\text { HB }}{\leqslant} \leqslant \end{aligned}$	Медные сплавы (HB $\leqslant 120)$
Черновое развертывание с подрезкой дна	ЧерноBhe развертки диаметром$4-100 \mathrm{~mm}$	16	0,23	$\begin{gathered} S_{\mathrm{c}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$		2,05	1,02	2,05
					9,5	5,9	10,9	7,0
					101,4	53,6	22,9	53,6
					0,88	0,49	0,22	0,59
		20	0,24	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0,91	2.27	1,14	2,27
					9,1	5,2	10,4	6,2
					114,0	58,9	25,7	58,9
					0,95	0,49	0,24	0,59
		25	0,24	$\begin{aligned} & S_{\mathrm{O}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	1,01	2,53	1,26	2,53
					7,4	4,3	9,0	5,1
					121,7	61,4	27,7	61,4
					0,84	0,44	0,22	0,53
		32	0,26	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	1,14	2,84	1,42	2,84
					6,1	3,3	7,6	4,0
					144,0	70,9	32,6	70,9
					0,86	0,42	0.23	0,50
		40	0,26	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$				
					$5,8$	$3,0$	7,3	3,6
					$153,7$	$73,9$	$35,1$	$73,9$
					$0,92$	$0,43$	$0,25$	0,51
		50	0,26	$\begin{aligned} & S_{\mathrm{O}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$			1,75	3,51
					$5,0$	2,5	6,5	3,0
					164,1	77,1	37,8	77,1
					0,86	0,39	0,24	0,46
		60	0,27	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$				
					4,3	2,2	5,9	2,7
					181,2	83,5	41,6	83,5
					0,83	0,38	0,24	0,45

	Характеристика инструмента				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об; скорость v_{T}, м/мин сила резания $P_{\mathrm{O}_{\mathrm{T}}}$, H ; мощность N_{T}, кьт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \\ & \leqslant \\ & \leqslant \end{aligned}$	Серый (HB $<$ $\leqslant 186$)	$\begin{aligned} & \text { Алюмин } \\ & \text { ний } \\ & \stackrel{H B}{\leqslant} \leqslant \\ & \leqslant 78) \end{aligned}$	Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant} \stackrel{1}{\leqslant}$
		70	0,27	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,64 \\ 3,9 \\ 189,5 \\ 0,79 \end{gathered}$	$\begin{gathered} 4,11 \\ 2,0 \\ 86,0 \\ 0,36 \end{gathered}$	$\begin{gathered} 2,06 \\ 5,3 \\ 43,8 \\ 0,23 \end{gathered}$	$\begin{gathered} 4,11 \\ 2,4 \\ 86,0 \\ 0,44 \end{gathered}$
Чернове раз-верты-	Черновые развертки	80	0,27	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,75 \\ 3,7 \\ 197,1 \\ 0,84 \end{gathered}$	$\begin{gathered} 4.38 \\ 1,9 \\ 88.2 \\ 0,39 \end{gathered}$	$\begin{gathered} 2,19 \\ 5,2 \\ 45,8 \\ 0,25 \end{gathered}$	$\begin{gathered} 4,38 \\ 2,3 \\ 88,2 \\ 0,46 \end{gathered}$
с подрезкой дна	$\begin{aligned} & \text { тром 4- } \\ & 100 \text { мм } \end{aligned}$	90	0,30	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,85 \\ 3,5 \\ 231,5 \\ 0,91 \end{gathered}$	$\begin{gathered} 4,63 \\ 1,8 \\ 102,3 \\ 0,41 \end{gathered}$	$\begin{gathered} 2,32 \\ 4,7 \\ 52,9 \\ 0.26 \end{gathered}$	$\begin{gathered} 4,63 \\ 2,2 \\ 102,3 \\ 0,50 \end{gathered}$
		100	0,30	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,95 \\ 3,4 \\ 238,8 \\ 0,91 \end{gathered}$	$\begin{gathered} 4,87 \\ 1,7 \\ 104,4 \\ 0,41 \end{gathered}$	$\begin{gathered} 2,43 \\ 4,6 \\ 54,8 \\ 0.26 \end{gathered}$	$\begin{gathered} 4,87 \\ 2,1 \\ 104,4 \\ 0,50 \end{gathered}$
		4	0,09	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,33 \\ & 15,5 \\ & 18,6 \\ & 0,28 \end{aligned}$	$\begin{gathered} 0,81 \\ 8,7 \\ 12,0 \\ 0,16 \end{gathered}$	$\begin{gathered} 0,41 \\ 21,4 \\ 4,7 \\ 0,10 \end{gathered}$	$\begin{aligned} & 0,81 \\ & 10,4 \\ & 12,0 \\ & 0,20 \end{aligned}$
иолучи- стовое разверввание с подрезкой д дна	Получистовые развертки диаметром 4100 мм	6	0,09	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 0,40 \\ & 15,9 \\ & 21,2 \\ & 0,34 \end{aligned}$	$\begin{gathered} 1,01 \\ 8,5 \\ 13,1 \\ 0,19 \end{gathered}$	$\begin{gathered} 0,50 \\ 22,7 \\ 5,5 \\ 0,12 \end{gathered}$	$\begin{aligned} & 1,01 \\ & 10,2 \\ & 13,1 \\ & 0,23 \end{aligned}$
		8	0,10	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 0,47 \\ & 15,5 \\ & 26,4 \\ & 0,41 \end{aligned}$	$\begin{gathered} 1,17 \\ 8,2 \\ 15,8 \\ 0,22 \end{gathered}$	$\begin{gathered} 0,59 \\ 22,0 \\ 6,7 \\ 0,14 \end{gathered}$	$\begin{gathered} 1,17 \\ 9,8 \\ 15,8 \\ 0,27 \end{gathered}$

Переход					Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/хчи сила резания $P_{\mathrm{o}_{\mathrm{T}}}$, ; мощность N_{T}, кв.			
					Обрабатываемый материал			
					$\begin{gathered} \text { Cталь } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$	$\begin{gathered} \text { Cepri } \\ \text { (yyyy } \\ \left(\begin{array}{c} \text { HEy } \\ \leqslant 186) \end{array}\right. \end{gathered}$	$\begin{aligned} & \text { Алюми- } \\ & \text { ний } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 78) \end{aligned}$	Медные сплавы $\leqslant 120$)
Получистовое разверс подрезкой дна	Получистовые развертметром 100 мм	10	0,10	$S_{o_{5}}$	0,53	1,32	0,66	1,32
				$v_{T}{ }^{\text {r }}$	15,3	8,0	22,0	9,7
				$P_{o_{T}}$	28,4	16,6	7,3	16,6
				$N_{\text {T }}{ }^{\text {r }}$	0,44	0,24	0,16	0,29
		12	0,10	$S_{0_{r}}$	0,58	1,45	0,73	1,45
				$v_{T}{ }^{\text {r }}$	13.3	7,0	18,6	8,4
				$P_{\mathrm{o}_{7}}$	30,2	17,2	7,8	17,2
				$N_{\text {T }}{ }^{\text {r }}$	0,44	0,24	0,15	0,29
		16	0,10	$S_{o_{r}}$	0,68	1,69	0,84	1,69
				v_{T}	12,7	6,8	18,2	8,2
				$P_{\mathrm{o}_{\text {\% }}}$	33,1	18,3	8,7	18,3
				$N_{\text {T }}{ }^{\text {r }}$	0,48	0,26	0,17	0,32
		20	0,10		0,76	1,90	0,95	1,90
				$v_{\text {T }}{ }^{\text {T }}$	12,2	6,7	17,7	8,0
				$P_{0^{\prime}}$	35,7	19,2	9,5	19,2
				$N_{\text {T }}{ }^{\text {T }}$	0,50	0,28	0,18	0,34
		25	0,10		0,85	2,14	1,07	2,14
				$v_{\mathrm{r}}{ }^{\text {r }}$	9,8	6,0	15,2	7,2
				$P_{\mathrm{o}_{\text {T }}}$	38,4	20,1	10,3	20,1
				$N_{\text {T }}{ }^{\text {T }}$	0,45	0,28	0,17	0,34
		32	0,10		0,97	2,43	1,22	2,43
				v_{r}	8,2	5,2	13,3	6,2
				$P_{\mathrm{O}_{\text {T }}}$	41,6	21,2	11,2	21,2
				$N_{\text {T }}{ }^{\text {r }}$	0,43	0,28	0,13	0,33
		40	0,10		1,09	2,74	1,37	2,74
				$v_{r}{ }^{\text {r }}$	7,7	5,0	12,7	6,0
				$P_{\mathrm{o}_{5}}$	44,7	22,2	12,2	22,2
					0,46	0,31	0,19	0,37

Продолосение картья 1

Переход	$\begin{aligned} & \text { Xаракте- } \\ & \text { рискика } \\ & \text { инстуу- } \\ & \text { мента } \end{aligned}$				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об; скорость $\boldsymbol{o}_{\mathrm{T}}, \mathrm{m} / \mathbf{\text { иин }}$; сила резания $P_{\mathrm{o}_{\mathrm{T}}}$, H ; мощность N_{T}, кВи			
					Обрабатываемый материал			
					$\begin{gathered} \text { Craль } \\ (\mathrm{HB} \mathrm{~B} \boldsymbol{\leq} \\ \leqslant 203) \end{gathered}$			Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{E} 20)$
	Получистовые разверт метром $\stackrel{4-}{100 \mathrm{~mm}}$	10	0,10	S_{0}	0,53	1,32	0,66	1,32
				v_{T}	15,3	8,0	22,0	9,7
				$P_{0_{5}}$	28,4	16,6	7,3	16,6
				$N_{\text {T }}{ }^{\text {T }}$	0.44	0,24	0,16	0,29
		12	0,10	S_{0}	0,58	1,45	0,73	1,45
				v_{T}	13,3	7,0	18,6	8,4
				$P_{O_{9}}$	30,2	17,2	7,8	17,2
				$N_{T}{ }^{\text {r }}$	0,44	0,24	0,15	0,29
		16	0,10	$S_{0_{7}}$	0,68	1,69	0,84	1,69
				v_{T}	12,7	6,8	18,2	8,2
				$P_{o_{T}}$	33,1	18,3	8,7	18,3
				$N_{\text {T }}{ }^{\text {r }}$	0,48	0,26	0,17	0,32
		20	0,10	$S_{O_{3}}$	0,76	1,90	0,95	1,90
				v_{T}	12,2	6,7	17,7	8,0
				P_{0}	35,7	19,2	9,5	19,2
				$N_{\text {T }}{ }^{\text {r }}$	0,50	0,28	0,18	0,34
		25	0,10		0,85	2,14	1,07	2,14
				$v_{\text {T }}$	9,8	6,0	15,2	7,2
				P_{0}	38,4	20,1	10,3	20,1
				$N_{\text {T }}{ }^{\text {r }}$	0,45	0,28	0,17	0,34
		32	0,10		0,97	2,43	1,22	2,43
				$v_{\text {r }}{ }_{\text {r }}$	8,2	5,2	13,3	6,2
				P_{0}	41,6	21,2	11,2	21,2
				$N_{\text {T }}{ }^{\text {T }}$	0,43	0,28	0,13	0,33
		40	0,10		1,09	2,74	1,37	2,74
				$v_{T}{ }^{\text {r }}$	7,7	5,0	12,7	6,0
				$P_{\mathrm{O}_{\mathrm{T}}}$	44,7	22,2	12,2	22,2
				$N_{\text {T }}{ }^{\text {r }}$	0,46	0,31	0,19	0,37

Переход	Xаракте－ ристика инстру－ мента		 茳 空示		Подача $S_{\mathrm{O}_{7}}$ ，мм／об；гкорость v_{T} ，м／мин； сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$ ；мощность N_{T} к кВт Обрабатывземый материал			
					Сталь $(\mathrm{HB}$ $\leqslant 203)$	$\begin{aligned} & \text { Серын } \\ & \text { чугун } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 186) \end{aligned}$	$\begin{aligned} & \text { Алюми- } \\ & \text { (НВ } \\ & \stackrel{\text { Ни }}{ } \leqslant \\ & \leqslant 78) \end{aligned}$	Медные сплавы （НВ $\stackrel{\leqslant}{\lessgtr}$ $\leqslant 120)$
	Получи－ стовые рязверт－ ки диа－ метром 4－ 100 мм	50	0，10	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{Q}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1.23 \\ 6.6 \\ 48.1 \\ 0.43 \end{gathered}$	$\begin{gathered} 3,08 \\ 4.5 \\ 23,3 \\ 0.30 \end{gathered}$	$\begin{aligned} & 1.54 \\ & 11.2 \\ & 13.3 \\ & 0.18 \end{aligned}$	$\begin{gathered} 3,08 \\ 5,4 \\ 23,3 \\ 0.36 \end{gathered}$
		60	0.11	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1.36 \\ 5.6 \\ 57.2 \\ 0.44 \end{gathered}$	$\begin{gathered} 3,39 \\ 4.2 \\ 27,1 \\ 0.33 \end{gathered}$	$\begin{gathered} 1.69 \\ 9.8 \\ 15,6 \\ 0.18 \end{gathered}$	$\begin{array}{r} 3,39 \\ 5,0 \\ \cdot \quad 27,1 \\ 0,39 \end{array}$
		70	0，11	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1.47 \\ 5,0 \\ 60.2 \\ 041 \end{gathered}$	$\begin{gathered} 3.68 \\ 4.0 \\ 28,0 \\ 033 \end{gathered}$	$\begin{gathered} 1.84 \\ 8,8 \\ 16,5 \\ 0,18 \end{gathered}$	$\begin{gathered} 3,68 \\ 4,8 \\ 28,0 \\ 0.40 \end{gathered}$
		80	0.11 .	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1.58 \\ 4.8 \\ 62,9 \\ 0.44 \end{gathered}$	$\begin{gathered} 3,94 \\ 3,9 \\ 28,8 \\ 0.37 \end{gathered}$	$\begin{array}{r} 1,97 \\ 8,5 \\ -17,3 \\ 0,19 \end{array}$	$\begin{gathered} 3,94 \\ 4,7 \\ 28,8 \\ 0,44 \end{gathered}$
		90	0，12	$S_{\mathrm{o}_{\mathrm{T}}}$ v_{T} $P_{\mathrm{o}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 0.68 \\ 4.5 \\ 72,5 \\ 0.47 \end{gathered}$	$\begin{gathered} 4,20 \\ 3,8 \\ 32,8 \\ 0,40 \end{gathered}$	$\begin{gathered} 2,10 \\ 7.9 \\ 19,8 \\ 0.20 \end{gathered}$	$\begin{gathered} 4,20 \\ 4,6 \\ 32,8 \\ 0,48 \end{gathered}$
		100	0，12	$S_{O_{T}}$ v_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	1,77 4,3 75,1 0,47.	$\begin{gathered} 4,44 \\ 3,7 \\ 33,5 \\ 0.41 \end{gathered}$	$\begin{gathered} 2,22 \\ 7,6 \\ 20,5 \\ 0.20 \end{gathered}$	$\begin{gathered} 4,44 \\ 4,5 \\ 33,5 \\ 0,50 \end{gathered}$

	Характе－ ристика инстру－ мента		菏合		Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об．скорость v_{T} ，м／миня сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$ ，мощность N_{T} ，кВт			
					Обрдбатываемып̈ материал			
					$\begin{aligned} & \text { Craль } \\ & (\mathrm{HB} \underset{\lessgtr}{\leqslant} \\ & \stackrel{203)}{ } \end{aligned}$		$\begin{aligned} & \text { А п юмми- } \\ & \text { нथй } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 78) \end{aligned}$	Медние сплавы $\underset{\underset{120}{(\mathrm{HB}} \underset{1}{\lessgtr}}{\mathbf{K}}$ $\leqslant 120)$
部стовое \％азвер－ ぁвание сепод－ резкой 2 дна	Чистовые разверт－ ки диа－ метром 16－ 100 мм	70	0，07	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1.34 \\ 5,8 \\ 33,1 \\ 0,30 \end{gathered}$	$\begin{gathered} 3.36 \\ 4,3 \\ 15.7 \\ 0.24 \end{gathered}$	$\begin{gathered} 1.68 \\ 11,6 \\ 9.9 \\ 0.15 \end{gathered}$	$\begin{gathered} 3,36 \\ 5,2 \\ 15,7 \\ 0,29 \end{gathered}$
		80	0，07	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,45 \\ 5,5 \\ 34.7 \\ 0,32 \end{gathered}$	$\begin{gathered} 3.63 \\ 4,3 \\ 16.2 \\ 0.27 \end{gathered}$	$\begin{aligned} & 1,82 \\ & 11,1 \\ & 10.4 \\ & 0,17 \end{aligned}$	$\begin{gathered} 3,63 \\ 5,1 \\ 16,2 \\ 0,32 \end{gathered}$
		90	0，08	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,56 \\ 5,1 \\ 42,6 \\ 0,35 \end{gathered}$	$\begin{gathered} 3,90 \\ 4,1 \\ 19,5 \\ 0.30 \end{gathered}$	$\begin{aligned} & 1.95 \\ & 10,0 \\ & 12,5 \\ & 0,18 \end{aligned}$	$\begin{gathered} 3,90 \\ 4,9 \\ 19,5 \\ 0,36 \end{gathered}$
		100	0，08	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,66 \\ 4,9 \\ 44,3 \\ 0,35 \end{gathered}$	$\begin{gathered} 4,15 \\ 4,0 \\ 20,0 \\ 0,31 \end{gathered}$	$\begin{gathered} 2,07 \\ 9,7 \\ 13,1 \\ 0.18 \end{gathered}$	$\begin{gathered} 4,15 \\ 4,8 \\ 20,0 \\ 0,37 \end{gathered}$
Цеко－廿ание	Цилин－ дриче－ ские зенковки диаме－ тром 12－ 90 мм	12	2，5	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,25 \\ 8,9 \\ 844,6 \\ 4,86 \end{gathered}$	$\begin{gathered} 0,30 \\ 11,9 \\ 433,6 \\ 2,91 \end{gathered}$	$\begin{gathered} 0,30 \\ 15,0 \\ 104,5 \\ 0.98 \end{gathered}$	$\begin{gathered} 0,30 \\ 17,7 \\ 433,6 \\ 4,33 \end{gathered}$
		16	2，5	$\begin{gathered} \dot{S}_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,27 \\ 9,0 \\ 903,2 \\ 5,11 \end{gathered}$	$\begin{gathered} 0,33 \\ 12,0 \\ 452,8 \\ 3,06 \end{gathered}$	$\begin{array}{r} 0,33 \\ 15,5 \\ 112,7 \\ 1,07 \end{array}$	$\begin{gathered} 0,33 \\ 17,9 \\ 452,8 \\ 4,55 \end{gathered}$
		20	2，5	$S_{\mathrm{O}_{\mathrm{T}}}$ v_{T} $P_{\mathrm{o}_{\mathrm{T}}}$ $N_{\text {T }}$	$\begin{gathered} 0,30 \\ 9,4 \\ 951,5 \\ 5,79 \end{gathered}$	$\begin{array}{r} 0,36 \\ 12,6 \\ 468,2 \\ 3,47 \end{array}$	$\begin{array}{r} 0,36 \\ 16,3 \\ 119,5 \\ 1,22 \end{array}$	$\begin{gathered} 0,36 \\ 18,8 \\ 468,2 \\ 5,16 \end{gathered}$

Переход	Xapakte ристика инстру мента			$\stackrel{0}{\stackrel{0}{0}}$ 	Нодача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об，скорость v_{T} ，m／мин， сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$ ，мощность N_{T}, кВт			
					Обрабатывлемый материал			
						Cepsin̆ чугун $\xrightarrow{\left(\mathrm{HB}_{186)}^{\leqslant}\right.}$	Алюми ний （HB $\underset{\underset{\leqslant}{(H B)}}{\leqslant}$	Мрдные сплавы $\stackrel{\leqslant}{\leqslant}$ 120）
Цеко－ панит	Цилин－ дриче－ ские зенковки диаме－ тром 12 － 100 mm	20	50	$S_{\mathrm{o}_{\mathrm{m}}}$	0，17	0.20	020	0，20
				v_{5}	9.2	12.4	15，9	18，4
				$P_{\mathrm{o}_{\mathrm{T}}}$	1513，3	848，5	157，8	848，5
				$N_{\text {m }}{ }^{\text {r }}$	5.51	3.30	1，16	4，81
		25	2.5	$S_{\mathrm{o}_{\mathrm{T}}}$	0.33	0.39	0，39	0，39
				$v_{\mathrm{r}}{ }^{\text {r }}$	9，1	12.2	15，8	18，1
				$P_{o_{7}}$	1002，4	484，3	126，8	484，3
				$N_{\text {r }}{ }^{\text {a }}$	551	3，31	1，18	4，91
			5.0	$S_{\mathrm{O}_{\mathrm{T}}}$	018	0，22	0,22	0，22
				v_{T}	8，9	11，9	15，4	17，7
				$P_{o_{m}}$	1615.0	884，9	169，8	884，9
				$N_{\text {T }}$	5.31	3，19	1，13	4，73
		－	2，5	$S_{o_{m}}$	0.36	0.43	0，43	0，43
				－v_{n}	9，6	12，9	16，7	19，1
				$P_{\mathrm{o}_{\mathrm{m}}}$	1061.9	502，6	135，3	502，6
				$N_{\text {，}}{ }^{\text {m }}$	633	3，79	1.35	5，64
		32	5.0	S_{0}	021	0.25	0，25	0，25
				${ }_{o_{\mathrm{T}}}$	9，3	12，5	16，2	18，6
				$P_{\mathrm{o}_{\mathrm{T}}}$.	1735.5	926，9	184，2	926，9
				$N{ }^{\text {T }}$	6，17	3，70	1.32	5，50
			10，0	$S_{\mathrm{o}_{\mathrm{Tr}}}$	0.13	0，15	0，15	0，15
				v_{T}	8.9	12，0	15，5	17，8
				P_{0}	2981，5	1765，4	265，4	1765，4
				$N_{\text {T }}{ }^{\text {T }}$	6，29	3，77	1，34	5，61
		40	2，5		0，39	0，47	0，47	－0，47
				$v_{\text {T }}{ }^{\text {T }}$	9，2	12，3	16，2	18，3
				P_{0}	1118，7	519，8	143，5	519，8
				$N_{\text {T }}{ }^{\text {T }}$	5.92	3，55	1，30	5，27

Іереход	Характеристика мента				Подача $S_{\mathrm{O}_{\mathrm{T}}}$ мм/об; скорость $\boldsymbol{o}_{\mathrm{T}}, \mathrm{m} /$ мин сила резания $P_{\mathrm{o}_{\mathrm{T}}}$, H : мощность N_{T}, кВ			
					Обрабатываемый материал			
					$\begin{gathered} \text { Craль } \\ \left(\begin{array}{c} \text { (HB } \\ \leqslant 203) \end{array}\right. \end{gathered}$			Медные $\stackrel{\text { сплавы }}{\text { НВ }}$ $\stackrel{120)}{ }$
Цекование	$\left\|\begin{array}{c} \text { Lилиндри- } \\ \text { ческиие } \\ \text { зенковки } \\ \text { диаме-- } \\ \text { тром } \\ 12- \\ 100 \text { мм } \end{array}\right\|$	40	5,0	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0.23 \\ 8,9 \\ 1852,1 \\ 5.84 \end{gathered}$	$\begin{gathered} 0,27 \\ 11,9 \\ 966,6 \\ 3,50 \end{gathered}$	$\begin{gathered} 0,27 \\ 15,7 \\ 198,2 \\ 1,29 \end{gathered}$	$\begin{gathered} 0,27 \\ 17,7 \\ 966,6 \\ 5,20 \end{gathered}$
			10,0	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{o}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,15 \\ 8,5 \\ 3233,7 \\ 6,04 \end{gathered}$	$\begin{gathered} 0,18 \\ 11,3 \\ 1860,3 \\ 3,62 \end{gathered}$	$\begin{gathered} 0,18 \\ 14,9 \\ 290,8 \\ 1,33 \end{gathered}$	$\begin{gathered} 0,18 \\ 16,9 \\ 1860,3 \\ 5,38 \end{gathered}$
			2,5	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,42 \\ 9,0 \\ 1178,5 \\ 5.80 \end{gathered}$	$\begin{gathered} 0,51 \\ 12,0 \\ 537,6 \\ 3,48 \end{gathered}$	$\begin{gathered} 0,51 \\ 16,2 \\ 152,2 \\ 1,34 \end{gathered}$	$\begin{gathered} 0,51 \\ 17,9 \\ 537,6 \\ 5,17 \end{gathered}$
			5,0	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \end{aligned}$	$\begin{gathered} 0,25 \\ 8,7 \\ 1976,6 \\ 5,79 \end{gathered}$	$\begin{gathered} 0,30 \\ 11,6 \\ 1008,1 \\ 3,47 \end{gathered}$	$\begin{gathered} 0,30 \\ 15.6 \\ 213,4 \\ 1,34 \end{gathered}$	$\begin{gathered} 0,30 \\ 17,2 \\ 1008,1 \\ 5,16 \end{gathered}$
			10,0	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,17 \\ 8,2 \\ 3507,1 \\ 6,07 \end{gathered}$	$\begin{gathered} 0,20 \\ 11,0 \\ 1960,4 \\ 3,64 \end{gathered}$	$\begin{gathered} 0,20 \\ 14,8 \\ 318,7 \\ 1,40 \end{gathered}$	$\begin{gathered} 0,20 \\ 16,3 \\ 1960,4 \\ 5,41 \end{gathered}$
			15,0	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,14 \\ 7,9 \\ 5062,2 \\ 6,42 \end{gathered}$	$\begin{gathered} 0,17 \\ 10,5 \\ 2952,2 \\ 3,85 \end{gathered}$	$\begin{gathered} 0,17 \\ 14,2 \\ 417,8 \\ 1,48 \end{gathered}$	$\begin{gathered} 0,17 \\ 15,6 \\ 2952,2 \\ 5,72 \end{gathered}$
		60	2,5	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,45 \\ 9,4 \\ 1229,8 \\ 6,42 \end{gathered}$	$\begin{gathered} 0,54 \\ 12,5 \\ 552,5 \\ 3,85 \end{gathered}$	$\begin{gathered} 0,54 \\ 16,9 \\ 159,7 \\ 1,48 \end{gathered}$	$\begin{array}{r} 0,54 \\ 18,6 \\ 552,5 \\ 5,72 \end{array}$

Переход	Характе－ ристика инстру－ мента				сила резапия $P_{O_{T}}, \mathrm{H}$ ；момность N_{T} ，кВ ．			
					Обрабатываемый материал			
					Сталь （ $\mathrm{HB} \leqslant$ $\leqslant 203)$		$\begin{aligned} & \text { Алюми } \\ & \text { Hй } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 78) \end{aligned}$	Медные сплави $\underset{\leqslant 120)}{*}$
Цеко－ вание	Цилиндри－ческиезенковкидиаме－тром$12-$100 мм		5，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ 0_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0.28 \\ 9,0 \\ 2084,4 \\ 6,47 \end{gathered}$	$\begin{gathered} 0,33 \\ 12,0 \\ 1043,2 \\ 3,88 \end{gathered}$	$\begin{array}{r} 0,33 \\ 16,2 \\ 226,5 \\ 1,49 \end{array}$	$\begin{gathered} 0,33 \\ 17,9 \\ 1043,2 \\ 5,76 \end{gathered}$
		60	10，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,19 \\ 8,5 \\ 3747,7 \\ 6,87 \end{gathered}$	$\begin{gathered} 0,22 \\ 11,3 \\ 2046,1 \\ 4,12 \end{gathered}$	$\begin{gathered} 0,22 \\ 15,3 \\ 343,5 \\ 1,58 \end{gathered}$	$\begin{gathered} 0,22 \\ 16,9 \\ 2046,1 \\ 6,12 \end{gathered}$
			20，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,14 \\ 7,8 \\ 7252,5 \\ 7,78 \end{gathered}$	$\begin{gathered} 0,17 \\ 10,4 \\ 4208,2 \\ 4,67 \end{gathered}$	$\begin{array}{r} 0,17 \\ 14,1 \\ 566,1 \\ 1,80 \end{array}$	$\begin{gathered} 0,17 \\ \prime 15,5 \\ 4208,2 \\ 6,93 \end{gathered}$
		80	2，5	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,50 \\ 8,7 \\ 1315,2 \\ 5,75 \end{gathered}$	$\begin{gathered} 0,60 \\ 12,4 \\ 577,0 \\ 3.89 \end{gathered}$	$\begin{gathered} 0,60 \\ 16,3 \\ 172,3 \\ 1,42 \end{gathered}$	$\begin{array}{r} 0,60 \\ 18,4 \\ 577,0 \\ 5,77 \end{array}$
			5，0	$\begin{gathered} S_{o_{T}} \\ v_{\mathrm{T}} \\ P_{o_{\mathrm{o}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,32 \\ 8,3 \\ 2266,8 \\ 5,87 \end{gathered}$	$\begin{gathered} 0.38 \\ 11,9 \\ 1101,2 \\ 3,97 \end{gathered}$	$\begin{gathered} 0,38 \\ 15,6 \\ 249,0 \\ 1,45 \end{gathered}$	$\begin{gathered} 0,38 \\ 17,6 \\ 1101,2 \\ 5,90 \end{gathered}$
			10，0	$\begin{aligned} & S_{o_{\mathrm{o}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,22 \\ 7,9 \\ 4161,2 \\ 6,35 \end{gathered}$	$\begin{gathered} 0,26 \\ 11,1 \\ 2189,0 \\ 4,30 \end{gathered}$	$\begin{gathered} 0,26 \\ 14,6 \\ 386,6 \\ 1,57 \end{gathered}$	$\begin{gathered} 0,26 \\ 16,5 \\ 2189, \cup \\ 6,38 \end{gathered}$
			20，0	$S_{O_{T}}$ v_{T} $P_{\mathrm{o}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 0,17 \\ 7,1 \\ 8264,9 \\ 7,37 \end{gathered}$	$\begin{gathered} 0,21 \\ 10,1 \\ 4578,3 \\ 4,98 \end{gathered}$	$\begin{array}{r} 0,21 \\ 13,3 \\ 656,1 \\ 1,82 \end{array}$	$\begin{gathered} 0,21 \\ 15,0 \\ 4578,6 \\ 7,40 \end{gathered}$

	Xap кie рисика инструмент				Подача $S_{O_{T}}$, им/ио скорость J_{T}, м/мин, сила рехания $P_{0_{\Gamma}} H$ мищность $N_{\text {т }}$, кВ Обрабииьвимый материал			
					$\begin{gathered} \text { Cianb } \\ (H \mathrm{HE} \\ <203) \end{gathered}$			Меднине ситавы $\underset{(H B}{<120)}$
母енко- вание	Кониче ские зенковки дидме грои 12$100 \mathrm{mм}$	25			$\begin{array}{r} 0,11 \\ 13,5 \\ 175,3 \\ 0,40 \end{array}$	$\begin{gathered} 0,23 \\ 17,9 \\ 130,5 \\ 0,32 \end{gathered}$	$\begin{aligned} & 0,23 \\ & 23,3 \\ & 35,0 \\ & 0,12 \end{aligned}$	$\begin{gathered} 0,23 \\ 26,6 \\ 130,5 \\ 0,48 \end{gathered}$
			1,50	$S_{\mathrm{O}_{1}}$ v_{T} $P_{\mathrm{O}_{3}}$ N_{2}	$\begin{gathered} 0,11 \\ 12,5 \\ 277,4 \\ 0,40 \end{gathered}$	$\begin{array}{r} 0,22 \\ 16,7 \\ 208,6 \\ 0,37 \end{array}$	$\begin{aligned} & 0,22 \\ & 21,7 \\ & 50,9 \\ & 0,14 \end{aligned}$	$\begin{gathered} 0,22 \\ 24,8 \\ 208,6 \\ 0,55 \end{gathered}$
		32	0,50	$\begin{aligned} & S_{O_{\mathrm{I}}} \\ & v_{\mathrm{T}} \\ & p_{\mathrm{o}_{\mathrm{r}}}^{N_{\mathrm{r}}} \end{aligned}$	$\begin{aligned} & 0,16 \\ & 15,7 \\ & 91,8 \\ & 0,39 \end{aligned}$	$\begin{aligned} & 0,31 \\ & 20,9 \\ & 64,0 \\ & 0,31 \end{aligned}$	$\begin{aligned} & 031 \\ & 27,2 \\ & 21,6 \\ & 0,12 \end{aligned}$	$\begin{aligned} & 0,31 \\ & 31,0 \\ & 64,0 \\ & 0,46 \end{aligned}$
			1.00	$S_{\mathrm{O}_{1}}$ v_{T} $P_{\mathrm{O}_{\mathrm{I}}}$ N_{1}	$\begin{gathered} 0,15 \\ 13,7 \\ 206,7 \\ 0,51 \end{gathered}$	$\begin{gathered} 0,30 \\ 18,3 \\ 145,2 \\ 0,40 \end{gathered}$	$\begin{aligned} & 0,30 \\ & 238 \\ & 42,2 \\ & 016 \end{aligned}$	$\begin{gathered} 0,30 \\ 272 \\ 145,2 \\ 0,60 \end{gathered}$
			1,50	$S_{o_{T}}$ v_{T} $P_{O_{T}}$ N_{T}	$\begin{gathered} 0,14 \\ 12,8 \\ 329,2 \\ 0,59 \end{gathered}$	$\begin{gathered} 0,29 \\ 17,0 \\ 233,0 \\ 047 \end{gathered}$	0,29 22,1 61,8 0,18	$\begin{gathered} 0,29 \\ 25,2 \\ 233,0 \\ 069 \end{gathered}$
		40	0,50	$S_{0_{1}}$ v_{1} $P_{V_{1}}$ V_{1}	$\begin{gathered} 0.19 \\ 146 \\ 105,8 \\ 0,40 \end{gathered}$	$\begin{aligned} & 0,39 \\ & 19,4 \\ & 702 \\ & 032 \end{aligned}$	$\begin{aligned} & 0,39 \\ & 25,6 \\ & 25,3 \\ & 013 \end{aligned}$	$\begin{aligned} & 0,39 \\ & z 8,8 \\ & 70,2 \\ & 0,47 \end{aligned}$
			1,00	$S_{0, t}$ u_{1} p_{0} v_{1}	0,19 12,7 2393 057	0,38 170 1576 041	0,38 22,4 408 016	$\begin{gathered} 0,38 \\ \cdot 25,2 \\ 159,6 \\ 001 \end{gathered}$

Переход	Xаракте－ ристика инстру． мента		 쭝 $\stackrel{\rightharpoonup}{5}$	$\dot{\otimes}$ $\stackrel{\Delta}{\bullet}$ 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об，скорость v_{T} ，м／мин сила резания $P_{\text {o }_{T}}, \mathrm{H}$ ；мощность N_{T}, кВ			
					Обрабатываемый материал			
					Сталь 	$\begin{gathered} \text { Серыи } \\ \text { чугун } \\ (\text { HB } \\ \leqslant 186) \end{gathered}$	Алюми－ $(\mathrm{HB} \leqslant$ $\leqslant 78$ ）	Медные сплавы （ $\mathrm{HB} \underset{120}{\leqslant}$ $\leqslant 120$ ）
Зепко－ вание	Кониче－ ские зенковки диаме－ тром 12－ 100 mm	40	1，50	$S_{\mathrm{o}_{\mathrm{T}}}$	0，19	0，37	0，37	0，37
				v_{T}	11，8	15，7	20，8	23，4
				$P_{o_{\mathrm{m}}}$	． 382,9	256，8	73，3	256，8
				$N_{\text {T }}{ }^{\text {T }}$	0，60	0，48	0，19	0，71
			0，50	$S_{o_{T}}$	0，24	0，49	0，49	0，49
				v_{T}	13，8	18，4	24，9	27，4
				$P_{0}{ }_{\text {or }}$	121，9	76，9	29，7	76，9
				$N_{\text {T }}{ }^{\text {T }}$	0，42	0，34	0，14	0，50
			1，00	$S_{o_{\text {O }}}$	0，24	0，48	0，48	0，48
		50		v_{T}	12，1	16，1	21，8	23，9
		5		$P_{o_{T}}$	276，6	175，2	58，6	175，2
				$N_{\text {T }}{ }^{\text {T }}$	0，55	0，44	0，18	0，65
			1，50		0，23	0，47	0，47	0，47
				$v_{\mathrm{T}}{ }^{\text {T }}$	11，2	14，9	20，1	22，2
				$P_{0_{5}}$	444，1	282，6	86，7	282，6
				$N_{\text {T }}{ }^{\text {T }}$	0，64	0，51	0，21	0，75
		60	0，50	$S_{O_{T}}$	0，29	0，59	0，59	0，59
				v_{T}	14，1	18，8	25，3	27，9
				$P_{O_{m}}$	136，8	82，8	33，9	82，8
				$N_{\text {T }}{ }^{\text {r }}$	0，50	0，40	0，17	0，59
			1，00	$S_{0_{T}}$	0，29	0，58	0，58	0，58
				v_{T}	12，3	16，4	22，1	24，3
				P_{0}	311，0	189，0	66，9	189，0
				$N_{\mathrm{T}}{ }^{\text {T }}$	0，65	0，52	0，22	0，77
			1，50	$S_{o_{T}}$	0，28	0，57	0，57	0，57
				$v_{\mathrm{T}}{ }^{\text {r }}$	11，4	15，2	20，5	22，5
				$P_{o_{\text {Tr }}}$	500，5	305，3	99，2	305，3
				$N_{\text {T }}{ }^{\text {r }}$	0,76	0，60	0，25	0，89

Переход	Характе ристика инстру менıа		 	号 an 				
					$\begin{gathered} C 1 \text { Carb } \\ (H B \\ =203) \end{gathered}$	Сарый чугун (HB $\leqslant 186)$	Алюми $\left(\mathrm{HB}^{\mathrm{H}} \mathrm{B}\right.$ $\leqslant 78)$	Meдние сплавы) (HB $=120)$ $\leq 120)$
Центрование	Центровые ком-бинированные сверла диаметром 1,0$10,0 \mathrm{~mm}$	1,6	2,0	$S_{\mathrm{O}_{\mathrm{F}}}$ v_{T} $\mathrm{P}_{\mathrm{o}_{\mathrm{T}}}$ $N_{\text {T }}$	$\begin{gathered} 0,015 \\ 16,0 \\ 143,8 \\ 0,023 \end{gathered}$	$\begin{gathered} 0,020 \\ 18,0 \\ 74,7 \\ 0,019 \end{gathered}$	$\begin{gathered} 0,030 \\ 25,2 \\ 33,7 \\ 0,016 \end{gathered}$	$\begin{gathered} 0,020 \\ 21,6 \\ 67,2 \\ 0,018 \end{gathered}$
		2,0	2,5	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,0,0 \\ 15,5 \\ 219,9 \\ 0,035 \end{gathered}$	$\begin{gathered} 0,025 \\ 17,4 \\ 11,6 \\ 0,028 \end{gathered}$	$\begin{gathered} 0,040 \\ 24,3 \\ 51,5 \\ 0,024 \end{gathered}$	$\begin{gathered} 0,025 \\ 20,9 \\ 100,4 \\ 0026 \end{gathered}$
		2.5	3,0	$S_{\mathrm{O}_{\text {T }}}$ V_{T} $P_{\mathrm{O}_{\mathrm{n}}}$ $N_{\text {F }}$	$\begin{gathered} 0,025 \\ 14,9 \\ 308,5 \\ 0,048 \end{gathered}$	$\begin{gathered} 0,030 \\ 16,7 \\ 155,0 \\ 0,037 \end{gathered}$	$\begin{gathered} 0,050 \\ 23,4 \\ 72,2 \\ 0,034 \end{gathered}$	$\begin{gathered} 0,030 \\ 20,0 \\ 139,5 \\ 0,034 \end{gathered}$
		3,15	4,0	$S_{\mathrm{o}_{\mathrm{T}}}$ U_{T} $\mathrm{P}_{\mathrm{o}_{T}}$ N_{T}	$\begin{gathered} 0,030 \\ 13,9 \\ 467,3 \\ 0,069 \end{gathered}$	$\begin{gathered} 0,040 \\ 15,5 \\ 260.1 \\ 0,058 \end{gathered}$	$\begin{gathered} 0,060 \\ 21.5 \\ 109,4 \\ 0,047 \end{gathered}$	$\begin{gathered} 0,040 \\ 18,6 \\ 234,0 \\ 0,054 \end{gathered}$
		4,0	5,0	$S_{\mathrm{O}_{1}}$ v_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	0,040 12,85 714,4 0,100	$\begin{gathered} 0,050 \\ 14,2 \\ 388,7 \\ 0,980 \end{gathered}$	$\begin{gathered} 0,080 \\ 20,7 \\ 167,3 \\ 0,067 \end{gathered}$	$\begin{gathered} 0,050 \\ 17,3 \\ 349,8 \\ 0,075 \end{gathered}$
		5.0	6,0	$S_{u_{1}}$ i_{1} $P_{u_{7}}$ N_{5}	$\begin{gathered} 0,050 \\ 11,8 \\ 1002,2 \\ 0,131 \end{gathered}$	$\begin{gathered} 0,060 \\ 13,5 \\ 530,7 \\ 0,105 \end{gathered}$	$\begin{gathered} 0,100 \\ 18,5 \\ 234,6 \\ 0,092 \end{gathered}$	$\begin{gathered} 0,060 \\ 162 \\ 485,7 \\ 0,097 \end{gathered}$
		6,3	8,0		$\begin{gathered} 0,000 \\ 11,0 \\ 1518 \\ 0,189 \end{gathered}$	$\begin{gathered} 0.080 \\ 12,0 \\ 905,8 \\ 0,157 \end{gathered}$	$\begin{gathered} 0,120 \\ 16,4 \\ 355,4 \\ 0,126 \end{gathered}$	$\begin{gathered} 0,080 \\ 14,4 \\ 815, \ldots \\ 0,45 \end{gathered}$

Продолжение карты 1

Сверление, рассверливание, зенкерование, развертывание, зенкование, цекование, центрование

Карта 2
Инструмент из ТС

Переход	Характеристика инструмента			$\dot{0}$ 0.0 0 	Подача $S_{\text {O }_{T}}$, мм/об; скорость σ_{T}, м/мин; сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность $N_{\mathrm{T}}, \mathrm{KBT}$			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\text { Нв } \\ & \leqslant 203) \end{aligned}$	$\begin{gathered} \text { Серый } \\ \text { чугун } \\ (\mathrm{HB} \leq \\ \leqslant 186) \end{gathered}$	Алюми. ($\mathrm{HB} \leqslant$ $\leqslant 78,4$)	Медные сплавы $\leqslant 120$)
Сверление	Спиральные сверла диаметром 4,040 мм	4	2	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{gathered} 0,07 \\ 64,6 \\ 213 \\ 0,24 \end{gathered}$	$\begin{gathered} 0,07 \\ 60,5 \\ 64 \\ 0,13 \end{gathered}$	$\begin{gathered} 0,07 \\ 77,9 \\ 213 \\ 0,22 \end{gathered}$
		6	3	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	-	$\begin{gathered} 0,10 \\ 64,1 \\ 421 \\ 0,48 \end{gathered}$	$\begin{gathered} \hline 0,10 \\ 60,0 \\ 121 \\ 0,27 \end{gathered}$	$\begin{gathered} \hline 0,10 \\ 77,3 \\ 421 \\ 0,45 \end{gathered}$
		8	4	$S_{O_{T}}$ v_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	-	$\begin{gathered} 0,13 \\ 62,0 \\ 683 \\ 0,78 \\ \hline \end{gathered}$	$\begin{gathered} 0,13 \\ 58,0 \\ 192 \\ 0,44 \end{gathered}$	$\begin{gathered} 0,13 \\ 74,3 \\ 683 \\ 0,72 \end{gathered}$

Переход	Характе． ристика инстру－ мента				Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об；скорость v_{T} ， $\mathrm{m}_{\text {／мин }}$ сила резания $P_{\text {O }_{T}}, \mathrm{H}$ ；мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \underset{\leqslant}{\leqslant} 203) \end{aligned}$	Серыи （HByH $\leqslant 186$ ）	Алюми ний （HB $<78,4)$	Медные （ $\mathrm{HB} \stackrel{1}{5}$ $\leqslant 120$ ）
Сверле－ ние	Спираль－ ные свер－ ла диа－ метром 4，0－ 40 mm	10	5	$S_{\mathrm{o}_{T}}$	－	0，16	0，16	
				${ }^{0_{T}}$	－	60，2	81，2	72，5
				P_{0}	－	992	227	992
				$N_{\text {T }}{ }^{\text {T }}$	－	1，13	0，78	1，05
		12	6	$S_{\mathrm{O}_{\text {T }}}$	－	0，19	0，19	
				$v_{T}{ }^{\text {T }}$	－	46，8	68，7	56，4
				$P_{\mathrm{o}_{\text {T }}}$	－	1347	309	1347
				$N_{\text {T }}{ }^{\text {T }}$	－	1，22	0，92	1，13
		16	8	$S_{\mathrm{o}_{\mathrm{T}}}$	－	0，24	0，24	0，24
				v_{T}	－	44，5	62，9	53，6
				$P_{\mathrm{o}_{T}}$	－	2182	501	2182
				$N_{\mathrm{T}}^{\mathrm{T}}$	－	$1,95$	$1,41$	1，81
		20	10		－	0，29	0，29	0，29
				v_{T}	－	41，4	57，3	49，9
				$P_{\mathrm{o}_{T}}$	－	3217	728	3172
				$N_{\text {T }}{ }^{\text {T }}$	－	2，71	1，91	2，51
		25	12，5	$S_{O_{T}}$	－	0，35	0，35	0，35
				v_{T}	－	35，4	51，0	42，7
				$P_{0_{\text {T }}}$	－	4612	1059	4612
				$N_{\text {T }}{ }^{\text {T }}$	－	3，46	2，54	3，20
		32	16	$S_{\mathrm{o}_{\mathrm{T}}}$	－	0，43	0，43	0，43
				v_{T}	－	27，2	42，2	32，7
				P_{0}	－	6977	1601	6977
				$N_{\text {T }}{ }^{\text {T }}$	－	4，13	3，27	3，83
		40	20	$S_{\mathrm{o}_{T}}$	－	0，52	0，52	0，52
				v_{T}	－	24，8	38，0	29，9
				P_{0}	－	10142	2319	10142
				$N_{T}{ }^{\text {T }}$	－	5，63	4，38	5，22

	Характе－ ристика инстру мента				Подача $S_{\text {O }_{T}}$ ，мм／об，скорость v_{T} ，м／мин； сила резания $P_{\mathrm{O}_{т}}$ ， H ，мощность N_{T} ，кВт			
					Обрабатывасмый материал			
					$\begin{gathered} \text { Сталь } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$	$\begin{gathered} \text { Чугун } \\ \text { серыи } \\ (\text { (Нв } \\ \leqslant 186) \end{gathered}$	Алюми （HBA $\leqslant 78,4$ ）	Медные сплавы $\leqslant 120$ ）
	Спираль－ ные свер－ ла диа－ ＇метром 40－ 90 мм	40	4，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 0,95 \\ & 33,7 \\ & 3432 \\ & 9,07 \end{aligned}$	$\begin{aligned} & 1,24 \\ & 41,6 \\ & 1351 \\ & 4,53 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1,24 \\ & 44,2 \\ & 1351 \\ & 3,70 \end{aligned}$
		50	9，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,03 \\ 30,0 \\ 9558 \\ 15,81 \end{gathered}$	$\begin{aligned} & 1,35 \\ & 36,0 \\ & 3695 \\ & 7,70 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1,35 \\ & 38,3 \\ & 3695 \\ & 6,28 \end{aligned}$
＊		60	14，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,14 \\ 28,3 \\ 17241 \\ 22,25 \end{gathered}$	$\begin{gathered} 1,48 \\ 32,7 \\ 6526 \\ 10,36 \end{gathered}$	-	$\begin{aligned} & 1,48 \\ & 34,8 \\ & 6525 \\ & 8,46 \end{aligned}$
сфвер－ \＄ание			10，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,19 \\ 29,9 \\ 11833 \\ 18,71 \end{gathered}$	$\begin{aligned} & 1,55 \\ & 33,7 \\ & 4436 \\ & 8,42 \end{aligned}$	－	$\begin{aligned} & 1,55 \\ & 35,8 \\ & 4436 \\ & 6,87 \end{aligned}$
			15，0	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 1,29 \\ 27,8 \\ 20193 \\ 24,94 \end{gathered}$	$\begin{gathered} 1,67 \\ 31,0 \\ 7442 \\ 11,05 \end{gathered}$	－	$\begin{aligned} & 1,67 \\ & 33,0 \\ & 7442 \\ & 9,02 \end{aligned}$
		80	20，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{I}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,39 \\ 27,8 \\ 29882 \\ 32,61 \end{gathered}$	$\begin{gathered} 1,80 \\ 30,7 \\ 10832 \\ 14,22 \end{gathered}$	－	$\begin{gathered} 1,80 \\ 32,6 \\ 10832 \\ 11,61 \end{gathered}$
		90	25，0	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,7 \\ 28,3 \\ 46083 \\ 40,5 \end{gathered}$	$\begin{gathered} 2,2 \\ 29,8 \\ 15403 \\ 18,93 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 2,2 \\ 31,6 \\ 15603 \\ 15,51 \end{gathered}$

Переход	Характе－ ристика инстру－ мента		 쑾열忩	$\stackrel{\dot{\partial}}{\stackrel{\circ}{⿷}}$ 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об，скорость v_{T} ，м／мив сила резания $P_{\text {O }_{T}}, \mathrm{H}$ ，мощность N_{T} ，кВ			
					Обрабатываемыя материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \underset{\leqslant}{\leqslant} \\ & \leqslant 203) \end{aligned}$	Чугув серый $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{B6})$ $\leqslant 186)$	$\begin{aligned} & \text { Алюми } \\ & \text { нй } \\ & (H B \leqslant \leqslant \\ & \leqslant 78,4) \end{aligned}$	Медные （ HB c ） $\leqslant 120 \text {) }$
Черно－ вое зен－ керо－ вание без под－ резки дна	Черно－ вые зен－ керы диаме－ тром 16－ 100 мм	16	1，44	$\begin{aligned} & S_{o_{\mathrm{O}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0，76	0，99	1，19	0，99
					43，8	44，2	50，6	53，2
					877，5	362，7	159，4	362，7
					15，45	7，01	1，67	6，83
		20	2，34	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	0，90	1，17	1，41	1，17
					40，0	40，3	46	48，5
					$1742,7$	$694,3$	$291,2$	694，3
					$21,05$	$9,51$	$2,28$	9，26
		25	2，34	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$		1，37	1，65	1，37
					$37,2$	35，2	43，2	42，3
					1924，5	740，2	325，7	740，2
					20，08	7，99	2，20	7，78
		32	3，48	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 1,25 \\ 34,2 \\ 3434,9 \\ 41,65 \end{gathered}$	$\begin{gathered} 1,62 \\ 32,5 \\ 1273,6 \\ 17,16 \end{gathered}$	$\begin{array}{r} 1,95 \\ 39,8 \\ 544,1 \\ 5,61 \end{array}$	$\begin{gathered} 1,62 \\ 39,1 \\ 1273,6 \\ 16,71 \end{gathered}$
		40	3，48	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	1，43	1，86	2，24	1，86
					31，3	28，2	36，9	33，9
					3740，5	1345，6	599，0	1345，6
						13，89	5，20	13，52
		50	3，48	$\begin{aligned} & S_{\mathrm{o}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$1,62$	$2,10$	2，53	2，10
					$29,2$	25，3	34，2	30，4
					4033，2	1412，6	652，2	1412，6
					34，73	11，80	4，76	11，57
		60	5，00	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	1，76	2，29	2，75	2，29
					26，9	23，8	31，6	28，7
					6564，1	2256，9	994，0	2256，9
					40，90	14，62	5，60	14，24

				$\stackrel{y}{4}$ 7 5 0				
							$\begin{aligned} & \text { Auiling } \\ & \text { (HB } \\ & \text { HB } \end{aligned}$	Медные $(\mathrm{HB} \stackrel{1}{\lessgtr})$ < 120)
	Черновые зенкеры диаме тром$16-$ 100 мм	70	$5 u^{\prime}$	$\begin{aligned} & S_{\mathrm{C}_{\mathrm{m}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{1}} \\ & N_{\mathrm{N}_{2}} \end{aligned}$	1,87 97,2 58044 3626	$\begin{gathered} 249 \\ 226 \\ 2309,9 \\ 1339 \end{gathered}$	$\begin{gathered} 2,91 \\ 307 \\ 1030,2 \\ 539 \end{gathered}$	$\begin{gathered} 2,42 \\ 27,2 \\ 23,99,9 \\ 13,04 \end{gathered}$
		80	5,00	$\begin{aligned} & S_{o_{T}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	1,94 23,8 $\mathbf{c 9 6 9} 9$ 22,68	$\begin{gathered} 2,52 \\ 21,7 \\ 23457 \\ 1236 \end{gathered}$	$\begin{gathered} 3,03 \\ 295 \\ 1063,5 \\ 4,98 \end{gathered}$	$\begin{gathered} 2,52 \\ 26,1 \\ 2345,7 \\ 12,03 \end{gathered}$
		100	594	$\begin{aligned} & S_{o_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & F_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 108 \\ & 22,2 \\ & 8683 \\ & 3^{0}, 4 \end{aligned}$	$\begin{aligned} & 2,58 \\ & 18,7 \\ & 2908 \\ & 11,59 \end{aligned}$	$\begin{gathered} 3,10 \\ 27,4 \\ 1284,3 \\ 5,10 \end{gathered}$	$\begin{array}{r} 2,58 \\ 22,45 \\ 2924 \\ 12,5 \end{array}$
	Ilory дистовые зенкеры диаметром 100 mm	10	0,46	$\begin{aligned} & S_{\mathrm{v}_{T}} \\ & v_{\mathrm{r}} \\ & P_{v_{T}} \\ & N_{\mathrm{T}} \end{aligned}$	0,31 651 143,1 458	$\begin{aligned} & 0,48 \\ & 75,2 \\ & 69,2 \\ & 3,09 \end{aligned}$	$\begin{gathered} 0,38 \\ 77,2 \\ 30,0 \\ 2,67 \end{gathered}$	$\begin{aligned} & 0,48 \\ & 90,4 \\ & 692 \\ & 3,01 \end{aligned}$
ялучиctoboe कенке		12	0,48	$\begin{aligned} & S_{0_{\mathrm{T}}} \\ & \iota_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \end{aligned}$	$\begin{gathered} 0,43 \\ 62,2 \\ 104,8 \\ 5,05 \end{gathered}$	056 67,0 $7^{7}, 2$ 2,81	$\begin{aligned} & 0,67 \\ & 705 \\ & 35,6 \\ & 2,52 \end{aligned}$	$\begin{aligned} & 0,56 \\ & 81,0 \\ & 77,2 \\ & 2,73 \end{aligned}$
под- дна		16	0,70	$\begin{aligned} & S_{o_{T}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	0,54 562 397,6 641	070 57,7 132,8 3,20	$\begin{aligned} & 084 \\ & 61,7 \\ & 60,7 \\ & 332 \end{aligned}$	$\begin{array}{r} 0,70 \\ 694 \\ 132,8 \\ 3,12 \end{array}$
		20	0,74	S_{0} 'T $P_{O_{2}}$ N_{1}	0,64 55,9 352,8 7×5	0,93 $5 r, n$ 1517 350	u,99 64,6 722 381	$\begin{gathered} 0.83 \\ 67,4 \\ 151,7 \\ 3,41 \end{gathered}$

Продолжение картон .

Переход	Харакгеристика инстру мента			$\stackrel{\text { 总 }}{\ddot{4}}$ 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об, скорость v_{T}, м/мин сила резания $P_{\mathrm{o}_{\mathrm{T}}}, \mathrm{H}$; мощность $N_{\mathrm{T}}, \mathrm{hB}$ Обрабдғывлемый материал			
					$\begin{aligned} & \text { Сталь } \\ & \left(\begin{array}{c} \text { HB } \\ <203) \end{array}\right. \end{aligned}$	Чугун серый (HB $\leqslant 186$)	Алюми нии $\leqslant 78,4$)	Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant 120)}$
Получистовое зенкерование без подрезки дна	Получистовые зенкеры диаметром $10-$ 100 мм	25	0,74	$S_{0_{T}}$	0,75	0,97	1,17	0,97
				v_{T}	52,0	48,9	60,5	58,9
				$P_{\mathrm{O}_{\mathrm{T}}}$	389,6	161,8	80,7	161,8
				$N_{\text {T }}$	7,01	2,94	3,68	2,87
		32	0,79	$S_{0_{T}}$	0,88	1,15	1,38	1,15
				v_{T}	51,1	47,5	59,4	57,1
				$P_{0_{T}}$	467,1	187,0	96,8	187,0
				$N_{\text {T }}$	7,84	3,21	4,12	3,13
		40	0,79	$S_{0_{T}}$	1,01	1,31	1,58	1,31
				v_{T}	46,8	41,1	55,1	49,5
				$P_{0_{\text {T }}}$	508,7	197,6	106,6	197,6
				$N_{\text {T }}$	7,08	2,60	3,82	2,53
		50	0,79	$S_{O_{T}}$	1,14	1,48	1,78	1,48
				v_{T}	43,6	36,9	51,1	44,4
				$P_{O_{\text {O }}}$	548,5	207,4	116,0	207,4
				$N_{\text {T }}$	6,54	2,23	3,49	2,17
		60	0,84	$S_{O_{T}}$	1,24	1,61	1,94	1,61
				v_{T}	42,7	36,4	50,1	43,8
				$P_{\text {OT }}$	622,1	230,9	130,9	230,9
				$N_{\text {T }}$	6,82	2,36	3,65	2,29
		70	0,84	$S_{0_{T}}$	1,32	1,71	2,06	1,71
				v_{T}	39,9	34.6	48,7	41,6
				$\mathrm{P}_{-\mathrm{O}_{1}}$	644,8	236,3	136,3	236,3
				$N_{\text {T }}$	6,05	2,16	3,51	2,10
		80	0,84	$S_{0_{T}}$	1,37	1,78	2,14	1,78
				v_{T}	37,8	33,2	46,7	39,9
				$P_{O_{T}}$	660,4	240,0	140,0	240,0
				N_{T}	5,45	1,99	3,24	1,94

	Характеристика инстру мента				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об, скорость v_{T}, м/мин сила резания $P_{\mathrm{O}_{I}}, \mathrm{H}$, мощность N_{T}, кВ			
					Обрабдтываемый материал			
					$\begin{gathered} \text { Сталь } \\ \underset{(\mathrm{HB}}{\leqslant} \mathrm{K} 03) \end{gathered}$	$\begin{gathered} \text { чугун } \\ \text { серын } \\ (H B \leq \\ \leqslant 186) \end{gathered}$	Алюми(HB н \leqslant $\leqslant 78,4$)	Медные ($\mathrm{HB} \leqslant$ $\leqslant 120$)
	Получистовые зенкеры диаметром 10100 мм	90	0,91	$S_{\mathrm{O}_{\mathrm{T}}}$	1,40	1,82	2,19	1,82
				v_{T}	36,4	30,5	45,2	36,7
				$P_{O_{T}}$	737,7	266,7	154,2	266,7
				$N_{\text {T }}$	5,34	1,78	3,20	1,74
		100	0,91	$S_{0_{T}}$	1,42	1,84	2,21	1,84
				v_{T}	35,7	28,9	43,8	34,7
				$P_{\mathrm{O}_{\mathrm{T}}}$	742,9	267,9	155,4	267,9
				$N_{\text {T }}$	5,06	1,57	2,96	1,53
	Чистовые зенкеры дидметром 16100 мм	16	0,41	$S_{\mathrm{O}_{\mathrm{I}}}$	0,37	0,48	0,57	0,48
				v_{T}	70,1	74,2	81,0	89,2
				$P_{O_{T}}$	123,6	60,0	27,2	60,0
				$N_{\text {T }}$	4,53	2,41	2,35	2,34
		20	0,43	$S_{0_{T}}$	0,43	0,56	0,68	0,56
				v_{T}	69,9	72,1	80,7	86,8
				$P_{O_{\text {T }}}$	145,2	67,9	32,1	67,9
				$N_{\text {T }}$	5,18	2,62	2,69	2,55
ctoboe яенке-		25	0,43	$S_{0^{T}}$	0,51	0,66	0,80	0,66
эвание				v_{T}	65,0	63,0	75,6	75,8
- подбезки				$P_{0_{T}}$	160,3	72,4	35,9	72,4
, дна				$N_{\text {T }}$	4,94	2,20	2,59	2,14
		32	0,48	$S^{0_{T}}$	0,60	0,78	0,94	0,78
				v_{T}	63,3	60,7	73,5	73,0
				$P_{0_{T}}$	202,8	88,3	45,0	88,3
				N_{T}	5,62	2,46	2,95	2,39
		40	0,48	$S_{0_{T}}$	0,69	0,90	1,08	0,90
				v_{T}	57,9	52,6	68,2	63,3
				$P_{O_{T}}$	220,9	93,3	49,6	93,3
				$N_{\text {T }}$	5,08	1,99	2,74	1,94

Переход	Характеристика инстру. мента		 	$\stackrel{\dot{\circ}}{\stackrel{\circ}{6}}$ 	Подача $S_{\text {O }_{\tau}}$, мм/об, скоростs v_{T}, м/мин сила резания $P_{\mathrm{O}_{\mathrm{I}}}, \mathrm{H}$, мощность N_{T}, кВ Обрабатываемый мсгерѝал			
					$\begin{gathered} \text { Сталь } \\ \text { (HB } \\ <203) \end{gathered}$	Чугун серыи (KB $\leqslant 186)$	$\begin{aligned} & \text { Алюми } \\ & \text { ний } \\ & (H \quad \leftarrow \\ & \leqslant 78,4) \end{aligned}$	Медные сплавы $(\mathrm{HB}$ $\leqslant 120)$
Чистовое зенкерование без подрезки дна	Чистовые зенкеры диаметром 16-- 100 mm	50	0,48	$\begin{aligned} & S_{\mathrm{O}_{\mathrm{T}}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,78 \\ 54,0 \\ 238,2 \\ 4,69 \end{gathered}$	$\begin{aligned} & 1,01 \\ & 47,3 \\ & 97,9 \\ & 1,70 \end{aligned}$	$\begin{aligned} & 1,22 \\ & 63,3 \\ & 54,0 \\ & 2,50 \end{aligned}$	$\begin{aligned} & 1,01 \\ & 56,8 \\ & 97,9 \\ & 1,66 \end{aligned}$
		60	0,53	$\begin{gathered} S_{O_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}}^{*} \end{gathered}$	$\begin{array}{r} 0,85 \\ 52,5 \\ 282,6 \\ 4,97^{\prime} \end{array}$	$\begin{gathered} 1,10 \\ 46,4 \\ 114,1 \\ 1,84 \end{gathered}$	$\begin{aligned} & 1,32 \\ & 61,6 \\ & 63,2 \\ & 2,65 \end{aligned}$	$\begin{array}{r} 1,10 \\ 55,8 \\ 114,1 \\ 1,79 \end{array}$
		70	0,53	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,90 \\ 49,1 \\ 292,9 \\ 4,40 \end{gathered}$	$\begin{gathered} 1,17 \\ 44,0 \\ 116,8 \\ 1,68 \end{gathered}$	$\begin{aligned} & 1,40 \\ & 59,9 \\ & 65.9 \\ & 2,55 \end{aligned}$	$\begin{gathered} 1,17 \\ 52,9 \\ 116,8 \\ 1,64 \end{gathered}$
		80	0,53	$\begin{gathered} S_{o_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{0_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,94 \\ 46,5 \\ 300,0 \\ 3,97 \end{gathered}$	$\begin{gathered} 1,21 \\ 42,2 \\ 118,6 \\ 1,55 \end{gathered}$	$\begin{aligned} & 1,46 \\ & 57,5 \\ & 67,7 \\ & 2,36 \end{aligned}$	$\begin{gathered} 1,21 \\ 50,8 \\ 118,6 \\ 1,51 \end{gathered}$
		90	0,56	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,96 \\ 44,9 \\ 325,2 \\ 3,85 \end{gathered}$	$\begin{gathered} 1,24 \\ 39,0 \\ 127,9 \\ 1,37 \end{gathered}$	$\begin{aligned} & 1,49 \\ & 55,8 \\ & 72,7 \\ & 2,30 \end{aligned}$	$\begin{gathered} 1.24 \\ 46,9 \\ 127,9 \\ 1,34 \end{gathered}$
		100	0,56	$S_{O_{\mathrm{T}}}$ \ddot{v}_{T} $p_{O_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 0,97 \\ 44,1 \\ 327,5 \\ 3,64 \end{gathered}$	1,20 36,9 128,4 1,21	$\begin{aligned} & 1,51 \\ & 54,1 \\ & 73,3 \\ & 2,13 \end{aligned}$	$\begin{gathered} 1,26 \\ 44,4 \\ 128,4 \\ 1,18 \end{gathered}$

Переход	Характе ристика мента			$\stackrel{\dot{W}}{\stackrel{1}{U}}$	Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об; скорость v_{T}, м/мин; сила резания $P_{O_{T}}$, H: мощность N_{T}, кBт Чбрабатываемый магериал			
					Сталь $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{K}$	$\begin{gathered} \text { पугун } \\ \text { сеный } \\ (\mathrm{HB}: \\ \leqslant 186) \end{gathered}$	$\begin{aligned} & \text { Алюми } \\ & \text { ний } \\ & \stackrel{\text { Ни }}{\leqslant} \leqslant \end{aligned}$	Медные ($\mathrm{HB} \leqslant$ $\leqslant 120$)
Нерноее зен-zepoвание с подрезкой дна	Черно- вые зенкеры диаметром 16100 мм	16	1,44	$S_{0_{T}}$ v_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{array}{r} 0,37 \\ 54,5 \\ 558,3 \\ 11,97 \end{array}$	$\begin{gathered} 0,48 \\ 61,4 \\ 270,9 \\ 6,76 \end{gathered}$	$\begin{aligned} & 0,57 \\ & 63,0 \\ & 95,7 \\ & 1,29 \end{aligned}$	$\begin{array}{r} 0,48 \\ 73,9 \\ 270,9 \\ 6,58 \end{array}$
		20	2,34	$S_{\mathrm{O}_{\mathrm{T}}}$ v_{T} $P_{\mathrm{O}_{\mathrm{T}}}$ N_{T}	$\begin{gathered} 0,43 \\ 49,8 \\ 1108,8 \\ 16,31 \end{gathered}$	$\begin{gathered} 0,56 \\ 56,0 \\ 518,6 \\ 9,17 \end{gathered}$	$\begin{gathered} 0,68 \\ 57,5 \\ 174,8 \\ 1,76 \end{gathered}$	$\begin{gathered} 0,56 \\ 67,3 \\ 518,6 \\ 8,93 \end{gathered}$
		25	2,34	$\begin{gathered} S_{\mathbf{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,51 \\ 46,3 \\ 1224,5 \\ 15,56 \end{gathered}$	$\begin{gathered} 0,66 \\ 48,9 \\ 552,9 \\ 7,70 \end{gathered}$	$\begin{gathered} 0,80 \\ 53,9 \\ 195,5 \\ 1,70 \end{gathered}$	$\begin{array}{r} 0,66 \\ 58,8 \\ 552,9 \\ 7,50 \end{array}$
		32	3,48	$S_{O_{T}}$ v_{T} $P_{0_{T}}$ N_{T}	$\begin{gathered} 0,60 \\ 42,6 \\ 2185,5 \\ 32,27 \end{gathered}$	$\begin{gathered} 0,78 \\ 45,1 \\ 951,4 \\ 16,54 \end{gathered}$	$\begin{gathered} 0,94 \\ 49,5 \\ 326,6 \\ 4,35 \end{gathered}$	$\begin{gathered} 0,78 \\ 54,3 \\ 951,4 \\ 16,11 \end{gathered}$
		40	3,48	$S_{0_{T}}$ v_{T} $P_{0_{T}}$ N_{T}	$\begin{gathered} 0,69 \\ 39,0 \\ 2379,9 \\ 29,17 \end{gathered}$	$\begin{gathered} 0,90 \\ 39,1 \\ 1005,1 \\ 13,39 \end{gathered}$	$\begin{gathered} 1,08 \\ 45,9 \\ 359,5 \\ 4,03 \end{gathered}$	$\begin{gathered} 0,90 \\ 47,0 \\ 1005,1 \\ 13,04 \end{gathered}$
		50	3,48	$\begin{gathered} S_{\mathrm{O}_{\mathbf{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathbf{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,78 \\ 36,3 \\ 2566,1 \\ 26,91 \end{gathered}$	$\begin{gathered} 1,01 \\ 35,1 \\ 1055,2 \\ 11,46 \end{gathered}$	$\begin{gathered} 1,22 \\ 42,6 \\ 391,5 \\ 3,69 \end{gathered}$	$\begin{gathered} 1,01 \\ 42,2 \\ 1055,2 \\ 11,16 \end{gathered}$
		60	5,00	$S_{O_{T}}$ v_{T} $P_{0^{\prime}}$ N_{T}	$\begin{gathered} 0,85 \\ 33,5 \\ 4176,5 \\ 31,68 \end{gathered}$	$\begin{gathered} 1,10 \\ 33,1 \\ 1685,9 \\ 14,10 \end{gathered}$	$\begin{gathered} 1,32 \\ 39,3 \\ 596,6 \\ 4,34 \end{gathered}$	$\begin{gathered} 1,10 \\ 39,8 \\ 1685,9 \\ 13,73 \end{gathered}$

Переход	Характеристика инструмента			$\dot{\otimes}$ $\stackrel{\text { ® }}{0}$ 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об, скорость v_{T}, м/мин сила резання $\mathrm{P}_{\mathrm{o}_{\mathrm{T}}}$, H , момность N_{T}, иВ			
					Обогбатываемып материал			
					Сталь $\underset{\substack{\mathrm{HB} \\ \leqslant 203)}}{ }$			Медные (HB E 5 $\leqslant 120$)
Черновое зен-керование с подрезкой дна	Черновые зенкеры диаметром 16100 мм	70	5,00	$S_{O_{T}}$	0,90	1,17	1,40	1,17
				v_{Yx}	31,3	31,4	38,3	37,8
				$P_{O_{T}}$	4329,3	1725,4	621,3	1725,4
				$N_{\text {T }}$	28,09	12,91	4,18	12,57
		80	5,00	$S_{0_{T}}$	0,94	1,21	1,46	1,21
				v_{T}	29,7	30,1	36,7	36,3
				$P_{0_{\text {O }}}$	4434,0	1752.2	638,3	1752,2
				$N_{\text {T }}$	25,32	11,91	3,86	11,60
		100	5,94	$S_{0_{T}}$	0,96	1,24	1,49	1,24
				v_{r}	28,0	27,3	34,8	32,9
				$P_{0_{\text {o }}}$	5532,1	2174,9	770,8	2174,9
				$N_{\text {T }}$	25,72	11,18	3,95	10,88
Получистовое зенкерование с подрезкой дна	Получистовые зенкеры диаметром 10100 мм	10	0,46	$S_{\mathrm{O}_{\mathrm{T}}}$	0,17	0,22	0,26	0,22
				v_{T}	82,8	107,9	98,3	129,8
				$P_{\mathrm{o}_{\mathrm{T}}}$	87,0	50,2	17,6	50,2
				N_{T}	3,68	2,97	2,02	2,89
		12	0,48	$S_{0_{T}}$	0,19	0,25	0,30	0,25
				v_{T}	79,2	96,6	89,7	116,2
				$P_{0_{T}}$	100,2	56,0	20,3	56,0
				$N_{\text {T }}$	3,82	2,70	1,91	2,63
		16	0,70	$S_{O_{T}}$	0,24	0,31	0,38	0,31
				v_{T}	71,5	82,7	82,6	99,5
				$P_{o_{T}}$	180,9	96,3	34,6	96,3
				$N_{\text {T }}$	4,84	3,08	2,51	3,00
		20	0,74	$S_{O_{T}}$	0,29	0,37	0,45	0,37
				v_{T}	71,1	80,4	82,2	96,7
				$P_{O_{T}}$	214,5	110,1	41,1	110,1
				$N_{\text {I }}$	5,55	3,37	2,88	3,28

Продолжкние карть 2

Переход	Характе－ ристика инстру－ менга			晏 最 若 品 号	Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／о5，скорость $v_{\mathrm{T}}, \mathrm{m} /$ мин， сила уезания $\mathrm{P}_{\mathrm{o}_{\mathrm{T}}}, \mathrm{H}$ ，мощность N_{T}, кВт			
					Обрабатываемыи материал			
					$\begin{gathered} \text { Cräb } \\ (\mathrm{HB} \underset{\leqslant 203)}{\lessgtr} \end{gathered}$	чугун серый $\begin{gathered} (\mathrm{HB} \\ \leqslant \end{gathered} \leqslant$		Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant}$ ≤ 120 ）
	Получи－ стовые зенкеры диаме тром 10－ 100 mm	25	0，74	$\begin{gathered} S_{0_{T}} \\ v_{1} \\ P_{o_{T}} \\ N_{T} \end{gathered}$	$\begin{gathered} 0,33 \\ 66,2 \\ 236,9 \\ 5,29 \end{gathered}$	$\begin{gathered} 0,43 \\ 70,2 \\ 117,3 \\ 2,83 \end{gathered}$	$\begin{aligned} & 0,52 \\ & 77,0 \\ & 46,0 \\ & 2,78 \end{aligned}$	$\begin{gathered} 0,43 \\ 84,5 \\ 117,3 \\ 2,75 \end{gathered}$
		32	0，79	$\begin{aligned} & S_{o_{T}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,40 \\ 65,0 \\ 284,0 \\ 5,92 \end{gathered}$	$\begin{gathered} 0,51 \\ 68,1 \\ 135,6 \\ 3,09 \end{gathered}$	$\begin{aligned} & 0,62 \\ & 75,5 \\ & 55,2 \\ & 3,11 \end{aligned}$	$\begin{gathered} 0,51 \\ 81,9 \\ 135,6 \\ 3,01 \end{gathered}$
		40	0，79	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,45 \\ 59,5 \\ 309,3 \\ 5,35 \end{gathered}$	$\begin{gathered} 0,59 \\ 59,0 \\ 143,3 \\ 0,50 \end{gathered}$	$\begin{aligned} & 0,71 \\ & 70,1 \\ & 60,8 \\ & 2,88 \end{aligned}$	$\begin{gathered} 0,59 \\ 71,0 \\ 143,3 \\ 2,43 \end{gathered}$
		50	0，79	$\begin{gathered} S_{\mathrm{O}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{v}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,51 \\ 55,5 \\ 333,5 \\ 4,93 \end{gathered}$	$\begin{gathered} 0,67 \\ 53,0 \\ 150,4 \\ 2,14 \end{gathered}$	$\begin{aligned} & 0,80 \\ & 65,0 \\ & 66,2 \\ & 2,64 \end{aligned}$	$\begin{gathered} 0,67 \\ 63,6 \\ 150,4 \\ 2,08 \end{gathered}$
		60	0，84	$\begin{gathered} S_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,56 \\ 54,4 \\ 378,2 \\ 5,15 \end{gathered}$	$\begin{gathered} 0,72 \\ 52,3 \\ 167,5 \\ 2,26 \end{gathered}$	$\begin{aligned} & 0,87 \\ & 63,7 \\ & 74,6 \\ & 2,75 \end{aligned}$	$\begin{gathered} 0,72 \\ 62,9 \\ 167,5 \\ 2,20 \end{gathered}$
		70	0，84	$\begin{aligned} & S_{O_{T}} \\ & v_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 0,59 \\ 50,8 \\ 392,0 \\ 4,57 \end{gathered}$	$\begin{gathered} 0,77 \\ 49,6 \\ 171,4 \\ 2,07 \end{gathered}$	$\begin{aligned} & 0,92 \\ & 62,0 \\ & 77,7 \\ & 2,65 \end{aligned}$	$\begin{gathered} 0,77 \\ 59,7 \\ 171,4 \\ 2,02 \end{gathered}$
		80	0，84	$\begin{gathered} S_{O_{T}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 0,61 \\ 48,1 \\ 401,5 \\ 4,12 \end{gathered}$	$\begin{gathered} 0,80 \\ 47,6 \\ 174,1 \\ 1,91 \end{gathered}$	$\begin{aligned} & 0,96 \\ & 59,5 \\ & 79,8 \\ & 2,44 \end{aligned}$	$\begin{array}{r} 0,80 \\ 57,3 \\ 174,1 \\ 1,86 \end{array}$

Мереход	Xаракте ристика мнстра				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, вмм/об; скорость и , м/мин, сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\text { HB } \\ & <203) \end{aligned}$	Чугун серыи (HB \leqslant $\leqslant 186$)	Алюми ($\mathrm{HB} \leqslant$ $\leqslant 78,4)$	Медни спла $\leqslant 12$
Получистовое зенкерование с подрезкой дна	Получистовые зенкеры диаметром 10 100 mm	90	0,91	$S_{O_{T}}$	0,63	0,82	0,98	0,82
				v_{T}	46,3	43,8	57,5	52,7
				$P_{0_{1}}$	448,5	193,4	87;9	193,4
				$N_{\text {T }}$	4,03	1,71	2,42	1,67
		100	0,91	$S_{\mathrm{o}_{1}}$	0,64	0,83	0,99	0,83
				v_{T}	45,4	41,4	55.7	49,9
				$P_{O_{T}}$	451,6	194,3	88,6	194,3
				$N_{\text {T }}$	3,82	1,51	2,24	1,47
Чистовое зенкерование с подрезкой дна	Чистовые зенкеры диаме1ром 16100 mm	16	0,41	$S_{0_{\text {T }}}$	0, 19	0,25	0,30	0,25
				v_{1}	85,2	99,4	98,4	119,5
				$P_{0_{r}}$	82,6	46,3	17,3	46,3
				$N_{\text {T }}$	3,61	2,33	1,87	2,27
		20	0,43	S_{0}	0,23	0,29	0,35	0,29
				v_{T}	84,9	96,7	98,1	116,3
				$P_{\mathrm{o}_{\text {T }}}$	97,0	52,4	20.4	52,4
				$N_{\text {T }}$	4,12	2,54	2,14	2,47
		25	0,43	$S_{0_{T}}$	0,27	0,35	0,42	0,35
				v_{T}	79,0	84,4	91,9	101,6
				$P_{0_{T}}$	107,2	55,8	22,8	55,8
				$N_{\text {T }}$	3,93	2,13	2,07	2,08
		32	0,48	$S_{0_{T}}$	0,31	0,41	0,49	0,41
				v_{T}	76,9	81,4	89,4	97,9
				$P_{\mathrm{O}_{\mathrm{T}}}$	135,5	68,1	28,6	68,1
				$N_{\text {r }}$	4,48	2,38	2,35	- 2,32
		40	0,48	$S_{0_{T}}$	0,36	0,47	0,56	0,47
				v_{T}	70,4	70,5	82,9	84,8
				$P_{O_{T}}$	147,6	71.9	31,5	71,9
				$N_{\text {T }}$	4,05	1,93	2,18	1,88

Переход	Xарактеристика внстру мента		 	 	Подача $S_{\text {O }_{T}}$, мм/об, скодость v_{T}, м/мин сила реяания $P_{\mathrm{O}_{\mathrm{T}}}$, H , мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{gathered} \text { Crasb } \\ (\mathrm{HB} B \\ \leqslant 203) \end{gathered}$	$\begin{gathered} \text { Чугу } \\ \text { серын } \\ (H B \quad \leq \\ \leqslant 186) \end{gathered}$		Медные сплавы $\stackrel{\leqslant 120)}{ }$
Чистовое зенкерование с под- ! резкой дна	Чистовые зенкеды диаметром 16100 мм	50	0,48	$S_{0_{x}}$	0,41	0.53	0,64	0,53
				v_{T}	65,6	63,3	77.0	76,2
				$P_{O_{T}}$	159.2	75,5	34,3	75,5
				$N_{\text {T }}$	3,73	1,65	1.99	1,60
		60	0,53	$S_{O_{\text {T }}}$	0,44	0.58	0,69	0,58
				v_{T}	63,8	62,1	74,9	74,7
				$P_{O_{T}}$	188,9	88,0	40,1	88,0
				$N_{\text {T }}$	3,96	1.78	2,11	1,73
		70	0,53	$S_{\mathrm{O}_{\pi}}$	0,47	0,61	0,73	0,61
				v_{T}	59,6	59.0	72,8	70,9
				$P_{0_{T}}$	195,8	90.0	41,8	90,0
				$N_{\text {T }}$	3,51	1,63	2,03	1,59
		80	0,53	$S_{0_{\text {O }}}$	0,49	0,63	0,76	0,63
				v_{T}	56,5	56,5	69,8	68,0
				$P_{0}{ }_{0}$	200,5	91,4	42,9	91,4
				N_{T}	3,16	1,50	1.88	1,46
		90	0,55	$S_{O_{T}}$	0,50	0.65	0,78	0,65
				$v_{\text {T }}$	54,6	52,2	67,8	62,8
				$P_{O_{T}}$	217,3	98,6	46,1	98,6
				$N_{\text {T }}$	3,06	1,33	1.84	1,29
		100	0,56	$S_{O_{T}}$	0,51	0,66	0,79	0,66
				v_{T}	53,6	49,4	65,8	59,4
				$P_{O_{T}}$	218,9	99,0	46,5	99,0
				N_{T}	2,90	1,17	1,70 ${ }^{\circ}$	1,14

Продолжение картьк?

Переход	Характеристика инструмента				Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об; скорость v_{T}, $\mathrm{M} /$ мин сила резания $P_{\mathrm{o}_{\mathrm{T}}}, \mathrm{H}$, момность N_{T}, кВ,			
					Обрабатываемып материал			
						$\begin{gathered} \text { Чyrÿ } \\ \text { серый } \\ (\mathrm{HB} \underset{\leq 186)}{\leq} \end{gathered}$		Медные сплавы $(\mathrm{HB}$ $\leqslant 120)$ $\leqslant 120$)
Черновое раз вертывание без подрезки дна	Черновые развертки диаметром 4100 мм	4	0,18	$S_{O_{T}}$	0,55	1,37	0,69	1,37
				v_{T}	25,1	24,9	11,2	29,8
				$P_{O_{T}}$	59,1	34,1	13,6	34,1
				$N_{\text {T }}$	1,28	1,20	0,13	1,44
		6	0,18	$S_{0_{T}}$	0,65	1,63	0,82	1,63
				v_{T}	25,2	23,6	10,4	28,3
				$P_{0}{ }_{\text {T }}$	65,8	36,5	15,3	36,5
				$N_{\text {T }}$	1,48	1,30	0,14	1,56
		8	0,20	$S_{0_{T}}$	0,74	1,85	0,92	1,85
				v_{T}	25,3	22,5	9,7	27,1
				$P_{0_{T}}$	80,5	43,6	18,5	43,6
				$N_{\text {T }}$	1,80	1,49	0,15	1,79
		10	0,20	$S_{O_{T}}$	0,81	2,03	1,02	2,03
				v_{T}	25,3	21,7	9,2	26,0
				$P_{o_{T}}$	85,4	45,2	19,8	45,2
				$N_{\text {r }}$	1,94	1,55	0,16	1,86
		12	0,21	$S_{0_{T}}$	0,88	2,20	1,10	2,20
				v_{T}	20,7	17,5	6,7	21,0
				$P_{0}{ }_{\text {O }}$	95,1	49,5	22,0	49,5
				$N_{\text {T }}$	1,87	1,46	0,13	1,75
		16	0,23	$S_{0_{T}}$	0,99	2,49	1,24	2,49
				v_{T}	20,7	16,6	6,2	19,9
				$P_{0_{0}}$	114,4	58,0	26,2	58,0
				$N_{\text {T }}$	2,24	1,63	0,15	1,96
		20	0,24	$S_{0_{T}}$	1,09	2,73	1,37	2,73
				v_{T}	20,7	15,9	5,8	19,0
				$P_{O_{T}}$	127,8	63,4	29,3	63,4
				$N_{\text {T }}$	2,51	1,74	0,15	2,09

перемод	Характеристика инструмевта				Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/мин сила резания $P_{\text {o }_{T}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый материал			
					Сталь ($\mathrm{HB} \leqslant$ $\leqslant 203$)		$\begin{aligned} & \text { Алюмии } \\ & \text { (нй } \\ & \leqslant 78,4 \\ & \leqslant 78,4) \end{aligned}$	Медные сплавы $\stackrel{(H B)}{\leqslant}$
\%	Черновые развертки диаметром 4100 mm	25	0,24	$S_{O_{T}}$	1,20	3,01	1,50	3,01
\%				$v_{\text {T }}$	15,6	13,3	4,5	16,0
\%				$P_{o_{T}}$	135,5	65,9	31,3	65,9
($N_{\text {T }}$	2,04	1,57	0,13	1,89
,		32	0,26	$S_{O_{T}}$	1,34	3,34	1,67	3,34
\%				v_{T}	12,7	10,5	3,6	12,6
1				$P_{0_{T}}$	159,3	75,6	36,5	75,6
				$N_{\text {T }}$	2,03	1,50	0,12	1,80
,		40	0,26	$S_{O_{T}}$	1,47	3,68	1,84	3,68
b				v_{T}	12,7	10,0	3,4	12,0
$!$				$P_{0_{T}}$	169,0	78,6	39,0	78,6
\%				$N_{\text {T }}$	2,27	1,60	0,13	1,92
- Черновое раз-		50	0,26	$S_{\mathrm{O}_{\mathrm{T}}}$	1,62	4,04	2,02	4,04
верты-				v_{T}	10,8	8,4	2,8	10,0
вание				$P_{0}{ }_{\text {O }}$	179,3	81,6	41,7	81,6
4. резки				$N_{\text {T }}$	2,09	1,44	0,11	1,73
4		60	0,27	$S_{0_{T}}$	1,75	4,37	2,19	4,37
*				v_{T}	9,5	7,6	2,4	9,1
				$P_{O_{T}}$	196,8	88,1	45,7	88,1
				$N_{\text {T }}$	2,02	1,44	0,11	1,73
		70	0,27	$S_{\mathrm{O}_{\mathrm{T}}}$	1,87	4,67	2,33	4,67
,				v_{T}	8,5	7,0	2,1	8,4
				$P_{0_{T}}$	205,0	90,4	47,9	90,4
				$N_{\text {T }}$	1,91	1,40	0,10	1,67
		80	0,27	$S_{0_{T}}$	1,98	4,94	2,47	4,94
				v_{T}	8,5	6,8	2,0	8,1
				$P_{0_{T}}$	212,4	92,5	49,8	92,5
				$N_{\text {T }}$	2,11	1,50	0,11	1,80

Продолжсние картья 2

Переход	Xapaктe－ －ристнка ннстру мента	 	区W感000管:	总 	Подаяа $S_{\mathrm{O}_{\mathrm{T}}}, \mathrm{mm} / \mathrm{of}$ ；скорость $v_{\mathrm{T}}, \mathrm{m} / \mathrm{mH}$ сила резания $P_{O_{T}}, \mathrm{H}$ ；момность N_{T} ，ки： Обрабатывеемый материал			
					$\begin{aligned} & \text { Cramb } \\ & (4 B=203) \end{aligned}$	$\begin{gathered} \text { 廿угy } \\ \text { cephit } \\ (H B \leftrightarrows \\ \leqslant 186) \end{gathered}$	$\begin{aligned} & \text { Алюми } \\ & \text { ННй } \\ & \stackrel{\text { H月 }}{\leqslant} \leqslant \\ & \leqslant 78.4) \end{aligned}$	Медные сплавы HB $\leqslant 120)$
Черно－ вое раз－ верты－ вание без под－ резки дна	Черно－ вые раз－ вертки диаме． тром 4．－． 100 mm	100	0，30	$\begin{aligned} & s_{U_{\mathrm{T}}} \\ & o_{\mathrm{T}} \\ & s_{0_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{array}{r} 2,17 \\ 8,4 \\ 250 \\ 2,3 \end{array}$	$\begin{gathered} 5,4 \\ 0.4 \\ 272,3 \\ 1,57 \end{gathered}$	$\begin{gathered} 2,7 \\ 3.55 \\ 65.4 \\ 0,162 \end{gathered}$	$\begin{gathered} 5,4 \\ 7,7 \\ 2793 \\ 1,4 \end{gathered}$
Получи－ crobce развер－ тывание без под－ резки дна	Получи： стовые разверт－ ки диа＂ метром 4－ 100 mm	4	0，09	$\begin{gathered} \mathcal{S}_{\mathrm{o}_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{o}_{T}} \\ N_{W_{T}} \end{gathered}$	$\begin{aligned} & 0,42 \\ & 31,9 \\ & 21,9 \\ & 0,71 \end{aligned}$	$\begin{aligned} & 1,06 \\ & 32,9 \\ & 13,4 \\ & 0,77 \end{aligned}$	$\begin{gathered} 0,53 \\ 15.4 \\ 5,7 \\ 0,09 \end{gathered}$	$\begin{aligned} & 1,06 \\ & 39,4 \\ & 13,4 \\ & 0,92 \end{aligned}$
		6	0，09	$\begin{gathered} S_{0_{T}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 0,51 \\ & 32,3 \\ & 24,7 \\ & 0,84 \end{aligned}$	$\begin{aligned} & 1,29 \\ & 32,1 \\ & 14,5 \\ & 0,87 \end{aligned}$	$\begin{gathered} 0,64 \\ 14,6 \\ 6,5 \\ 0,10 \end{gathered}$	$\begin{aligned} & 1,29 \\ & 38,5 \\ & 14,5 \\ & 1,05 \end{aligned}$
		8	0，10	$\begin{gathered} S_{0_{\mathrm{T}}} \\ v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ \lambda_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 0,59 \\ & 32,5 \\ & 30,5 \\ & 1,03 \end{aligned}$	$\begin{aligned} & 1,47 \\ & 31,3 \\ & 17,3 \\ & 1,03 \end{aligned}$	$\begin{gathered} 0.74 \\ 14,0 \\ 7,9 \\ 0,11 \end{gathered}$	$\begin{aligned} & 1,47 \\ & 37,6 \\ & 17,3 \\ & 1,23 \end{aligned}$
		10	0，10	$\begin{gathered} S_{0_{\mathrm{T}}} \\ v_{\mathrm{r}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 0,66 \\ & 32,6 \\ & 32,5 \\ & 1,13 \end{aligned}$	$\begin{aligned} & 1,64 \\ & 30,6 \\ & 18,1 \\ & 1,09 \end{aligned}$	$\begin{gathered} 0,82 \\ 13,4 \\ 8,5 \\ 0,11 \end{gathered}$	$\begin{gathered} 1,64 \\ 36,7 \\ 18,1 \\ 1,31 \end{gathered}$
		12	0，10	$S_{O_{T}}$ v_{T} $P_{0_{T}}$ N_{T}.	$\begin{aligned} & 0,71 \\ & 26,7 \\ & 34,3 \\ & 1,05 \end{aligned}$	$\begin{aligned} & 1,79 \\ & 24,9 \\ & 18,7 \\ & 1,01 \end{aligned}$	$\begin{gathered} 0,89 \\ 9,8 \\ 9,1 \\ 0,09 \end{gathered}$	$\begin{aligned} & 1,79 \\ & 29,9 \\ & 18,7 \\ & 1,21 \end{aligned}$

Продолжсние карть

	Характеристика ннструмента		 	寧 	Подача $S_{\text {O }_{T}}$, мм/об; скорость $\boldsymbol{o}_{\mathrm{T}}$, м/мин свла резания $P_{\mathrm{O}_{\mathrm{T}}}$. H ; мощность N_{T}, кВ			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 203) \end{aligned}$			Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant} \leqslant$
4 фолучистовое развердвание ез подрезки дна	Получистовые развертки диаметром 4100 мм	16	0,10	$S_{O_{T}}$	0,82	2,05	1,02	2,05.
				v_{T}	26,8	24,0	9,2	28,8
				$P_{0_{T}}$	37,3	19,7	10,0	19,7
				$N_{\text {T }}$	1,17	1,08	0,10	1,30
		20	0,10	$S_{0_{T}}$	0,91	2,27	1,14	2,27
				v_{T}	26,8	23,2	8,8	27,8
				$P_{0}{ }_{\text {T }}$	39,9	20,6	10,7	20,6
				N_{T}	1,28	1,14	0,10	1,36
		25	0,10	$S_{0_{T}}$	1,01	2,53	1,26	2,53
				v_{T}	20,2	19,6	6,8	23,6
				$P_{O_{T}}$	42,6	21,5	11,5	21,5
				N_{T}	1,04	1,05	0,09	1,26
		32	0,10	$S_{0_{\text {O }}}$	1,14	2,84	1,42	2,84
				v_{T}	16,5	15,7	5,5	18,8
				$P_{0_{\text {T }}}$	45,8	22,5	12,5	22,5
				$N_{\text {T }}$	0,98	0,96	0,08	1,15
		40	0,10	$S_{0_{\text {T }}}$	1,26	3,16	1,58	3,16
				v_{T}	16,4	15,0	5,2	18,0
				$P_{0_{T}}$	48,8	23,5	13,5	23,5
				$N_{\text {T }}$	1,10	1,04	0,09	1,25
		50	0,10	$S_{O_{T}}$	1,40	3,51	1,75	3,51
				v_{T}	14,0	12,6	4,3	15,2
				$P_{0_{T}}$	52,1	24,5	14,5	24,5
				N_{T}	1,02	0,95	0,08	1,14
		60	0,11	$S_{0_{T}}$	1,53	3,82	1,91	3,82
				v_{T}	12,3	11,5	3,8	13,9
				$P_{O_{T}}$	61,7	28,4	17,0	28,4
				$N_{\text {T }}$	1,05	1,00	0,08	1,20

Продолжение картья 2

Переход	Характе－ ристика кнстру－ мента	 든 若			Подача $S_{\text {OT }_{T}}$ ，мм／об；скорость v_{T}, \quad м／мин сила резания $P_{\text {O }_{\mathrm{r}}}, \mathrm{H}$ ；мощность N_{T}, кв			
					Обрабатываемый материал			
					$\begin{gathered} \text { Сталь } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$	Чугун серыи $\stackrel{(\mathrm{HB}}{\leqslant 186)}$	$\begin{aligned} & \text { Алюми } \\ & \text { ний } \\ & (\text { НВ } \leqslant \\ & \leqslant 78,4) \end{aligned}$	Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant} \underset{120)}{ }$
Получи－ стовое развер－ тывание без под－ резки дна	Получи－ стовые разверт－ ки диа－ мєтром 4－ 100 мм	70	0，11	$S_{0_{T}}$	1，64	4，11	2，06	4，11
				v_{T}	11，0	10，7	3，3	12，8
				$P_{0_{T}}$	64.5	29，3	17，9	29，3
				$N_{\text {T }}$	0，99	0，98	0，07	1，17
		80	0，11	$S_{O_{T}}$	1，75	4，38	2，19	4，38
				v_{T}	11，0	10，4	3，2	12，4
				$P_{0_{T}}$	67，1	30，0	18，7	30，0
				$N_{\text {T }}$	1，10	1，06	0，08	1，27
		90	0，12	$S_{\mathrm{O}_{\mathrm{T}}}$	1 ¢ 5	4，63	2，32	4，63
				v_{T}	10，9	10，1	3，1	12，1
				$P_{0_{T}}$	77，1	34，1	21，2	34，1
				$N_{\text {T }}$	1，24	1，15	0，08	1，38
		100	0，12	$S_{O_{T}}$	1，95	4，87	2，43	4，87
				v_{T}	10，9	9，9	3，0	11，8
				$P_{0_{T}}$	79，5	34，8	21，9	34，8
				$N_{\text {T }}$	1，29	1，17	0，08	1，41
Чистовое развер－ тывание без под－ резки дна	Чистовые разверт－ ки диа＂ метром 16－ 100 мм	16	0，06	$S_{O_{T}}$	0，68	1，69	0，84	1，69
				v_{T}	30，3	26，8	10，6	32，2
				$P_{0_{T}}$	18，0	9，9	5，2	9，9
				$N_{\text {T }}$	0，72	0，71	0，07	0，85
		20	0，06	$S_{O_{T}}$	0，76	1，90	0，95	1，90
				v_{T}	30，1	25，8	10，0	31，0
				P_{0}	19，3	10，4	5，7	10，4
				$N_{\text {T }}$	0，78	0，75	0，07	0，90
		25	0，06	$S_{0_{\text {I }}}$	0，85	2，14	1，07	2，14
				v_{T}	22，5	21，8	7，8	26，2
				$P_{O_{T}}$	20，8	10，9	6，2	10，9
				$N_{\text {T }}$	0，64	0，70	0，06	0，83

Hepezoд	Характеристика инструмента				Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/миня сила резания $P_{\mathrm{o}_{\mathrm{T}}}$, H ; мощность N_{T}, кВт			
					Обрабатываемвй материал			
					$\begin{gathered} \text { Craль } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$		Алюми($\mathrm{HB} \mathrm{B} \leqslant$ $\leqslant 78,4$)	Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant} \leqslant$
$\begin{gathered} \text { мистовое } \\ \text { развер- } \\ \text { мывание } \\ \text { ез под- } \\ \text { резки } \\ \text { дна } \end{gathered}$	Чистовые развертки диаметром 16100 mm	32	0,07	$S_{0_{T}}$	0,97	2,43	1,22	2,43
				v_{T}	18,2	17,4	6,2	20,8
				$P_{0_{T}}$	27,1	13,8	7,9	13,8
				$N_{\text {T }}$	0,69	0,72	0,06	0,86
		40	0,07	$S_{0^{\text {O }}}$	1,09	2,74	1,37	2,74
				v_{T}	18,0	16,6	5,8	19,9
				$P_{O_{T}}$	29,1	14,5	8,5	14,5
				$N_{\text {T }}$	0,78	0,79	0,07	0,94
		50	0,07	$S_{\mathrm{O}_{\mathrm{T}}}$	1,23	3,08	1,54	3,08
				v_{T}	15,2	13,9	4,8	16,7
				$P_{0_{T}}$	31,4	15,2	9,3	15,2
				$N_{\text {r }}$	0,73	0,72	0,06	0,87
		60	0,07	$S_{0_{T}}$	1,36	3,39	1,69	3,39
				v_{T}	13,3	12,7	4,2	15,3
				$P_{0_{T}}$	33,3	15,7	9,9	15,7
				${ }^{\prime} N_{\text {r }}$	0,68	0,71	0,06	0,86
		70	0,07	$S_{\mathrm{O}_{T}}$	1,47	3,68	1,84	3,68
				v_{T}	11,8	11,7	3,7	14, i
				$P_{0_{T}}$	35,0	16,3	10,5	16,3
				$N_{\text {T }}$	0,65	0,70	0,05	0,84
		80	0,07	$S_{\mathrm{O}_{\text {T }}}$	1,58	3,94	1,97	3,94
				v_{T}	11,7	11,4	3,5	13,6
				$P_{0_{T}}$	36,6	16,7	11,0	16,7
				$N_{\text {T }}$	0,72	0,76	0,06	0,91

Перемод	Характе－ ристика инстру－ мента	界苞岩$\begin{aligned} & \text { Ey } \\ & y_{2}^{2} \\ & \text { en } \\ & \text { En } \end{aligned}$		$\dot{\Delta}$ 曾 	Подача $S_{\text {O }_{T}}$ ，мм／об；скорость v_{T}, м／мин； сила резания $P_{\text {o }_{T}}, \mathrm{H}$ ；мощность N_{T} ，кВт Обрабатываемый материал			
					$\begin{gathered} \text { Сталь } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$			Медные сплавы $\leqslant 120$ ）
Чистовое развер－ тывание без под－ резки дна	Чистовые разверт－ ки диа－ метром 16－ 100 мм	90	0，08	$S_{0_{T}}$	1，68	4，20	2，10	4，20
				v_{T}	11，6	11，1	3，4	13，3
				$P_{0_{T}}$	44，6	20，1	13，2	20，1
				$N_{\text {T }}$	0，85	0，86	0，06	1，03
		100	0，08	$S_{0_{T}}$	1，77	4，44	2，22	4，44
				v_{T}	11，6	10，8	3，3	12，9
				$P_{0_{T}}$	46，2	20，6	13，7	20，6
				N_{T}	0，88	0，88	0，06	1，05
Черно－ вое раз－ верты－ вание с под－ резкой дна	Черно－ вые раз－ вертки диаме－ тром$4-$ 100 мм	4	0，18	$S_{0_{T}}$	0，42	1，06	0，53	1，06
				v_{T}	29，6	28，3	13，3	33，9
				$P_{0_{T}}$	50，3	30，8	11，3	30，8
				$N_{\text {T }}$	1，23	1，11	0，12	1，33
		6	0，18	$S_{0_{T}}$	0，51	1，29	0，64	1，29
				v_{T}	29，4	26，6	12，1	31，9
				$P_{0_{T}}$	56，7	33,2	13，0	33，2
				$N_{\text {T }}$	1，42	1，21	0，13	1，46
		8	0，20	$S_{0_{T}}$	0，59	1，47	0，74	1，47
				v_{T}	29，3	25，2	11，3	30，3
				$P_{O_{T}}$	70，0	39，8	15，8	39，8
				$N_{\text {T }}$	1，74	1，39	0，15	1，67
		10	0，20	$S_{o_{T}}$	0，66	1，64	0，82	1，64
				v_{T}	29，1	24，2	10，6	29，0
				$P_{0_{T}}$	74，7	41，5	17，0	41，5
				$N_{\text {T }}$	1，88	1，45	0，15	1，74
		12	0，21	$S_{O_{T}}$	0，71	1，79	0，89	1，79
				v_{T}	23，7	19，4	7，6	23，3
				$P_{\mathrm{O}_{\text {T }}}$	83，6	45，6	19，0	45，6
				N_{T}	1，81	1，37	0，13	1，64

Fepexoд	Характе． ристика инстру－ мента		哭 品 品 	免 	Подача $S_{\text {O．}_{T}}$ ，мм／об；скорость $\boldsymbol{\sigma}_{\mathrm{T}}$ ，$/$／мин； сила резания $P_{\mathrm{o}_{\mathrm{T}}}$ ， $\mathrm{H}_{\text {：мощность }} N_{\mathrm{T}}$ ，кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & \stackrel{\text { HB }}{\leqslant} \\ & \leqslant 203) \end{aligned}$			Медняе сплавв $\stackrel{(120)}{\leqslant}$
Черно－ ое раз－ верты－ вание с под－ резкой дна	Черно－ вые раз－ вертки диаме－ тром 4－ 100 мм	16	0，23	$S_{O_{T}}$	0，82	2，05	1，02	2，05
				v_{T}	23，5	18，3	7，0	21，9
				$P_{O_{T}}$	101，4	53，6	22，9	．53，6
				$N_{\text {T }}$	2，17	1，54	0，14	1，85
		20	0，24	$S_{O_{T}}$	0，91	2，27	1，14	2，27
				v_{T}	23，3	17，4	6，6	20，9
				P_{0}	114，0	58，9	25，7	58，9
				$N_{\text {T }}$	2，44	1，65	0，15	1，97
		25	0，24	$S_{O_{T}}$	1，01	2，53	1，26	2，53
				v_{T}	17，4	14，5	5，0	17，4
				$P_{0}{ }_{\text {T }}$	121，7	61，4	27，7	61，4
				$N_{\text {T }}$	1，98	1，49	0，12	1，79
		32	0，26	$S_{O_{T}}$	1，14	2，84	1，42	2，84
				v_{T}	14，1	11，4	4，0	13，7
				$P_{O_{T}}$	144，0	70，9	32，6	70，9
				$N_{\text {T }}$	1，98	1，43	0，12	1，72
		40	0，26	$S_{O_{T}}$	1，26	3，16	1，58	3，16
				v_{T}	14，0	10，8	3，7	13，0
				$P_{O_{T}}$	153，7	73，9	35，1	73，9
				$N_{\text {T }}$	2，22	1，53	0，13	1，84
		50	0，26	$S_{O_{T}}$	1，40	3，51	1，75	3，51
				0_{T}	11，9	9，0	3，0	10，8
				P_{0}	164，1	77，1	37，8	77.1
				$N_{\text {T }}$	2，05	1，38	0，11	1，66
		60	0，27	$S_{O_{T}}$	1，53	3，82	1，91	3，82
				v_{T}	10，4	8，1	2，7	9，8
				$P_{O_{T}}$	181，2	83，5	41，6	83，5
				N_{T}	1，98	1，38	－0，11	1，66

Продолжение карть 2

Переход	Характе－ ристика инстру． мента		馹 0 0 0 0 픞을客	总 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об；скорость $\boldsymbol{v}_{\mathrm{T}}$ ，м／мин； сита резания $P_{\mathrm{O}_{\mathrm{T}}}$ ， H ；мощность N_{T}, к S_{T}			
					Обрабатываемыи материал			
					$\begin{gathered} \text { Crasb } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$		$\begin{aligned} & \text { Алюоми } \\ & \text { нии } \\ & \stackrel{H B}{\leqslant} \leqslant \\ & \leqslant 78,4) \end{aligned}$	Меднве сплавы $(\mathrm{HB}$ $\leqslant 120)$ $\leqslant 120)$
Черно－ вое раз－ верты－ вание с под－ резкой дна	Черно－ вые раз－ вертки диаме－ тром 4－ 100 мм	70	0，27	$S_{0_{T}}$	1，64	4，11	2，06	4，11
				$0_{\text {T }}$	9，2	7，5	2，3	9，0
				P_{0}	189，5	86，0	43，8	86，0
				$N_{\text {T }}$	1，87	1，34	0，10	1，61
		80	0，27	$S_{0_{T}}$	1，75	4，38	2，19	4，38
				0_{T}	9，2	7，2	2，2	8，7
				$P_{o_{0}}$	197，1	88，2	45，8	88，2
				$N_{\text {T }}$	2，07	1，45	0，11	1，74
		90	0，30	$S_{0_{\text {T }}}$	1，85	4，63	2，32	4，63
				v_{T}	9，1	7，0	2，1	8，4
				$P_{0_{T}}$	231，5	102，3	52，9	102，3
				$N_{\text {T }}$	2，37	1，59	0，12	1，91
		100	0，30	$S_{0_{T}}$	1，95	4，87	2，43	4，87
				v_{T}	9，1	6，8	2，0	8，2
				$P_{O_{T}}$	238，8	104，4	54，8	104，4
				$N_{\text {T }}$	2，45	1，61	0，12	1，93
		4	0，09	$S_{O_{T}}$	0，33	0，81	0，41	0，81
				v_{T}	38，0	37，5	18，3	45，0
				$P_{O_{T}}$	18，6	12，0	4，7	12，0
				$N_{\text {t }}$	0，68	0，71	0，08	0，85
Получи－ стовое развер－ тывание с под－ резкой дна	Получи－ стовые разверт－ ки диа－ метром 4 － 100 мм	6	0，09	$S_{0^{\text {T }}}$	0，40	1，01	0，50	1，01
				v_{T}	37，9	36，3	17，2	43，5
				$P_{O_{T}}$	21，2	13，1	5，5	13，1
				$N_{\text {T }}$	0，81	0，81	0，09	0，97
		8	0，10	$S_{0_{T}}$	0，47	1，17	0，59	1，117
				v_{T}	37，7	35，1	16，2	42，1
				$P_{0_{T}}$	26，4	15，8	6，7	15，8
				$N_{\text {r }}$	1，00	0，96	0，11	1，15

Продолэкение картьє 2

	Характеристнка ннструмента		 		Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мм/об; скорость v_{T}, м/мин; сила резания $P_{0_{T}}, \mathrm{H}$; мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\text { Нв } \\ & \leqslant 203) \end{aligned}$	$\begin{gathered} \text { Чугун } \\ \text { серый } \\ (H B \leq \\ \leqslant 186) \end{gathered}$		Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant 120)}$
Нолучи- стовое развер\$вание с подрезкой дна	Получистовые развертки диаметром 4100 mм	10	0,10	$S_{0_{T}}$	0,53	1,32	0,66	1,32
				v_{T}	37,6	34,1	15,5	40,9
				$P_{0_{T}}$	28,4	16,6	7,3	16,6
				$N_{\text {T }}$	1,09	1,02	0,11	1,23
		12	0,10	$S_{O_{T}}$	0,58	1,45	0,73	1,45
				v_{T}	30,6	27,6	11,2	33,2
				P_{0}	30,2	17,2	7,8	17,2
				$N_{\text {T }}$	1,02	0,95	0,09	1,14
		16	0,10	$S_{0_{T}}$	0,68	1,69	0,84	1,69
				$v_{\text {T }}$	30,3	26,4	10,4	31,7
				$P_{0}{ }_{\text {T }}$	33,1	18,3	8,7	18,3
				$N_{\text {T }}$	1,14	1,02	0,10	1,22
		20	0,10	$S_{0_{T}}$	0,76	1,90	0,95	1,90
				v_{T}	30,1	25,4	9,9	30,4
				$P_{0_{T}}$	35,7	19,2	9,5	19,2
				$N_{\text {T }}$	1,24	1,08	0,10	1,29
		25	0,10	$S_{O_{T}}$	0,85	2,14	1,07	2,14
				v_{T}	22,5	21,4	7,6	25,6
				$P_{O_{\text {O }}}$	38,4	20,1	10,3	20,1
				$N_{\text {T }}$	1,02	1,00	0,08	1,20
		32	0,10	$S_{0_{T}}$	0,97	2,43	1,22	2,43
				v_{T}	18,2	16,9	6,1	20,3
				$P_{0_{T}}$	41,6	21,2	11,2	21,2
				$N_{\text {T }}$	0,96	0,92	0,08	1,10
		40	0,10	$S_{O_{T}}$	1,09	2,74	1,37	2,74
				0_{T}	18,0	16,1	5,7	19,4
				$P_{0_{T}}$	44,7	22,2	12,2	22,2
				$N_{\text {t }}$	1,08	1,00	0,08	1,20

Продолжение карты

Переход	Характе ристика инстру． мент		$\begin{aligned} & \hline \text { ⿷匚 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\dot{8}$ $\stackrel{8}{日}$ 	Подача $S_{\text {O }_{T}}$ ，мм／об；скорость σ_{T} ，м／мин； сила резания $P_{\mathrm{o}_{\mathrm{T}}}, \mathrm{H}$ ；мощность N_{T} ，кВт			
					Обрабатываемый матернал			
					Сталь $\stackrel{(\mathrm{HB}}{\underset{\sim}{<}} \underset{203)}{\leqslant}$			Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant} \leqslant$
Получи－ стовое́ развер－ тывание с под－ резкой дна	Получи－ стовые разверт－ ки диа－ метром 4. 100 мм	50	0，10	$S_{o_{T}}$		3，08		3，08
				v_{T}	15，2	13，5	4，7	16，2
				$P_{o_{T}}$	48，1	23，3	13，3	23，3
				$N_{\text {T }}$	1，00	0，91	0，08	1，10
		60	0，11	$S_{O_{T}}$	1，36	3，39	1，69	3，39
				v_{T}	13，3	12，3	4，1	14，7
				$P_{o_{T}}$	57，2	27，1	15，6	27，1
				N_{T}	1，03	0，96	0，08	1，16
		70	0，11	$S_{o_{T}}$	1，47	3，68	1，84	3，68
				v_{T}	11，8	11，3	3，5	13，5
				$P_{o_{T}}$	60，2	28，0	16，5	28，0
				$N_{\text {T }}$	0，98	0，95	0，07	1，14
		80	0，11	$S_{o_{T}}$	1，58	3，94	1，97	3，94
				v_{T}	11，7	10，9	3，4	13，1
				$P_{O_{T}}$	62，9	28，8	17，3	28，8
				$N_{\text {T }}$	1，09	1，03	0，08	1，23
		90	0，12	$S_{o_{T}}$	1，68	4，20	2，10	4，20
				v_{T}	11，6	10，6	3，3	12，7
				$P_{o_{T}}$	72，5	－32，8	19，8	32，8
				$N_{\text {T }}$	1，22	1，12	0，08	1，34
		100	0，12	$S_{o_{T}}$	1，77	4，44	2，22	4，44
				v_{T}	11，6	10，3	3，2	12，4
				$P_{o_{T}}$	75，1	33，5	20，5	33，5
				$N_{\text {T }}$	1，27	1，14	0，08	1，37

перехоп	Характеристика инструмента				Подача $S_{\text {O }_{T}}$, мм/об, скорость σ_{T}, м/мин; сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность $N_{\mathrm{T}}, \mathrm{KBy}$			
					Обрабатываемый материал			
					Сталь ($\mathrm{HB} \leqslant$ $(\underset{1}{\leqslant} \leqslant$	Чугун серый $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{K} \underset{\mathrm{K}}{\leqslant}$	$\begin{aligned} & \text { Алюми } \\ & \text { ний } \\ & \text { (НВ } \leqslant \\ & \leqslant 78,4) \end{aligned}$	Медные сплавы ($\mathrm{HB} \leqslant$ $\leqslant 120$)
	Чистовые развертки диаметром 16100 мм	16	0,06	$S_{O_{T}}$	0,56	1,40	0,70	1,40
				v_{T}	34,2	29,4	12,0	35,3
				$P_{o_{T}}$	16,0	9,2	4,6	9,2
				$N_{\text {T }}$	0,70	0,67	0,07	0,80
		20	0,06	$S_{O_{T}}$	0,64	1,60	0,80	1,60
				v_{T}	33,7	28,2	11,2	33,8
				$P_{O_{T}}$	17,4	9,7	5,0	9,7
				N_{T}	0,76	0,71	0,07	0,85
		25	0,06	$S_{O_{T}}$	0,73	1,83	0,91	1,83
				v_{T}	24,9	23,6	8,6	28,3
				$P_{O_{T}}$	18,8	10,2	5,5	10,2
				$N_{\text {T }}$	0,63	0,66	0,06	0,80
		32	0,07	$S_{O_{T}}$	0,85	2,11	1,06	2,11
				v_{T}	20,0	18,6	6,8	22,4
				$P_{O_{T}}$	24,8	13,0	7,1	13,0
				$N_{\text {T }}$	0,68	0,69	0,06	0,83
		40	0,07	$S_{O_{T}}$	0,96	2,41	1,21	2,41
				v_{T}	19,6	17,7	6,3	21,3
				$P_{o_{T}}$	26,9	13,7	7,8	13,7
				$N_{\text {T }}$	0,77	0,76	0,06	0,91
		50	0,07	$S_{O_{T}}$	1,10	2,75	1,38	2,75
				v_{T}	16,4	14,7	5,2	17,7
				$P_{o_{T}}$	29,2	14,5	8,6	14,5
				$N_{\text {T }}$	0,71	0,70	0,06	0,84
		60	0,07	$S_{O_{T}}$	1,23	3,07	1,53	3,07
				v_{T}	14,2	13,4	4,5	16,0
				$P_{O_{T}}$	31,3	15,1	9,2	15,1
				$N_{\text {T }}$	0,67	0,69	0,06	0,83

Переход	Характе ристика инстру. мента				Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/мин; сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, кВ			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & (\text { НB } \\ & \leqslant 203) \end{aligned}$	$\begin{gathered} \text { Чугун } \\ \text { серый } \\ (\mathrm{HB} \leq \\ \leqslant 186) \end{gathered}$		Медни $\stackrel{\text { сплавв }}{=}$ $\leqslant 120$)
Чистовое развертывание с подрезкой дна	Чистовые развертки диаметром 16100 мм	70	0,07	$S_{O_{T}}$	1,34	3,36	1,68	3,36
				$v_{\text {T }}$	12,5	12,3	3,9	14,7
				$P_{O_{T}}$	33,1	15,7	9,9	15,7
				$N_{\text {T }}$	0,64	0,68	0,05	0,84
		80	0,07	$S_{\mathrm{o}_{\mathrm{T}}}$	1,45	3,63	1,82	3,63
				v_{T}	12,4	11,8	3,7	14,2
				$P_{0_{T}}$	34,7	16,2	10,4	16,2
				$N_{\text {T }}$	0,71	0,74	0,06	0,89
		90	0,08	$S_{o_{T}}$	1,56	3,90	1,95	3,90
				v_{T}	12,2	11,5	3,6	13,8
				$P_{o_{T}}$	42,6	19,5	12,5	19,5
				$N_{\text {T }}$	0,84	0,84	0,06	
		100	0,08	$S_{O_{\text {T }}}$	1,66	4,15	2,07	4,15
				v_{T}	12,1	11,2	3,4	13,4
				$P_{o_{\text {T }}}$	44,3	20,0	13,1	20,0
				$N_{\text {T }}$	0,87	0,86	0,06	1,03
Цекование	Цилин-дрические зенковки диаметром 1290 мм	12	2,5	$S_{O_{T}}$	0,25	0,30	0,30	0,30
				v_{T}	21,9	30,8	38,3	36,8
				$P_{o_{\text {T }}}$	844,6	433,6	104,5	433,6
				$N_{\text {T }}$	5,52	3,00	1,06	2,82
		16	2,5	$S_{O_{T}}$	0,27	0,33	0,33	0,33
				v_{T}	22,1	29,4	39,3	35,1
				$P_{o_{\text {T }}}$	903,2	452,8	112,7	452,8
				$N_{\text {T }}$	5,78	2,82	1,16	2,70
		20	2,5	$S_{O_{\text {T }}}$	0,30	0,36	0,36	0,36
				v_{T}	22,8	29,9	40,6	35,7
				$P_{0_{T}}$	951,5	468,2	119,5	468,2
				$N_{\text {T }}$	6,30	2,99	1,26	2,86

Мереход	Характеристика инстру. мента			逼 	Подача $S_{\text {O }_{T}}$, мм/об; скорость v_{T}, м/мнны сила резания $P_{\mathrm{o}_{\mathrm{T}}}$. H ; мощность N_{T}, кВт			
					Обрабатываемый материал			
					$\begin{aligned} & \text { Сталь } \\ & \left(\begin{array}{l} \text { HB } \\ \leqslant 203) \end{array}\right. \end{aligned}$			Медные сплавы $\stackrel{(\mathrm{HB}}{\leqslant 120)}$ $\leqslant 12$
$\begin{gathered} \text { Цеко- } \\ \text { вание } \end{gathered}$	Цилин- дрические зенковки диаметром 1290 мм	20	5,0	$S_{O_{T}}$	0,17	0,20	0,20	0,20
				v_{T}	27,2	39,0	48,5	46,6
				$P_{O_{T}}$	1513,3	848,5	157,8	848,5
				$N_{\text {T }}$	8,91	5,05	1,79	4,84
		25	2,5	$S_{o_{\text {T }}}$	0,33	0,39	0,39	0,39
				v_{T}	21,7	27,0	38,9	32,2
				$P_{\mathrm{o}_{\text {T }}}$	1002,4	484,3	126,8	484,3
				N_{T}	5,85	2,50	1,19	2,40
			5,0	$S_{O_{T}}$	0,18	0,22	0,22	0,22
				v_{T}	25,7	35,0	46,2	41,7
				$P_{o_{\text {T }}}$	1615,0	884,9	169,8	884,9
				$N_{\text {T }}$	8,34	4,23	1,69	4,06
		32	2,5	$S_{O_{T}}$	0,36	0,43	0,43	0,43
				v_{T}	22,0	27,4	39,5	32,6
				$P_{o_{T}}$	1061,9	502,6	135,3	502,6
				$N_{\text {T }}$	6,21	2,63	1,26	2,52
			5,0	$S_{o_{T}}$	0,21	0,25	0,25	0,25
				U_{T}	26,0	35,0	46,6	41,8
				$P_{o_{T}}$	1735,5	926,9 *	184,2	926,9
				N_{T}	8,93	4,46	1,81	4,27
			10,0	$S_{o_{T}}$	0,13	0,15	0,15	$\cdot 0,15$
				v_{T}	29,9	43,3	53,6	51,6
				$P_{o_{T}}$	2981,5	1765,4	265,4	1765,4
				$N_{\text {T }}$	13,19	7,59	2,68	7,27
		40	2,5	$S_{o_{T}}$	0,39	0,47	0,47	0,47
				v_{T}	20,5	24,3	37,2	29,0
				$P_{O_{T}}$	1118,7	519,8	143,5	519,8
				N_{T}	5,51	2,13	1,15	2,04

Переход	Характе ристика инстру мента			亯 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об；скорость $v_{\mathrm{T}}, \mathrm{m} / \mathrm{MиF}$ сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$ ；мощность $N_{\mathrm{T}}, \mathrm{KE}$ Обрабатываемыи материал			
					$\begin{aligned} & \text { Сталь } \\ & (\mathbf{H B} \underset{\leqslant}{\leqslant} \underset{5}{5} \end{aligned}$	$\begin{gathered} \text { Чугун } \\ \text { серыи } \\ (\mathrm{HB} \underset{\sim}{\leqslant} \leqslant 186) \end{gathered}$		Медные $\stackrel{\text { сплавы }}{5}$ $\leqslant 120$ ）
Цеко－ вание	Цилин－ дриче－ ские зенковки диаме－ тром 12－ 100 мм	40	5，0	$S_{o_{T}}$	0，23	0，27	0，27	0，27
				v_{T}	24，0	30，8	43，6	36，8
				$P_{o_{T}}$	1852，1	966，6	198，2	966，6
				$N_{\text {T }}$	7，98	3，60	1，66	3，45
			10，0	$S_{O_{T}}$	0，15	0，18	0，18	0，18
				v_{T}	27，5	37，6	49，8	44，9
				$P_{o_{T}}$	3233，7	1860，3	290，8	1860，3
				$N_{\text {T }}$	11，89	6，14	2，47	5，88
		50	2，5	$S_{O_{T}}$	0，42	0，51	0，51	0，51
				v_{T}	19，3	22，2	35，8	26，5
				$P_{O_{T}}$	1178，5	537，6	152，2	537，6
				$N_{\text {T }}$	5，02	1，82	1，09	1，74
			5，0	$S_{O_{T}}$	0，25	0，30	0，30	0，30
				$v_{\text {T }}$	22，5	27，9	41，7	33，3
				$P_{o_{\text {T }}}$	1976，6	1008，1	213，4	1008，1
				N_{T}	7，31	3，08	1，58	2，95
			10，0	$S_{o_{T}}$	0，17	0，20	0，20	0，20
				v_{T}	25，5	33，6	47，3	40，1
				$P_{O_{T}}$	3507，1	1960，4	318，7	1960，4
				$N_{\text {T }}$	11，01	5，26	2，38	5，04
			15，0	$S_{o_{T}}$	0，14	0，17	0，17	0，17
				v_{T}	27，0	36，7	50，1	43，8
				$P_{O_{T}}$	5062，2	2952，2	417，8	2952，2
				$N_{\text {T }}$		7，20	3，08	6，90
		60	2，5	$S_{o_{T}}$	0，45	0，54	0，54	0，54
				v_{T}	19，3	22，2	35，7	26，5
				$P_{o_{T}}$	1229，8	552，5	159，7	552，5
				$N_{\text {T }}$	5，08	1，86	1，10	1，78

Переход	Характеристика инстру мента			灾 	Подача $S_{\text {O }_{T}}$, мм/об; скорость о $_{T}$, м/мин скла резания $P_{\text {O }_{T}}, \mathrm{H}$; мощность $N_{\mathrm{T}}, \mathrm{KB}$			
					Обрабатываемый материал			
					$\begin{gathered} \text { Craль } \\ \left(\begin{array}{c} \text { HB } \\ \leqslant 203) \end{array}\right. \end{gathered}$	Чугун серын $\leqslant 186)$	Алюми(HB $\sim 78,4)$ $\leqslant 78$,4)	Медньте (HB \leqslant $\leqslant 120$)
	Цилин-дрические зенковки диаметром 12100 мм	60	5,0	$S_{o_{T}}$	0,28	0,33	0,33	0,33
				v_{T}	22,3	27,7	41,4	33,1
				$P_{O_{T}}$	2084,4	1043,2	226,5	1043,2
				$N_{\text {T }}$	7,46	3,16	1,61	3,03
			10,0	$S_{o_{\text {T }}}$	0,19	0,22	0,22	0,22
				v_{T}	25,1	33,1	46,6	39,5
				$P_{o_{T}}$	3747,7	2046,1	343,5	2046,1
				N_{T}	11,30	5,40	2,45	5,18
			20,0	$S_{o_{T}}$	0,14	0,17	0,17	0,17
				v_{T}	27,3	37,5	50,6	44,8
				$P_{o_{T}}$	7252,5	4208,2	566,1	4208,2
				$N_{\text {T }}$	17,86	9,27	3,87	8,89
		80	2,5	$S_{o_{T}}$	0,50	0,60	0,60	0,60
				v_{T}	17,0	20,1	32,4	24,0
				$P_{o_{T}}$	1315,2	577,0	172,3	577,0
				$N_{\text {T }}$	4,08	1,57	0,94	1,51
			5,0	$S_{o_{T}}$	0,32	0,38	0,38	0,38
				v_{T}	19,5	24,8	37,2	29,6
				$P_{O_{T}}$	2266,8	1101,2	249,0	1101,2
				$N_{\text {T }}$	6,04	2,68	1,38	2,57
		*	10,0	$S_{O_{T}}$	0,22	0,26	0,26	0,26
				v_{T}	21,8	29,2	41,5	34,8
				$P_{o^{5}}$	4161,2	2189,0	386,6	2189,0
				$N_{\text {T }}$	9,26	4,58	2,12	4,39
			20,0	$S_{O_{T}}$	0,17	0,21	0,21	0,21
				v_{T}	23,4	32,5*	44,5	38,7
				$P_{o_{T}}$	8264,9	4578,3	656,1	4578,3
				N_{T}	14,86	7,88	3,41	7,55

Продолжение карть 2

Переход	Характе－ ристика инстру－ мента			免 	Подача $S_{\mathrm{O}_{\mathrm{T}}}$ ，мм／об；скорость $\boldsymbol{o}_{\mathrm{T}}$ ，м／мині сила резания $P_{\text {O }_{T}}$ ， H；мощность N_{T} ，кВУ			
					ОбрабатываемыА материал			
					$\begin{aligned} & \text { Сталь } \\ & (\text { НВ } \leqslant \\ & \leqslant 203) \end{aligned}$	$\begin{gathered} \text { Чугун } \\ \text { есемын } \\ (\mathrm{HB} \leq \\ \leqslant 186) \end{gathered}$	Алюми： ний （HB． $\leqslant 78,4)$ $\leqslant 78,4)$	Медные сплавы $\stackrel{(\mathrm{HB}}{\leq 120)}$ $\leqslant 120$ ）
Цеко－ вание	Цилин－ дриче－ ские венковки диаме－ тром 12－ 100 мм	100	2，5	$S_{o_{T}}$	0，53	0，63	0，63	0，63
				${ }^{\text {V }}$	16，5	18，6	31，6	22，2
				$P_{o_{T}}$	1351，9	587，3	177；7	587，3
				$N_{\text {T }}$	3，90	1，36	0，90	1，30
			5，0	$S_{O_{T}}$	0，35	0，40	0，40	0，40
				v_{T}	18，9	22，8	36，2	27，2
				$P_{o_{T}}$	2345，9	1125，9	258，9	1125，9
				N_{T}	5，79	2，31	1，34	2，21
			10，0	$S_{O_{T}}$	0，25	0，28	0，28	0，28
				v_{T}	21，0	26，6	40，2	31，8
				$P_{O_{T}}$	4513	2250，4	405，8	2250，4
				$N_{\text {T }}$	12，0	3，95	2，07	3，79
			15，0	$S_{O_{T}}$	0，22	0，25	0，25	0，25
				v_{T}	21，9	28，4	42，0	33，9
				$P_{O_{T}}$	6746	3454，4	549，9	3454，4
				$N_{\text {T }}$	13，5	5，43	2，71	5，20
－			0，50	$S_{O_{T}}$	0，05	0，11	0，11	0，11
				0_{T}	41，4	60，0	72，2	72，0
				$P_{o_{T}}$	48，3	42，3	10，5	42，3
				$N_{\text {T }}$	1，31	1，23	0，41	1，19
Зенко－ вание	Кониче－ ские венковки диаме－ тром 12－ 100 мм	12	1，00	$S_{O_{T}}$	0，05	0，10	0，10	0，10
				v_{T}	37，1	56，4	64，6	67，7
				$P_{O_{T}}$	104，6	93，6	19，6	93，6
				$N_{\text {T }}$	1，67	1，73	0，52	1，67
			1，50	$S_{O_{T}}$	0，04	0，09	0，09	0，09
				v_{T}	35，3	55，7	61，5	66，8
				$\stackrel{P}{\prime}^{O_{T}}$	159，4	145，9	27，2	145，9
				$\dot{N}_{\text {T }}$	1，89	2，10	0，59	2，04

Переход	Характеристика инструмента	 	 畄 会	$\dot{\circ} \mathrm{O}$ 	сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$; мощность N_{T}, кВ			
					ОбрабатываемыА материал			
					$\begin{aligned} & \text { Сталь } \\ & (\text { (нB } \\ & \leqslant 203) \end{aligned}$		Алюми(HB $\leqslant 78,4)$	Медные сплавы $\leqslant 120$)
Зенкование	Конические зенковки диаметром 12100 мм	25	1,00	$S_{\text {O }_{\text {T }}}$	0,11	0,23	0,23	0,23
				v_{T}	31,1	38,5	55,5	46,3
				$P_{O_{T}}$	175,3	130,5	35,0	130,5
				N_{T}	2,15	1,48	0,70	1,43
			1,50	$S_{O_{T}}$	0,11	0,22	0,22	0,22
				v_{T}	29,0	37,0	51,9	44,4
				$P_{O_{T}}$	277,4	208,6	50,9	208,6
				$N_{\text {T }}$	2,49	1,81	0,82	1,75
		32	0,50	$S_{o_{T}}$	0,16	0,31	0,31	0,31
				v_{T}	34,1	39,5	61,0	47,4
				$P_{o_{T}}$	91,8	64,0	21,6	64,0
				N_{T}	1,86	1,11	0,61	1,08
			1,00	$S_{o_{\text {T }}}$	0,15	0,30	0,30	0,30
				v_{T}	30,0	36,1	53,6	43,3
				$P_{O_{T}}$	206,7	145,2	42,2	145,2
				$N_{\text {T }}$	2,42	1,67	0,79	1,52
			1,50	$S_{o_{T}}$	0,14	0,29	0,29	0,29
				v_{T}	27,9	34,5	49,9	41,4
				$P_{O_{T}}$	329,2	233,0	61,8	233,0
				$N_{\text {T }}$	2,82	1,92	0,92	1,86
		40	0,50	$S_{O_{T}}$	0,19	0,39	0,39	0,39
				v_{T}	30,4	32,8	55,0	39,4
				$P_{O_{T}}$	105,8	70,2	25,3	70,2
				$N_{\text {T }}$	1,73	0,90	0,58	0,88
			1,00	$S_{O_{\text {T }}}$	0,19	0,38	0,38	0,38
				v_{T}	26,7	29,9	48,3	35,9
				$P_{o_{T}}$	239,3	159,6	49,8	159,6
				$N_{\text {T }}$	2,27	1,28	0,76	1,24

Продолжение карты 2

Mepex 0 д	Характе－ ристика инстру－ мента			$\dot{\theta}$ $\stackrel{\theta}{日}$ 	Подача $S_{\text {O }_{T}}$ мм моб；скорость v_{T}, м／миня сила резания $P_{\mathrm{o}_{\mathrm{T}}}, \mathrm{H}$ ；мощность N_{T} ， кВ才			
					Обрабатываемый материал			
					$\begin{gathered} \text { Сталь } \\ (\mathrm{HB} \\ \leqslant 203) \end{gathered}$	$\begin{gathered} \text { Чугун } \\ \text { серый } \\ (H B \quad \leq \\ \leqslant 186) \end{gathered}$	$\begin{aligned} & \text { Алюми- } \\ & \text { нй } \\ & (\mathrm{HB} \leqslant \\ & \leqslant 78,4) \end{aligned}$	Медные сплавы $\leqslant 120$ ）
Венко－ вание	$\begin{gathered} \text { Кониче- } \\ \text { ские } \\ \text { зенковки } \\ \text { диаме- } \\ \text { тром } \\ 12- \\ 100 \mathrm{mм} \end{gathered}$	40	1，50	$S_{O_{T}}$	0，19	0，37	0，37	0，37
				0_{T}	24，8	28，5	44，9	34，2
				$P_{O_{T}}$	382，9	256，8	73，3	256，8
				$N_{\text {T }}$	2，64	1，56	0，89	1，52
		50	0，50	$S_{O_{T}}$	0，24	0，49	0，49	0，49
				v_{T}	27，4	28，1	50，7	33，7
				$P_{o_{T}}$	121，9	76，9	29，7	76，9
				$N_{\text {T }}$	1，66	0，78	0，58	0，75
			1，00	$S_{o_{T}}$	0，24	0，48	0，48	0，48
				v_{T}	24，0	25，6	44，4	30，7
				$P_{o_{T}}$	276，6	175，2	58，6	175，2
				$N_{\text {T }}$	2，18	1，10	0，76	1，07
			1，50	$S_{\mathrm{o}_{\mathbf{T}}}$		0，47	0，47	0，47
				v_{T}	22，3	24，3	41，2	29，1
				$P_{o_{T}}$	444，1	282，6	86，7	282，6
				$N_{\text {T }}$	2，54	1，35	0，89	1，30
		60	0，50	$S_{O_{T}}$	0，29	0，59	0，59	0，59
				v_{T}	26，4	26，7	48，7	32，1
				$P_{O_{T}}$	136，8	82，8	33，9	82，8
				$N_{\text {T }}$	1，75	0，80	0，61	0，78
			1，00	$S_{O_{T}}$	0，29	0，58	0，58	0，58
				v_{T}	23，1	24，3	42，7	29，1
				$P_{o_{T}}$	311，0	189，0	66，9	189，0
				$N_{\text {T }}$	2，30	1，13	0，80	1，10
			1，50	$S_{o_{T}}$	0，28	0，57	0，57	0，57
				$v_{\text {T }}$	21，4	23，0	39，5	27，6
				$P_{O_{T}}$	500，5	305，3	99，2	305，3
				$N_{\text {T }}$	2，69	1，39	0，94	1，35

Переход	Характе－ ристика инстру мента			兑 	Подача $S_{\sigma_{\mathfrak{T}}}$ ，мм／об；скорость v_{T} ，м／мин сила резания $P_{\mathrm{O}_{\mathrm{T}}}, \mathrm{H}$ ；мощность N_{T}, кв F_{7}			
					Сталь $\stackrel{(\mathrm{HB}}{\leqslant} \mathrm{203})$			Медны сплавы $\leqslant 120$ ）
Зенко－ вание	Кониче－ ские зенковки диаме－ тром 12－ 100 мм	80	0，50	$S_{o_{T}}$	0，39	0，79	0，79	0，79
				v_{T}	22，0	22，3	41，9	26，7
				$P_{o_{T}}$	164，0	93，1	41，5	93，1
				$N_{\text {T }}$	1，50	0，69	0，56	0，66
			1，00	$S_{O_{T}}$	0，39	0，78	0，78	0，78
				v_{T}	19，3	20，2	36，6	24，2
				$P_{O_{T}}$	373，7	212，8	82，4	212，8
				$N_{\text {T }}$	1，97	0，97	0，73	0，94
			1，50	$S_{O_{T}}$	0，38	0，77	0，77	0，77
				v_{T}	17，8	19，1	33，9	22，9
				$P_{o_{T}}$	603，1	344，3	122，4	344，3
				$N_{\text {T }}$	2，31	1，19	0，86	1，15
		90	0，50	$S_{o_{T}}$	0，44	0，89	0，89	0，89
				${ }^{0}$	20，9	19，9	39，9	23，8
				$P_{o_{T}}$	176，5	97，6	45，2	97，6
				$N_{\text {T }}$	1，47	0，59	0，55	0，57
			1，00	$S_{o_{T}}$	0，44	0，88	0，88	0，88
				v_{T}	18，3	18，0	34，9	21，6
				$P_{o_{T}}$	402，2	223，3	89，6	223，3
				$N_{\text {T }}$	1，93	0，84	0，72	0，81
			1，50	$S_{0_{T}}$	0，44	0，87	0，87	0，87
				v_{T}	16，9	17，0	32，3	20，4
				$P_{o_{T}}$	650，5	，361，6	133，3	361，6
				$N_{\text {T }}$	2，26	1，03	0，85	0，99

Поправочный коэффициент на подачу $K_{2} S$ в зависимости от относительной глубины сверления l / D обрабатываемого отверстия

l / D, мм, не более	3	5	7	10
$K_{2 S}$	1,0	0,9	0,85	0,80

Поправочный коэффициент на подачу $K_{3 S}$ в зависимости от твердости обрабатываемой стали

НВ, не более	180	250	320
$K_{3 S}$	1,6	1,0	0,9

Поправочный коэффициент на скорость резания $K_{1 v}$ в зависимости от относительной глубины l / D сверления обрабатываемого отверстия

l / D, мм, не более	3	5	6	8	10
$K_{1 v}$	1,0	0,8	0,7	0,65	0,55

Поправочный коэффициент на скорость резания $K_{2 v}$ в зависимости от относительной длины $l_{\text {प }} / D$ рабочей части сверла

l_{X} / D	10	14	16	20
$K_{2 v}$	1,0	0,96	0,9	0,85

Поправочный коэффициент на скорость резания K_{30} в зависимости от твердости обрабатываемой стали

НВ, не более	180	250	320
K_{30}	1,15	1,0	0,75

Поправочный коэффициент на осевую силу резания $K_{1 P}$ в зависимости от отношения условного диаметра сердцевины к диаметру сверла d_{0} / D

d_{0} / D	0,2	0,25	0,3	0,35
$K_{1 P}$	1,0	1,3	1,7	2,0

Поправочный коэффициент на крутящий момент резания $K_{1 м}$ в зависимости от ойств обрабатываемого материала

	Сталь			Чугув серый	Алюминиевые и медные сплавы
НВ, не более	180	250	320	230	140
S_{19}	2,3	2,45	2,6	2,15	1,2

Сверление, рассверливание, зенкерование, развертывание, зенкование, цекование, центрование

Карта 5

Диаметр инструмента
4-100 мм
Поправочные коэффициенты на режимы резания

Коэффидиент для корректирования параметра

4 Фактор, влияющй на параметр					
	t_{T}	$S_{\mathrm{O}_{\mathrm{T}}}$	v_{7}	$P_{0_{T}}$	N_{T}
Механические свойства обрабатываеtoro материала	-	$K_{1 S_{0}}$	K_{10}	$K_{1 P}$	$K_{1 N}$
\% ормы заточки инструмента	-	-	K_{20}	-	-
Паличие охлаждения	-	-	K_{30}	-	-
дубина обрабатываемого отверстия	-	$K_{4} S_{0}$	K_{40}	-	-
тношение фактического периода جойкости $T_{\text {ф }}$ к нормативному $T_{\text {н }}$	-	-	$K_{\text {B }}$	-	-
остояние обрабатываемой поверхно\%	-	-	K_{60}	-	-
1арка материала инструмента	-	-	K_{70}	-	-
рстав покрытия	-	-	$K_{8 v}$	-	-
गина рабочей части сверла	-	-	$K_{9 v}$	-	-
оследовательность переходов марш- ута обработки	$K_{10 t}$	-	K_{130}	$K_{12 P}$	$K_{11 N}$
тношение уточненного значения поपи $S_{\text {о }_{\text {ф }}}$ к нормативному $S_{\text {O }_{\text {т }}}$	'	-	-	$K_{15 P}$	$K_{14 N}$
тношение уточненного значения чаTоты вращения шпинделя n_{ϕ} к норативному $n_{\text {т }}$	-	-	-	-	$K_{16 N}$

Переход	Формула для корректирования табличного значения параметра

Подачи $S_{\text {от }}$:
Сверление, рассверливание

$$
S_{\mathrm{o}}=S_{\mathrm{o}_{\mathrm{T}}} K_{1} S_{0} K_{4} S_{\mathrm{o}}
$$

Зенкерование, развертывание, цекование, зенкование	$S_{\mathrm{o}}=S_{\mathrm{o}_{\mathrm{T}}} K_{1 S_{\mathrm{o}}}$

Скорости резания v_{T} :

Сверление	$v_{\mathrm{T}} K_{1 v} K_{2 v} K_{80} K_{4 v} K_{50} K_{8 v} K_{70} K_{8 v} K_{9 v}$
Зенкерование, развертывание	$v=v_{T} K_{1 v} K_{2 v} K_{8 v} K^{5 v} K_{6 v} K_{7 v} K_{18 v}$
Цекование, зенкование, pacсверливание	$v=v_{\mathrm{T}} K_{i v} K_{2 v} K_{80} K_{\mathbf{~} 0} K_{8 v} K_{70}$

Мощности резания N_{T} :
Сверление, рассверливание, цекование, зенкование

Зенкерование, \quad развертывание	$N=N_{\mathrm{T}} K_{11 N} K_{14 N} K_{\mathbf{1 6 N}} / K_{\mathbf{1 N}}$

Силы резания $P_{\text {OT }}$.
Сверление, рассверливание, цекование, зенкование

$$
P_{\mathrm{o}}=P_{\mathrm{o}_{\mathrm{T}}} K_{15 P} / K_{1 P}
$$

Зенкерование, \quad развертывание	$P_{\mathrm{o}}=P_{\mathbf{o}_{\mathrm{T}}} K_{12 P} K_{15 P} / K_{1 P}$

Зенкерование, развертывание \mid Глубины резания t_{T} : ${ }^{\text {¢ }}$, $t=t_{\mathrm{T}} K_{10 t}$						
Поправочные коэффичиенты $K_{1 S_{0}}, K_{10}, K_{1 р}$ и $K_{1 N}$ в вависимости от механических свойств обрабатываемого материала						
		Сталь				
Материал инстру мент	HB	углероди- стая качественная конструкционная	маргандовистая, х ромомарганцевая	хро- мистая, корро-зионностойкая	х ромоникеле- вая, хромованадневая, хромоалюминиевая х ромоникельмолибденовая	хромо* кремне- марган цевая, хромо крем нистая
		$K_{1 S_{0}}, K_{10}, K_{1 P}, K_{1 N}$				
Быстрорежущая сталь	153	1,3	0,98	1,1	1,04	0,91
	183	1,1	0,82	0,94	0,88	0,8
	193	1,05	0,79	0,84	0,84	0,77
	203	1,0	0,75	0,85	0,8	0,7

	HB	Сталь				
		углетодистая качественная конструк-	марганцовистая, хромомар ганцевая	xpoмистая, корро-sионно- стойкая стойкая	х ромоникелевая, хромованадиевая, хромоалюминиевая х ромоникель молибденовая	хромо- кремне- марган- хромокрем нистая
		$K_{1 S_{0}}, K_{1 v}, K_{1 P}, K_{1 N}$				
Быстроежущая сталь	225	0,9	0,68	0,77	0,72	0,63
	250	0,85	0,64	0,72	0,68	0,6
	280	0,75	0,54	0,64	0,6	0,53
	325	0,65	0,49	0,55	0,52	0,46
	368	0,6	0,45	0,51	0,48	0,42
	153	1,3	1,17	1,2	1,16	1,03
	183	1,1	0,99	1,05	0,99	0,88
	193	1,05	0,95	1,0	0,94	0,84
	203	1,0	0,9	0,95	0,9	0,8
	225	0,9	0,81	0,85	0,82	0,73
	250	0,85	0,72	0,76	0,74	0,66
	280	0,75	0,68	0,71	0,67	0,6
\}	325	0,65	0,60	0,62	0,58	0,52
4	368	0,6	0,54	0,57	0,52	0,47

Поправочные кояффициенты $K_{1 S_{0}}, K_{1 v}, K_{i P}$ и $K_{1 N}$ в вависимости от механических свойств обрабатьваемого материала

$\underset{\square}{\text { твердость }} \mathrm{HB}$	Чугув		
	серып		ковкий, высокопрочный
	$K_{1 S_{0}, K_{1 v}, K_{1 P}, K_{1 N}}$		
140-203		1,2	0,85
160-225		1,0	0,74
167-236		0,9	0,67
230-290		0,7	0,48
Алюминиевые сплавы			
Ал4, Ал5	$\begin{gathered} \text { AK4, AK6, AK9, } \\ \text { АЛ19, В95 } \end{gathered}$	Д1, Д16, Д16T	T AMr
$K_{1 S_{0}}, K_{1 v}, K_{1 P}, K_{1 N}$			
1 0,8	0,9	1,0	1,5

Меднве сплавв					Медь
гетерогенные		свиндовистые при основной гетерогенной структуре (ЛС63-3, ЛС59-1)	гомогенные (ЛЦЗ0А3, ЛЦ16K4)	с содержанием 10% свинца при основной гомогенной структуре	
высокой твердости (БрБ2, БрМц5)	$\begin{gathered} \text { среднеи } \\ \text { твердости } \\ \text { (ЛЦ38Mц, } \\ \text { 2С2,2, } \\ \text { БрА10, } \\ \text { ЖЗЗц2) } \end{gathered}$				
$K_{1 S_{0}}, K_{1 v}, K_{1 P}, K_{1 N}$					
0,7	1,0	1,7	2,0	4,0	8,0

Поправочный коэффициент на скорость $K_{2 v}$ в вависимости от формы ваточки инструмента

Форма заточки инструмента	Переход	
	Сверление, рассверливание, зенкерование	Развертввание
	$K_{2 v}$	
Нормальная, нормальная с подточкой перемычки	1,0*	. -
Двойная, двойная с подточкой перемычки	1,2	-
Радиусная, радиусная с подточкой перемычки	1,5	1,3

Поправочный коэффициент на скорость K $_{80}$ в вависимости от наличия охлаждения

Обрабатываемвй материал	Переход			
	Сверление, развертывание		Зенкерование	
	- охлажде-	без охлаждения	- охлаждением	без охлаж дения
	K_{30}			
Сталь	1,0	0,8 ,	1,0	0,85
Серый чугун, медные сплавы	1,0	0,8	1,0	0,8
Ковкий чугун	1,2	1,0	1,2	1,0
Алюминиевые сплавы	1,0	0,8	1,0	0,8

должение парты 5								
Поправочный коэффициент на подачу $K_{4 S_{0}}$ и на скорость $K_{4 v}$ в вависимости от глубины обрабатьваемого отверстия								
Переход	Коэффициент		l / D до					
			3	5	6	8	12	16
верление		$K_{4 S_{0}}$	1,0	0,88	0,82	0,70	0,48	8 0,25
		$K_{4 v}$	1,0	0,88	0,84	0,80	0,72	2 0,70
		$K_{4 S_{0}}$	1,09	1,0	0,95	0,87	0,70	
Поправочный коэффициент на скорость $K_{5 v}$ в вависимостиот отношения фактического периода стойкости к нормативному $\left(T_{\Phi} / T_{\mathrm{H}}\right)$								
Переход	Сверление, рассверливание		Pacciep. ливание		Cверление, рассвер ливание	Зенке рование, цекование, зенкование		Развертывание
$\begin{gathered} \text { Материал } \\ \text { инструмента } \end{gathered}$	Быстрорежущая сталь		Твердый сплав			Быстрорежущая сталь и твердыйсплав сплав		
Обрабатываемыя материал	Сталь	\square	Сталь		Чугун медные сплавы	Сталь, чугун, медные и алюми ниевые сплавы		
$\begin{aligned} & \text { ношение } T_{\phi} / T_{\mathrm{H}}, \\ & \text { более } \end{aligned}$	$K_{5 v}$							
槩 0,25	1,32	1,19	1,41		1,74	1,52		1,74
W 0,5	1,15	1,09	1,19		1,32	1,23		1,32
\% 1,0	1,0	1,0	1,0		1,0	1,0		1,0
4. 2,0	0,87	0,91	0,84		0,76	0,81		0,76
	0,80	0,87	0,76		0,64	0,72		0,64
	0,75	0,84	0,71		0,57	0,66		0,57
5, 5,0	0,72	0,82	0,67		0,53	0,62		0,53
\% 10,0	0,63	0,75	0,56		0,4	0,5		0,4

Поправочный коэффициент на скорость Квә в вависимости $^{\text {в }}$ от состояния обрабатываемо й поверхности

ростояние (2ерхности матотовки	$\begin{gathered} \text { Без } \\ \text { корки } \end{gathered}$	С коркои				
	\rightarrow	Прокат	Поковка	Стальные и чугунные отливки с коркой		Медные и алюминиевые сплавы
				нормальной	сильно загряз- ненной	
${ }^{6} K_{60}$	1,0	0,9	0,8	0,8-0,85	0,5-0,6	0,9

Поправочный коэффициент на скорость $K_{7 v}$ в вависимости от марки инструментального материала

Материал инструмента	Марка материала инструмента	Обрабатываемый материал		
		Сталь конструкционная, алюминиевые сплавы	Коррозионностойкие и жаропрочные стали	Чугун, медные сплавы
		K_{70}		
Быстрорежущая сталь	P6M5	1,0	1,0	1,0
	P6M5K5	1,3 -	1,4	1,2
	P14Ф4	1,2	1,1	1,2
Твердый сплав	T5K10	0,65	1,4	-
	T14K8	0,8	-	-
	T15K6	1,0	1,9	-
	T30K4	1,4	-	-
	BK8	0,4	1,0	0,83
	BK6	1,2	1,2	1,0
	BK4	1,13	1,13	1,1
	BK3	-	-	1,15
Малолегированные инструментальные стали	9XC	0,27	0,27	0,22
	У12A	0,22	0,22	0,18

Поправочный коэффициент на скорость $K_{8 ө}$ в вависимости от состава покрытия

Материал инструмента	Обрабатываемвй материал	Покрョтие	После первой заточки	После второй эаточки	После третьей заточки ((es \qquad
		K_{80}			
Быстрорежущая сталь	Сталь	1,18	1,1	1,08	1,0
	Чугун, алюминиевые и медные сплавы	1,1	1,04	1,02	1,0

Поправочный коэффициент на скорость Көv $^{\text {м }}$
в вависимости от длинь рабочей части сверла

Длина рабочей части по ГОСТ	K9v
$10902-77,10903-77$	1,0
$12121-77,12122-77$	0,9
$886-77,2092-77$	$0,8^{\bullet}$
Длина превышает длину стандартных сверл	0,7

Поправочный коэффициент на глубину ревания $K_{10 t}$ в вависиности от последовательности переходов марирута

Предпестаующиа переход		Выполняемый переход					
		Зенкерование			Развертывание		
			品迺	\％ 苞 范	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \text { O} \\ & \text { O} \\ & \hline 0 \end{aligned}$		
		$K_{10 t}$					
Фбычная штамповка		1，0	－	－	－	－－	－
Ментробежное литье		1，3	－	－	－	－	－
вверление		－	1，1	1，75	2，4	4，5	－
Рассверливание		－	1，09	－	－	－	－
енкерование筑	черновое	－	1，0	1，55	－	－	－
	получистовое	－	－	1，0	1，6	2，4	－
	чистовое	－	－	－	1，0	2，8	－
Развертывание 	черновое	－	－	－	－	1，0	－
	получистовое	－	－	－	－	－	1，0

Поправочный коэффициент на мощность $K_{11 N}$ в вависимости от последовательности переходов марирута

Предшествуюмий переход	Выполняемый переход							
	Зенкерование			Развертывание				
	\％ 0 0 0 m din		免	черновое		получистовое		чистовое
	Обрабатываемый материал							
	$\begin{aligned} & \text { Ста } \\ & \text { медн } \end{aligned}$			河		告		
	$K_{11 N}$							
Tтамповка обыч－品	1，0	－	－	－	－	－	－	－
итье центробеж－ ye	1，23	－	－	－	－	－	－	－
\％ерление	－	1，08	1，60	2，20	1，93	3，87	3，09	－
ассверливание	－	1，07	－	－	－	－	－	－

Продолжение картьь 5

Предшествуюми» переход		Выполняемый переход							
		Зенкерование			Развертывание				
			呂	免	черновое		получистовое		чистовов
		Обрабатываемый материал							
－		Cra медв			骨		总		
		$K_{11 N}$							
Зенке－ рование	черно－ вое	－	1，0	1，42	－	－	－	－	－
	полу－ чистовое	－	－	1，0	2，53	1，42	2，20	1，92	－
	чисто- вое	－	－	－		，0	2，53	2，16	－
Развер． ть зание	черно－ вое	－	－	－	－	－		1，0	－
	полу－ чистовое	－	－	－	－	－	－	－	－

Поправочнвй коэффициент на осевую силу $K_{12 р}$ в вависиности от последовательности переходов марирута

Предшествуюмии переход	Выполняемьй переход										
	Зенкерова－вие			Pasвep－ тывание		Зенкеро－ вание			Развертввание		
	\％	寝号	哭	告	安	\％		若	砻		\％ \％ \＃ \＃ \＃
	Обрабатываемый материал										
	Сталь，чугув， медные сплавы										Сталь， тугун и алюми－ ниевые сплавы
	$K_{12 P}$										
IIтамповка обычная	1，0	－	－	－	－	1，0	－	－	－	－	－
Литье центробежное	1，4	－	－	－	－	1，3	－	－	－	－	－
Сверление	－	1，1	2，0	2，9	6，1	－	1，1	1，7	2，4	4，5	－

Продолзтение картия 5

Предшествующи』 переход		Выполняемый переход										
		Венкерова－ ние			Развер－ тывание		Зенкеро－ вание			Развертывад̧ие		
		（1）		发			\＃ 0 0 0 0 0 0 0		茄			
4		Обрабатываемый материал										
		Сталь，чугун， медные сплавы					Аломиниевве сплавп					Сталь， чугун и алюми－ ниевые сплавы
		$K_{12 P}$										
جассверливание		－	1，1	－	－	－	－	1，1	－	－	－	－
4Зенке－ рование	черновое	－	1，0	1，7	－	－	－	1，0	1，5	－	－	－
	получи－ стовое	－	－	1，0	1，8	2，9	－	－	1，0	1，6	2，4	－
	чистовое	－	－	－	1，0	3，4	－	－	－	1，0	2，8	－
Развер－ тывание	черновое	－	－	－	－	1，0	－	－	－	－	1，0	－
	получи－ стовое	－	－	－	－	－	－	－	－	－	－	1，0

Поправочный коэффициент на скорость $K_{18 v}$ в вависимости от последовательности переходов марирута

Предшествующий переход		Выполняемый переход					
		Зенкерование			Развертывание		
		черно－ вое	получи－ стовое	$\begin{aligned} & \text { чисто- } \\ & \text { вое } \end{aligned}$	$\begin{aligned} & \text { черно- } \\ & \text { вое } \end{aligned}$	получи－ стовое	$\begin{aligned} & \text { чисто- } \\ & \text { вое } \end{aligned}$
Птамповка обычная		1，0	－	－	－	－	－
Питье центробежное		0，95	－	－	－	－	－
¢верление		－	0，98	0，89	0，84	0，74	－
ассверливание		－	0，98	－	－	－	－
Зенке－ рование	черновое	－	1，0	0，92	－	－	－
	получи－ стовое	－	－	1，0	0，91	0，84	－
	чистовое	－	－	－	1，0	0，81	－

Предшествующий переход		Выполняемый переход					
		Зенкерование			Развертывание		
		$\begin{aligned} & \text { черно- } \\ & \text { вое } \end{aligned}$	получи. стовое	$\begin{aligned} & \text { чисто- } \\ & \text { вое } \end{aligned}$	$\begin{aligned} & \text { черно- } \\ & \text { вое } \end{aligned}$	получистовое	$\begin{aligned} & \text { чисто- } \\ & \text { вое } \end{aligned}$
		$K_{13 v}$					
Развертывание	черновое	-	-	-	-	1,0	-
	получистовое	-	-	-	-	-	1,0

Поправочный коэффициент на мощность ревания $K_{14 N}$ в вависимости от отношения уточненного вначения подачи $S_{\mathrm{o}_{\text {ф }}} \kappa$ нормативному $S_{\mathrm{o}_{\mathbf{T}}}$

Переход	$S_{\text {O }_{\text {¢ }} / S \mathrm{O}_{\text {¢ }} \text {, не более }}$					
	1,2	1,0	0,8	0.6	0.4	0,2
Сверление, рассверливание, развертывание	1,16	1,0	0,84	0,66	0,48	0,28
Зенкерование, цекование, зенкование	1,2	1,0	0,8	0,6	0,4	0,2

Поправочный коэффициент на осевую силу $K_{15 р}$ в вависимости от отношения уточненного вначения подачи $S_{\mathbf{0}_{\Phi}} \kappa$ нормативному $S_{0_{\text {т }}}$

Переход	Обрабатываемый материал	$S_{\mathrm{O}_{\boldsymbol{\Phi}} / S_{\mathrm{O}_{\mathrm{T}}} \text {, не более }}$					
		1,2	1,0	0,8	0,6	0,4	0,2
Сверление	Сталь	1,14	1,0	0,85	0,70	0,52	0,32
	Чугун, медные сплавы	1,16	1,0	0,84	0,66	0,48	0,28
	Алюминиевые сплавы	1,08	1,0	0,90	0,82	0,70	0,53
Рассверливание, зенкерование, развертывание, зенкование, цекование	Сталь, чугун, медные сплавы	1,13	1,0	0,88	0,74	0,57	0,37
	Алюминиевые сплавы	1,08	1,0	0,9	0,82	0,70	0,53

Поправочный коэффициент на мощность резания $K_{18 N}$ в вависимости от отношения уточненного вначения частоть вращения шпинделя n_{Φ} κ нормативному n_{T}

Переход	n_{Φ} / n_{T}, не более					
	1,2	1.0	0,8	0,6	0,4	0,2
Сверление, рассверливание, развертывание	1,2	1,0	0,8	0,6	0,4	0,2
Зенкерование, зенкование, цекование	1,44	1,0	0,64	0,36	0,16	0,04

Приложение 1
МАРШРУТЫ ОБРАБОТКИ ОТВЕРСТИЙ

обработка без подрезки дна

Обработва с подрезкой дна

РЕКОМЕНДУЕМЫЕ МАРКИ ТВЕРДЫХ СПЛАВОВ ДЛЯ ОБРАБОТКИ ОТВЕРСТИЙ

Перегод	Характер в условия обработки	Обрабатываемые материалы							
		Трудно-обрабатьваемые	Стали			Чугун		Цветнве металлы и сплавв	Неметал лические
			$\begin{aligned} & \text { углеро- } \\ & \text { дисттые } \\ & \text { и лепи- } \\ & \text { рованые } \end{aligned}$	корро-зионностойкие	$\begin{gathered}\text { зака- } \\ \text { ленные }\end{gathered}$	$\begin{aligned} & \mathrm{HB} \\ & \leqslant 240 \\ & \leq \end{aligned}$	HB >240		
Рассвер:ливание	Рассверливание неглубоких (нормальных) предварительно просверленных отверстий	$\begin{aligned} & \text { BK4; } \\ & \text { BK8 } \end{aligned}$	-	BK8	$\begin{gathered} \text { T14K8; } \\ \text { T5K10; } \\ \text { BK8 } \end{gathered}$	$\begin{aligned} & \text { BK2; } \\ & \text { BK3-M; } \\ & \text { BK4 } \end{aligned}$	$\begin{gathered} \text { BK6-M; } \\ \text { BK4 } \end{gathered}$	$\begin{gathered} \text { BK2; } \\ \text { BK3-M; } \\ \text { BK4 } \end{gathered}$	$\begin{aligned} & \text { BK2; } \\ & \text { BK3-M } \end{aligned}$
	Рассверливание неглубоких (нормальных) отверстий в литых, кованых или штампованных заготовках	T5K12-B; TT7K12; BK8; BK8-B	-	$\begin{gathered} \text { T5K12-B; } \\ \text { BK8-B; } \\ \text { BK8 } \end{gathered}$	-	$\begin{aligned} & \text { BK4; } \\ & \text { BK6; } \\ & \text { BK8 } \end{aligned}$	$\begin{gathered} \text { BK6-M; } \\ \text { BK8 } \end{gathered}$	$\begin{aligned} & \text { BK4; } \\ & \text { BK6; } \\ & \text { BK8 } \end{aligned}$	-
	Рассверливание глубоких предварительно просверленных отверстий	$\begin{aligned} & \text { BK4; } \\ & \text { BK8 } \end{aligned}$	$\begin{aligned} & \text { T15K6; } \\ & \text { T14K8 } \end{aligned}$	$\begin{aligned} & \text { BK8; } \\ & \text { BK4 } \end{aligned}$	T14K8; T5K10; BK8	$\begin{gathered} \text { BK2; } \\ \text { BK3-M; } \\ \text { BK4 } \end{gathered}$	$\begin{gathered} \text { BK6-M; } \\ \text { BK4 } \end{gathered}$	$\begin{gathered} \text { BK2; } \\ \text { BK3-M; } \\ \text { BK4 } \end{gathered}$	$\begin{aligned} & \text { BK2; } \\ & \text { BK } 3-M \text {; } \end{aligned}$ BK4
	Рассверливание глубоких отверстнй в литых, кованых и штампованных заготовках, а также отверстий c неравномерным припуском на обработку и прервівистым резанием	T5K12-B; TT7K 12 ; BK8; BK8-B	$\begin{gathered} \text { T5K10; } \\ \text { T5K12-B; } \\ \text { BK8; } \\ \text { BK8-B } \end{gathered}$	T5K12-B; BK8; BK4	T14K8; T5K10; BK8	$\begin{gathered} \text { BK8; } \\ \text { BK8-B; } \\ \text { BK4 } \end{gathered}$	-	$\begin{aligned} & \text { BK4; } \\ & \text { BK8; } \\ & \text { BK8-B } \end{aligned}$	-

риложение 3
ЕКОМЕНДУЕМЫЕ МАРКИ БЫСТРОРЕЖУЩЕЙ СТАЛИИ
ЯЯ ОБРАБОТКИ ОТВЕРСТИЙ

Диаметр инстоумемяа 4-100 мм		
Обрабатываемея maredmaл	Переход	
	Сверление. paccrepливание	Зенкерование. развепчывание, зенкование. цекование
онструкционные углеродистве стали	P6M5	P6M5
бнструкционные легированные и vлvчшенные али, коррозионно-стойкие ждростойкие н жарпрочные стали	P6M5K5 P9K5 P9M4K8	P9Ф5 P6M5K5 P9M4K8
(аропрочные деформирvемые сплавы на железоикелевой и никелевой основе. жаропрочные ли-相ные сплавы на никелевой основе	P9M4K8 P6M5K5	P6M5K5 P9M4K8 P12Ф4K5
угуны	P6M5 P6M5K5 P9M4K8	P6M5 P14 14 P6M5Ф3
ветные сплавы	$\begin{aligned} & \text { P6M5 } \\ & \text { 10P6M5 } \end{aligned}$	P6M5 Р6M5Ф3

Примечания 1. Сталь P9K5 применяют при повншенных режимах езания

2 Марки быстрорежущих сталей приведены в порядке предпочтительности применения.

риложение 4
ПУБИНА РЕЗАНИЯ t_{T} ПРИ ОБРАБОТКЕ ОТВЕРСТИЙ

Диаметр инструмента 4-100 мм						
\square	Выполняемый переход					
	Зеккерование			Развеотывание		
	черновое	получи cronoe \qquad	чистовое	чедновое	получистовое	чистовое
	Предшествующий переход					
	ІІтам повка обычная	Зенкедование			Развертывание	
		черновое	получи- стовое	чистовое	черновое	получистовов
	$t_{\text {T }}$, мм, не более					
\% 6	-	$\begin{aligned} & 0.44 \\ & 0,46 \end{aligned}$	-	$\begin{aligned} & 0.18 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0,10 \\ & \hline \end{aligned}$	-

17 А. Д. Локтев

Диаметр ннструмен． та D ，мм， не более	Выполняемый переход					
	Зенкерование			Развертывание		
	черновое	получи－ стовое	чистовое	черновое	получи－ стовое	чистови
	Предшествуюший переход					
	$\begin{gathered} \text { Штам- } \\ \text { повка } \\ \text { обычная } \end{gathered}$	Зенкерование			Раэвертывание	
		черновое	получи－ стовое	чистовор	черновое	получи стовое
	$\boldsymbol{t}_{\mathrm{T}}$ ，мм，не более					
12	1，15	0，48	－	0.21	0，10	－
16	1，44	0，70	－0，41	0.23	0，10	0，06
30	2，34	0，74	0，43	0.24	0.10	0，06
50	3，48	0，79	0，48	0.26	0，10	0，07
80	5，00	0，84	0，53	0，27	0，11	0，07
100	5，94	0，91	0，56	0，30	0.12	0，08

Приложение 5
СТОЙКОСТЬ $T_{\text {н }}$ ПРИ ОДНОИНСТРУМЕНТАЛЬНОЙ ОБРАБОТКЕ

Диаметр инстрvмента 4－100 мм										
Диаметр инстру－ мента D ， мм，не бо－ ree	Переход									
	Сверление， рассверливание． центрование				Зенкерование， зенкование， цекование			Развертывание		
	Обрабатываемын материал									
			或	濁	含	或		念		
	T_{H} ，мин，не более									
10	25	8	35	50	20	20	30	30	40	01
12	45	15	60	75	25	25	45	40	60	9
20	45	15	60	75	30	30	＇50	40	60	01
25	50	25	75	90	40	40	65	60	80	121
32	70	30	110	125	40	40	65	80	120	$1!4$
40	70	30	110	125	55	55	85	80	120	！
50	90	40	140	150	70	70	105	100	160	181
60	110	50	170	200	70	70	105	120	180	20
70	140	70	200	230	90	80	120	140	200	23

диаметь ингтру－ мента D ． M，не бr－ лер	Переход									
	Сверление， рассверливание． центрование				Зенкерпиание， зенкование． цекование			Pasreptabarme		
	Обрабатывяемый материал									
					走			边		
	$T_{\text {प् }}$ ，мин，घе более									
$\begin{array}{r} 80 \\ 90 \\ 100 \end{array}$	140	70	200	230	110	90	140	140	200	230
	140	70	200	230	120	120	150	140	200	230
	140	70	200	230	130	130	165	140	200	230

риложение 6
НойКость ИНСТРУменТА T_{\square} для многошпинделЬНЫХ TАНКОВ

$\begin{gathered} \text { число } \\ \text { wпиндела } \\ \text { w, не более } \end{gathered}$	Диаметр инструмента D ，мм，не более					
	10	16	20	36	50	60
	Стойкость $T_{\text {н }}$ ，мин，не более					
5	50	80	100	120	150	180
20	80	110	130	160	200	220
40	100	140	170	200	240	260
60	120	150	180	220	260	300
Св 60	140	170	200	250	300	320

Ариложение 7
ТОЙКОСТЬ $T_{\text {Н }}$ МЕЛКОРАЗМЕРНЫХ СВЕРЛ

Обрабатываемыя материал	$\begin{gathered} \text { Tвердостs } \\ \text { HB } \end{gathered}$	Диаметр сверла D ．мм，не более								
		0.41	0.6	0.8	1.0	1.2	1，6	2，0	2.5	3，0
		Стойость $T_{\text {H }}$ ，мин								
安аль	245	7	8	9	10	12	14	16	18	20
\％угун серый	225	12	14	16	18	20	23	26	29	32
люминиевые сплавы	98	15	18	22	25	28	32	35	38	40
Медные сплавы	137	18	20	22	25	30	35	40	45	50

```
% Приложение 8
    РЕКОМЕНДУЕМЫЕ МАРКИ СОЖ (дпаметр инструментя 4-100 мм)
```


1риложение 9
ПИНЫ ПОДВОДА l_{1}, ВРЕЗАНИЯ l_{2} И ПЕРЕБЕГА l_{3}
Диаметр инстоумента 4-100 мм

Повеохность		Отверстие	
1) об́аботанная	необработанная	сквозное	глухое
\лина подвпда l_{1}, мм, не более		Длина перебега l_{g}, мм, не более	
$2-5$	5-10	$l_{3}=l_{1}$	0

Диаметрдинструмента D, ммниенолее	Переход				
	Сверление, рагнверливание	Зенкгрование без подреэки дна	Развертывание без подрезки дна	Зенкерование и развертывание	Зенкование, цекование
4.4	3	2	10		
* 6	3.5	2.5		2	
18	4	3			
- 10	4.5	3.5			
12	5	4	12		
\% 16	6	5	13		
4 20	7	6	14	3	
- 25	8	7	15		
- 32	10	9	16		2
4 36	11	10	17	4	
- 40	12	11	18		
4, 50	14,5	13.5	20	4,5	
\% 60	17	16	22	5	
* 70	19.5	18.5	24	5,5	
80	22	21	26	6	
90	24,5	23,5	28	6,5	
1100	-	26	30	7	

Приложение 10
МАТЕМАТИЧЕСКИЕ МОДЕЛИ (диаметр инструмента $0,4-3$ мм)

Переход	Характеристика инструмента	Математическая модель	Номер формулы	Обпзначение коэффициента, ноказател степени	Значения коэффициентов и показателей стенени для различных материалов			
					Сталь	Gерыи чугун	Алюминия	Меднве сплавм
Сверление	Сверла мелкоразмерные диаметром 0,4-3 mm	$S_{0}=0,016 D K_{1 S} K_{2 S} \mathcal{K}_{3 S}$	1	-	-	-	-	-
		$v=\frac{C_{v} D^{n_{v}}}{T^{y} v S_{o}^{m_{v}}} K_{1 v} K_{2 v} K_{3 v}$	2	C_{v}	0,75	1,29	1,9	3,5
				n_{0}	1,30	1,40	1,70	1,60
				m_{0}	0,8	0,9	1,0	0,95
				y_{v}	0,25	0,30	0,40	0,35
		$P_{0}=1000 C_{P} D^{z_{P}} S_{0}^{y} P_{H B}{ }^{n} P^{\prime} K_{1 P}$	3	C_{P}	21,82	10,75	9,17	9,17
				z_{P}	1,0	1.0	1,0	1,0
				y_{P}	0,70	0,7	0,7	0,7
				n_{P}	0,50	0,5	0,5	0,5
		$M_{\mathrm{Hp}}=\frac{\pi D^{2}}{4} S_{0} \sigma_{\mathrm{B}} K_{1 M}$	4	-	-	-	-	-
		$N=1,046 \cdot 10^{4} M_{\text {Lp }} n$	5	-	-	-	-	-

K_{v}－произведение поправочных коэффициентов，определяемых по карте 5 для каждого вида обработки

$\begin{aligned} & \text { 品 } \\ & 0 \\ & 0 . \\ & 0 \\ & \ddot{U} \end{aligned}$		Математическая модель		Обозначение коэффи－ циента，показателя степени	Значение коэффишиента，показателя степени для различных материалов			
					Сталь	Чугун	Алюми ниевые сплавы	Медные сплавы
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{M}} \\ & \stackrel{\rightharpoonup}{む} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{心} \end{aligned}$	БPC	$\begin{gathered} S_{\mathrm{o}}=C_{S_{\mathrm{o}}} D(0,0292-0,0014 l / D) K_{1} S_{\mathrm{o}} \\ \text { для } 4 \leqslant D \leqslant 20 \end{gathered}$	1	$C_{S_{0}}$	0，88	1，54	2，2	2，2
		$\begin{gathered} S_{\mathrm{o}}=C_{S_{0}} D^{0.4269}(1,18-0,06 l / D) K_{1 S_{0}} \\ \text { для } D>20 \end{gathered}$	2		0，10	0，18	0，26	0，26
	TC	$S_{\mathrm{o}}=C_{S_{0}} D^{0,846}(1,12-0,04 l / D) K_{1} S_{0}$	3		－	0，023	0，023	0，023
	БPC	$v=\frac{C_{v} D^{\frac{1,716}{D^{0,223}}}}{T^{x_{v}} S_{0}^{y_{v}} \mathrm{HB}^{0,9}(l / D)^{0,24} l_{u}^{0,162}} K_{v}$	4	C_{v}	4076	5486	4176	5246
				x_{0}	0，2	0，125	0，125	0，125
				y_{0}	0，6	0，5	0，5	0，5
	TC	$v=\frac{C_{v} D^{\frac{1,1}{D^{0,2}}}}{T^{0,4} S_{\mathrm{o}}^{0,5} \mathrm{HB}^{1,3}(l / D)^{0,24} l_{\mathrm{H}}^{0,162}} K_{v}$	5	C_{0}	－	$4,86 \cdot 10^{4}$	$3,26 \cdot 10^{4}$	$3,3 \cdot 10^{4}$

Продолжение прил. 11

$\begin{aligned} & \text { 毕 } \\ & \text { d } \\ & \text { E } \end{aligned}$		Матемитическая модель		Обозначение коэффипиента, показателя степени	Значенне коэффициента, показателя степени для разлнчныл материалов			
					Сталь	Чугун	Алюми ниевые сплавы	Медные сплавы
$\stackrel{y}{3}$$\stackrel{3}{4}$$\stackrel{3}{2}$$\stackrel{\rightharpoonup}{4}$3	БРС	$N=\frac{C_{N} D^{2} S_{\mathrm{o}}^{0,8}\left(\frac{\mathrm{HB}}{186}\right)^{0,6} n}{9750}$	6	C_{N}	-	0,008	0,005	0,005
		$N=\frac{C_{N} D^{2} S_{\mathrm{o}}^{0,8}\left(\frac{\sigma_{\mathrm{B}}}{750}\right)^{0,75} n}{9750}$	7		0,312	-	-	-
	TC	$V=\frac{C_{N} D^{2} S_{o}^{0,94} \mathrm{HB}^{0,6} n}{9750}$	8		-	0,014	0,014	0,014
	$\begin{aligned} & \text { БPC, } \\ & \text { TC, } \end{aligned}$, $P_{0}=10 C_{P} D S_{o}^{y_{P}}$	9	C_{P}	68	42,7	9,8	8,6
				y_{P}	0,7	0,8	0,8	0,8
	$\begin{gathered} \text { БРС } \\ \text { ТС } \end{gathered}$	$S_{0}=\frac{C_{S_{0}} D^{0,846}}{\left.(L)-D_{0}\right)^{0,131}}\left(1,12-\frac{0,04 l}{D}\right) K_{1} S_{0}$	10	$C_{S_{0}}$	0,06	0,078	0,12	0,078
	БРС	$C_{v} D^{0,4}$	11	C_{v}	1388	1200	1224	973
		$T^{x} v_{0} t^{0,2} S_{\mathrm{o}}^{05} \mathrm{HB}^{0,9}$		x_{v}	0,2	0,125	0,125	0,125

$\begin{gathered} \text { 菢 } \\ \text { O} \\ 0 \end{gathered}$		Математическая модель		Обозначение козффи циента, показателя степени	Значение коэффнциента, показателя степени дли различных материалов			
					Сгаль	чугун	Алюми- ниевые сплавы	Медные сплавы
	TC	$v=\frac{C_{v} D^{0,6}}{T^{0,25} S_{0}^{0,3} t^{0,2} \sigma_{\mathrm{B}}^{0,9}}$	12	C_{0}	5361	-	-	-
		$v=\frac{C_{v} D^{0,5}}{T^{0,4} S_{o}^{0,45} t^{0,15} \mathrm{HB}^{1,3}}$	13		-	52207	-	31324
	EPC	$C_{N} t^{0.9} S_{0}^{0,8}\left(\frac{\mathrm{HB}}{C_{\mathrm{n}}}\right)^{0,6} \mathrm{Dn}$	14	C_{N}	-	0,379	0,08	0,379
		9750		$C_{\text {H }}$	-*	186	78	120
		$N=\frac{C_{\mathrm{N}} t^{0,9} S_{\mathrm{o}}^{0,8}\left(\frac{\sigma_{\mathrm{B}}}{750}\right)^{0,75} D n}{9750}$	15	C_{N}	0,935	-	-	-
	TC	$N=\frac{C_{N} D^{0,75} t^{0,8} S_{o}^{0,95}\left(\frac{\sigma_{\mathrm{B}}}{750}\right)^{0,75} n}{9750}$	16		6,05	-	-	-
		$N=\frac{C_{N} D^{0,85} t^{0,8} S_{o}^{0,7} \mathrm{HB}^{0,6} n}{9750}$	17		--	0,072	-	0,072
	EPC	$P_{0}=10 C_{P} t^{x} S^{y_{0} P}$	18	C_{P}	67,0	23,5	-	23,5
				x_{p}	1,2	1,2	-	1,2
				y_{P}	0,62	0,4	-	0,4

		Математическая модель							Обозначение коэффи. диента, показателя степени	Значение коэффицнента, показателя степени для различных материалов				
								Сталь		पугуи	Аломиниевне сплавы	Медные сплавы		
	$\begin{gathered} \text { БPC, } \\ \text { TC } \end{gathered}$	$S_{\mathrm{o}}=C_{S_{\mathrm{o}}} D^{0,846-0,0014 D} K_{S}^{4} K_{1 S_{0}}$							19	C_{S}	0,0375	0,0487	0,0585	0,0487
			K_{S}	при зен	керован	и								
		черно		$\underset{\text { полу }}{\text { ст }}$	учи-	чис	овом							
		без под- резки	$\begin{gathered} \text { c под- } \\ \text { pe3- } \\ \text { кой } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { без } \\ \text { под- } \\ \text { резки } \end{array} \end{gathered}$	$\begin{gathered} \text { с под- } \\ \text { pea' } \\ \text { кой } \end{gathered}$	$\begin{gathered} \text { без } \\ \text { под- } \\ \text { резкк } \end{gathered}$	$\begin{gathered} \text { c под- } \\ \text { рез- } \\ \text { кой } \end{gathered}$							
		1.2	1.0	1,1	0,9	1.0	0,85							
	БPC	$v=\frac{C_{v} D^{A_{v}}}{T^{x_{v}} S_{0}^{y_{v} z_{v}}} K_{v}$						20	C_{v}	18,8	18,2	45,2	21,9	
								A_{v}	0,3	0,2	. 0,3	0,2		
								x_{0}	0,3	0,125	0,3	0,125		
								y_{0}	0,5	0,4	0,5	0,4		
								z_{0}	0,2	0,1	0,2	0,1		
	TC	$v=\frac{C_{v} D^{\frac{A_{v}}{D^{\alpha}}}}{T^{x_{v}} S_{0}^{y_{v} t_{v}^{z}}} K_{v}$							21	C_{v}	18,8	69	28,2	83
								A_{v}		1,06	0,46 ${ }^{\prime}$	1,06	0,46	
								α		0,2	0,1	0,2	0,1	
								x_{0}		0,25	0,4	0,25	0,4	
								y_{0}		0,3	0,45	0,3	0,45	
								z_{v}		0,2	0,15	0,20	0,15	

		Математнческая модель							Обозначение коэффнциенга, показателя степени		Значение коэффициента, показателя степенн для различных материалов				
								Сталь			Чугув	Алюминиевые сплавы	Медные сплавы		
	$\begin{gathered} \text { 6PC, } \\ \text { TC } \end{gathered}$	$S_{0}=C_{S_{0}} K_{S}^{5,3} D^{\frac{0,325}{K_{S}^{1,68}}} K_{1 S_{0}}$							24	$C_{S_{0}}$		0,72	1,8	0,9	1,8
			$K_{S} \mathrm{n}$	ри разв	ертыва										
		черн	вом	поло		чис	овом								
		без под- резки	$\left\lvert\, \begin{gathered} \text { с под- } \\ \text { рез- } \\ \text { кой } \end{gathered}\right.$	$\begin{aligned} & \text { без } \\ & \text { под- } \end{aligned}$ резки	$\begin{gathered} \text { c под- } \\ \text { pe3- } \\ \text { кой } \end{gathered}$	$\begin{gathered} \text { без } \\ \text { под- } \\ \text { резкин } \end{gathered}$	$\begin{gathered} \text { с под- } \\ \text { рез } \\ \text { кой } \end{gathered}$								
		0,85	0,8	0,8	0,75	0,75	0,7								
	БPC							25		C_{v}	800	13,6	399	16,32	
									x_{v}	0,4	0,3	0,4	0,3		
									y_{v}	0,65	0,5	0,5	0,5		
									m_{v}	0,9	0	0,9	0		
									z_{v}	0,2	0,1	0,2	0,1		
								A	Черновое Получистовое, чистовое	1	2,28	1	2,28		
								α		0,246	0,85	0,246	0,85		
								A		1	0,25	1	0,25		
								α		0,246	0,07	0,246	0,07		
	TC										C_{v}	14435	122	14637	146,4
											\tilde{x}_{0}	0,7	0,45	0,7	0,45
											y_{0}	0,65	0,5	0,65	0,5
					--						z_{v}	0	0	- 0	0

$\begin{aligned} & \text { É } \\ & \text { 区 } \\ & \text { ì } \\ & \text { E } \end{aligned}$		Математическая модель	交	Обозначение коэффи циента, ноказателя степени		Звачение коэффициента, показателя степени для различных материалов			
						Сталь	Чугун	Алюми ниевые сплавы	Медные сплавы
	TC	$v=\frac{C_{v} D^{\frac{A}{D^{\alpha}}}}{T^{x_{v}} S_{0}^{y_{v_{t}} z_{v}}} K_{v}$	25	A	Черновое	0,31	0,25	0,25	0,25
				α		0,02	0,3	0,3	0,3
				A	Получистовое	0,37	0,36	0,36	0,36
				α		0,03	0,2	0,2	0,2
				A	Чистовое	0,37	0,35	0,35	0,35
				α		0,03	0,18	0,18	0,18
	$\begin{gathered} \text { БPC, } \\ \text { TC, } \end{gathered}$	$N=\frac{C_{N} M_{\mathrm{Kp}}{ }^{n}}{9750}$	26		C_{N}	1,23	1,23	1,23	1,23
			27		C_{M}	67	23,5	9,8	23,5
					x_{M}	0,9	0,75	0,75	0,75.
		$\mathrm{z}=8 ; 25<D<32 \quad \mathrm{z}=10 ; 32<$ $<D<70 \quad z=12 ; D>70 \quad z=16$; D в мм; z-число зубьев развертки			y_{M}	0,8	0,8	0,8	0,8

$\begin{gathered} \text { Ka } \\ 0 . \\ 0.0 \\ 0 \\ E \end{gathered}$		Математическая модель		Обозначенне коэффициента, показателя степени	Значение коэффициента, показателя степени для различных материалов			
					Сталь	Чуг у*:	Алюми ниевые сплавы	Медные сплавы
$\stackrel{\otimes}{*}$	$\begin{aligned} & \text { BPC, } \\ & \text { TC } \end{aligned}$	$P_{\mathrm{o}}=10 C_{P} t^{x} P S_{\mathrm{o}}^{y_{P}}$	28	C_{P}	67	23,5	9,8	23,5
$\stackrel{\text { 骨 }}{\substack{\circ}}$				x_{P}	1,2	1,2	1,0	1,2
$\begin{aligned} & \tilde{m} \\ & \tilde{\sim} \end{aligned}$				y_{P}	0,62	0,4	0,4	0,4
		$S_{0}=C_{S_{0}}(D-2 t) K_{1} S_{0}$	29	$C_{S_{0}}$	0,005	0,01	0,01	0,01
	БPC	$v=\frac{C_{v} D^{0,3}}{T^{0,3} S_{\mathrm{o}}^{0,2} t^{0,2} \mathrm{HB}^{0,9}} K_{v}$	30	C_{v}	1200	1700	1173	1700
	TC	$v=\frac{C_{v} D^{\frac{A}{D^{\alpha}}}}{T^{x_{v}} S_{0}^{b_{0}^{\prime} v_{t}^{z} v}} K_{v}$	31	C_{v}	6,8	29,75	16,9	35,7
				A.	1,06	0,46	1,06	0,46
				α	0,2	0,1	0,2	0,1
				x_{v}	0,25	0,4	0,25	0,4
				y_{0}	0,3	0,45	0,3	0,45
				z_{v}	0,2	0,15	0,2	0,15

$\begin{gathered} \text { g } \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ \ddot{U} \end{gathered}$		Математическая модель		Обозначенне коэффпдиента, показатела степени	Значенне ќоэффицнента, показателя степени для разлнчных материалов			
					Сталь	पgrye	Алюминиевые сплавы	Меднве сплавы
	$\begin{aligned} & \text { БPC, } \\ & \text { TC } \end{aligned}$	$N=\frac{C_{N} t^{0,8} S_{\mathrm{o}}^{0,95} \mathrm{HB}^{0,9} v^{2}}{D^{0,25} 9750}$	32	C_{N}	3,18	0,79	0,4	0,79
		$P_{0}=10 C_{P} t^{x} P S_{0}^{y_{P}}$	33	C_{P}	67	23,5	9,8	23,5
				x_{P}	1,2	1,2	1.0	1,2
				y_{P}	0,62	0,4	0,7	0,4
		$S_{0}=\frac{C_{S_{0}} D^{0,225}\left(D-D_{0}\right)^{0,32}}{\left(D-D_{\mathrm{o}}\right)^{1,26}} K_{1 S_{0}}$	34	$C_{S_{0}}$	0,735	0,882	0,882	0,882

$\begin{aligned} & \text { g } \\ & \text { X } \\ & I \\ & \Delta \\ & A \\ & E \end{aligned}$		Математическая модель		Обозначение поэффнциемта, показателя степени	Значения коэффишиента, показателя степени для различных материалов			
					Сталь	Чугун	Алюми ниевые сплавы	Медные сплавы
	5PC	$v=\frac{C_{v} D^{0,3}}{T^{0,3} S_{0}^{0,2} t^{0,2} \mathrm{HB}^{0,9}} K_{v}$	35	C_{0}	1200	1542	1024	1542
					16,6	53,55	35,49	63,9
	TC	$v=\frac{C_{v} D^{\frac{A}{D^{\alpha}}}}{T^{x_{v}} S_{0}^{y_{v}} t^{z_{v}}} K_{v}$	36	A	1,06	0,46	1,06	0,46
				α	0,2	0,1	0,2	0,1
				x_{v}	0,25	0,4	0,25	0,4
				yo	0,3	0,45	0,3	0,45
				z_{0}	0,2	0,15	0,2	0,15
	$\begin{aligned} & \text { БРС, } \\ & \text { ТС } \end{aligned}$	$N=\frac{C_{N} t^{0.8} S_{o}^{0,95} \mathrm{HB}^{0,9} v^{2}}{D^{0,25} 9750}$	37	C_{N}	1,7	5,16	2,38	5,16
		$P_{0}=10 C_{P} t^{x} p S_{0}^{y} p$	38	C_{P}	67	23,5	9,8	23,5
				x_{P}	1,2	1,2	1,0	1,2
				y_{P}	0,62	0,4	0,7	04

Продолжение прия. іі

Приложение 12
СРЕДНИЙ ДОПУСТИМЫЙ ИЗНОС РЕЖУЩЕИ ЧАСТИ ИНСТРУМЕНТА

Инструмент	Обрабатываемын материал (условия работь)	$\begin{gathered} \text { Марка } \\ \text { мате- } \\ \text { риала } \\ \text { режуце } \\ \text { чнстря } \\ \text { мента } \end{gathered}$	Критерий яатупления	Диаметр инструD, мM	Допустимыи износ $\boldsymbol{h}_{\mathbf{8}}$, MM
Сверла	Сталь (с охлаждением)	P6M5	По задней поверхности	До 20	0,4-0,8
			По задней поверхности	Cв. 20	0,8-1,0
	Чугун (без охлаждения)		По уголкам	До 20	0,5-0,8
				Св. 20	0,8-1,2
		BK6, BK8, BK4, BK8B	По задней поверхности расстоянии 1,5 мм от уголка	-	0,3
Зенкеры	Сталь (с охлаждением)	P6M5	По задней поверхности	-	1,2-1,5
	Чугун (без охлаждения)		По уголкам	-	0,8-1,5
	Сталь и чугун	T15K6	По задней поверхности	До 20	1,0
		T14K8		До 40	1,2
		BK8		До 60	1,4
		T5K10, T5K12, BK6, BK4		До 80	1,6
Развертки машинные	Сталь (с охлаждением)	T30K4	По задней поверхности заборного конуса	-	0,6-0.8
	Чугун (без схлаждения)	P6M5, $\text { T15K } 6$			
	Сталь и чугун	T15K6, BK8	По задней поверхности заборного конуса	-	0,4-0,7

Прилижение 13
НОРМЫ РАСХОДА МЕЛКОРАЗМЕРНЫХ СВЕРЛ

$\begin{aligned} & \text { Стой- } \\ & \mathbf{T}_{\text {кос1ь }}, \text { Мин } \end{aligned}$	$H_{1000}=\frac{1000}{T_{\mathrm{H}} p K_{\mathrm{y}}}, \quad D, \mathrm{MM}$					
	$\begin{array}{r} D_{T} \leqslant 1, p=4, \\ K_{\mathrm{V}}=0,45 \end{array}$		$\begin{gathered} 1<D_{T} \leqslant 2, p=5, \\ K_{\mathrm{y}}=0,6 \end{gathered}$		$2 \leqslant D_{T} \leqslant 3, p=6,$	
	Pac четное время работы ${ }_{T_{1}, \text { мин }}$	Норма расхода сверл за 1000 мин основного времени h_{1000}, шт	Pac. четное время работы $\stackrel{\text { сверла }}{T_{1}, \text { мин }}$	Норма рас. уода сверл за 1000 мин основного времени H_{1000}, wr .	Pacчетное время раооты (верла T_{1}, мин	Норма рас хода сверл за 1000 мия основного времени $H_{10 \mathrm{ng}}$, 山T
4	16	140	-	-	-	-
5	20	111	25	67	-	--
6	24	94	30	55	-	-
7	28	80	35	48	-	- .
8	32	70	40	42	48	30
9	36	62	45	37	54	27
10	40	56	50	34	60	24
11	44	51	55	30	66	22
12	48	46	60	28	72	20
13	52	43	65	26	78	19
14	56	40	70	24	84	17
15	60	37	75	22	90	16
16	64	35	80	21	96	15
18	72	31	90	19	108	14
20	80	28	100	17	120	12
22	88	25	110	16	132	11
24	96	23	120	14	144	10
26	104	21	130	13	156	10
28	112	20	140	12	168	9
30	120	19	150	11	180	8
32	128	18	160	11	192	8
34	136	17	170	10	204	7
36	144	16	180	10	216	7
38	152	15	190	9	228	7
40	160	15	200	9	240	6
42	168	14	210	8	252	6
44	176	13	220	8	264	6
46			230	8	276	6
48	-	-	240	7	288	5
50	-	-	250	7	300	5
52	-	-	260	7	312	5
54	-	-	270	7	324	5
56	-	-	280	6	336	5
58	-	-	290	6	348	5
60	-	-	300	6	360	4
64	-	-.	320	6	384	4
70	-	-	350	6	420	4
76	-	-	380	5	456	4
80	-	-	400	5	480	3
90	-	-	-	-	540	3
100	-	-	-	-	600	3

Приложение 14
НОРМЫ ИЗНОСА И РАСХОДА СВЕРЛ ДИАМЕТРОМ БОЛЕЕ 3 мм

Обрабатываемый материал	㽞 을 莫范					岗 	

Сверла быстрорежущие

Сталь	5	0，5	0，9	55	25	23	43
	10	0，7	1，0	50	25	21	48
	15	0，7	1，2	41	45	32	31
	20	0，8	1，4	42	45	33	30
	25	1，0	1，5	40	50	34	29
	Св． 25	1，2	1，8	33	70	40	25
Чугун，медные спла－ вы	5	0，4	0，7	71	35	42	24
	10	0，5	0，8	62	35	37	27
	15	0，6	0，9	55	60	56	18
	20	0，7	1，0	60	60	61	16
	25	0，7	1，2	50	75	64	16
	Св． 25	0，8	1，5	40	110	75	13
Алюминиевые спла－ вы	5	0，3	0，6	83	50	70	14
	10	0，4	0，7	71	50	60	17
	15	0，5	0，8	62	75	79	13
	20	0，6	0，9	66	75	84	12
	${ }^{25}$	0，6	1，1	54	90 125	83	12
	Св． 25	0，7	1，3	46	125	98	10

Сверла спиральные，оснащеннье пластинами ив твердого сплава （ГОСТ 22735－77 и ГОСТ 22736—77）

Закаленные углеро－ дистые конструк－ ционные стали и чу－ гуны

5	0,2	0,4	7	5	0,7	1694
6	0,25	0,45	8	5	0,8	1600
20	20	3,0	400			
8	0,30	0,50	8	9	1,4	888
10	0,4	0,6	9	95	5,25	228
12	0,50	0,70	8	$\frac{12}{25}$	1,5	800
14	0,55	0,85	9	12	2,0	576

Продолэнние прил. 14

Обрабатываємын матернал							
Закаленные углеродистые конструкфионные стали и чугуны	16	0,65	0,85	10	15	2,8	436
					60	11	109
	18	0,7	0,9	10	15	2,8	4,6
					60	11	109
	20	0,8	1,0	10	15	2,8	136
					60	11	109
	22	0,9	1.1	10	17	3,2	375
					70	12,8	93
	25	1,0	1,2	10	17	3,2	375
					70	12,8	93
	28	1,10	1,30	9	17	2,9	411
					70	11,7	102
	30	1,2	1,4	9	17	2,9	411
					70	11,7	102

Сверла спиральнье цельнье твердосплавные (ГОСТ 17275-71)

4. Примечани е Раслод сверл с износостойким покрытием снижается на \%.

І1риложение 15
НОРМЫ ИЗНОСА, СРЕДНЕГО ПЕРИОДА СТОЙКОСТИ
И РАСХОДА ЗЕНКЕРОВ И РАЗВЕРТОК

Продолэсение прил. 15

			Стачивание за одну перегочку Δl, мм		Число переточек p		Расчетное время работы зенке-$=\operatorname{paz}_{T_{\mathrm{H}}}^{T_{1}}(p+1)$		Расход зенкеров за 1000 प основного времени H_{p}, шт.	
			Обрабатываемый материал							
мм			Стапь	Yy rym	Сталь	$\begin{aligned} & \text { чу- } \\ & \text { гунн } \end{aligned}$	Сталь	$\begin{aligned} & \text { 4y- } \\ & \text { гу- } \end{aligned}$	Сталь	$\begin{aligned} & \text { 4y- } \\ & \text { ryx } \end{aligned}$
20	110	65	1,3	1,0	50	65	25,5	33,0	39,2	30,3
	140	95			73	95	37,0	48,0	27,0	20,8
21	110	63	1,3	1,0	45	63	29,9	41,0	33,4	24,0
	145	98			70	98	46,2	64,3	21,6	15,6
	120	71	1,4	1,0	51	71	33,8	46,8	29,6	21,4
	150	101			72	101	47,5	66,3	21,0	15,1
	120	67	1,4	1,0	48	67	31,9	44,2	31,3	22,6
	160	107			76	107	50,1	70,2	20,0	14,2
25	125	70	1,4	1,0	50	70	33,2	46,2	30,1	21,6
	160	105			75	105	49,4	68,9	20,2	14,5
26	125	68	1,4	1,2	49	57	32,5	37,7	30,8	26,5
	165	108			77	90	50,7	59,2	19,7	16,9
27	125	68	1,4	1,2	47	55	31,2	36,4	32,0	27,5
	170	111			79	92	52,0	60,5	19,2	16,5
28	130	69	1,4	1,2	49	58	32,5	38,4	20,8	26,0
	170	109			78	91	51,4	59,8	19,5	16,7
30	130	65	1,4	1,3	46	50	30,6	33,2	32,7	30,1
	175	110			79	85	52,0	55,9	19,2	17,9
32	140	71	1,5	1,3	47	55	39,8	46,5	25,1	21,5
	185	116			77	89	64,7	74,7	15,5	13,4
34	140	67	1,5	1,3	45	51	38,2	43,2	26,2	23,1
	190	117			78	90	65,6	75,5	15,2	13,2
35	140	65	1,5	1,3	43	50	36,5	42,3	27,4	23,6
	190	115			77	88	64,7	73,9	15,5	13,5
36	150	73	1,6	1,3	49	56	41,5	47,3	24,1	21,1
	195	118			79	91	66,4	76,4	15,1	13,1
37	150	71	1,5	1,3	47	55	39,8	46,5	25,1	21,5
	195	116			77	89	64,7	74,7	15,5	13,4

Прооолмтние прил. 15

Продолжение прил. 15

При ложение 16
НОРМЫ СТОЙКОСТИ, ПЕРЕТОЧЕК И РАСХОДА ЗЕНКОВОК

Обрабатыв де мый материал	Диаметр зенковки D, не более	Допусти moe rta чива nhe M	$\begin{gathered} \text { Стачи } \\ \text { вание } \\ \text { за одну } \\ \text { педе } \\ \text { точку } \\ \Delta l \end{gathered}$	$\dot{\circ}$ $\stackrel{\circ}{\circ}$ 0 0 0		Pac четное время работе инстру мента $T_{1}, ~ ч ~$	Рacxoд зенко вок за 1000 ч основ ного времени $H_{\mathrm{p}}, \mathrm{mT}$

Конические венновки по ГОСТ 14953-80 E (типо 5-11)

Сталь	12	9	0,8	11	25	5	200
	20	13	0,9	14	30	7,5	133
	32	18	1,1	16	40	11,3	88
	40	20	1,1	18	55	17,4	57
	60	29	1,2	24	70	29,2	34
	80	34	1,3	26	110	49,5	20
	100	38	1,3	28	130	62,8	16
Чугун, медные	12	9	0,7	13	25	5,83	171
сплавы	20	13	0,8	16	30	8,5	118
	32	18	0,9	20	40	14	71
	40	20	0,9	22	55	21	47
	60	29	1,0	29	70	35	29
	80	34	1,1	31	90	48	21
	100	38	1,2	32	130	72	14
Алюминиевые	12	9	0,6	16	45	13	78
сплавы	20	13	0,7	18	50	16	63
	32	18	0,8	22	65	25	40
	40	20	0,8	25	85	37	27
	60	29	0,9	32	105	58	17
	80	34	1,0	34	140	82	12
	100	38	1,1	36	165	102	10

Цилиндрические венковки ив быстрорежущей стали

Сталь	12	3,8	0,6	6	25	2,9	343
	20	4	0,6	7	30	4	250
	32	7	0,8	9	40	6,7	150
	40	8	0,8	10	55	10,1	100
	60	8	1,0	8	70	10,5	95
Чугун, медные	12	3,8	0,5	8	25	3,8	267
сплавы	20	4	0,5	8	30	4,5	222
	32	7	0,7	10	40	7,3	136
	40	8	0,7	11	55	11,0	91
	60	8	0,8	9	70	11,7	86
Алюминиевые	12	3,8	0,4	10	45	8,3	121
сплавы	20	4	0,4	10	50	9,2	109
	32	7	0,6	11	65	13,0	77
	40	8	0,6	13	85	19,8	50
	60	8	0,8	10	105	19,3	52

Обрабатывае мый материал	Диаметр яенковки D, не более	Допустимое ста-чивание M	Ctaya. вание ва одну переточKy Δt			Pacчетное время работы инструмента T_{1}, प	Расход зенко вок за 1000 ч or чов ного времени H_{p}, нит

Цилиндрические яенковки, оснащеннье твердым сплавом

Сталь	12	6,6	0,6	11	25	5	200
	20	6,6	0,6	15	30	8	125
	32	8,4	0,8	10	40	7,3	136
	40	6	0,8	7	55	7,3	136
	60	7,2	1,0	8	70	10,5	95
уугун, медные	12	6,6	0,5	13	25	5,8	171
сплавы	20	6,6	0,5	13	30	7,0	143
	32	8,4	0,7	12	40	8,7	115
	40	6	0,7	8	55	8,3	121
	60	7,2	0,9	8	70	10,5	95
Алюминиевые	12	6,6	0,4	16	45	12,8	78
сплавы	20	6,6	0,4	16	50	14,2	71
	32	8,4	0,6	14	65	16,3	62
	40	6	0,6	10	85	15,6	64
	60	7,2	0,8	9	105	17,5	57

РАЗДЕл IV

ОБРАБОТҚА ГЛУБОКИХ ОТВЕРСТИЙ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОҚРАЩЕНИЯ

l - длина образующей обрабатываемого отверстия. мм;
d - диаметр обрабатываемого отверстия, мм:
D - диаметр инструмента, мм;
$L_{\text {ст }}$ - длнна стебля инструмента, мм; $S_{\mathrm{o}_{\mathrm{T}}}, S_{\mathrm{O}_{\mathrm{H}}}$ - подача соответственно та-

- бличная и нормативная по паспорту станка, мм/об;
$K_{S_{j}}$ - поправочный коэффициент на подачу в зависимости от жесткости системы станок - приспособление инструмент - деталь (СПИД);
$K_{S_{l}}$ - поправочный коэффиниент на подачу в зависимости от отношения длины обрабатываемого отверстия к диаметру;
$K_{S_{\mathrm{H}}}$ - поправочный коэффициент на подачу в зависимости от твердости обрабатываемого материала;
$K_{S_{d}}$ - понравочный коэффициент на подачу в зависимости от разности диаметров расточного инструмента и обрабатываемого отверстия при рассверливании;
T - средний период стойкости инструмента. мин;
h_{3} - критерий затупления, выраженный шириной фаски износа по задней поверхности режушей части инструмента у его периферии, мм, v_{T} - табличная скоросгь резания. м ${ }^{\prime}$ мин:
兀'н - нормативная скорость резания, м/мин;
v - скорость резания, отвечающая паспортной частоте вращения шпинделя, м/мин;
$K_{v_{\mathrm{H}}}$ - поправочный коэффициент на скорость резания в зависимости от

твердости обрабатываемого мате риала;
$K_{v_{\text {и }}}$ - поправочный коэффициент ти скорость резания в зависимости ит марки твердого сплава;
$K_{v_{d}}$ - поппавочннй коэффиџиент н скорость резания в зависимости с* разности диаметров расточного ин струмента и обпабатываемого отвер стия при пастачивании,
n_{H} - частота врашения мпинделя, соответствуюния нормативной скю рости резания, мин ${ }^{-1}$,
n - частота вращения шпинделя $:$, паспорту станка, мин ${ }^{-1}$,
$P_{\text {ot }}$ - табличная осевая сила, H ;
$P_{\mathrm{O}_{\mathrm{H}}}$ - нормативная осевая сила, H $P_{\text {доп }}$ - усилие подачи, допускаемок станком, H ;
$K_{P_{\mathrm{H}}}$ - полравочный коэффициент н.' осевую силу в зависимости от твердс сти обрабатываемого материала;
$K_{P_{d}}$ - поправочный коэффициент иосевую силу в зависимости от разности. диаметров расточного инструментя и обрабатываемого отверстия при рас тачивании;
N_{T} - табличная мощность резания kBr;
N_{H} - нормативная мошность реза ния, кВт;
$N_{\text {ст }}$ - мощность двигателя станка кВт;
$K_{N_{\mathrm{H}}}$ - поправочный коэффициент на мощность резания в зависимости с* твердости обрабатываемого мате риала;
$K_{N_{\boldsymbol{H}}}$ - поправочный коэффициент нс мощность резания в зависимости о марки твердого сплава инструмента $K_{N_{d}}$ - поправочный коэффициент ни мощность в зависимости от разности

иаметров расточного инструмента обрабатываемого отверстия при расачивании;
$Q_{\text {т }}$ - табличный расход смазочнохлаждающей жидкости, л/мин;
${ }_{67}$ - табличное давление СОЖ, МПа; С $_{\text {с }}$ - поправочный коэффициент на асход и давление СОЖ в зависимости твердости обрабатываемого матеиала;
 - длина подвода инструмента, мм; - длина врезания инструмента, мм; - длина перебега инструмента, мм; T-- суммарная стойкость инструмента, ч;

- стачивание за одну переточку, мм;

4 - допустимое стачивание, мм;
0-длина цельной рабочей части сверла (или сменной пластины) из твердого сплава, мм:
दn - число переточек;
रу - коэффициент случайной убыли; P_{1000} - расход инструмента за 1000 q юсновного времени, шт;
\% - основное время, мин;
итт - штучное время, мин;
K_{T} - коэффициент, зависящий от яипа производства;
K - коэффициент перевыполнения норм;
N - программа обрабатываемых де"алей одного наименования, шт;
\mathscr{F}_{H} - трудоемкость обработки глубоких отверстий одного наименования, ч;
$P_{\text {H }}$ - расход инсярумента на годовую программу.
МНП - многогранная неперетачива-
емая пластина;
СОЖ - смазочно-охлаждающая
жидкость;
ірил. - приложение.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Нормативы режимов резания на специальных и модернизированных Универсальных станках предназна-鞍ены для технического нормирования операций одноинструментной обработки глубоких отверстий, выполняदмых специальными твердосплавными थнструментами с подводом СОЖ в зону резания.

Для обработки глубоких отверстий 4/d до 100) наиболее рационально شспользовать сверла и расточные гоҺовки одностороннего резания.

Особенность конструкции инструشентов одностороннего резания -

определенность базирования (уравновешивание равнодействующей всех поперечных составляющих сил резания за счет взаимодействия направляющих элементов с обработанным отверстием), что создает наряду с эффектом выглаживания и принудительным отводом стружки из отверстия потоком СОЖ под высоким давлением специфические условия работы инструмента, обеспечивающие образование геометрически правильных отверстий с точным положением оси и высоким качеством поверхностного слоя.

Использование при обработке глубоких отверстий инструмента одностороннего резания обеспечивает: повышение производительности обработки в 2-3 раза по сравнению с обработкой спиральными сверлами, точность диаметров отверстий в пределах 7 -11 квалитетов, шероховатость обработанной поверхности не более $R a=2,5$ мкм, отклонение от прямолинейности оси отверстия не более 0,05 мм на 100 мм длины. Такой способ позволяет исключить ряд переходов традиционного технологического цикла обработки отверстий (зенкерование, развертывание или растачивание) и сократить трудоемкость последующих финишных операций.

Совершенствование технологии обработки глубоких отверстий приводит к тому, что применение этих технологий в ряде случаев становится более целесообразным в экономическом отношении дажже для обработки неглубоких отверстий.

Технология глубокого сверления и растачивания, основанная на применении инструментов одностороннего резания, эффективна не только в условиях массового и крупносерийного производств, но также и при обработке отверстий в различных деталях основного и вспомогательного производств на модернизированных универсальных станках при серийном и единичном типах производства.

Необходимым условием применения настоящих нормативов является наличие разработанного по операциям и переходам технологического процесса обработки деталей и наличие подробного технико-экономического анализа.

Нормативы являются основой для разработки САПР операций обработки глубоких отверстий как сверлением

в сплошных заготовках, так и рассверливанием в заготовках с отведстиями.

Основными исходными данньіми для выбора способа глубокого сверления, конструкции инструмента и кинематической схемы обработки, формы

геометрии заточки режушей части, режимов резания и других условий процесса являются конструкторскотехнологические параметры обрабатываемой детали lee фопма и масса, диаметр отверстия. длина образующей, требуемые гочность и шероховатость) и физико-механические свойства обрабатываемого материала.

В нормативах приведены методические указания по определению режи* мов резания, норм стойкости и расхода инструмента при сверлении и рассверливании глубоких отверстий диаметром 3-125 мм в деталях из углеродистых, легированных и конструкционных сталей и чугуннов и соответствуюшие карты и приложения, по которым выбирают тип инструмента, марку твердого сплава, форму и геометрические параметры заточки инструмента. определяют расход и давление СОЖ, срєдний пеџиод стойкости инструмента. скопость резания, максимальные осевую силу и мощность, расход сверл за 1000 ч основного времени и укоупненно на программу, исходя из трудоемкости обработки отверстия на данной операции.

В нормативах предусмотрено использование следуюших видов инструмента, оснащенного твердым сплавом:

сверл одностороннего резания диаметром 3-20 мм с цельной твердосплавной рабочей частью и внутренним подводом СОЖ:

сверл одностороннего резания диаметром $7,5-30$ мм, оснашенных твердосплавными пластинами, с внутренним подводом СОЖ;

сверл трубчатых перовых .диаметром 3-30 мм, оснащенных твердосплав. ными пластинами, с внутренним подводом СОЖ:

головок сверлильных одностороннего резания перетачиваемых диаметром 16-65 мм с наружным подводом COK:

головок сверлильных одностороннего резания трехрезцовых диаметром $20-65$ мм с наружным подводом СОЖ; сверл. одностороннего резания диаметром 20-60 мм с внутренним эжек-

торным отводом стружки;
сверл диаметром 25-60 мм с меха. ническим креплением многограниых неперетачиваемых твердосплавныл плаетин с внутренним подводом СОЖ

головок сверлильных сборных диа. метром $65-125$ мм с наружным под. водом СОЖ;

головок сверлильных трехрезцовых диаметром $90-125$ мм с наружннн подводом СОЖ.

Конструкции инструментов длд обработки глубоких отверстий при ведены-в приложении 5.

При обработке глубоких отверстий применяют СОЖ на масляной основє следующих марок:

для сталей: MP-3 (ТУ 38 УCCP 2-01-254-83); MP-1 (ТУ. 38-10173180); ЛЗ СОЖ18 и ЛЗ СОЖ2。 (ТУ 38-101115-75);

для чугунов ОСМ-3 (ТУ 38 УССР 2-01-152-75) и MP-1.

Лучпие результаты обработки обес. печиваются при температуре СОЖ $35 \ldots$ $55^{\circ} \mathrm{C}$.

При сверлении и растачивании наибольшее влияние на образование транс. портабельной стружки и стабильность процесса оказьвают форма и размерь; стружколомающих уступов на переж. ней поверхности инструмента, подача, скорость резания и скорость дви. жения СОЖ.

При назначении режимов и условий обработки, а также переточки инстру. мента необходимо учитывать следу. ющие факторы:

увеличение пирины стружколомающего порожка приводит к росту длины стружки;

при увеличении высоты стружколомающего порожка длина стружки уменьшается;

длина элементов стружки растет с увеличением скорости резания II уменьшается $с$ увеличением подачи;

рекомендуемая в нормативах вели чина давления СОЖ соответствует дан лению на входе в маслоприемник а расход СОЖ установлен из условнй на́дежного удаления непрерывной стружки;

при образовании элементной илг: смешанной стружки расход СО)К необ ходимо уменьшить после пробного про хода, обеспечивая не только стабиль ное удаление стружки из зоны резания. но и стабилизацию вибрацнй

тебля инструмелта，динамичесяуто стойчнвость его рабочей части．
Для полу нення информации о харак нере сгружкообразования и сяа нльноста процесса обработки（осо－ јенно свс рления）в конкретньх произ－ ，ддственных условиях иисле sbбора ежимов сверления no нop Mdrnham सимают пробную сарVжку，полуиатот тверстне в образце ия соответству．马щего материэла п измеряит доскит
\＄yтые rочность обработки и иерсяо－ атогть поверхности．

При обработке первых детаней опе． атор должен внимательно паблюддль दа стабильностью процесса и ирове－ Яять дннамическио устойчиволть 4 нструмскга Следует учитывать．что аи глубоком сверлении и раг＂дчива ＊ии существует критическап цлинд фебля，при которой инструменг тєрлет стойчивость，появляются автокопе жания или нзгибаюшие колебыния н ： ярумента．При больших вылетах свер－ рекомендуется испольэовать лाс＂ なеть．

Последоватепьность польясвапин
 （ривєденным в карте 1.

Все обрабатьваемне магсриалы Qовединены в группы по обраб̆атыва моски（см．карту 3）．

Выбор типа инструмента осутесдв． fяот по карте 5，тде приведены иве Фения $о$ технологкчсккх воаможно－ ＊тях ииструментов（дополнителыные жвдения об инструменте прияодятся прил．5）．Тип инструмента выбирамт 4а основе использования комилевяной ＊ зависнмости от дааметра и глубины бораюатываемого отверетия и средней数роизводительности инструмента Све－砤ения，необходимве для определеняи \％омплексной точностной характери－ ятики онерацик в зависнмости от ศревованжй $к$ качеству поверхности отверстии，даны в карте 4.

Выбор марки твердого сплава для режуших часгей инструментов осуще． कтвлякот по карте 6 в зависиности от яида обрабатываемого материата， सима инструмента и условий сора－ ботки．Для нзготовления надравля－ ощих элементов сверл и головок реко－ дендуется применять пластиюи из твер。 foro cnuaba BK8．
Форма н геометрическиє параметры

ваемых при зксплуитапии，привсдени в клрюе 7.

 ные сверла .010 же диомс＇ра имеют
 ностям．плок костнун в вин совук．ПАо скостноя форкя ваточки sзляетсл

 Nt 4, 万．

 рабочие поверхникт

Для сверлснкя отғеретий диаметтом
 к церодови ооти пбработанной noверх． ности（ $R a=9,63 \div 0,32$ мкм）пред－ \％смотрена специальнля форма за＂
 с допольктельной режуцей кромкий между гламиой режумен кромпой и цнии เдрический частьк（с． 558,55 ）。

Форме заточки сверл．нренианачен－ мых лья рлстачивания у подо̆орки дна глухнх отиерсай，гринедени на r ． 500 ，расгочного инструмента－－na c． 667 ；сверл \＆rutubor с внуррен－ HEM OSBOZOM חynbnh－－Ea（5ti3－ 565
 Bator mo кapto 8 в зависнисен or hna в מиометра ннструменга，требований к каघестиу обраболия о：вепстий и вида ofpafinlibdemolo marepmenta．

Норматндную нодачу $S_{\mathrm{O}_{\mathrm{H}}}$ находят， умножая таблнцпую подачн ha попра－ вочнье коэффициенты，опреднляғные с ученом үсиовий обработкм и жестко－ стм систепь станок－приспособле－ ние－пнструмент－деталь（коэффи－ циент $K_{s_{j}}$ ），отношения длинн обра－ балываемого отверстия к вго диаметру （козффициент $K_{S_{i}}$ ）и твєрдости обра батвівземого матепиала（коэффи－
 для Гастачнвания с нарукным под－ водон © ХХ табличиое значение подачн необходимо дополчительно скоцрептм： ровагя умиожением на ноправочный ноэффициенi $K_{S_{d}}$ ，учитываюшии зави－ скмость muдn土ม ог рaзносги диаметров расточнов инструмена и офрабати－ ваемоic os веретия．

Zри растачивании отверстий свер． лами или головкеми пдиоптороннего реэания забличнве зкачения подачи

Приведенные на с. 567-575 карты 8 значения расхода и давления СОЖ корректируют, умножая на поправочный коэффициент K_{C}, зависящий от твердости обрабатываемого материала (c. 575).

Значения среднего периода стойкости (T) и критерия затупления (h_{3}) инструмента при обработке сталей и чугунов определяют по карте 9 в зависимости от типа и диаметра инструмента с учетом требований к об́работке. За критерий затупления всех типов инструментов принята ширина фаски износа по задней поверхности у периферии режущей части.

Табличные значения скорости резания, осевой силы и мощности для сталей и серых чугунов, а также поправочные коэффициенты на эти параметры приводятся в карте 10.

Табличные значения скорости резания v_{T}, осевой силы $P_{\text {o }_{\mathrm{T}}}$ и мощности $N_{\text {т }}$ устанавливают в зависимости от типа и диаметра инструмента, подачи и обрабатываемого материала. Если диаметр инструмента и подача не совпадают с приведенннми в карте, величины искомых параметров определяют интерполяцией.

Нормативные $v_{\mathrm{H}}, P_{\mathrm{o}_{\mathrm{H}}}$ и N_{H} находят, умножая табличные значения на поправочные коэффициенты, определяемые в зависимости от группы и твердости обрабатываемого материала (коэффициенты $K_{v_{\mathrm{H}}}, K_{P_{\mathrm{H}}}, K_{N_{\mathrm{H}}}$) и марки твердого сплава (коэффициенты $K_{v_{\text {и }}}$ и $K_{N_{\text {и }}}$).
При рассверливании отверстий головками с наружным подводом СОЖ табличные значения скорости резания, осевой силы и мощности корректируют умножением на соответствующий поправочный коэффициент $K_{v_{d}}, K_{P \dot{d}}$ и $K_{N_{d}}$ в зависимости от разности диаметров расточного инструмента и обрабатываемого отверстия.

Суммарную стойхость и норму расхода инструмента за 1000 ч основного времени устанавливают по карте 11 в зависимости от конструкции инструмента и его диаметра. При этом учитывают конструкцию рабочей части инструмента (цельная твердосплавная или. напаянная из пластин твердого сплава). В карте приведены также стойкость, критерий затупления, величина стачивания за одну переточку,

допустимая величина стачивания, чи ло переточек и коэффициент случайно убыли. Эти значения ислользуют пр расчете суммарной стойкости и нор расхода инструмента.

Для сборных конструкций инстр: ментов с механическим креплення твердосплавных режумих пластия (в том числе многогранных неперетач; вармых пластин МНП) расход пластин за 1000 ч основного времени привеле в карте 11, с. 599.

Расход инструмента на программу определяют по карте 12 в зависимося от трудюемкости изготовления деталеь на даннпй операции с учетом типа производства и суммарной стойкоети инструмента.

B качестве характеристики тип. производства принят коэффициеня K_{T}, представляющий собой отношения основного времени к штучному.

Если значения трудоемкости и суммарнпй стойкости для конкретного случая не совпадают с приведенными в карте, то значения расхода инструмента находят интерполяцией.

Полученные значения расхода инструмента умнпжают на коэффициент K_{y} случайной убыли, определяемый по карте 11 для конкретных конструкций и диаметра инструмента.

Допплнительные сведения по выполнению операций обработки глубоких отверстий приведены в приложениях; краткая характеристика способов обработки - в прил. 1; применяемые схемы обработки - в прил. 2; требования к станку и оснастке в прил. 3; модели отечественных станков для обраб́отки глубоких отверстий - в прил. 4; перечень и дополнительные сведения по инструментам - в прил. 5. Зависимости для автоматизированного расчета режимов обрработки глубоких отверстий приведены в приложении 6.

ПРИМЕРЫ РАСЧЕТОВ РЕЖИМОВ РЕЗАНИЯ

И РАСХОДА ИНСТРУМЕНТА.

Пример 1. Рассчитать режим сверления, основное время и расход инструмента при обработке отверстия в заготовке (рис. 1). Последовательностк расчетпв определяют по карте 1.

Исходные данные: обрабатываемый материал - сталь 40X твердостью HB 200; программа - 500 шт.; ста

ис. 1. Втулка

ок - токарно-винторезный мод, 6 K 20 , модернизированный для свердения глубоких отверстий.
Паспортные данные модернизированного станка 16 K 20 :
мощность привода главного движения $N_{\text {ст }}=10 \mathrm{kBr}$; продольные подачи, мм/об: 0,025 ; D,050; 0,075; 0,100; 0,125; 0,150; 0,175; 0,$2 ; 0,25 ; 0,3 ; 0,35 ; 0,4 ; 0,5 ; 0,6 ; 0,7$; 0,8;

частоты вращения шпинделя, мин ${ }^{-1}$: 42,5; 16; 20; 25; 31,5; 40; 50; 63; 80; $100 ; 125 ; 160 ; 200 ; 250 ; 315 ; 400 ; 500$; 630; 800; 1000; 1250; 1600; 2000;
допустимое усилие подачи 7845 H ; максимальная глубина сверления \mathbf{c} учетом размеров маслоприемника и узла отвода стружки $1100 \mathrm{mм}$.
Станок оснащен насосной стамцией, работающей в двух режимах:
первый режим - производительность 25 л/мин, давление до 12 M Па ($120 \mathrm{krc} / \mathrm{cm}^{2}$);
второй режим - производительность $100 \mathrm{\pi} /$ мин, давление до $6 \mathrm{MПа}$ ($60 \mathrm{krc} / \mathrm{cm}^{2}$).
Этап 1 - по карте 3 установить группу обрабатываемого материала (сталь 40 X относится к группе 4). Этап 2 - по карте 4 определить комплексную точностную харахтеристику операции. В соответствии с рис. 1 точность отверстия $H 9$; шероховатость поверхности отверстия $R a \leqslant$ $\leqslant 2,5$ мкм. Эти характеристики обрабатываемого отверстия соответствуют повышенной комплексной точностной характеристике операции.
Этап 3 - по карте 5 выбрать тип инструмента с учетом доголнительных сведений из прил. 5. Для обработки отверстия диаметром $26 H 9$ и длиной 720 мм ($l / d \approx 28$) принимают в качестве инструмента сверлильную головку диаметром 26 н 8 мм с наружным подводом СОЖ. Такая головка обеспевит точ.

ность размеров, соответствующую квалитету 9, пероховатость поверхности $R a=2,5$ мкм, а также большую по сравнению со сверлами с внутренним подводом ССЖ производитель ность.
Эrari 4 - назначить марку твердого сплаза и СОЖ в соответствии с кар. той 6 . Для обрабстки отверстия в заготовке из стали 40 X твердостью 200 HB нӑ модернизированном унинерсальном станке иринимают твердый сплав Т15К6; марка СОЖ при обработке стамьной заготовки с повышенными требованиями - MP-3.
Этапи 5 -- установнть форму и геометрические параметры заточки рабочей части головки по карте 7. Для сверлильных головок диаметром 26 мм с наружным нодводом СОЖ при обработке стали заточка инструмента должна соответствовать форме 11 (см. карту 7, с. 563 и 564).
Этап 6 - выбрать табличную подачу головки, расход и давление СОЖ по карте 8. Для сверлильной головки диаметром 26 мия с чаружным подводом СОЖ при обработке отверстий повышенной точности в стальной заготовке рекомендуется подача $S_{0_{\mathrm{T}}}=$ $=0,105$ мм $/$ об (см. карту 8 , с. 569); поправочные коэффициенты на подачу (см. карту 8 , с. 574 и 575): $K_{s_{i}}=0,9$; $K_{S_{l}}=1,0 ; K_{S_{\mathbf{H}}}=1,0$.
Нормативное значение подачи определяют по формуліе (карта 2)

$$
S_{\mathrm{O}_{\mathrm{B}}}=S_{0_{\mathrm{T}}} K_{S_{i}} K_{S_{l}} K_{S_{\mathrm{H}}}=
$$

$=0,105 \cdot 0,9 \cdot 1,0 \cdot 1,0=0,0945 \mathrm{mм} / 06$.
Из подач, указанных в паспорте станка, принимают ближайшую меньшую нодачу $S_{0}=0,1$ мм $/ о б$; табличные значения расхода (см. карту $8, c$. 569) $Q_{r}=85 \pi /$ мин и давления $P_{\mathrm{T}}=2,85$ МПа; поправочный коэффициент (см. карту 8, с. 575) $K_{\mathrm{C}}=1,0$. С учетом формул корректирования расходаи давления СОЖ (см.ікарту 2, c. 552) нормативные значения этих величкн составят:

$$
\begin{aligned}
& Q_{\mathrm{x}}=Q_{\mathrm{r}} K_{\mathrm{C}}=85 \cdot 1,0=85,0 \text { л/мин; } \\
& p_{\mathrm{H}}=p_{\mathrm{r}} K_{\mathrm{C}}=2,85 \cdot 1,0=2,85 \text { мПа. }
\end{aligned}
$$

По паспортным данным станка устанавливаюот, что такие режимы подвода СОЖ обестечиваются насосной станцией станка, работающей во втором режизе.

Этап 7 - определить no napre 9 (c. 576) среднюю стийкост сверлилной головки.

Для сверлильных головок диаметром 26 мм при обработке отверстий в сталв. ной заготовке среднтй период стоикости равен 90 мин (критерий затупления $0,4 \mathrm{~mm}$).

Stan 8 - табпичнье значения скорости резания, осевой силы и модности резания найти но карте 10. Учитввая, что сталь 40 X относится к группе 4 , а ее твердость составляея 200 HB , значения скорости резания, осевой силы и мопипости при использовании сверлильных ronoboк дианетром 26 мм с наружным подводом СОК определяют no kapre 10 (c. 581).

При работе. с подачей $S_{0}=$
 $=74$ м/мин. В зависимоств от групть материала и еготдердости поправочный коэффициент $K_{v_{\mathrm{H}}}=0,9$ (см. карту 10 , c. 592) Поправочньнй коэффидиент на марку твердого сплава (ТБК10) $K_{\text {тх }}=$ $=1,1$ (см. карту 10, с. 592).

Нормативная скорость pesamat уче том формулы корректирования (карта 2, c. 552)

$$
\begin{gathered}
v_{\mathrm{H}}=\dot{v}_{\mathrm{T}} K_{v_{\mathrm{y}}} K_{v_{\mathrm{u}}}=74 \cdot 0,9 \cdot 1,1= \\
=73,26 \mathrm{~m} / \mathrm{MuH}
\end{gathered}
$$

Частота врацения миинделя, необ. ходиная для обеспечения порматинной скорости резания,

$$
\begin{gathered}
n_{\mathrm{R}}=\frac{1000 v}{\pi D}= \\
=\frac{1000 \cdot 73,26}{3,14 \cdot 26,0}=897,35 \mathrm{MHN}^{-1} .
\end{gathered}
$$

Частота вращения тиинделяя по паспорту станка, ближайшая меньшая по отношению к нормативному, $n=$ $=800$ мин $^{-1}$.

Скороть резания, соответствуюшая принятой частоте вращения ипинделя,

$$
\begin{gathered}
v=\frac{5 . D n}{1000}=\frac{3,14 \cdot 26 \cdot 800}{1000}= \\
=65,3 \mathrm{~m} / \text { мин }
\end{gathered}
$$

По карте 10 (с. 581) с помошью, интерполяции находят, что табличная осевая сила для сверлильной головки диаметром 26 мм при подаче $S_{0}=$ $=0,10 \mathrm{~mm} / o б$ равна: $P_{\text {от }}=4,09 \mathrm{\kappa H}$. Поправочный коэффициент в яависнмости от твердости обрабатываемоно
matepanse $k x_{x}=0,9$ (cm. карту c. 592), а норматинная осевая си с учетом формулы корректировани. (kapta 2, c. 552)
$P_{O_{K}}=P_{0_{\mathrm{R}}} K_{P_{\mathrm{Fi}}}=4,09 \cdot 0,9=3,68 \mathrm{KH}$
Провсриa yenobus $P_{\mathrm{O}_{\mathrm{H}}} \leqslant P_{0}$ ноказызает, что оно винолтяет. $(3,68 \leqslant 7,84)$.

По катте 10 (с. 581) также с помодд интерполнини устанавливаюот, таблинная моинотт резания N_{T} $=4,12$ к 3 т. Потравоныне коэфф. मиенты на модность $K_{N_{\mathrm{H}}}=0,8$, а $K_{N_{\mathrm{n}}}$ $=1,1$ (карта 10, c. 592).

Нормативная момность резани с учетом форму,лы корректировакия (kapra 2, c. 552)

$$
N_{\mathrm{HI}}=N_{\mathrm{T}} K_{N_{\mathrm{H}}} K_{N_{\mathrm{XI}}}=4,12 \cdot 0,8 \cdot 1,1=
$$ $=3,62 \mathrm{~KB}$.

Сравнения показывают, ито нормя тизная мощность меньше, чем моп носле, допустимая станком е учетом коэффициента запаса 0,8 :

$$
N_{\mathrm{n}}<0,8 N_{\mathrm{cT}} \quad(3,62<8)
$$

Талим образом, зьораный режна резаная осушествим на шодернизиро ванном токарном станке мод. 16 K 20

Эram 9 - - по карте 11 (c. 597) в зевисимости от обрабатываемого мате риала, тила н диаметра инструменте определить сурімарнуо стойкссть : норму расхода сверлильнви roловок на 1000 ч основного времени:

$$
\sum T=34,5 \cdot \quad P_{1000}=32 \mathrm{wut}
$$

Эran 10 - принимая длину подводд $y_{1}=1,3 \mathrm{mм}$ (табл. 9); врезаняя го ловки $y_{2}=9 \mathrm{mм}$, тлубину отверстиж $l=720 \mathrm{mм}$ а длину перебега $y_{\mathrm{s}}=$ $=3,9$ мм, рассчитать основное время обработки отверстия:

$$
\begin{gathered}
t_{0}=\frac{y_{1}+y_{3}+l+y_{3}}{n S_{0}}= \\
=\frac{1,3+9+720+3,9}{0,075 \cdot 630}=9,18 \text { мин }
\end{gathered}
$$

Этап 11 - определение расхода ин струмента на программу.

$$
\begin{aligned}
& p_{0}=\frac{N t_{0} P_{1 n 00}}{60000}= \\
= & \frac{500 \cdot 9,18.32}{60000}=2,45 \mathrm{mr}
\end{aligned}
$$

Значение P_{o} округляют до ближайдего большего целого числа; $P_{\text {п }}=$ = 3 шт.
Пример 2. Оиределить расход инструента на програмпу, т. е. определить асход сверлильных перетачивдемыу бловок диаметром 30 мм с наружным одводом СОЖ.
Ислддные данжье: программа обраатываемых дегалей 2500 ши ; итучное ремя обработки $t_{\text {нит }}=37$ мин $=$ $=0$, т 2 ч, коэффиииент переработки topм $K=1,2$..
Эrап 1 - определить трудоемкость ферления отверстий:
$X_{\mathrm{H}}=\frac{N T_{\mathrm{ur}}}{K}=\frac{2500 \cdot 0,62}{1,2}=1291,7 \mathrm{~m}$.
Этап 2 - по карте 11 (с. 598) устаиовить суммарную стойкость. Для

сверлильных головок с наружным подводом СО录 диаметром 30 мм суmмарная стойкость составляет 33 ч.

Этап 3 - определить коэффициент типа производства K_{T}. С учетом того, что прпизводство является среднесеряйным (исходя из арограммы) н руксводчвуясн примечанитм к карте 12 , принимают $K_{T}=0,7$.

Этап 4 - установиті расход головок. По карте 12 (с. 601) с помощьн антерполяции находят, что при установленнцх значениях трудоемкости, суммарной стойкости и кизффииентв на тял производства расход головок составиг 29 шт.

Эгап 5 - установив коэффициент случайний убыли (см. карту 11, с. 597) $K_{y}-1,1$, находят расход головок $P_{\mathrm{II}}=31,9$ wт. Принимают $P_{\mathrm{u}}=$ $=32$ шт

ЕЖИМЫ РЕЗАНИЯ

Іоследовательнозь расчета режимов резания, основного ремени и норм расхода инструменга

	Содержание эгапа	Используемая иарта, рдкчетная формула	Исходине данныя
1	Подготовка исходных данных	-	Обрабатываемая деталь: масса, форма, габаратные размеры, малериал, твер дость матерпла, диаметр н гіуиига отверстия, тот ность диаметра, допуск прямолинейности оси, ше роховатость поверхности
2	Определение группы обрабатываемости материала	Қарта 3	Марка материала детали
	Определение комплексни и точностной характеристики операции	Kapta 4	Матернал детали, диамеп и г.яубина пверстия, па раметры іочности и шеро ховатости
4	Внбор типа инструмента	Қарта 5, прил. 5	Диаметр и глубина обра батываемого отверстия. схема обработки, комплексная то'нолтная ха рактеристика операции

Hoмер stana	Содержание этапа	Используемая карта, расчетная формулд	Исходныс данные
5	Выбор марки твердого сплава для инструмента и СОЖ	Карта 6, указания на с. 544	Материал детали, треня вания к обработке
6	Определение формы и геометрическиж параметров части инструмента	Kapta 7	Материал детали, его фи зико механические Сви. ства, тип и диаметр и. струмента, условия обр ботки
7	Определение подачи, расхода и давления СОЖ: определение табличных значений подачи, расхода и давления СОЖ; корректирование табличного значения подачи с учетом поправочных коэффициентов; выбор подачи по паспорту станка; корректирование табличных значений расхода и ддвления СОЖ с учетом поправочных коэффициентов; проверка расхода и давления СОЖ no паспорту станка	Карта 8	Материал детали и $\epsilon_{\text {, }}$ твердость, тип и диаме инструмента, комплекс ная точнистная харакіс ристика опердиии, хараз теристика гистемы СПИ। диаметр и глубина обр. батываемого отверсти паспортные данные ста ка
8	Выбор среднего периода стойкости инструмента и критерия затупления	Kapra 9	Материал детали, тип диаметр инструмента

Kлассирикация марок обрабатываемых материалов			Kарта 3
номер грувтн обрайа- твваемо- ro ма-	Обраватываенй материал (Homep rOCTa)	Mapka	$\begin{gathered} \text { Tмердость } \\ \text { IB } \end{gathered}$
1	```Утдеродистая качествен- ная сталь: конструкпионная (1050-74) рессорно-пружинная (14959 - 79)```	08, 10, 15, 20, 25	110-320
		30, 45, 50, 60	160-320
		$\begin{aligned} & 65,70,75,80,85,60 \Gamma, 65 \Gamma \\ & 70 \Gamma \end{aligned}$	
$8{ }^{8}$	Конструкционая сталь повышенной и высокой обрабатываемости (1414-75): углеродистая сернистая	$\begin{aligned} & \mathrm{A} 12, \mathrm{~A} 20, \mathrm{~A} 30, \mathrm{~A} 35 \\ & \mathrm{~A} 40 \mathrm{R} \end{aligned}$	160--230
	Конструкционная легиронанная сталь (4543-71): хромистая	$\begin{aligned} & 15 \mathrm{X}, \quad 15 \mathrm{XA}, 20 \mathrm{X}, 30 \mathrm{X}, \\ & 35 \mathrm{XPA}, 35 \mathrm{X}, \\ & 45 \mathrm{X}, 50 \mathrm{X}, \end{aligned}$	$\begin{gathered} 160 \\ 160-230 \\ 230-320 \end{gathered}$
	маргандовистая	$15 \Gamma, 20 \Gamma, 25 \Gamma, 30 \Gamma, 35 \Gamma$ $40 \Gamma, 45 \Gamma, 50 \Gamma, 10 \Pi 2$ $30 \Gamma 2,35 \Gamma 2,40 \Gamma 2,45 \Gamma 2$, $50 \Gamma 2$	$\begin{aligned} & 160-230 \\ & 230-320 \\ & 110-320 \end{aligned}$
86 ${ }^{6}$	хромомартандоеая		$\begin{aligned} & 180-230 \\ & 230-320 \end{aligned}$
4. 7	хромокремнистая	$38 \mathrm{XC}, 33 \mathrm{XC}, 40 \mathrm{XC}$	180-320
${ }^{8} 8$	хромомолибденовая и кромомолибденованадиевая	$\begin{aligned} & 15 \mathrm{XM}, \quad 20 \times M, \quad 30 \times M, \\ & 30 \times M A, \quad 35 \times M \\ & 38 \mathrm{XM}, 30 \times 3 М Ф, 40 \times М Ф А \end{aligned}$	160-7270
* 9	хромованадчевая$\begin{aligned} & \text { мромоникелевая } \\ & \text { хрононикелевая о } 60- \\ & \text { ром } \end{aligned}$	$15 \times \Phi, 40 \mathrm{X}$ ¢ A	$160-270$
- 10		$\begin{aligned} & 20 \times \mathrm{XH}, 40 \times \mathrm{H}, \\ & 55 \mathrm{XH}, \\ & 50 \mathrm{XH}, 12 \times \mathrm{K} 2,12 \mathrm{XH} 3 \mathrm{~A}, \\ & 12 \times 2 \mathrm{H} 4 \mathrm{~A}, \\ & 30 \times \mathrm{XBA} \end{aligned}$	180-270

Продолжение карть .

Номер группы обраєа-тываемого материала	Обрабать'вдцмый материал (номер ГОСТа)	Марка	
11	Конструкционная легированная сталь ($4543-71$) хромокремнемарганцовая и хромокремнемарганцовоникелевая	$\begin{aligned} & 20 Х Г С А, ~ 25 Х Г С А, ~ \\ & 30 \times Г С, 30 Х Г С А, \\ & 30 \times Г С Н 2 А, ~ 35 Х Г С А \end{aligned}$	180-320
12	хромоникельмолибденовая	14X2H3MA, 20XH2M, 30XH2MA, 38X2H2MA, 40XH2MA $40 \times 2 \mathrm{H} 2 \mathrm{MA}$, 38X3H3MA; 18X2H4MA, 25X2H4MA	180-270
13	хромоалюминиевая и хромоалюминиевая $с$ молио́деном	38X2К, 38X2M以2	180-270
14	Инструмеч гальная сталь углеродистая (1435-74)	$\begin{aligned} & \text { Y7, y8, y9, У8I', У10, } \\ & \text { Y11, У } 12, \text { Y13, y7A, У8A, } \\ & \text { Y8ГA, У9A, У10A, У11A, } \\ & \text { У12A, У13A } \end{aligned}$	180-270
15	$\begin{aligned} & \text { легированная } \\ & (5950-73) \end{aligned}$	$\begin{aligned} & \text { XB4, X, 9XC, XIC, } 9 \mathrm{X} \Phi, \\ & 6 \mathrm{XB2C,} \mathrm{X} C \mathrm{CB}, \mathrm{XBr}, \\ & \text { X12, X12M, } 7 \mathrm{X} 3,8 \mathrm{X} 3, \\ & 4 \mathrm{XC}, 6 \mathrm{C} \end{aligned}$	180-270
16	быстрорежуцая (19265-73)	$\begin{aligned} & \text { P18, P9, P12, P6M5, } \\ & \text { P18K5Ф2, P9K5, PoK10, } \\ & \text { P10K5 } 55, \text { P6M5K5, } \\ & \text { P9M4K8, P6M5 } 3 \text {, P12 } \Phi 3 \end{aligned}$	180-270
17	Чугун серый (1412-85)	$\begin{aligned} & \text { СЧ10, СЧ15, СЧ20, СЧ25, } \\ & \text { СЧ30, СЧ35 } \end{aligned}$	120-290
18	ковкий и высокопрочный (7293-85)		140-280

Выбор марки твердого сплава ${ }^{\text {¢ }}$ - Карта 6				
Тим инструмента	Обрабатываемый материал	Марка твердого сплава при комплекснои точностной характеристике операции *		
		нормальной	повышенной	нысокой
Сверла и головки одностороннего резания	Сталь	$\text { T15K } 10,$ BK6M	T15K6	$\begin{gathered} \text { TT10K85 } \\ \text { BK10-OM } \end{gathered}$
	Чугун	$\begin{aligned} & \mathrm{BK} 6-\mathrm{OM}, \\ & \mathrm{BK} 10-\mathrm{M} \end{aligned}$	BK8	$\begin{gathered} \text { TT8K6, } \\ \text { BK } 10-\mathrm{OM} \end{gathered}$
Сверла трубчатые перовые	Сталь	BK8	$\stackrel{-}{-}$	-
	Чугун			

* Определение комплексной точностной характеристики операции приведено в карте 4, с. 555 .

Определение формы и геометрических параметров рабочей части инструментов

Карта 7

Сверла одностороннего ревания диаметром 3-30 мм с внутренним подводом СОЖ

Формє 1. Плоскостная ваточка сверл. Основные геометрические параметры при ведены на эскизе в в табл. 1 .

Форма 2. Винтовая ваточка сверл. Основные геометрическне параметры винтовой заточки рабочей части сверла определяют из соотношений $m=0,2 D ; K=0,15 D$; $c=0,02 D ; F=0,05 D ; f=0,04 D ; \varphi=35^{\circ}, \varphi_{1}=20^{\circ} ; \alpha_{1 \varphi_{1}}=25^{\circ}$.

Поверхность A выполняется винтовой з шагом $S=0,1 D$.

Сверла одновтороннегореваниядиаметром 3-20 мм ецельнойтвердосплавной рабоче чаєтью н внутренннм подводом СОЖ

Форма 3 Плосжистная вıгичка сөеря Премэзндчеча для эбракотки глубокя отверстй с пове шен іым трєэованнем к шрооховатосги обрдботнняой повер

Форма 4 Ринтовая ваточка єяеря ІІрериазначена для обработкн тлубокц. отверсгий с повышеннымя требованя ями к шерохєватосии обработанной поверх ности ($\mathrm{Ra}=0,63-0,32$ мкм) О \quad новныс геометрические параметры рабоче части сверп приведены на эсьиэе и в табл 2 и 3 (см с 560, 561).

Поверхности A, B и B выполиени вичтовкми с иагом $S=0,1 D$

Сверлд одновтороннето резания диаметром $7,5-30$ мм, оснадин ыыетвердосплавными пластинами, с внутренним подводом СОЖ

Форма 5 Плоскистнал вапочка сверл Предназнд чена для обработки глубоких отверстий с плвышенными требованиями к шероховатости обработанной поверх ности ($R a-063-0,32$ мкм) Основные помстрические параметры рдбочей насти сверл приведены на жкизе н в табл 4 и о (см с 561)

рорма 6 Винтовая ваточка сверл Іредназначена для обработки тубоких утвєрсиии с повышенными треооь ннями и шероховаєости обрабоганной новерх цосги ($\mathrm{Ra}=063$-0 32 мкм) Основные геомегрические пардметры рабочей расти сверл приведены на экизе и в тдол 4 и 5 (см с 561)

> Сверла одностороннеторезаниядиаметром3-20 мм с цельнон твердосплавнои рабоче量 частью свнутреннй подводом СОЖ

Форныя 7 и 8 предназначены для рассверливания и сверления отверстий с глухим дном и обработки дна глухих отверстии. Основные геометрические параметры рабочей части сверл приведены на эскизе, а также в табл. 2 и 3 (см. с. 560 , 561) -- для формы 7 и в табл. 4 в 5 (см. с. 561) - для формы 8.

2. Размеры основных элементов плоскостной и винтовой заточек сверл одностороннего резання с цельной твердосплавной рабочей частью (формы 3, 5 и 7)

Диаметр сверла D, мм	Ралмерв освоввнх элементов, ми						
	m	m_{1}	m_{2}	F	c	'	f_{2}
		-					
3-5	0,7	0,5	-	0,4	0,08	0,12	-
5-8	1,2	1,0	1,0	0,6	0,10	0,15	0,3
8-12	2,0	1,3	1,3	0,7	0,15	0,20	0,4
12-15	2,4	1,6	1,6	0,8	0,20	0,25	0,5
15-20	2,8	2,0	2,0	1,0	0,25	0,30	0,6

3. Геометрические параметры плоскостиой и винтовой заточки сверл одностороннего резания с цельной твердосплавной рабочей частью (формы 3,5 и 7)

Обрабатвваемы¢ матервал	Твердость нв	Геометрические параметри, ...				
		φ	φ_{1}	α_{φ}	$\alpha_{1 \varphi}$	$\alpha_{1 \varphi_{1}}$
Сталь	До 240 $240-320$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	12	$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
Чугун	120-300	30	20	6	8	15

4. Размеры основных элементов плоскостной и винтовой заточки сверл одностороннего реэания, оснащенных твердосплавными пластинами (формы 4, 6 и 8)

Диаметр саерла D. мм	Размеры основных элементов, мм						
	m	m_{1}	m_{2}	F	c	I	f
7,5-10	2,0	1,3	1,3	0,6	0,10	0,20	0,45
10-12	2,4	1,6	1,6	0,7	0,20	0,25	0,55
12-14	2,8	2,0	2,0	0,8	0,25	0,30	0,65
14-18	3,6	2,4	2,4	0,9	0,25	0,40	0,80
18-22	4,5	3,0	3,0	1,0	0,25	0,50	1,00
22-26	5,5	3,6	3,5	1,1	0,25	0,60	1,20
26-30	6,5	4,0	4,0	1,2	0,25	0,70	1,40

5. Геометрические параметры плоскостной и винтовой эаточки сверл одностороннего резания, оснащенных твердосплавными пластинами (формы 4, 6 и 8)

Обрабатываеммя материал	Твердость НВ	Геометрические параметры, ...*				
		φ	φ_{1}	α_{φ}	$\alpha_{1 \varphi}$	$\alpha_{1 \varphi_{1}}$
Сталь	$\begin{gathered} \text { До } 240 \\ 240-320 \end{gathered}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{array}{r} 12 \\ 7 \end{array}$	$\begin{array}{r} 18 \\ -15 \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
Чугун	120-300	30	20	6	8	15

Сверлатрубчатые перовые диаметром 3-30 мм, оснащенныетвердосплавными пластинами. с внутренним подводом СОЖ

Форма 9. Заточка сверл по одной и доум плоскостям. Основные геометрически параметры заточки сверл по одной и двум плоскостям, а также формы подточұ по передним поверхностям показаны на эскизе. Размеры приведены в табл. 6 и

Применяют плоскостную заточку при $D=3,0 \div 6,0$ мм .
Форма 10. Винтовая ваточка сверл. Основные геометрические параметры винтовоз заточки свери, а также формы подточки по передней поверхности показаны на эскизе. Размеры приведены в.табл. 6 и 7.

Поверхность A выполняют винтовой с waгом $S=0,1 D$.
3. Геометрические параметры плоскостной и винтовой заточки трубчатых перовых гверл (формы 9 и 10)

Обрабатывае- мыА материал	твердость HB	Геометрические параметры				
		α	α_{1}	γ	2φ	b_{n}^{\prime}, мм
		... ${ }^{\circ}$				
Зталь	До 240	12	30	$0-+5$	118	0,6-0,8
	240-320	9			120	
Хугун	120-300	9		0	125	

1. Размеры стружколомающих порожков при обработке стали

Oбозначедие размера	Размеры порожков при диаметре сверла D, мм				
	$6-10$	$10-15$	$15-20$	$20-25$	$25-30$
B	0,5	0,6	0,8	1,0	1,2
H	0,3		0,4		0,5

Головкисверлильные однорезцовые диаметром 16 - 65 мм снаружным подводом СОЖ

ьоржа 11. Для достижения формы стружки, способствующей ее хорошему тводу, головки затачивают со стружколомающими порожками, число которых ависит от диаметра головки. Форма и размеры стружколомающих порожков,
также геометрические параметры инструмента даны на эскизе и в табл. 8.

8. Конструктивные элементы и геометрические параметры головок сверлильнь с наружным подводом СОЖ

Обрабатываемый материал	$\underset{\mathrm{HB}}{\text { твердость }}$	D	h_{n}	b_{n}	b	φ	φ_{1}	$d_{\text {¢ }}$		$\alpha_{1 \varphi_{1}}$	10
		m ${ }^{\text {m }}$.. ${ }^{\circ}$					
Сталь	До 240	16-30	0,4	2,5	0,5	25	20	15	18	18	1
		30-40	0,4	3,0	0,8	25	20	15	18	18	is
		40--50	$0,5$	$3,5$	$1,0$	25	20	12	15	15	13
		50-60	0,5	$4,0$	1,0	25	20	12	15	15	is
	240-320	16-30	-0,6	2,5	0,5	20	15	12	15	15	16
		30-40	0,6	3,0	0,8	20	15	12	15	15	16
		40--50	$0,8$	3,5	1,0	20	15	10	13	13	14
		50-65	0,8	4,0	1,0	20	15	10	13	13	14
Чугун	120-300	16-30	0,4	3,5	1,0	15	10	10	13	13	-
		30-40	0,4	4,0	1,0	15	10	10	13	13	1
		40-50	0,5	4,5	1,5	15	10	8	11	11	12
		50-65	0,5	5,0	1,5	15	10	8	11	11	. 12

Головки сверлильныетрехрезцовыедиаметром 20-65 мм с наружным подводом СОЖ, сраздельно расположенными твердосплавными пластинами

Форма 12. Головки затачивают со стружколомающими порожками, форма размеры которых приведены на эскизе и в табл. 9.

9. Размерв (мм) конструктивных элементоз заточки сверлильных головок с раздельно расположенными твердосплавными пластинами и наружным подводом COK

Диаметр головки D, mM^{\prime}	Размеры основных элементов						
	a	b	e	f	f_{1}	P	K
20-24,1	0,4	1,5	3	0,5	0,6	1,5	0,5
24,1-28,1	0.4	1,6	3,5	0,6	0,6	2,0	0,5
28,1-31	0,4	1,7	4	0,6	0,7	2,0	0,7
- $31-39,6$	0,5	1,8	5	0,6	0,7	2,0	0,7
- 39,6-65	0,5	2,0	5	0,8	-0,8	2,5	1,0

Сверда с виутренним эжекторным отводом стружки диаметром $20-65$ мм

рорма 13. Сверла затачивают со стружколомаюиими порожками, форма и разжеры которых приведены на эскизе и в табл. 10 .

10. Размеры (мм) стружколомающих порожков в зависимости от диаметра свер.

Размер	Диаметр сверла D, мм					
	20-24	24-29	29-36	36-40	40-50	50-65
$a^{+0,05}$	0,4	0,4	0,4	0,5	0,5	0,5
$b^{+0,05}$	1,5	1,6	1,7	1,8	2,0	2,2
e	3,0	3,5	4,0	4,5	5,0	5,0
$f \pm 0 ; 05$	0,5	0,6	0,6	0,7	0,8	0,8
f_{1}	0,6	0,6	0,8	0,8	1,0	1,0
P	1,5	2,0	2,0	2,0	2,5	2,5
K	0,5	0,5.	0,7	0,7	1,0	1,0
					,	

Сверла одностороннего резания диаметром 30 55 мм с МНПи внутренним подводом СОЖ

Форма 14. Геометрия режущей части показана на эскизе. Основные парамет определяют из зависимостей: $\quad c=0,03 D ; F=0,05 D ; K=0,3^{+0,2}$ мм; φ $=\varphi_{1}=10^{\circ} ; \alpha_{\Phi}=\alpha_{\varphi_{1}}=7^{\circ}$.

\cdots

Головки для рассверливания диаметром 50-125 мм с наружным подводом СОЖ

ӊорма 15. Головки затачивают со стружколомающими порожками, форма и азмеры которых приведены на эскизе и в табл. 11.

1. Ширина стружколомающего порожка b, мм

Сверла одностороннего резания диаметром 3-30 мм с внутренним подводом СОЖ

5рабатьваемьй материал - сталь							
Комплексная точностная ррактеристика операции	Диаметр сверла D, мм						
	3-4	4-6	6-10	10-15	15-20	20-25	25-30
	Подача $S_{\mathrm{o}_{\text {¢ }}}, \mathrm{mm} /$ об						
ормальная	0,014	0,020	0,032	0,050	0,070	0,090	0,110
овышенная	0,010	0,014	0,021	0,034	0,049	0,065	0,080

Комплексная точностная характеристика операдин		Днмметр сверла D, мм						
		3-4	4-6	6-10	10-15	15-20	20-25	25-30
		†одача $S_{\mathrm{O}_{7}, ~ м м / о б ~}^{\text {, }}$						
Високая		0,005	0.0075	0,012	0,019	0,026	0,034	0,041
Параметри СОЖ	$\text { Pacxof } Q_{r}$ л/Мин	4	8	12	20	35	45	55
	Давленяе $p_{\mathrm{T}}, \mathrm{M} \boldsymbol{M a}$	8,0	6,0	6,0	5,5	5,5	5,0	4,5

Обрабатьиваемый натериал - чугун

Комплексная точностдяя марактеристика оиераяия		Диаметр свехрла D, мм						
		3-4	4-6	6-10	10-15	15-20	20-25	25-30
		Подаиа $s_{\mathrm{O}_{T}}$, мм/об						
Нормальная		0,020	0,030	0,040	0,055	0,085	0,110	0,135
Повышенная		0,015	0,025	0,035	0,050	0,070	0,090	0,120
Высокая		0,010	0,020	0,030	0,040	0,055	0,075	0,100
Параметри COK	Расход Q_{T}, п/Мин	3	6	10	15	30	40	50
	Давление $p_{\mathrm{T}}, \mathrm{MПа}$	7,0	6,0	5,5	5,0	4,5	4,0	4,0

Сверлатрубчатые перовыедиаметром 3-30 мм, оснащенннетверднм сплавом, свнутренним подводом СОЖ

Обрабатьваемьй материал -сталь

Комплексная точностная карактеристнка операцин		диаметр сверла D, мм						
		3-4	4-6	6-10	10-15	15-20	20~-25	25-30
		Подауа $S_{\mathrm{O}_{T}}, \mathrm{mm/o6}$						
Нормальная		0,020	0,030	0,050	0,075	0,105	0,135	0,165
Параметры COK	$\text { Раеход } Q_{T}$ л/Мин	5,5	12	20	35	45	50	75
	Давление $p_{\mathrm{F}}, \mathrm{M}$ Па	5,0	4,5	4,5	4,0	3,5	3,0	2,5

Обрабатываемый материал - чугцн

Комплексная гочностная характеристика операдии								
		3-4	4-6	6-10	10-15	1b-20	20-25	25-30
Нормальная		0,03	0,040	0,070	0,100	0,150	0,190	0,23
Параметры СОЖ	${\underset{\pi / \text { мин }}{\text { Pacxод }} Q_{T}}$	5	10	15	25	35	45	65
	Давление $\boldsymbol{p}_{\mathrm{r}}, М П а$	4,5	4,5	4,0	3,5	3,0	2,5	2,0

Головки сверлильнде однорездовыедмаметром $16-65$ мм с наружным додводо* СОж
Обрабатываеньй материа. - спталь

Комплексиая точност ная характеристикя операции		Диамегр головки D, мм						
		16-26\| $25-30$		30-35	35-40	40-45	45--55	55-65
		Подача $S_{\mathrm{O}_{\mathrm{T}^{\prime}}}$ мм/об						
Нормальная		0,080	0,110	0,145	0,175	0,195	0,210	0,230
Повышенная		0,060	0,105	0,125	0,150	0,070	0,080	0,190
Высокая		0,040	0,080	0,100	0,120	0.145	0,165	0,175
Параметт ры СОЖ	Расход Q_{T}, л/миі	65	85	95	105	115	125	135
	Давление $p_{\mathrm{T}}, \mathrm{MHa}$	3,3	2,85	2,7	2,55	2,4	2,25	2,1

Обрабатьввемьй материал - чуеун

Комтлексная топностная хдрактеристика опердции		Дкаметр головки D, мм						
		16-25\| $25-30$		30-35	35-40	40-45	45-56	55-65
		Подеча $s_{\mathrm{O}_{\mathrm{T}}}$, mm/og						
Нормальная		0,115	0,155	0,195	0,220	0,250	0,230	0,310
Повышенная		0,095	0,135	0,170	0,200	0,230	0.260	0,290
Высокая		0,075	0,110	0,150	0,175	0,200	0,230	0,260
Парамет. ры СОЖ	$\underset{\pi / \text { Мкूн }}{\text { Pačод }} Q_{T},$	50	70	80	90	100	110	120
	Давление $p_{\mathrm{F}}, \mathrm{M} \Pi \mathrm{a}$	3	2,55	2,4	2,25	2,1	1,95	1,4

Головки сверлильные одностороннего резания трехрезцовыедиаметром 20-65 мм снаружным подводом СОЖ
Обрабатьваемьй материал - сталь

Комплексная точностная х характеристика операции		Диаметр головки D, мм.						
		20-25	25-30	30-35	35-40	40-45	45-55	55-65
		Подача $S_{\text {O }_{\text {r }}}, \quad$ мм/об						
Нормальная		0,080	0,110	0,145	0.175	0.195	0.210	0,230
Повышенная		0,060	0,105	0,125	0,150	0,170	0,180	0,190
Параметры СОЖ	Расход Q_{T}, л/мин	65	85	95	105	115	125	135
	Давление $p_{\mathrm{T}}, \quad М П \mathrm{a}$	3,3	2,85	2,7	2,55	2,40	2,25	2,1

Обрабатываемый материал - чугун

Комплексная точност- ная характеристика операции		Диаметр головки D, мм						
		20-25	25-30	30-35	35-40	'40-45	45-55	55-65
		Подача $S_{\mathrm{O}_{\mathbf{T}},}$ м ${ }^{\text {/ }}$ /об						
Нормальная		0,115	0,155	0,195	0,220	0,250	0,280	0,310
Повышенная		0,095	0,135	0,170	0,200	0.230	0,260	0,290
Параметры СОЖ	Расход Q_{T}, л/мин	50	70	80	90	100	110	120
	Давление $p_{\mathrm{T}}, \mathrm{M}$ П	3	2,55	2,4	2,25	2,10	1,95	1,8

Сверла с внутренним эжекторным отводом стружки диаметром 20-65 мм
Обрабатываемый материал - сталь

Комплексная точностная $\begin{gathered}\text { характеристика } \\ \text { операции }\end{gathered}$		Диаметр сверла D, мм						
		20-25	25-30	30-35	35-40	40-45	45-55	55-65
		Подача $S_{\mathrm{O}_{\mathrm{T}}}, \mathrm{Mm} /$ об						
Нормальная		0,085	0,135	0,160	0,190	0,210	0,230	0,250
Повышенная		0,070	0,110	0,135	0,160	0,190	0,210	0,230
Параметры СОЖ	Расход Q_{T}, л/мин	50	60	75	90	100	110	120
	Давление $p_{\text {т }}$, МПа	1,65	1,4	1,35	1,20	1,10	1,05	1,0

Обрабатываемый материал - чугун

$\begin{aligned} & \text { Комплексная точност. } \\ & \text { ная карактеристика } \\ & \text { операции } \end{aligned}$		Диаметр сверла D, мм						
		20-25	25-30	30-35	35-40	40-45	45-55	55-65
		Подача $S_{\mathrm{O}_{\mathrm{T}}}$, мm/0б						
Нормальная		0,120	0,15	0,19	0,23	0,27	0,31	0,350
Повышенная		0,10	0,13	0,16	0,19	0,23	0,27	0,30
Параметры СОЖ	$\text { Расход } Q_{T},$ л/Мин	45	55	70	85	90	100	110
	Давление p_{T}, MГla	1,5	1,35	1,3	1,15	1,05	1,0	0,9

Сверла одностороннегорезаниядиаметром $30-55$ мм смеханическим креплением МНП и внутренним подводом СОЖ

Обрабатываемьйи материал - сталь

Комплексная точностная характеристика операдии		Диаметр сверла D, мм				
		30-35	35-40	40-45	45-50	50-55
		- Подача $S_{\text {Or }^{\text {r }} \text {, мm/об }}$				
Нормальная		0,68	0,09	0,10	0,115	0,14
Повышенная		0,05	0,06	0,07	0,08	0,09
Параметрьь СОЖ	$\begin{aligned} & \text { Расход } Q_{\mathrm{T}}, \\ & \mathrm{\pi} / \text { мин } \end{aligned}$	40	46	53	61	70
	Давление $p_{\text {т }}$, МППа	2,4	2,2	2,0	1,8	1,5
рбрабатьваемьй материал - чуеун						
Комплексная точностная характеристика операцни		Дианетр сверла D, мм				
		30-35	35-40	40-45	45-50	50-55
				a $S_{\mathrm{O}_{\mathrm{T}}{ }^{\text {, }} \text {, }}$		
Аормальная		0,125	0,135	0,150	0,165	0,185
Товышенная		0,09	0,10	0,11	0,12	0,13
Тараметриь ○K	Расход Q_{T}, л/мин	35	41	. 46	51	57
	$\begin{aligned} & \text { Давление } p_{\mathrm{T}}, \\ & \text { МПа } \end{aligned}$	2,0	1,9	1.7	1,5	1,3

Головки сверлильные диаметром 65-125мм сборныеснаружным иодводом СОЖ
Обрабатываемьй материал

- сталь

Комплексная точностная характеристика операции		Диаметр головки D, мM						
		65-70	70-75	75-85	35-95	$95-105$	${ }_{115}^{105}$	115-1:
		Подача $S_{\text {Or }^{\prime}}$, мм/об						
Нормальная		0,170	0,185	0,210	0,225	0,240	0,265	0,280
Повышенная		0,150	0,165	0,195	0,210	0,225	0,240	0,265
Параметрьь СОЖ	Расход Q_{T}, л/мин	150	170	200	220	240	260	280
	$\begin{aligned} & \text { Давление } p_{\mathrm{T}}, \\ & \text { МПа } \end{aligned}$	2,10	2,00	1,90	1,30	1,70	1,60	1,50

Обрабатььваемый материал - чугун

Комплехсная точностная характеристика операции		Диаметр головки D, мм						
		65-70	70-75	75-85	85-95	${ }^{95}$	105	115-1\%
				Пода	S_{0}	mm/		
Нормальная		0,200	0,225	0,240	0,260	0,275	0,300	0,330
Повышенная		0,180	0,190	0,230	0,245	0,260	0,275	0,300
Параметрия СОЖ	$\begin{aligned} & \text { Расход } Q_{\mathrm{T}}, \\ & \mathrm{\pi} / \text { мин } \end{aligned}$	130	150	180	200	220	240	260
	$\begin{aligned} & \text { Давление } p_{\mathrm{T}} \\ & \text { МПа } \end{aligned}$	1,70	1,55	1,40	1,25	1,10	0,95	0,80

Головки сверлильныетрехрезцовые диаметром 90-125 мм снаружным подводом СОЖ
Обрабатываемый материал - сталь

Обрабатьваемый материал - чугун

Комплексная точностная षарактеркстика операции		Диаметр головки D, мм						
		90-95	${ }_{100}^{95}$	$100-$ 105	$1105-$	${ }_{115}^{110}$	$115-$ 120	$\stackrel{120-}{125}$
		Подача $S_{\mathrm{O}_{\text {T }}}$, мм/об						
Нормальная		0,265	0,275	0,280	0,285	0,295	0,305	0,330
Іовышенная	1	0,250	0,260	0,265	0,270	0,280	0,290	0,300
Іараметры СОЖ	Pacxoд Q_{T}^{\prime}, л/Мин	205	210	220	235	245	250	260
	Давление $p_{\text {т }}$, МПа	1,20	1,15	1,05	1,0	0,90	0,85	0,8

Головки для растачивания диаметром $50-125$ мм с наружным подводом СОЖ

брабатьєваемьй материал - сталь

Комплексная точностная характеристика операции		Диаметр головки D, мм						
		50-55	55-65	65-75	75-85	85-95	$\stackrel{95-105}{ }$	105-1.25
		Подачча $S_{\mathrm{o}_{\mathrm{T}}}$, мм/об						
ормальная		0,27	0,280	0,300	0,320	0,335	0,350	0,370
овышенная		0,25	0,265	0,280	0,295	0,310	0,335	0,355
араметры ○K	$\begin{aligned} & \text { Расход } Q_{T}, \\ & \text { л/мин } \end{aligned}$	120	150	170	190	210	230	270
	$\begin{aligned} & \text { Давление } p_{\mathrm{r}}, \\ & \text { МПа } \end{aligned}$	1,80	1,70	1,60	1,50	1,40	1,30	1,20

брабатываемьій материал \rightarrow чугун

Комплексная тояностная карактеристика операции		Диаметр головки D, мм						
		50-55	55-65	65-75	75-85	85-95	$\stackrel{95}{105}$	105-115
		Подапа $s_{\text {Or, }^{\prime}}$ м м $/$ /об						
¢рмальная		0,300	0,315	0,330	0,345	0,360	0,375	0,390
овышенная		0,285	0,300	0,315	0,330	0,345	0,360	0,375
араметрь ○Ж	$\begin{aligned} & \text { Расход } Q_{T} \text {, } \\ & \text { л/мин } \end{aligned}$	100	120	140	160	180	200	240
	$\begin{aligned} & \text { Давление } p_{\mathrm{r}}, \\ & \text { МПа } \end{aligned}$	1,60.	1,45	1,30	1,15	1,00	0,85	0,70

Поправочныекоэффициентынаподачу инструмента, расходидавление СОЖ

ІТоправочный коэффициент на подачу инструмента в ваеисимости от условий обработки и жесткости. систежь станок-приспособление инструмент - заготовка (СПИЗ)

Условия обработки	спиз	K_{S}
Сверление глубоких отверстий: в деталях типа тел вращения на специализированных станках с автоматизированной системой управления	Жесткая	1,15
в корпусных деталях на специализированных станках с автоматизированной системой управления		1,05
в деталях типа тел вращения на специализированных станках с предохранительными устройствами от перегрузки инструмента		1,0
в корпусных деталях на специализированных станках с предохранительными устройствами от перегрузки инструмента		0,95
в деталях типа тел вращения на модернизированных универсальных станках	Пониженіной жесткости	0,9
в корпусных деталях на модернизированных универсальных станках		0;85
Сверление точных отверстий в деталях со стенками неравной жесткости, ступенчатых или глухих отверстий	Малой жесткости	0,75

Поправочный кояффичиент $K_{S_{L}}$ в вависимости от отношения длиньє корпуса сверла к его диаметру (L_{Fc} / D)

			D, не	nee	
Сверло	15	30	50	75	100
			$K_{S}{ }_{L}$		
Одностороннего резания с внутренним подводом СОЖ	1,05	1,0	0,85	0,70	0,55
Одностороннего резания с наружным подво дом СОЖ	1,10	1,0	0,90	0,80	0,70

Поправочные коэффициенть на подачу $K_{S_{\mathrm{H}}}$, расхпд и давление СОЖ K_{C} в зависимпсти от твердпсти обрабатывпежого материала

Обрабатываемый материал	Сталь				Чугуи	
Твердость HB	До 160	160-240	240-300	300	170	290
$k^{S_{H}}$	1,15	1,0	0,8	0,6	1,0	0,9
${ }^{\prime}$	0,9	1,0	1,1	1,2	1,0	1,15

Поправочный коэффициент на подаиу в вависимости от разности диаметров расточного инструмента и обрабатьвсемого отверстия при растачивании головками диаметром 50 - 125 мм

Разность диаметров $(D-d)$, мм	До 5	$5-10$	$10-15$
\boldsymbol{K}_{d}	1,0	0,9	0,8

Выбор среднего периода стойкости и критерия затупления.

Kapra 9

Сверла одностороннего ренания диаметром 3--20 мм с цельной твердосплавной режуиций частью с внутренним подводом СОЖ

Обрабатываемыйматериал	Средний период стойоости T, мин, и критерий затупленияh_{3}, мм	Диамегр сверла D, мм				
		3-4	4-6 6	6-10	10-14	14-20
¢таль	T	50	60	70	90	145
	h_{3}	0.2	0,3	0,3	0,4	0,5
Аугун	T	80	90	120	140	180
	h_{3}	0,3	0.3	0,4	0,4	0,5

Сверла одностороннего резания; оснащенные твердоспловными пластинами диаметром 7,5-30 мм с внутренним подводом СОЖ

$\begin{gathered} \text { Оорабатываемый } \\ \text { материал } \end{gathered}$	Средний период стоижости T, мин, и критерий затупления h_{3} м м ния h_{3}, Мм	Диаметр сверла D, мм			
		7,5-12	12-19	19-24	24-30
таль	T	70	90	145	145
	\cdot_{3}	0.3	0,4	0,5	0,5
угун	T	140	180	220	290
	h_{3}	0,4	0,5	0.6	0,8

Сверла прубчотие перовые диаметром 3-30 зм, оснащеннье твердосплаоными пластинами с внипреннин подводом СОЖ

Обрабатываемыа материал	Среддай период сткритерия затупления h_{g}, мм	диаметр сsерла D, мм				
		3-6	5-15	15-20	20--25	25--3.
Сталь	T	75	90	120	130	150
	h_{3}	0,5	0,8	1,0	1,2	1.4
Чугун	T	100	120	150	180	220
	h_{3}	0,5	0,8	1,0	1,2	1.4

Головки сверлильные диажетром $16-65$ мм с наружнын подводом СОЖ

Обрабатываемьйматериал	Средниа пернод стойкости T, мин, н критерий затупле.ния h_{3}, мм	Диаметр головкік D, мм			
		16-30	30-40	40-50	50-63
Сталь	T	90	120	140	160
	h_{3}	0,4	0,55	0,75	0,85
Чугун	T	100	135	160	180
	h_{3}	0,6	0,8	1,0	1,2

Головки сверлильные одностороннеео резания
трехрезчовые диаметром 20--65 нм с нарілнньн подводом СОЖ

	Соедняа перисд ния h_{3}, мм	Днамету головки D, мм			
		20-30	30-40	$40-50$	50-68
Сталь	T	90	120	140	160
	h_{3}	0,4	0,55	0,75	0,85
Чугун	T	100	135	160	180
	h_{3}	0,6	0,8	1,0	1.2

Головки сверлильные одностороннего резания трехрезцовые диаметром 20-65 жж с внупренним эжекторным отводом стружки

$\underset{\substack{\text { Обрабатываемый } \\ \text { матернал }}}{ }$		Днаметр головка D, мм			
		20--30	30-40	40-50	50-35
Сталь	T	90	120	140	160
	h_{3}	0,4	0,55	0,75	0,85
Чугун	T	100	135	160	180
	h_{3}	0,6	0,8	1.0	1,2

Сверла одностороннего резания диаметром $30-55$ мм
с механическим креплением МНП и внутренним подводом СОЖ

Обрабатываемый материал	Средний период стонкости T, мин, и критерий затупления h_{3}, мм	Диаметр сверла D, мм			
		30-35	35-40	40-45	45-55
Сталь	T	80	90	120	140
	h_{3}	0,45	0,55	0,75	0.80
нугун	T	100	110	135	160
	h_{3}	0.70	0.80	0,9	1,1

Головки сверлильные диаметром 65-125 мм с наружным подводом СОЖ

Обрабатываемый материал	Средний период стойости T, мин, и критерий затупления h_{3}, мм .	Диаметр головки D, мм			
		65-75	75-85	85-95	95-125
Сталь	T	160	180	200	220
	h_{3}	0.6	0.8	1,0	1,2
Нугун	T i	180	200	230	250
	h_{3}	0.9	1,1	1,3	1,5

Головки сверлильные трехррезцовые с наружным подводом СОЖ диаметром 90-125 мм

Обрабатываемыи материал	Средний период стойкости T, мин。 и критерий затупления h_{3}, мм	Диаметр головки D, мм			
		90-95	95-105	105-115	115-125
Сталь	T	200	205	210	220
	h_{3}^{\prime}	1.0	1.05	1,10	1,2
Нугун	T	230	235	240	250
	h_{3}	1,3	1,35	1,4	1,5

Головки для растачивания диаметром 50-125 жж с наружным подводом СОЖ

Обрабатываемыйматериал	Средний период стойкости T, мин, и 	Днаметр головки D, мм			
		50-65	65-85	85-95	95-125
Сталь	T	190	210	230	250
	h_{3}	0,8	1,0	1,2	1,5
Чугун	T	240	260	280	300
	h_{3}	1,0	1,2	1,5	1,8

Обработка глубоких отверстий
Карта 10
Определение скорости резания, осевой силы и мощности

Сверла одностороннего ревания диаметрон 3-30 мя с внутренним подводом СОЖ

Обрабатываеяый материал - сталь

$\underset{\text { мм } / \text { По }^{\text {Подаи }} S_{0}}{ }$	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{O_{T}}(\mathbf{K H})$, мощность $N_{\text {т }}$ (кВт) при диаметре сверла D, мм						
		3	5	10	15	20	25	30
0,005	v_{T}	94	97	100	102	104	-	-
	$P_{0}{ }_{\text {T }}$	0,3	0,48	0,9	1,3	1,7	-	-
	N_{T}	0,19	0,33	0,71	1,3	1,52	-	-
0,01	v_{T}	85	87	90	92	94	95	-
	$P_{0}{ }_{\text {T }}$	0,34	- 0,54	1,0	1,44	1,86	- 2,27	-
	N_{T}	0,21	0,37	0,79	1,22	1,69	2,15	-
0,02	v_{T}	76	79	81	83	84	85	86
	$P_{0}{ }_{\text {O }}$	0,38	0,6	1,1	11,6	2,06	2,5	3,0
	N_{T}	0,23	0,4	0,87	1,35	1,87	2,39	3,6
0,04	v_{T}	69	71	73	74	76	77	77
	$P_{0}{ }_{\text {T }}$	0,42	0,66	1,22	1,76	2,12	2,8	3,28
	$N_{\text {T }}$	0,26	0,45	0,97	1,5.	2,07	2,65	3,24
0,08	v_{T}	-	64	66	67	68	69	70
	$P_{O_{\text {O }}}$	-	0,73	1,36	2,0	2,53	3,09	3,68
	$N_{\text {T }}$	-	0,5	1,08	1,67	2,3	2,94	3,6
0,15	v_{T}	-	-	60.	61	62	63	63
	$P_{0_{\text {T }}}$	-	-	1,49	2,15	2,78	3,4	4,0
	$N_{\text {T }}$	-	-	1,18	1,83	2,53	3,23	3,95

Обрабатьваемий материал - чугун

$\underset{\text { Мм/0б }}{\text { Подача }} S_{0} \text {, }$	Параметр	Скорость резания \cup_{m} (м/мин), осевая сила $\dot{P}_{\mathrm{O}_{\mathrm{T}}}$ (кН), мощность $N_{\text {т }}$ (кВт) при диаметре сэерла $D_{\text {, мм }}$						
		3	5	10	15	20	25	30
0,01	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 76 \\ & 0,15 \\ & 0,1 \end{aligned}$	78 0,26 0,16	81 0.55 0.35	82 0,87 0,55	84 1,2 0,75	-	-
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}}^{N_{\mathrm{T}}} \end{gathered}$	$\begin{aligned} & 68 \\ & 0,18 \\ & 0,13 \end{aligned}$	$\begin{aligned} & 70 \\ & 0,30 \\ & 0,22 \end{aligned}$	$\begin{gathered} 7.3 \\ 0.67 \\ 0.48 \end{gathered}$	74 1,05 0,74	76 1,44 1,02	77 1,84 1,3	\square
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 62 \\ & 0,20 \\ & 0,17 \end{aligned}$	$\begin{aligned} & 63 \\ & 0,38 \\ & 0,3 \end{aligned}$	65 0.82 0.63	66 1.28 1.02	68 1,75 1,4	69 2,24 1,78	$\begin{aligned} & 70 \\ & 2,74 \\ & 2,18 \end{aligned}$
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 55 \\ & 0,26 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 57 \\ & 0,46 \\ & 0,41 \end{aligned}$	$\begin{aligned} & 59 \\ & 0.99 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 60 \\ & 1,55 \\ & 1,39 \end{aligned}$	$\begin{aligned} & 61 \\ & 2,13 \\ & 1,91 \end{aligned}$	$\begin{aligned} & 62 \\ & 2,72 \\ & 2,44 \end{aligned}$	$\begin{aligned} & 63 \\ & 3,33 \\ & 3,0 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{o}_{\mathbf{r}}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{aligned} & 52 \\ & 0,55 \\ & 0,55 \end{aligned}$	$\begin{aligned} & 54 \\ & 1,18 \\ & 1,18 \end{aligned}$	$\begin{aligned} & 55 \\ & 1,85 \\ & 1,84 \end{aligned}$	$\begin{aligned} & 56 \\ & 1,54 \\ & 2,53 \end{aligned}$	$\begin{array}{r} 57 \\ 3,24 \\ 3,23 \end{array}$	$\begin{gathered} 58 \\ 3,97 \\ 3,95 \end{gathered}$
- 0,3	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	$\begin{array}{r} 48 \\ 1,44 \\ 1,60 \end{array}$	49 2,24 2,50	50 3,08 3,45	51 3,94 4,40	$\begin{array}{r} 52 \\ 4,82 \\ \cdot 5,38 \end{array}$

Сверла трубчатые перовые диаметром 3-30 мм, оснащенные твердосплавными пластинами с внутренним подводом СОЖ

Обрабатываемый материал - сталь

$\underset{\text { мм/об }}{\text { Піодача }} S_{0^{\prime}}$	Параметр	Скорость резания $\boldsymbol{o}_{\mathrm{T}}$ (м/мин), осевая сила $P_{\text {O }_{\mathrm{T}}}(\mathrm{KH})$, мощность $N_{\text {т }}$ (кВвт) при днаметре сверла D, мм						
		3	5	10	15	20°	25	30
0,01	$\begin{gathered} \dot{y}_{\mathrm{T}} \\ {\stackrel{P}{\mathrm{O}_{\mathrm{T}}}}^{N_{\mathrm{T}}} \end{gathered}$	$\begin{aligned} & 130 \\ & 0,51 \\ & 0,29 \end{aligned}$	135 0,80 0,46	-	-	-	\square	-
0,02	$\begin{aligned} & v_{\mathrm{T}} \\ & P_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 120 \\ & 0,58 \\ & 0,34 \end{aligned}$	$\begin{aligned} & 125 \\ & 0,9 \\ & 0.51 \end{aligned}$	130 1,65 0,95	-	-	-	\cdots

$\begin{gathered} \text { Подача } S_{0} \\ \text { мм } / 00 \text {. } \end{gathered}$	Пapametp	Скорость резания $\boldsymbol{\sigma}_{\mathrm{T}}$ (м/мин), осевая сила $\mathrm{P}_{\mathrm{O}_{\mathrm{T}}}$ (кН), мощность $N_{\text {т }}$ (кВт) при диаметре сверла D, мм						
		3	5	10	15	20	25	30
0,04	$\begin{aligned} & v_{\mathrm{T}} \\ & p_{\mathrm{O}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 105 \\ & 0,63 \\ & 0 ; 41 \end{aligned}$	$\begin{gathered} 110 \\ 0.99 \\ 0,58 \end{gathered}$	$\begin{aligned} & 115 \\ & 1,83 \\ & 1,18 \end{aligned}$	$\begin{aligned} & 120 \\ & \cdot 2,82 \\ & 1,72 \end{aligned}$	$\begin{gathered} 125 \\ 3,39 \\ 2,33 \end{gathered}$	-	-
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	100 $1,1$ 0.75	$\begin{aligned} & 105 \\ & 2,04 \\ & 1,32 \end{aligned}$	$\begin{gathered} 110 \\ 3,2 \\ 1,85 \end{gathered}$	$\begin{aligned} & 115 \\ & 4,05 \\ & 2,45 \end{aligned}$	$\begin{array}{r} 120 \\ 4,48 \\ 3.28 \end{array}$	$\begin{aligned} & 125 \\ & 5,80 \\ & 3,86 \end{aligned}$
0,12	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{r}_{\mathrm{r}}} \end{gathered}$	-	-	$\begin{aligned} & 90 \\ & 2,31 \\ & 1,65 \end{aligned}$	$\begin{aligned} & 95 \\ & 3,46 \\ & 2.03 \end{aligned}$	$\begin{gathered} 100 \\ 4,87 \\ 2.71 \end{gathered}$	$\begin{gathered} 105 \\ 5,16 \\ 3.53 \end{gathered}$	$\begin{gathered} 110 \\ 6,53 \\ 4,15 \end{gathered}$
0,16	$\begin{gathered} v_{\mathrm{r}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	- -	-	-	$\begin{aligned} & 80 \\ & 3,64 \\ & 2,30 \end{aligned}$	$\begin{aligned} & 85 \\ & 5,81 \\ & 2,97 \end{aligned}$	$\begin{aligned} & 90 \\ & 6,23 \\ & 3.85 \end{aligned}$	$\begin{aligned} & 95 \\ & 7,54 \\ & 4,46 \end{aligned}$
0,20	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	\square	-	-	$\begin{aligned} & 65 \\ & 4,05 \\ & 2,74 \end{aligned}$	$\begin{aligned} & 70 \\ & \quad 6,77 \\ & 3.31 \end{aligned}$	$\begin{aligned} & 75 \\ & 7,30 \\ & 4,15 \end{aligned}$	$\begin{aligned} & 80 \\ & 8,25 \\ & 4,78 \end{aligned}$

Обрабатываемьй материал - чугун

$\underset{\text { mм/oк }}{\text { Подача }} S_{0} \text {. }$	Параметр	Скорость резания σ_{T} (м/мин), осевая сила $P_{\mathrm{O}_{\mathrm{T}}}(\mathrm{KH})$, мощность N_{T} (кВт) при днаметре сверла $D_{\text {, м }}$ м						
		3	5	10	15	20	25	30
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	90 0,27 0,17	95 0,45 0,29	-	-	-	-	-
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	85 0,32 0,23	90 0,57 0,41	$\begin{aligned} & 90 \\ & 1,23 \\ & 0,84 \end{aligned}$	$\begin{aligned} & 95 \\ & 2,05 \\ & 1,35 \end{aligned}$	-	\cdots	-
0,08	$\begin{gathered} v_{\mathrm{r}} \\ P_{\mathbf{o}_{\mathbf{T}}} \\ N_{\mathrm{r}} \end{gathered}$	$\begin{aligned} & 80 \\ & 0,39 \\ & 0,35 \end{aligned}$	$\begin{gathered} 85 \\ 0.69 \\ 0,56 \end{gathered}$	$\begin{aligned} & 90 \\ & 1,5 \\ & 1,10 \end{aligned}$	$\begin{aligned} & 90 \\ & 2,48 \\ & 1,79 \end{aligned}$	$\begin{aligned} & \overline{3,4} \\ & 2,54 \end{aligned}$	$\begin{aligned} & - \\ & 4.35 \\ & 3,25 \end{aligned}$	$\begin{aligned} & \overline{5,33} \\ & 3,78 \end{aligned}$
0,12	$\begin{gathered} v_{T} \\ P_{O_{T}} \\ N_{T} \end{gathered}$	-	80 0,85 0,75	85 1,95 1,32	$\begin{aligned} & 90 \\ & 2,73 \\ & 2,05 \end{aligned}$	$\begin{aligned} & 95 \\ & 3.64 \\ & 2,85 \end{aligned}$	$\begin{aligned} & 95 \\ & 4,66 \\ & 3,50 \end{aligned}$	$\begin{aligned} & 95 \\ & 5,72 \\ & 4,05 \end{aligned}$

$\begin{gathered} \text { Подача } S_{0} \\ \text { мм } / 00 \end{gathered}$	Параметр	Скорость резания v_{T} (м/мнн); осевая скла $P_{\mathrm{O}_{\mathrm{T}}}(\mathrm{KH})$; мощность $N_{\text {т }}$ (кВт) при диаметре сверла D, мм						
		3	5	10	15	20	25	30
0,16	v_{n}	-	-	80	85	90	90	95
	P_{0}	-	\cdots	2,43	2,98	3.93	4.95	6,13
	$N_{\text {T }}$	-	\cdots	1,78	2,34	3.19	3,76	4,32
$0,20$	v_{x}	-	-	75	80	85.	90	95
	$P_{\mathrm{O}_{\mathrm{T}}}$	-	\cdots	2.81	3,32	3,78	5.35	6,66
	$N_{\text {\% }}$	-	\cdots	2,02	'2,66	3.53	3,98	4,66
0,24	$v_{\text {T }}$	\cdots	\cdots	70	75	80	85	90
	$P_{\text {OT }}$	-	--	3,28	3,83	4.32	5,91	.6,98
	$N_{\text {\% }}$	-	$\bar{\square}$	2,29	2,92	3.80	4,45	4,90

Головки сверлильнвце диаметром $16-6.5 \mathrm{~mm}$ с наружннм подеодом СОЖ

Обрабатывиемый материал - сталь

$\underset{\text { мм } / \text { оо }}{\text { Подаиа }} S_{0}$	Параметр	Скорость резания v_{T} (м/мин), осевая скла $P_{\text {O }_{\text {т }}^{\prime}}^{\prime}$ (кн), мощность N_{T} (кВт) при диаметре головки D, ми						
		16	25	35	40	45	55	65
0,01	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \\ \hline \end{gathered}$	$\begin{gathered} 102 \\ 0,64 \\ 1,09 \\ \hline \end{gathered}$	$\begin{array}{r} 104 \\ 1,04 \\ 1,86 \end{array}$	$\begin{gathered} 105 \\ 1.50 \\ 2.78 \\ \hline \end{gathered}$	$\begin{array}{r} 106 \\ 1.75 \\ 3,26 \\ \hline \end{array}$	$\begin{array}{r} 107 \\ 1.99 \\ 3,76 \end{array}$	-	-
0,02	$\begin{gathered} v_{T} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 92 \\ 0.97 \\ 1.39 \end{array}$	$\begin{array}{\|l\|} \hline 94 \\ 1,57 \\ 2.37 \end{array}$	$\begin{array}{\|l\|} \hline 95 \\ 2,27 \\ 3.54 \end{array}$	96 2.65 4,15	$\begin{aligned} & 96 \\ & 3,02 \\ & 4,8 \end{aligned}$	$\begin{aligned} & 97 \\ & 3,76 \\ & 6,1 \\ & \hline \end{aligned}$	-
0,04	$\begin{aligned} & v_{\mathrm{r}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{r}} \end{aligned}$	$\begin{array}{r} 83 \\ 1,46 \\ 1,77 \\ \hline \end{array}$	$\begin{gathered} 84 \\ 2,39 \\ 3,02 \\ \hline \end{gathered}$	85 3,45 4,50	86 4,02 5,30	$\begin{aligned} & 87 \\ & 4,57 \\ & 6,10 \\ & \hline \end{aligned}$	$\begin{gathered} 88 \\ 5,7 \\ 7,76 \end{gathered}$	$\begin{aligned} & 89 \\ & 6,85 \\ & 9,50 \\ & \hline \end{aligned}$
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	75 2,22 2,25	$\begin{aligned} & 76 \\ & 3,62 \\ & 3,85 \end{aligned}$	$\begin{aligned} & 77 \\ & 5,22 \\ & 5,75 \end{aligned}$	$\begin{aligned} & 78 \\ & 6,09 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 78 \\ & 6,93 \\ & 7,8 \end{aligned}$	$\begin{aligned} & 79 \\ & 8,64 \\ & 9,9 \end{aligned}$	$\begin{aligned} & 80 \\ & 10,38 \\ & 12,1 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{aligned} & 69 \\ & 5,28 \\ & 4,8 \end{aligned}$	$\begin{aligned} & 70 \\ & 7,62 \\ & 7,2 \end{aligned}$	$\begin{aligned} & 71 \\ & 8,89 \\ & 8.4 \end{aligned}$	$\begin{array}{\|l\|} \hline 71 \\ 10.10 \\ 9,7 \end{array}$	$\begin{aligned} & 72 \\ & 12,60 \\ & 12,3 \end{aligned}$	$\begin{array}{\|l} 73 \\ 15,13 \\ 15,1 \end{array}$
0,3	$\begin{gathered} 0_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \\ \hline \end{gathered}$	\cdots	-	$\begin{aligned} & 63 \\ & 11,54 \\ & 9,1 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 13,47 \\ & 10,7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 64 \\ 15.32 \\ 12.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 65 \\ 19,09 \\ 15 ; 7 \\ \hline \end{array}$	$\begin{array}{\|l} 65 \\ 22,93 \\ 19,2 \\ \hline \end{array}$

Обрабатьвармый материал - чугун

$\underset{\text { мм /об }}{\text { Подача }} S_{0}$	Параметр	Скорость резания $\boldsymbol{o}_{\mathrm{T}}$ (м/мин), осевая сила $P_{\text {Ot }^{\text {(}}}$ (кн), мощность $N_{\text {т }}$ (кBт) при диаметре головкн D, мм						
		16	25	35	40	45	55	65
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 84 \\ & 0,74 \\ & 0,65 \end{aligned}$	$\begin{aligned} & 86 \\ & 1,20 \\ & 1,07 \end{aligned}$	$\begin{aligned} & 87 \\ & 1,75 \\ & 1,55 \end{aligned}$	$\begin{aligned} & 88 \\ & 2,02 \\ & 1,80 \end{aligned}$	$\begin{aligned} & 88 \\ & 2,3 \\ & 2,04 \end{aligned}$	-	-
0,04	$\begin{gathered} v_{\mathrm{r}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 76 \\ & 1,0 \\ & 0,95 \end{aligned}$	$\begin{aligned} & 77 \\ & 1,65 \\ & 1,55 \end{aligned}$	$\begin{aligned} & 77 \\ & 2,40 \\ & 2.25 \end{aligned}$	$\begin{gathered} 79 \\ 2,8 \\ 2,6 \end{gathered}$	$\begin{gathered} 79 \\ 3,15 \\ 3,0 \end{gathered}$	80 4,0 3,7	-
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	68 1,38 1,43	$\begin{aligned} & 70 \\ & 2,35 \\ & 2,35 \end{aligned}$	$\begin{aligned} & 71 \\ & 3.26 \\ & 3,4 \end{aligned}$	$\begin{aligned} & 71 \\ & 3,8 \\ & 4,0 \end{aligned}$	$\begin{gathered} 72 \\ 4,3 \\ 4,5 \end{gathered}$	$\begin{aligned} & 72 \\ & 5,35 \\ & 5,6 \end{aligned}$	$\begin{aligned} & 73 \\ & 6,45 \\ & 6,7 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{0_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 62 \\ & 1,83 \\ & 2,1 \end{aligned}$	$\begin{gathered} 64 \\ 3,0 \\ 3,4 \end{gathered}$	$\begin{aligned} & 64 \\ & 4,32 \\ & 5,0 \end{aligned}$	$\begin{gathered} 65 \\ 5,0 \\ 5,8 \end{gathered}$	$\begin{gathered} 65 \\ 5,7 \\ 6,5 \end{gathered}$	$\begin{aligned} & 66 \\ & 7,1 \\ & 8,1 \end{aligned}$	$\begin{aligned} & \dot{67} \\ & 8,5 \\ & 9,8 \end{aligned}$
0,3	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{or}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{aligned} & 57 \\ & \cdot 4,06 \\ & 5,2 \end{aligned}$	$\begin{aligned} & 58 \\ & 5,88 \\ & 7,5 \end{aligned}$	$\begin{aligned} & 59 \\ & 6,8 \\ & 8,75 \end{aligned}$	$\begin{aligned} & 59 \\ & 7,75 \\ & 10.3 \end{aligned}$	$\begin{gathered} 59 \\ 9.66 \\ 12,4 \end{gathered}$	$\begin{aligned} & 60 \\ & 11,6 \\ & 14,9 \end{aligned}$
0,5	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	$\begin{aligned} & 54 \\ & 7,43 \\ & 10,2 \end{aligned}$	$\begin{gathered} 54 \\ 8,6 \\ 11,9 \end{gathered}$	$\begin{gathered} 54 \\ -9,79 \\ 13,5 \end{gathered}$	$\begin{array}{\|l\|} \hline 55 \\ 12,2 \\ 16.8 \end{array}$	$\begin{aligned} & 56 \\ & 14,7 \\ & 20,2 \end{aligned}$

Головки сверлильные одностороннего резания трехрезцовые диаметром 20-65 мж с нарцжсньь подводом СОЖ

Обрабатываемьй материал - сталь

Продолжение карть 10

$\underset{\text { мм } / о 6}{\text { Подача }} S_{0}$,	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{\mathrm{O}_{\mathrm{T}}}($ кН $)$, мощность N_{T} (кВт) при диаметре соловки D, мм						
		20	25	35	40	45	55	65
0,04	$\begin{gathered} v_{\mathrm{Y}} \\ P_{0_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 83 \\ 1,84 \\ 2,35 \end{gathered}$	$\begin{gathered} 84 \\ 2,39 \\ 3,02 \end{gathered}$	85 3,45 4,50	86 4,02 5,30	$\begin{aligned} & 87 \\ & 4,57 \\ & 6,10 \end{aligned}$	$\begin{aligned} & 88 \\ & 5,7 \\ & 7,76 \end{aligned}$	$\begin{aligned} & 89 \\ & 6,8 \\ & 9,50 \end{aligned}$
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 75 \\ & 2,85 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 76 \\ & 3,62 \\ & 3,85 \end{aligned}$	$\begin{aligned} & 77 \\ & 5,22 \\ & 5,75 \end{aligned}$	$\begin{aligned} & 78 \\ & 6,09 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 78 \\ & 6,93 \\ & 7,8 \end{aligned}$	$\begin{aligned} & 79 \\ & 8,64 \\ & 9,9 \end{aligned}$	$\begin{aligned} & 80 \\ & 10,38 \\ & 12,1 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{0}{ }_{\mathrm{T}}^{\mathrm{T}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{aligned} & 69 \\ & 5,28 \\ & 4,8 \end{aligned}$	$\begin{aligned} & 70 \\ & 7,62 \\ & 7,2 \end{aligned}$	71 8889 8,4	$\begin{aligned} & 71 \\ & 10,1 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 72 \\ & 12,6 \\ & 12,3 \end{aligned}$	$\begin{aligned} & 73 \\ & 15,15 \\ & 15,1 \end{aligned}$
0,30	$\begin{aligned} & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{r}} \end{aligned}$	\cdots	-	63 11,54 9,1	64 13,47 10,7	$\begin{aligned} & 64 \\ & 15,32 \\ & 12,4 \end{aligned}$	$\begin{aligned} & 65 \\ & 11,09 \\ & 15,7 \end{aligned}$	$\begin{aligned} & 65 \\ & 22,98 \\ & 19,2 \end{aligned}$

Обрабатываемьй материал - чугун

	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{\text {o }_{T}}$ (кн). мощвость $N_{\text {т }}$ (кBт) при диаметре головки D, мм						
		20	25	35	40	45	55	65
0,02	$\begin{aligned} & v_{\mathrm{r}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 85 \\ & 1,0 \\ & 0,85 \end{aligned}$	$\begin{aligned} & 86 \\ & 1,20 \\ & 1,07 \end{aligned}$	$\begin{aligned} & 87 \\ & 1,75 \\ & 1,55 \end{aligned}$	$\begin{aligned} & 88 \\ & 2,02 \\ & 1,80 \end{aligned}$	$\begin{aligned} & 88 \\ & 2,3 \\ & 2,04 \end{aligned}$	-	-
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 76 \\ 1,3 \\ 1,2 \end{gathered}$	$\begin{aligned} & 77 \\ & 1,65 \\ & 1,55 \end{aligned}$	78 2,4 2,25	$\begin{gathered} 79 \\ 2,8 \\ 2,6 \end{gathered}$	$\begin{aligned} & 79 \\ & 3,15 \\ & 3,0 \end{aligned}$	$\begin{gathered} 80 \\ 4,0 \\ 3,7 \end{gathered}$	-
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 69 \\ & 1,8 \\ & 1,85 \end{aligned}$	$\begin{aligned} & 70 \\ & 2,35 \\ & 2,35 \end{aligned}$	$\begin{aligned} & 71 \\ & 3,26 \\ & 3,4 \end{aligned}$	$\begin{aligned} & 71 \\ & 3,8 \\ & 4,0 \end{aligned}$	$\begin{gathered} 72 \\ 4,3 \\ 4,5 \end{gathered}$	$\begin{aligned} & 72 \\ & 5,35 \\ & 5,6 \end{aligned}$	$\begin{aligned} & 73 \\ & 6,45 \\ & 6,7 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 63 \\ & 2,35 \\ & 2,68 \end{aligned}$	$\begin{gathered} 64 \\ 3,0 \\ 3,4 \end{gathered}$	$\begin{aligned} & 64 \\ & 4,32 \\ & 5,0 \end{aligned}$	$\begin{gathered} 65 \\ 5,0 \\ 5,8 \end{gathered}$	$\begin{gathered} 65 \\ 5,7 \\ 6,5 \end{gathered}$	$\begin{aligned} & 66 \\ & 7,1 \\ & 8,1 \end{aligned}$	$\begin{aligned} & 67 \\ & 8,5 \\ & 9,8 \end{aligned}$
0,30	$\begin{gathered} v_{T} \\ P_{o_{T}} \\ N_{T} \end{gathered}$	-	$\begin{gathered} 57 \\ 4,06 \\ 5,2 \end{gathered}$	$\begin{aligned} & 58 \\ & 5,88 \\ & 7,5 \end{aligned}$	$\begin{aligned} & 59 \\ & 6,8 \\ & 8,75 \end{aligned}$	$\begin{aligned} & 59 \\ & 7,75 \\ & 10,3 \end{aligned}$	$\begin{aligned} & 59 \\ & 9,66 \\ & 12,4 \end{aligned}$	$\begin{aligned} & 60 \\ & 11,6 \\ & 14,9 \end{aligned}$

$\underset{\text { мм } / 0 \boldsymbol{\text { По }}}{ } S_{0},$	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{0_{T}}$ (кH), мощность N_{T} (кВт) при диаметре головки D, мм						
		20	25	35	40	45	55	65
0,50	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	54 7,43 10,2	54 8,6 11,9	54 9,79 13,5	55 12,2 16,8	56 14,7 20,2

Сверла с внутренним эжекторным отводом стружки; диа метры сверл 20-65 мм

Обрабатьваемый материал - сталь

$\underset{\text { мм } / \text { Поб }}{\text { Подача }} S_{0},$.Параметр	Скорость резания $ण_{T}$ (м/мин), осевая сила $P_{\mathrm{O}_{\mathrm{T}}}(\mathrm{KH})$, мощность $N_{\text {т }}$ (кВт) при диаметре сверла D, мм						
		20	25	35	40	45	55	65
0,01	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 103 \\ & 0,85 \\ & 1,45 \end{aligned}$	$\begin{array}{r} 104 \\ 1,04 \\ 1,86 \end{array}$	105 1,5 2,78	$\begin{array}{r} 106 \\ 1,75 \\ 3,26 \end{array}$		-	-
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 93 \\ & 1,25 \\ & 1,85 \end{aligned}$	$\begin{aligned} & 94 \\ & 1,57 \\ & 2,37 \end{aligned}$	$\begin{aligned} & 95 \\ & 2,24 \\ & 3,54 \end{aligned}$	96 2,65 4,15	$\begin{aligned} & 96 \\ & 3,02 \\ & 4,8 \end{aligned}$	97 3,76 6,1	-
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 83 \\ & 1 ; 84 \\ & 2,35 \end{aligned}$	$\begin{gathered} 84 \\ \quad 2,39 \\ 3,02 \end{gathered}$	$\begin{gathered} 85 \\ 3,45 \\ 4,5 \end{gathered}$	$\begin{aligned} & 86 \\ & 4,02 \\ & 5,3 \end{aligned}$	87 4,57 6,1	$\begin{aligned} & 88 \\ & 5,7 \\ & 7,76 \end{aligned}$	$\begin{aligned} & 89 \\ & 6,8 \\ & 9,5 \end{aligned}$
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 75 \\ 2,85 \\ 3,0 \end{gathered}$	$\begin{aligned} & 76 \\ & 3,62 \\ & 3,85 \end{aligned}$	$\begin{aligned} & 77 \\ & 5,22 \\ & 5,75 \end{aligned}$	78 6,09 6,75	78 6,93 7,8	$\begin{aligned} & 79 \\ & 8,64 \\ & 9,9 \end{aligned}$	$\begin{aligned} & 80 \\ & 10,38 \\ & 12,1 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{aligned} & 69 \\ & 5,28 \\ & 4,8 \end{aligned}$	$\begin{aligned} & 70 \\ & 7,62 \\ & 7,2 \end{aligned}$	71 8,89 8,4	71 10,1 9,7	72 12,6 12,3	$\begin{aligned} & 73 \\ & 15,5 \\ & 15,1 \end{aligned}$
0,30	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{o}_{\mathbf{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	63 11,54 9,1	64 13,47 10,7	64 15,32 12,4	65 11,09 15,7	$\begin{aligned} & 65 \\ & 22,98 \\ & 19,2 \end{aligned}$

Обрабатываемьй материал - чугун

$\underset{\text { мм } / \text { Поб }}{ } S_{0^{\prime}}$	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{\text {от }}(к \mathrm{H})$, мощность N_{T} (кВт) при диаметре сверла D, мм						
		20	25	35	40	45	55	65
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	85 1,0 0,85	86 $1,2$ $1,07$	$\begin{array}{r} 87 \\ \quad 1,75 \\ 1,55 \end{array}$	$\begin{gathered} 88 \\ 2,02 \\ 1,80 \end{gathered}$	88 2,3 2,04	-	-
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 76 \\ & 1,3 \\ & 1,2 \end{aligned}$	$\begin{aligned} & 77 \\ & 1,65 \\ & 1,55 \end{aligned}$	78 2,4 2,25	79 2,8 2,6	79 3,15 3,0	80 4,0 3,7	-
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 69 \\ & 1,8 \\ & 1,85 \end{aligned}$	70 2,35 2,35	$\begin{aligned} & 71 \\ & 3,26 \\ & 3,4 \end{aligned}$	$\begin{gathered} 71 \\ 3,8 \\ 4,0 \end{gathered}$	$\begin{gathered} 72 \\ 4,3 \\ 4,5 \end{gathered}$	$\begin{aligned} & 72 \\ & 5,35 \\ & 5,6 \end{aligned}$	73 6,45 6,7
0,15	$\begin{aligned} & y_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	63 $\begin{aligned} & 2,35 \\ & 2,68 \end{aligned}$	64 3,0 3,4	64 $\begin{aligned} & 4,32 \\ & 5,0 \end{aligned}$	65 5,0 5,8	65 5,7 6,5	66 7,1 8,1	$\begin{aligned} & 67 \\ & 8,5 \\ & 9,8 \end{aligned}$
0,30	$\begin{aligned} & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	-	57 4,06 5,2	58 5,88 7,5	$\begin{aligned} & 59 \\ & 6,8 \\ & 8,75 \end{aligned}$	59 7,75 10,3	$\begin{gathered} 59 \\ 9,66 \\ 12,4 \end{gathered}$	$\begin{aligned} & 60 \\ & 11,6 \\ & 14,9 \end{aligned}$
0,50	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}}^{N_{\mathrm{T}}} \end{gathered}$	-	-	54 7,43 10,2	$\begin{gathered} 54 \\ 8,6 \\ 11,9 \end{gathered}$	54 9,79 13,5	55 12,2 16,8	56 14,7 20,2

Сверла одностороннего резания диаметром $30-55$ мм с механическим креплением МНП и внутренним подводом СО

Обрабатьваемьй материал - сталь

Подача S_{0}, мм/об	Параметр	Скорость резания y_{T} (м/мин), осевая сила $P_{\mathrm{O}_{\mathrm{T}}}$ (кH), мощность N_{T} (кВт) при диаметре сверла D, мм					
		30	35	40	45	50	55
0,08	$\begin{gathered} {\stackrel{v}{\mathrm{o}}{ }_{\mathrm{o}}}^{N_{\mathrm{T}}} \end{gathered}$	$\begin{gathered} 87 \\ 4,42 \\ 5,27 \end{gathered}$	$\begin{gathered} 88 \\ 5,22 \\ 6,32 \end{gathered}$	$\begin{gathered} 89 \\ 6,09 \\ 7,42 \end{gathered}$	$\begin{aligned} & 90 \\ & 6,93 \\ & 8,58 \end{aligned}$	$\begin{aligned} & 92 \\ & 7,78 \\ & 9,73 \end{aligned}$	$\begin{aligned} & 94 \\ & 8,56 \\ & 10,72 \end{aligned}$
0,10	$\begin{aligned} & { }_{P_{\mathrm{T}}}^{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 84 \\ & 4,94 \\ & 5,64 \end{aligned}$	$\begin{aligned} & 85 \\ & 5,83 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 86 \\ & 6,80 \\ & 7,94 \end{aligned}$	$\begin{aligned} & 87 \\ & 7,74 \\ & 9,18 \end{aligned}$	$\begin{gathered} 89 \\ 8,69 \\ 10,41 \end{gathered}$	$\begin{gathered} 91 \\ 9,56 \\ 11,47 \end{gathered}$

$s_{0, \text { мм/об }}^{\text {Подача }}$	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{\mathbf{o}_{\mathrm{T}}}(\kappa \mathrm{H})$. мощность $N_{T}(к В т)$ при диаметре сверла D, мм					
		30.	35	40	45	50	55
0,12	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	82 6,51 7,22	83 7,59 8,48	84 8,64 9,79	86 9,70 11,09	$\begin{aligned} & 88 \\ & 10,67 \\ & 12,22 \end{aligned}$
0,14	$\begin{gathered} v_{\mathrm{T}} \\ p_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	80	81	83	85
		-	-	8,49	9,56	10;84	11,92
		-	--	8,97	10,36	11,76	12,97

Обрабатываемьй материал - чугун

$\begin{gathered} \text { Подача } \\ s_{0}, \text { мм/об } \end{gathered}$	Параметр	Скорость резания $\boldsymbol{v}_{\mathrm{T}}$ (м/мин), осевая сила $\mathrm{P}_{\mathrm{O}_{\mathrm{T}}}($ к H$)$, мощность N_{T} (кВт) при диаметре сверла D, мм					
		30	35	40	45	50	55
0,12	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 70 \\ 3,81 \\ 3,59 \end{gathered}$	71 4,44 4,19	71 7 5,08 4,79	72 5,71 5,38	72 6,35 5,58	$\begin{aligned} & 73 \\ & \quad 6,98 \\ & 6,58 \end{aligned}$
0,14	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 67 \\ & 4,11 \\ & 3,67 \end{aligned}$	$\begin{aligned} & 68 \\ & 4,79 \\ & 4,28 \end{aligned}$	$\begin{aligned} & 68 \\ & 5,48 \\ & 4,89 \end{aligned}$	69 6,16 5,50	$\begin{aligned} & 69 \\ & 6,85 \\ & 6,12 \end{aligned}$	$\begin{aligned} & 70 \\ & 7,53 \\ & 6,73 \end{aligned}$
0,16	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\dot{6} 5$ 4,40 3,82	64 5,13 4,46	66 $\begin{aligned} & 5,87 \\ & 5,09 \end{aligned}$	67 6,60 5,73	67 $7,33$ $6,37$	68 8,07 7,00
0,18	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 63 \\ & 4,67 \\ & 3,93 \end{aligned}$	$\begin{aligned} & 63 \\ & 5,45 \\ & 4,53 \end{aligned}$	64 6,22 5,24	64 7,00 5,89	65 7,78 6,55	$\begin{aligned} & 65 \\ & 8,56 \\ & 7,20 \end{aligned}$
0,2	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	61 61 4,92 4,01	61 5,74 4,68	62 6,56 5,35	62 7,38 6,01	$\begin{gathered} 63 \\ 8,20 \\ 6,68 \end{gathered}$	$\begin{aligned} & 63 \\ & 9,02 \\ & 7,35 \end{aligned}$
0,25	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 60 \\ & 5,5 \\ & 4,41 \end{aligned}$	60 6,42 5,14	61 7,33 5,88	61 8,25 6,61	62 9,17 7,35	$\begin{aligned} & 62 \\ & 10,1 \\ & 8,08 \end{aligned}$

Головки сверлильные диаметром 65-125 мм сборные. с наружным подводом СОЖ

Обрабатььваемьй материал - сталь

$\text { Подача } S_{0}$	Парияетр	Скорость резания $\boldsymbol{o}_{\mathbf{T}}$ (м/мив), осевая сила $P_{\mathrm{o}_{\mathrm{T}}}(\kappa \mathrm{H})$, моцность N_{T} (кВт) при диаметре головки D, мм						
		65	70	75	85	95	105	125
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{0}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 104 \\ 6,1 \\ 8,6 \end{gathered}$	$\begin{array}{r} 104 \\ 6,6 \\ 9,0 \end{array}$	$\begin{gathered} 104 \\ 7,1 \\ 9,4 \end{gathered}$	$\begin{array}{r} 105 \\ 8,5 \\ 10,3 \end{array}$	$\begin{array}{r} 106 \\ 9,3 \\ 11,4 \end{array}$	-	-
0,04	$\begin{gathered} \stackrel{v}{\mathrm{~T}}_{P_{\mathrm{O}_{\mathrm{T}}}}^{N_{\mathrm{T}}} \end{gathered}$	$\begin{gathered} 94 \\ 9,3 \\ 10,9 \end{gathered}$	$\begin{aligned} & 94 \\ & 10,0 \\ & 11,4 \end{aligned}$	$\begin{aligned} & 94 \\ & 10,8 \\ & 12,0 \end{aligned}$	95 12,4 13,0	$\begin{aligned} & 96 \\ & 14,1 \\ & 14,1 \end{aligned}$	96 15,7 15,3	-
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	84 14,0 13,9	84 15,2 14,6	$\begin{aligned} & 84 \\ & 20,1 \\ & 15,3 \end{aligned}$	85 16,3 16,8	$\begin{aligned} & 86 \\ & 21,1 \\ & 18,0 \end{aligned}$	$\begin{aligned} & 86 \\ & 23,7 \\ & 19,5 \end{aligned}$	$\begin{aligned} & 87 . \\ & 28,8 \\ & 21,8 \end{aligned}$
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 77 \\ & 20,4 \\ & 17,3 \end{aligned}$	$\begin{aligned} & 77 \\ & 22,1 \\ & 18,1 \end{aligned}$	$\begin{aligned} & 77 \\ & 23,9 \\ & 19,1 \end{aligned}$	$\begin{aligned} & 78 \\ & 27,4 \\ & 20,9 \end{aligned}$	78 31,5 22,4	78 34,5 24,2	$\begin{aligned} & 79 \\ & 42,0 \\ & 27,2 \end{aligned}$
0,3	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	$\begin{aligned} & 69 \\ & 33,6 \\ & 23,2 \end{aligned}$	$\begin{aligned} & 69 \\ & 36,3 \\ & 24,2 \end{aligned}$	$\begin{aligned} & 70 \\ & 41,5 \\ & 26,5 \end{aligned}$	71 47,1 28,5	71 52,4 30,8	$\begin{aligned} & 71 \\ & 63,6 \\ & 34,7 \end{aligned}$
0,5	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	64 49,3 29,3	$\begin{aligned} & 65 \\ & 56,6 \\ & 31,8 \end{aligned}$	65 64,0 34,2	65 71,2 40,0	66 86,3 41,5

Головки сяерлильнье диаметром 65-125 мм сборные с наружным подводом СОЖ

Обрабатьваемьй митериал - чугун

$\underset{\text { мм } / 0 \sigma}{\text { Подача }} S_{0} .$	Параметр	Скорость резания $\boldsymbol{v}_{\mathrm{y}}$ (м/мин), осевая сяла $P_{\mathrm{o}_{\mathrm{T}}}$ (кн), мощность N_{T} (кВт) при диаметре головки D, мм						
		65	70	75	35	95	105	125
0,02		110 8,3 5,5	111 9,0 5,8	112 9,7 6,2	113 11,2 6,7	115 12,6 7,5	--	-
					6,7	7,5	-	-

$\underset{\text { мм } / 06}{\text { Подача }} S_{0}$	Параметр	Скорость резания $v_{T}(\mathrm{M} / \mathrm{mин})$, осевая сила $P_{\mathrm{O}_{\mathrm{T}}}(к \mathrm{H})$, мощность N_{T} (кВт) при диаметре головки D, мм						
		65	70	75	85	95	105	125
0,04	$\begin{gathered} v_{\mathrm{T}}{\stackrel{p}{\mathrm{o}_{\mathrm{T}}}}_{N_{\mathrm{T}}} \end{gathered}$	$\begin{gathered} 92 \\ 11,4 \\ 7,5 \end{gathered}$	$\begin{array}{r} 93 \\ 12,3 \\ 8,0 \end{array}$	94. 13,3 $8,4$	$\begin{gathered} 94 \\ 15,3 \\ 9,2 \end{gathered}$	96 17,2 10,0	$\begin{aligned} & 97 \\ & 19,3 \\ & 10,2 \end{aligned}$	\square
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 78 \\ & 15,5 \\ & 10,3 \end{aligned}$	$\begin{aligned} & 79 \\ & 16,8 \\ & 10,9 \end{aligned}$	79 18,2 11,5	$\begin{aligned} & 80 \\ & 20,8 \\ & 12,6 \end{aligned}$	$\begin{aligned} & 82 \\ & 23,6 \\ & 13,7 \end{aligned}$	$\begin{aligned} & 82 \\ & 26,3 \\ & 14,7 \end{aligned}$	$\begin{aligned} & 84 \\ & 31,9 \\ & 16,8 \end{aligned}$
0,15	$\begin{gathered} \cdot v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 66 \\ & 20,6 \\ & 13,7 \end{aligned}$	$\begin{aligned} & 67 \\ & 22,4 \\ & 14,4 \end{aligned}$	$\begin{aligned} & 68 \\ & 24,1 \\ & 15,2 \end{aligned}$	$\begin{aligned} & 68 \\ & 27,7 \\ & 16,7 \end{aligned}$	$\begin{aligned} & 70 \\ & 31,3 \\ & 18,1 \end{aligned}$	$\begin{aligned} & 70 \\ & 34,9 \\ & 19,6 \end{aligned}$	$\begin{aligned} & 71 \\ & 42,3 \\ & 22,3 \end{aligned}$
0,3	$\begin{gathered} \stackrel{v}{\mathrm{~T}}_{P_{0_{\mathrm{T}}}}^{N_{\mathrm{T}}} \end{gathered}$	--	56 30,4 19,7	57 32,8 20,7	$\begin{aligned} & 57 \\ & 37,6 \\ & 22,7 \end{aligned}$	58. 42,6 24,6	$\begin{aligned} & 59 \\ & 47,5 \\ & 26,6 \end{aligned}$	60 57,6 30,4
0,5	$\begin{gathered} v_{\mathrm{T}} \\ P_{0_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	-	-	50 41,4 26,1	51 47,5 28,7	51 53,7 31,1	$\begin{aligned} & 52 \\ & 60,0 \\ & 33,6 \end{aligned}$	53 72,7 38,3

Головки ссерлильнот трехрезцовые диаметром $90-125$ мм с наружным подводом СОЖ

Обрабитьваемьй материал-сталь

$\underset{\text { мм } / 06}{\text { Подач }} S_{0},$	Параметр	Скорость резания 0_{T} (м/мин), осевая сила $D_{\mathrm{o}_{\mathrm{T}}}(\mathrm{KH})$, мощность $N_{\text {т }}$ (кЕт) при диаметре головки D, мм						
		90	95	100	105	110	115	125
0,02		$\begin{gathered} 105 \\ 9,0 . \end{gathered}$	105 9,3	106 10,0 120	-	-	二	\cdots
	$N_{\text {T }}$	$10,9$		12,1	-	-	-	-
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	95	95	96.	96	-	\cdots	-
		13,2	14,1	14,9 ${ }^{\circ}$	15,7	--	-	-
		13,7	14,1	14,9	15,3	-	-	-
0,08	$\begin{aligned} & v_{\mathrm{T}} \\ & P_{\mathrm{o}_{\mathrm{T}}} \\ & N_{\mathrm{T}} \end{aligned}$	85	85	86	86	86		
		17,9	19,3	20,9	22,5	24,0	25,5	28,8
		17,3	18,0	18,8	19,5	20,0	20,8	21,8

$\underset{\text { мм /oб }}{\text { Подач }} S_{0^{\prime}}$	Параметр	Скорость резания $\boldsymbol{v}_{\mathrm{t}}$ (м/мин), осевая силя $P_{\text {о }_{\text {т }}}(\kappa \mathrm{H})$. мощность N_{T} (кBr) при диаметре головки D, мм						
		90	95	100	105	110	115	125
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 78 \\ & 29,8 \\ & 21,6 \end{aligned}$	78 31,0 22,4	78 32,7 23,5	78 34,5 24,2	79 37,0 25,3	79 38,3 26,0	$\begin{aligned} & 79 \\ & 42 \\ & 27,2 \end{aligned}$
0,3	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 70 \\ & 44,8 \\ & 27,4 \end{aligned}$	70 47,1 28,6	70 50,2 29,8	70 52,4 30,8	71 55,0 31,8	71 57,3 32,6	$\begin{aligned} & 71 \\ & 63,6 \\ & 34,7 \end{aligned}$
0,5	$\begin{gathered} \stackrel{v_{\mathrm{T}}}{P_{\mathrm{o}_{\mathrm{T}}}} \\ N_{\mathrm{T}} \end{gathered}$	65 60,3 33,0	65 64,0 34,2	65 67,8 35,5	66 71,2 36,8	67 74,1 37,1	67 78,4 39,4	68 86,3 41,5

Обрабатьваемьй митериал - чугун

$\underset{\text { мм } / 06}{\text { Подача }} S_{0}$	Параметр	Скорость резании v_{T} (м/мин), осеваи сила $P_{\mathrm{o}_{\mathrm{T}}}$ (кН) , мощность $N_{\text {т }}$ (кВт) при диаметре головки D, мм						
		90	95	100	105	110	115	125
0,02	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{array}{r} 113 \\ 11,9 \\ 7,0 \end{array}$	115 12,6 7,5	$\begin{gathered} 115 \\ 13,3 \\ 8,0 \end{gathered}$	--	-	-	-
0,04	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ \cdot N_{\mathrm{T}} \end{gathered}$	94 16,4 9,7	$\begin{aligned} & 95 \\ & 17,2 \\ & 10,0 \end{aligned}$	$\begin{aligned} & 96 \\ & 18,3 \\ & 10,1 \end{aligned}$	$\begin{aligned} & 97 \\ & 19,3 \\ & 10,2 \end{aligned}$	-	-	E
0,08	$\begin{gathered} v_{\mathrm{T}} \\ P_{0_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 80 \\ & 22,1 \\ & 17,1 \end{aligned}$	$\begin{aligned} & 81 \\ & 23,6 \\ & 13,7 \end{aligned}$	$\begin{aligned} & 82 \\ & 24,9 \\ & 14,1 \end{aligned}$	82 26,3 14,7	$\begin{aligned} & 83 \\ & 27,6 \\ & 15,0 \end{aligned}$	84 29,2 15,6	$\begin{aligned} & 84 \\ & 31,9 \\ & 16,8 \end{aligned}$
0,15	$\begin{gathered} { }_{P_{\mathrm{T}}}^{P_{\mathrm{O}_{\mathrm{T}}}} \\ N_{\mathrm{T}} \end{gathered}$	68 29,4 17,4	$\begin{aligned} & 69 \\ & 31,3 \\ & 18,1 \end{aligned}$	$\begin{aligned} & 69 \\ & 33,2 \\ & 18,8 \end{aligned}$	$\begin{aligned} & 70 \\ & 34,9 \\ & 19,6 \end{aligned}$	$\begin{aligned} & 70 \\ & 36,9 \\ & 20,2 \end{aligned}$	$\begin{aligned} & 71 \\ & 37,9 \\ & 21,0 \end{aligned}$	$\begin{aligned} & 71 \\ & 42,3 \\ & 22,3 \end{aligned}$
0,30	$\begin{gathered} v_{\mathrm{T}}^{v_{\mathrm{T}}} \\ \mathrm{O}_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 57 \\ & 40,0 \\ & 23,7 \end{aligned}$	$\begin{aligned} & 58 \\ & 42,6 \\ & 24,6 \end{aligned}$	$\begin{aligned} & 58 \\ & 45,1 \\ & 25,5 \end{aligned}$	59 47,5 26,6	$\begin{aligned} & 59 \\ & 50,2 \\ & 27,4 \end{aligned}$	60 52,7 28,3	$\begin{aligned} & 60 \\ & 57,6 \\ & 30,4 \end{aligned}$
0,5	$\stackrel{v_{\text {T }}}{P_{\mathrm{O}_{\text {T }}}}$	$\begin{aligned} & 51 \\ & 50,8 \\ & 29,9 \end{aligned}$	$\begin{aligned} & 50 \\ & 53,7 \\ & 31,1 \end{aligned}$	$\begin{aligned} & 50 \\ & 57,1 \\ & 32,3 \end{aligned}$	$\begin{aligned} & 52 \\ & 60,0 \\ & 33,6 \end{aligned}$	$\begin{aligned} & 52 \\ & 63,1 \\ & 34,9 \end{aligned}$	$\begin{aligned} & 53 \\ & 66,2 \\ & 36,1 \end{aligned}$	$\begin{aligned} & 53 \\ & 72,7 \\ & 38,3 \end{aligned}$

Головки для растачиеания диаметром $50-125$ мм
с наружным подводом СОЖ

- Обрабатьвиемый материал - сталь

$\underset{\text { мм } / \text { по }}{\text { моча }} S_{0},$	Параметр	Скорость резания v_{T} (м/мин), осевая сила $P_{O_{T}}$ (кН). мощность, $N_{\text {т }}$ (кВт) при диаметре головки D, мм						
		50	65	75	85	95	105	125
0,04	$\begin{gathered} \stackrel{v}{\mathrm{~T}}^{P_{\mathrm{o}_{\mathrm{T}}}^{N_{\mathrm{T}}}} \end{gathered}$	$\begin{array}{r} 123 \\ 1,23 \\ 1,73 \end{array}$	$\begin{aligned} & 125 \\ & 1,27 \\ & 1,82 \end{aligned}$	$\begin{gathered} 125 \\ 1,3 \\ 1,88 \end{gathered}$	$\begin{array}{r} 126 \\ 1,33 \\ 1,93 \end{array}$	$\begin{aligned} & 127 \\ & 1,35 \\ & 1,97 \end{aligned}$	$\begin{gathered} 128 \\ 1,36 . \\ 2,0 \end{gathered}$	$\begin{gathered} 129 \\ 1,4 \\ 2,1 \end{gathered}$
0,08	$\begin{gathered} \dot{v}_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}}^{N_{\mathrm{T}}} \end{gathered}$	107 1,74 2,63	$\begin{aligned} & 109 \\ & 1,8 \\ & 2,76 \end{aligned}$	$\begin{aligned} & 109 \\ & 1,84 \\ & 2,85 \end{aligned}$	110 1,88 2,93	$\begin{gathered} 111 \\ 1,91 \\ 3,0 \end{gathered}$	111 1,93 3,03	$\begin{array}{r} 112 \\ 2,0 \\ 3,2 \end{array}$
0,15	$\stackrel{v_{\mathrm{T}}}{P_{\mathrm{O}_{\mathrm{T}}}} \underset{N_{\mathrm{T}}}{ }$	94 2,38 3,83	96 2,46 4,02	$\begin{aligned} & 96 \\ & 2,58 \\ & 4,16 \end{aligned}$	$\begin{aligned} & 97 \\ & 2,58 \\ & 4,27 \end{aligned}$	$\begin{aligned} & 97 \\ & 2,62 \\ & 4,36 \end{aligned}$	$\begin{array}{r} 98 \\ 2,64 \\ 4,42 \end{array}$	$\begin{aligned} & 99 \\ & 2,72 \\ & 4,65 \end{aligned}$
0,25	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 85 \\ & 3,08 \\ & 5,2 \end{aligned}$	$\begin{aligned} & 87 \\ & 3,18 \\ & 5,47 \end{aligned}$	$\begin{aligned} & 87 \\ & 3,25 \\ & 5,65 \end{aligned}$	$\begin{gathered} 87 \\ 3,33 \\ 5,8 \end{gathered}$	$\begin{aligned} & 88 \\ & 3,38 \\ & 5,92 \end{aligned}$	$\begin{array}{r} 89 \\ 3,4 \\ 6,0 \end{array}$	$\begin{gathered} 89 \\ 3,5 \\ 6,3 \end{gathered}$
0,4	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 73 \\ 3,89 \\ 6,9 \end{gathered}$	$\begin{aligned} & 79 \\ & 4,02 \\ & 7,25 \end{aligned}$	$\begin{aligned} & 80 \\ & 4,11 \\ & 7,49 \end{aligned}$	$\begin{aligned} & 80 \\ & 4,2 \\ & 7,69 \end{aligned}$	$\begin{aligned} & 80 \\ & 4,27 \\ & 7,85 \end{aligned}$	81 4,3 7,97	$\begin{gathered} 82 \\ 4,43 \\ 8,36 \end{gathered}$
0,6	$\begin{aligned} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{aligned}$	$\begin{gathered} 72 \\ 4,77 \\ 8,8 \end{gathered}$	73 4,92 $.9,24$	$\begin{aligned} & 73 \\ & 5,04 \\ & 9,55 \end{aligned}$	$\begin{gathered} 73 \\ 5,15 \\ 9,8 \end{gathered}$	$\begin{gathered} 74 \\ 5,23 \\ 10,0 \end{gathered}$	$\begin{gathered} 74 \\ 5,27 \\ 10,2 \end{gathered}$	$\begin{gathered} 75 \\ 5,43 \\ 10,7 \end{gathered}$

Обрабатьшаемый материал - чугун

$\underset{\text { мм } / 00}{\text { Подача }} S_{0},$	Параметр	Скорость резания $\boldsymbol{v}_{\mathrm{T}}$ (м/мин), осевая сила $P_{\mathrm{o}_{\mathrm{T}}}($ кН) . мощность $N_{\text {т }}$ (кВт) при диаметре головки D, мм						
		50	65	75	85	95	105	125
0,04	$\begin{gathered} \tilde{v}_{\mathrm{T}} \\ \stackrel{\mathrm{o}}{\mathrm{~T}}^{N_{\mathrm{T}}} \end{gathered}$	139 0,9 0,57	141 $0,93$ 0,6	143 0,95 0,61	144 0,98 0,63	145 0,99 0,64	145 1,0 0,66	146 1,03 0,68
0,08	V_{T} $\mathrm{OO}_{\mathbf{O}}$ $N_{\text {T }}$	113 1,36 1,0	114 1,41 1,05	116 1,44 1,07	117 1,47 1,1	118 1,5 1,12	118 1,52 1.15	119 1,56 1,19

Подача S_{0}, мм/об	Параметр	Скорость резания v_{T} (м/мин), осевая сила $\mathrm{P}_{\mathrm{o}_{\mathrm{T}}}($ кН) : мощность $N_{\text {т }}$ (кВт) при диаметре головки D, мм						
		50	65	75	85	95	105	125
0,15	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathrm{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 94 \\ 1,99 \\ 1,64 \end{gathered}$	$\begin{aligned} & 95 \\ & 2,06 \\ & 1,73 \end{aligned}$	$\begin{aligned} & 96 \\ & 2,1 \\ & 1,76 \end{aligned}$	$\begin{aligned} & 96 \\ & 2,14 \\ & 1,81 \end{aligned}$	$\begin{aligned} & 97 \\ & 2,19 \\ & 1,84 \end{aligned}$	$\begin{aligned} & 97 \\ & 2,21 \\ & 1,9 \end{aligned}$	$\begin{aligned} & 98 \\ & 2,28 \\ & 1,96 \end{aligned}$
0,25	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{aligned} & 80 \\ & 2,7 \\ & 2,47 \end{aligned}$	$\begin{gathered} 82 \\ 2,8 \\ 2,6 \end{gathered}$	$\begin{aligned} & 82 \\ & \cdot 2,85 \\ & 2,64 \end{aligned}$	$\begin{gathered} 83 \\ 2,91 \\ 2,73 \end{gathered}$	$\begin{gathered} 83 \\ 2,97 \\ 2,78 \end{gathered}$	$\begin{aligned} & 83 \\ & 3,0 \\ & 2,86 \end{aligned}$	$\begin{aligned} & 84 \\ & 3,1 \\ & 2,95 \end{aligned}$
0,4	$\begin{gathered} { }^{v_{\mathrm{T}}} \\ \mathrm{O}_{\mathrm{o}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 70 \\ 3,58 \\ 3,6 \end{gathered}$	71 3,7 3,79	71 $\begin{aligned} & 3,78 \\ & 3,85 \end{aligned}$	$\begin{aligned} & 72 \\ & 3,86 \\ & 3,98 \end{aligned}$	$\begin{aligned} & 72 \\ & 3,94 \\ & 4,04 \end{aligned}$	$\begin{aligned} & 72 \\ & 4,0 \\ & 4,17 \end{aligned}$	$\begin{aligned} & 73 \\ & 4,1 \\ & 4,3 \end{aligned}$
0,6	$\begin{gathered} v_{\mathrm{T}} \\ P_{\mathbf{O}_{\mathrm{T}}} \\ N_{\mathrm{T}} \end{gathered}$	$\begin{gathered} 62 \\ 4,57 \\ 5,0 \end{gathered}$	$\begin{aligned} & 63 \\ & 4,72 \\ & 5,24 \end{aligned}$	$\begin{aligned} & 64 \\ & 4,82 \\ & 5,32 \end{aligned}$	$\begin{gathered} 64 \\ 4,93 \\ 5,5 \end{gathered}$	$\begin{gathered} 64 \\ 5,03 \\ 5,6 \end{gathered}$	$\begin{gathered} 64 \\ 5,08 \\ 5,76 \end{gathered}$	$\begin{aligned} & 65 \\ & 5,23 \\ & 5,94 \end{aligned}$

Поправочныекоэффициентына.скорость резания, осевую силу и мощность резания

1. Поправочнье коэффициенть на скорость резания $K_{v_{\mathrm{H}}}$, осевую силу $K_{P_{\mathrm{H}}}$ и мощность $K_{N_{\mathrm{H}}}$ в зависимости от твердости обрабатьваемого материала

Группа обрабаты- ваемого материала	твердость нв	$K_{\boldsymbol{v}_{\mathrm{H}}}$	$K_{P_{\mathrm{H}}}$	$K_{N_{\mathrm{H}}}$
1	$110-130$	1,4	0,6	0,9
	$130-145$	1,3	0,65	0,9
	$145-160$	1,2	0,7	0,95
	$160-180$	1,15	0,8	0,95
	$180-200$	1,1	0,9	1,0
	$200-230$	1,0	1,0	1,0
	$230-260$	0,9	1,2	1,0
	$260-320$	0,8	1,3	1,0
3	$160-180$	1,4	0,8	1,15
	$180-200$	1,3	0,9	1,2
	$200-230$	1,2	1,0	1,2
$2,4,5,14$		$110-130$	1,2	
	$130-145$	1,1	0,6	0,7
	$160-160$	0,95	0,65	0,7
		0,180	0,9	0,7

2. Поправочные коэффициенть на скорость резания $K_{v_{\text {й }}}$ и мощность $K_{N_{\text {и }}}$ в зависимости от марки твердого сплава

Обрабатываемый материалf	Марка твердого сплава		
		$K_{v_{\text {k }}} K_{N_{\text {k }}}$	
Сталь	T5K10, BK6M	T15K6	TT10K85
	1,0	1,1	1,2
Чугун	BK8	BK 10-M	BK10-OM, TT8K6
	1,0	1,15	1,3

3. Поправочные коэффициентьь на скорость резания $K_{\boldsymbol{v}_{d}}$, осевую силу $K_{P_{d}}$ и мощность $K_{N_{d}}$ в зависимости от разности диаметров расточного инструмента (диаметром 50-125 мм) и обрабатываемого отверстия для растачивания

Обрабатываемый материал	Разность диаметров ($D-d$), мм	$K_{v_{d}}$	$K_{P_{d}}$	$K_{N_{d}}$
Сталь	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 1 \\ & 0,9 \\ & 0,8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1,35 \\ & 2,4 \end{aligned}$	1 1,7 2,5
Чугун	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 1 \\ & 0,93 \\ & 0,86 \end{aligned}$	$\begin{aligned} & 1 \\ & 1,4 \\ & 2,4 \end{aligned}$	1, 1,6 2,4

Нормы расхода инструмента за 1000 ч основного времени
Карта 11

Сверла одностороннего резания диаметром 3-20 мм
с цельной твердосплавной рабочей частью с внутренним подөодом СОЖ

Обрабатываемый материал - сталь

Обрабатьваемый материал - чугун

Диаметр сверла D, M	Стойкость ${ }_{\text {, }}$, мин	Критерий затупле ния h_{3}, мМ	Коэффициент случапной убыли K_{y}
3-4	90	0,3	1,4
4-6	90	0,3	1,3
6-10	140	0,4	1,2
10-14	140	0,4	1,15
14-20	180	0,5.	1,1

Осповные размеры, мм		Велитнна стачивания		Чпсло переточек n_{\square}	Суммарная стойость $\Sigma T .{ }^{\prime}$	$\begin{aligned} & \text { Расход свер } s_{1} \\ & \text { за } 1000 \\ & P_{1000, ~ m т . ~}^{4} \end{aligned}$
диаметр сsерла D	Длина цельной твердосілавной paбoчe qасти \int_{0}	$\begin{gathered} \text { допу- } \\ \text { стимая } \end{gathered}$	за одну переточку $\frac{1}{}$			
мм						
3-4	8,0	4,8	0,7	7	12,0	117
4-5	10,0	6,0	0,7	9	15,0.	87
5-6	11,0	6,9	0,7	10	16,5	79
6--8	14,0	8,7	0,9	10	25,7	47
8-9	20,0	12,0	0,9	13	32,7	37
9-10	21,0	12,6	0,9	14	35,0	34
10-14	25,0	15,0	0,9	17	42,0	27
.14-16	28,0	16,8	1,2	14	45,0	24
16-20	30,0	18,0	1,2	15	48,0	23

Сверла одностороннего резания диаметром 7,5-30 мм, оснащенные твердосплавньиии пластинками, с внутренним подводом СОЖ

Обрабатьввемьый материал - сталь

Обрабатьввемьй материал - яугун

Сверла трубчатые перовые диаметром 3-20 мм, оснащенные твердосплавными пластинками, с внупренним поӧяодом СОЖ

Обрабатьваемый матпериал - сталь

диаметр	ерла D.	Стоикость Т, мия		Критерий затупиения h_{3}, мм		$\begin{aligned} & \text { Коэффициент } \\ & \text { чайной убыли } \\ & \text { Ку } \end{aligned}$	
$\begin{array}{r} 3- \\ 4 \\ 6 \\ 6- \\ 10- \\ 15- \\ 20- \\ 25- \\ \hline \end{array}$	10 15 20 25 30						
Основные размеры			Величина стачнвания				
Дпаметр сверла .	Длина пласти ны l_{0}		доппу-	3а одну neperos. ky h			
мм			m				
3-5	8	17530	5	0,8	6	7.5	227
5-6	8	17550	5	0,8	6	7.5	213
6-7	9	17570	6	1,2	5	7.5	213

Обрабатьөаемьй материал－чугун

Aramerp сяерла D ，		Стоиность T ，мнн		Критерий затупле－ ния h_{3} ，мм		Коэффициент слу－ чаннон убыли $K_{\text {у }}$	
$3-4$		100		0，5		1，6	
4－6		100		0，5		1，5	
6－－ 10		120		0，8		1，5	
10－15		120		0，8		1，4	
16－20		150		1，0		1，4	
20－25		180		1，2		1，3	
25－30		220		1，4		1，2	
Oc；овные размеры			Величина стачивания				皆 高宮 ¢ DO
Arawerp	Длина		допуста．	sa одну			
campa	тласти－		мая	мереточ•			
	8iato						
m m_{4}			мм				
3－5	8	17530	5	0，8	6	10，0	160
5－4．6	8	：7550	5	0，8	8	10，0	150
6－－7	9	17570	6	1，2	5	．10，0	150

599

Основные размеры			Величина стачиваняя			产 	
Диаметр	Дияна		допусти.	за одну			
$\underset{D}{\text { cверла }}$	Ны		мая l	ереточ h			
мм			мм				
7-8	10	17590	6,5	1,2	5	10,0	150
8-9	10	17610	6,5	1,2	5	10,0	150
9-10	12	17110	8	1,2	6	12,0	125
10-11	12	17130	8	1,2	6	12,0	117
11-12	14	17150	9,5	1,2	8	16,0	87,5
12-13	14	17170	9,5	1,2	8	16,0	87,5
13-14	15	17190	10	1,2	8	16,0	87,5
14-15	15	17210	10	1,2	8	16,0	87,5
15-16	16	17230	11	1,5	7	17,5	80
16-17	17	17250	13	1,5	8	20,0	70
17-18	18	17270	13	1,5	8	20,0	70
18-19	20	17290	15	1,5	10	25,0	56
19-20	20	17310	15	1,5	10	25,0	56
20-21	22	17330	17	1,8	9	27,0	48
21-22	24	17350	18	1,8	10	30,0	43
22-23	24	. 17370	18	1,8	10	30,0	43
23-24	26	17390	20	1,8	11	33,0	39
24-25	26	17410	20	1,8	11	33,0	39
25-27	26	17430	20	2,0	10	36,7	33
27-28	28	17450	22	2,0	11	40,3	30
- 28-29	28	17470	22	2,0	11	40,3	30
29-30	30	17490	24	2,0	12	44,0	27

Головки сверлильные диаметром 16-65 мм с наружньм подөодом СОЖ
Обрабатььвемый материал - сталь

Диаметр головкии D, мм		Стойость T, мин		Критерий затупления h_{3}, мм		Коэффициент слу. тайной убыли Kу $^{\text {у }}$	
$\begin{aligned} & 16-20 \\ & 20-30 \\ & 30-40 \\ & 40-50 \\ & 50-65 \end{aligned}$		$\begin{array}{r} 90 \\ 90 \\ 120 \\ 140 \\ 160 \\ \hline \end{array}$		$\begin{aligned} & 0,4 \\ & 0,4 \\ & 0,55 \\ & 0,75 \\ & 0,85 \end{aligned}$		$\begin{aligned} & 1,15 \\ & 1,1 \\ & 1,1 \\ & 1,05 \\ & 1,05 \\ & \hline \end{aligned}$	
$\begin{gathered} \text { Диаметр } \\ \text { головки } \\ D \end{gathered}$	$\begin{gathered} \text { Длина } \\ \text { пластин } \\ \text { ки } \end{gathered}$		Величнча стачивавия				
			допусти: мая l	$\begin{aligned} & \text { sa одну } \\ & \text { переточ. } \\ & \text { ку } h \end{aligned}$			
мм			м				
$\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$	20 25 32	$\begin{aligned} & 3803 \\ & 3805 \\ & 3817 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0,9 \\ & 0,9 \\ & 0,9 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \\ & 22 \end{aligned}$	$\begin{aligned} & 18 \\ & 22,5 \\ & 34,5 \\ & \hline \end{aligned}$	$\begin{array}{r} 64 \\ 51 \\ 32 \\ \hline \end{array}$

$\begin{aligned} & \text { Дианетрр } \\ & \text { голавки } \\ & \text { D } \end{aligned}$	пластин $\kappa \mathrm{k} \mathrm{b}_{\mathrm{o}}$		Велнчния стачнвания				
			допустя-	3a одну переточ． кy ${ }^{\text {b }}$			
＊			mm				
30	32	3817	19	0，9	21	33，0	33
35	25	3809	11	1，2	9	20，0	55
40	25	3809	10	1，2	8	18，0	61
45	32	3819	16	1，5	11	28，0	38
50	32	3819	15 ：	1，5	10	25，7	41
55	36	，3821	18	1，8	10	29，3	36
60	36	3821	16	1，8	9	26，7	39
65	40	3815	20	1，8	11	32，0	33

Обрабатьваемьй материал－цуаун

Днаметр	лояки．D ．			Критерий затупле－ ния h_{g} ，мм		Коэффициент слу－ чайной убыли K_{y}		
16－－20		100		0，6		1，15		
20－30		100		0，6		1，1		
30－40		135		0，8		1,1		
40－50		160		1，0		1，05		
$50-65$		180		1，2		1，05		
$\underbrace{\substack{\text { Диаметр } \\ \text { головки } \\ D}}_{\text {ма }}$			Величина стачивання					
		допусти．	за одну					
		m ${ }^{\text {m }}$						
16	20		3803	10	1，3	8	15，0	67
20	25		3805	13	1,3	10	18，3	55
25	32	3817	20	1，3	15	26，7	38	
30	32	3817	19	1，3	14	25，0	40	
35	25	3809	11	1，6	7	18，0	56	
40	25	3809	10	1，6	6	15，7	64	
45	32	3819	16	2，0	8	24，0	42	
50	32	3819	15	2，0	7	21，4	47	
55	36	3821	－ 18	2，4	7	24，0	42	
60	36	3821	16	2，4	6	21，0	48	
65	40	3815	20	2，4	8	27，0	37	

Сверла одностороннего резания диаметром $30-55$ мм с механическим креплением МНП и внутренним подводом СОЖ

Диаметр сверла D, мм	Число		Расход пластинок за 1000 у основного времени, ши.	
	МНП	направляюших	МНП	направляющих
30-35	1	2	220	180
35-45	1	2	170	140
45-55	1	2	150	100

Сборнье конструкции головок диаметром $65-125$ мм с механическим креплением трехгранных режущих пластин из твердого сплава

Диаметр головок D, мм	Число режущих пластинок в голсвке, шт.	Расход пластинок за 1000 ч основного времени, шт.		
		режущих	опорняs	направляющих
65-90	3	300	30	40
90--125	5	400	40	40

Головки для растачивания диаметром 50-125 мм с наружнья подводом СОЖ
Обрабатьєаемьй материал - сталь

$\underset{\text { мм }}{\underset{\text { диаме }}{ }}$		Стойость T, мин				Козффициент K_{y} случаиной убыли	
\qquad	Длава ны b_{0}			Величина стачи за одну переточ- ку h Ky			
$\begin{aligned} & 50-60 \\ & 60-65 \\ & 65-75 \\ & 75-85 \\ & 85-90 \\ & 90-95 \\ & 95-125 \end{aligned}$	17,55 22,76 22,76 16,99 1699 18,86 18,86	$\begin{aligned} & 3805 \\ & 3817 \\ & 3817 \\ & 3809 \\ & 3899 \\ & 3819 \\ & 3819 \end{aligned}$	$\begin{array}{r} 9 \\ 13 \\ 13 \\ 9 \\ 9 \\ 9 \\ 11 \\ 11 \end{array}$	1,2 1,2 1,5 1,5 1,8 1,8 2,2	$\begin{array}{r} 7 \\ 11 \\ 9 \\ 6 \\ 5 \\ 6 \\ 5 \end{array}$	25,4 38,0 35,0 24,5 23,0 26,8 25,0	43 29 31 45 48 41 44

Обрабатьваемый материал - чугун

Диаметр головки D. им		Стойость T, мин		Критерий затупления \boldsymbol{h}_{3}, мM		Коэффициент $\boldsymbol{K}_{\mathbf{y}}$ случайноћ убыли	
$\begin{aligned} & 50-65 \\ & 65-85 \\ & 85-95 \\ & 95-125 \end{aligned}$		$\begin{aligned} & 240 \\ & 260 \\ & 280 \\ & 300 \end{aligned}$		$\begin{aligned} & 1,0 \\ & 1,2 \\ & 1,5 \\ & 1,8 \end{aligned}$		- 1,1	
$\begin{aligned} & \text { Днаметр } \\ & \text { rоловки } \\ & D \end{aligned}$	Длина пласти-ны		Велидина стачивания				
			допустимая	sа одну переточ. кy h			
m			mм				
50-60	17,55	3805	9	1,5	6	28,0	39
60-65	22,76	3817	13	1,5	9	40,0	28
65-75	22,76	3817	13	1,8	7	34,7	32
75-85	16,99	3809	9	1,8	5	26,0	42
85-90	16,99	3809	9	2,2	4	23,3	47
90-95	18,86	3819	11	2,2	5	28,0	39
95-125	- 18,86	3819	11	2,7	4	25,0	44

Определение расхода инструмента на программу (укрупненно)

Карта 12

Сверла твердосплавные с внутренним и наружным подводом СОЖ диаметром 3-125 мм

$\begin{gathered} \text { Коэффи- } \\ \text { циент } \\ \mathbb{K}_{\mathrm{T}} \end{gathered}$	Суммарная стоикость $\Sigma T, ~ ч$	Трудоемкость T_{H}, нормо-ч							
		200	400	600	800	1000	1200	1500	2000
		Расход инструмевта $P_{\text {пп, }}$, шш.							
0,8	15	10,7	21,3	32,0	42,8	53,3	64,0	80,0	107,0
	30	5,3	10,6	15,9	21,3	26,6	32,0	40,0	53,0
	45	3,5	7,0	10,5	14,2	17,7	21,3	26,6	35,0
	60	2,7	5,4	8,0	10,7	13,3	16,0	20,0	27,0
		2,1	4,2	6,3	8,4	10,6	12,8	16,0	21,0
	90	1,8	3,6	5,3	7,2	8,8	10,7	13,3	18,0

Коэффи диент K_{T}	Суммарная стойость $\Sigma T, 4$	Трудоемкость $T_{\text {H }}$, вормо-я							
		200	400	600	800	1000	1200	1500	2000
		Расход инструмента $P_{\text {uи }}$, хит.							
0,7	15	9,3	18,7	28,0	37,3	46,7	56,0	70,0	93,3
	30	4,7	9,3	14,0	18,7	23,3	28,0	35,0	46,7
	45	3,1	6,2	9,3	12,4	15,6	18,7	23,3	31,1
	60	2,3	4,7	7,0	9,3	11,7	14,0	17,5	23,3
	75	1,9	3,7	5,6	7,5	9,3	11,2	14,0	18,7
	90	1,6	3,1	4,7	6,2	7,8	9,3	11,7	15,6
0,6	15	8,0	16,0	24,0	32,0	40,0	48,0	60,0	80,0
	30	4,0	8,0	12,0	16,0	20,0	24,0	30,0	40,0
	45	2,7	5,3	8,0	10,7	13,3		20,0	26,7
	60	2,0	4,0	6,0	8,0	10,0	12,0	15,0	20,0
	75	1,6	3,2	4,8	6,4	8,0	9,6	12,0	16,0
	90	1,3	2,7	4,0	5,3	6,7	8,0	10,0	13,3
0,5	15	6,7	13,3	20,0	26,7	33,3	40,0	50,0	66,7
	30	3,3	6,7.	10,0	13,3	16,7	20,0	25,0	33,3
	45	2,2	4,4	6,7	8,9	11,1	13,3	16,7	22,2
	60	1,7	3,3	5,0	6,7	8,3	10,0	12,5	16,7
	75	1,3	2,7	4,0	5,3	6,7	8,0	10,0	13,3
	90	1,1	2,2	3,3	4,4	5,5	6,6.	8,3	11,1

Примечание. При отсутствии данных об основном и штучном вреяени коэффициент типа производства $K_{\text {т }}$ можно принять равным: 0,8 при массоюм и крупносерийном; 0,7 при среднесерийном; 0,6 при мелкосерийном; 0,5 при дииичном производстве.

Приложение

СПОСОБЫ ОБРАБОТКИ ГЛУБОКИХ ОТВЕРСТИИ

Сверление отверстий диаметром :30 мм с внутренним подводом СОЖ и наружным отводом стружки

Наиболее изучен и распространен в промышленности способ обработки глубоких отверстий, показанный на эскизе. В качестве инструмента в этом случае используют сверла одностороннего резания с твердосплавной рабочей частью, обеспечивающие прецизионную обработку отверстий. Наименьший увод оси отверстия достигается при встречном вращении инструмента и обрабатываемой детали или при невращающемся инструменте. Этим способом обрабатывают и неглубокие отвепстия.

Для обработки глубоких отверстий при невысоких требованиях к точности (11-12-й квалитет) поверхности (например, отверстий в клапанах дизельных и карбюраторных двигателей, в деталях с каналами для подвода смазки к поверхностям трения и др.) применяют трубчатые перовые сверла.

Сөерление отверстий диаметром 16-125 мж при наружном подєоде СОЖ и отводе стружкіи черея внутреннюю полость инструмента

В качестве инструмента испольяую: головки одностороннего резания с твердосплавными режущими пластинами, эакрепляемыми напайкой или с использованием различных способов механического крепления.
По конструктивному исполненню такие головки могут быть однорезцовые или многорезцовые.

Эжекторное сверление отверстий диаметьож $20-65$ мм

Эжекторное сверление яяляется разновидностью обработки отверстий с наружным подводом СОЖ и представляет собой единственный способ, который может быть применен на имеющемся универсальном оборудованин без существенных конструктивных изменений.

При сверлении применяют систему с двумя соосными стеблжми при внутренней подаче СОЖ и внутреннем отводе стружки.

Сверло 1 закрепляют в несуцем стебле 7 , который устанавливают в цанre 3 специального патрона 4, обеспечивающего подвод СОЖ и отвод пульпы (смеси СОЖ со стружкой). Внутри несушего стебля располагается внутренний стебель 6 СОЖ подводится во вращаюшийся инструмент под давлением через патрон в кольцевой зазор между стеблями. На внутреннем стебле выполнено сопло образованное щелевидными прорезями 5 , направленными под углом к оси стебля и перекрывающими друг друга по ее окружности.

Подводимый под давлением через патрон в инструмент поток СОЖ разделяется на две части Часть потока продолжает движение по кольцевому зазору между трубой и стеблем и направляется в зону резания через специальные отверстия, выполненные в хвостовике сверла. Другая часть, проходя под давлением через сопло, создает разряжение в зоне резания. В результате возникает эффект эжекции, который обеспечивает стабильный отвод пульпы из зоны резания по трубе В момент врезания в обрабатываемую заготовку 8 сведло получает направление по направляющей втулке 2

Сверление с эжекторным отводом стружки обеспечивает точность обработки IT9-IT12 и шероховатость поверхности не ниже $R a=2,5 \div 5$ мкм

Геометрию режущей части сверл и стружколомающих уступов рекомендуется выполнять в соответствии с картой 7 (с 565).

Подачу, расход и давление СОЖ рекомендуется выбирать по карте 8 (c. 570), а скорость резания назначать по карте 10 (с. 584).
Растачивание отверстий головками диаметром 50-125 мм с наружным подводом СОЖ и внитренним отводо п стружки через внутреннюю полость инструмента

Растачивание применяют для обра ботки отверстий в заготовках, уже имеющих отверстие, или при повышенных требованиях к качеству обработан= ной поверхности. Схема растачивания отверстий головками одностороннего резания ${ }_{\text {п }}$ с внутренним отводом СОЖ и стружки показана на эскизе.

Растачивание в несколько проходоє используют также при недостаточной мощности привода станка. Для раста чивания могут применяться не тольк головки, но и сверла, обычно исполь зуемые для обработки глубоких отверстий в сплошном материале.

Приложение 2

СХЕМЫ ОБРАБОТКИ

Характеристика схек обработки по вращекию и подаче инструженна и заготовки

Группы подач	Инструмент		3aroromxa		Характеристика
	Вращение	Подача	Вращение	Подача	
I	-		$+$	-	
II	$+$	$+$	+	-	Нормальная
III	$+$	-	-	$+$	Нормальная
IV	$+$	-	-	$+$	Повышенная

Характеристика схем обработки по пространственному расположению инстружента и ваготовки

Обозначение	Расположение ивструмевта и заготовкв	Характеристикв
Γ	Горизонтальное	Повыmенная
B	Вертихальное	Нирмальнал

Примечание. Вертикальная схема сверления имеет ограниченное применение и используется при обработке отверстий небольшой глубины ($l / d \leqslant$ $\leqslant 20$). При œ применении расход и давление СОЖ увеличиваются в $1,2-1,3$ раза по сравнению с нормативными.

Приложение 3

ТРЕБОВАНИЯ К СТАНКУ И ОСНАСТКЕ

Требования к станку и оснастке в вависимости от условий выполнения операчии

Продолжсние прия. з

Tребования х станку и оспастке	Комплексная точностная характеристика операции		
	высокая	повышенная	$\begin{aligned} & \text { нор- } \\ & \text { мальная } \end{aligned}$
Допуск параллельности перемещения узла крепления или инструмента относительно оси пшинделя, мм	0,005	0,01	0,015
```Допускаемая нагрузка на шпиндель: осевая сила (H) при диаметре отверстий (мм), не более: 10 30```	$\begin{array}{r} 5000 \\ 20000 \end{array}$		
крутящий момент (H.м) при диаметре оввер. стий (мм), не более: $\begin{array}{r} 10 \\ 30 \end{array}$	$\begin{array}{r} 50 \\ 300 \end{array}$		
2. Трео̋ования кк системе подачи СОЖ			
Максимальный размер частиц при фильтрации СОЖ от механических загрязнений, мм	0,005	0,01	0,015
Общий объем отфильтрованной жидкости должен обеспечить, 5-10 мин непрєрывной работы системв с максимальным расходом	-		
Кинематическая вязкость (мм²/c) рябочей жидкости при температуре: $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & 50^{\circ} \mathrm{C} \end{aligned}$	До 25		
Пределвная скорость потока СОЖ в отстойниках н сливных магистралях системы (для ясключения пузырьков воздуха и пенообразования), м/с	2		
Дистанииоиное наблодение за давлением н расходон СОЖ в нагнетающей магистрали, отключеняе систем привода врашения и подачи инструмента при изменении давления СОЖ в зоне обработжи более $10 \%$ от заданного	-		
3. Tреоояания к аснастке			
Допуск соосности посадочного места патрона для креплення инструмента и его хвостовика, мм	0,01		0,02
Максимальный зазор между кондукторной втул. кой а јабоцей частью инструмента, мм	0,01		0,015
Допуск соосности оси патрона и кондукторноя атулкн; мм	0,01		

Не менее 1,0
Млотность ирилегания торца обрибатываемой детали к торцу хондукторной втулки по копьцу (при сверлении с внутренним подводом СОЖ), мм Удобство удалекия пульпь

Приложение 4
ТИПАЖ СТАНКОВ ДЛЯ ОБРАБОТКИ ГЛУВОКИХ ОТВЕРСТ


Продолжение прил. 4

Iриложение 5
ПЕРЕЧЕНЬ ТВЕРДОСПЛАВНЫХ ИНСТРУМЕНТОВ
ДЛЯ ОБРАБОТКИ ГЛУБОКИХ ОТВЕРТТЙ

Инструмент	Нормативно-техническая документация	Основные параметры, мм	Краткая техническая характеристика	Завод-изготовитель
Сверла одностороннего резания с цельной твердосплавной рабочей частью и внутренним подводом СОЖ	OCT 1.52024-81	$D=3 \div 4$	Рабочая часть из твердых сплавов BK6M, BK6-OM по ГОСТ 3882-74	Централизованно не изготовляются
	ТУ 2-035-655-79	$\begin{aligned} & D=4 \div 20 \\ & L=250 \div 2000 \end{aligned}$		Сестрорецкий инструментальный завод им.   С. И. Воскова
Сверла одностороннего резания, оснащенные твердосплавными пластинами, с внутренним подводом СОЖ	ТУ 2-035-722-80	$\begin{gathered} D=7,5 \div 30 \\ L=140 \div 1700 \end{gathered}$	Рабочая часть с напаянными пластинами из твердых сплавов ВК6М, BK6-OM по ГОСТ 3882—74	То же

Продолжение прил. 5

Инструмевт	Нормативно-техническая докумептация	Основные пардметры, мм	Краткая техническая характеристика	3वвод-изготовитель
Сверла трубчатые перовые, оснапенные твердосплавными пластинами, с внутренним подводом СОЖ	-	$D=3-30$	Рябочая часть с напаянными пластинаии нз гвердых сплавов BK8 п BK8M по ГОСТ 3882-74	Цеттрализованно не изготовляются
Головки сверлильные одностороннего реяания однорезцовые с наружным подводом СОЖ	По типу HO МОП 5678-68 к НО МОГ 5720-68	$D=16 \div 65$	Рабочая часть с напаянными пластинами из твердых сптавов T5K10, Т15K6 и ВК8 по ГОСТ 3882-74	То же




Продолжение прил. 5


Приложение 6

## ОСНОВНЫЕ РАСЧЕТНЫЕ ЗАВИСИМОСТИ

Табличная подача (мм/об) определяется по формуле

$$
S_{O_{T}}=C_{S} D^{u_{S}},
$$

где $C_{s}$ - коэффициент; $u_{s}$ - показатель степени; значения этих величин приведены в табл. П6.1.

Нормативная подача (мм/об) рассчитывается с использованием формулы

$$
S_{\mathrm{o}_{\mathrm{H}}}=S_{\mathrm{o}_{\mathrm{T}}} K_{S_{j}} K_{S_{l}} K_{S_{\mathrm{H}}} K s_{d}
$$

Значения поправочных коэффициентов приведены на с. 574,575 карты 8.

Табличный расход СОЖ (л/мин) на-: ходят по формуле

$$
Q_{T}=C_{Q} D^{u_{Q}}
$$

где $C_{Q}$ - коэффициент; $u_{Q}$ - показатель степени; значения этих величин приведены в табл. П6.2.

Нормативный расход СОЖ (л/мин)

$$
Q_{\mathrm{H}}=Q_{\mathrm{T}} K_{\mathrm{c}} .
$$

Значения поправочных коэффициентов $K_{\text {c }}$ приведены в карте 8 (см. с. 575).

Табличное́ давление СОЖ (МПа)

$$
P_{\mathrm{T}}=C_{p} D^{u} p
$$

где $C_{p}$ - коэффициент; $u_{p}$ - показатель степени; значения этих величин приведены в табл. П6.3.

Нормативное давление СОЖ (МПа)

$$
p_{\mathrm{H}}=p_{\mathrm{T}} K_{\mathrm{C}} .
$$

Значения поправочных коэффициентов $K_{\mathrm{c}}$ приведены в карте 8 (см. с. 575).

Средний период стойкости (мин)

$$
T=C_{\mathrm{T}} D^{u_{\mathrm{T}}}
$$

где $C_{T}$ - коэффициент; $u_{\mathrm{T}}$ - показатель степени; значения этих величин приведены в табл. П6.4.

Критерий затупления (мм)

$$
h_{3}=C_{h_{\mathrm{s}}} D^{n_{h_{3}}},
$$

где $C_{h_{3}}$ - коэффициент; $u_{h_{3}}$ - показатель степени; значения этих величин приведены в табл. П6.5.
Табличная скорость резания (м/мин)

$$
v_{\mathrm{T}}=C_{v} \frac{D^{u_{0}}}{S^{y_{v}}},
$$

где $C_{v}$ - коэффициент; $u_{v}$ и $y_{v}$ показатели степени: значения этих величин приведены в табл. П6.6.
Нормативная скорость резания (м/мин)

$$
v_{\mathrm{H}}=v_{\mathrm{T}} K_{v_{\mathrm{H}}} K_{v_{u}} K_{v_{d}},
$$

где $K_{v_{\mathrm{H}}}, \quad K_{v_{\text {II }}}, K_{v_{d}}$ - поправочные коэффициенты, значения которых приведены в карте 10 на с. 591,592.

Табличная осевая сила (кН)

$$
P_{O_{T}}=C_{P_{0}} D^{u_{P_{0}}} S^{y_{P_{0}}},
$$

где $C_{P_{0}}$-коэффициент; $U_{P_{0}}, y_{P_{0}}$ показатели степени; см. в табл. П6.7.

Нормативная осевая сила (кH)

$$
P_{\mathrm{o}_{\mathrm{H}}}=P_{\mathrm{o}_{\mathrm{T}}} K_{P_{\mathrm{H}}} K_{P_{d}},
$$

где $K_{P_{\mathbf{H}}}$ и $K_{P_{d}}$ - поправочные коэффициенты, значения которых приведены в карте 10 на с. $591,592$.

Табличная мощность резания (кВт)

$$
N_{\mathrm{T}}=C_{N} D^{u_{N}} S^{y_{N}},
$$

где $C_{N}$ - коэффициент; $u_{N} ; y_{N}$ показатели степени; значения этих величин приведены в табл. П6.8.

Нормативная мощность резания (кВт)

$$
N_{N}=N_{\mathbf{T}} K_{N_{\mathbf{H}}} K_{N_{\mathbf{K}}} K_{N_{d}},
$$

где $K_{N_{H}}, K_{N_{\text {B }}}$ и $K_{N_{d}}$ - поправочные коэффициенты, значения которых приведены в карте $10(c .591,592)$.

П6.1. Значения коэффициента $\boldsymbol{C}_{\mathrm{S}}$ и показателя степени $\boldsymbol{u}_{S}$

Tип сверла	Комплексная точностная харіктери. стика операции	$c_{S}$	$u_{S}$

Обработка отверстий в сталях

Сверла односіороннего резания диаметром 3-30 мм с внутренним подводом СОж	Нормапьная Повышениая Высокая	$\left\lvert\, \begin{aligned} & 0,005 \\ & 0,003 \\ & 0,002 \end{aligned}\right.$	$\begin{aligned} & 0.92 \\ & 0.93 \\ & 0.94 \end{aligned}$
Трубчатые перовые сверла диаметром ?30 мм, оснадценные твсрдым сплавом с внутренним подводом СОЖ	Нормальнат	0.007	0,93
Сверлильные аднпрезцовые головки диаметром $16-65$ мм с наружным подводом СОЖ	Нормальнӑя Повышенная Высокая	$\begin{aligned} & 0,008 \\ & 0,006 \\ & 0,002 \end{aligned}$	$\begin{aligned} & 0,83 \\ & 087 \\ & 1,12 \end{aligned}$
Сверлильные трехрезцовые головкіг одностороннего резания диаметрсм $20-65$ мм с наружным подводом СОЖ	Нормальная   Повышенная	$\left\lvert\, \begin{aligned} & 0,005 \\ & 0,003 \end{aligned}\right.$	$\begin{aligned} & 0,97 \\ & 1,0 \end{aligned}$
Сверла с внутренним эжекторным отводом стружки диаметром 20-65 мм	Нормальная   Повышенная	$\begin{array}{\|l\|l} 0,005 \\ 0.003 \end{array}$	$\begin{aligned} & 0,94 \\ & 1,06 \end{aligned}$
Сверла одностопоннего резания диаметпом 30-55 мм с механическим креплением МНП и внутренним подводом СОЖ	Нормальная Повышенная	$\begin{aligned} & 0.003 \\ & 0,002 \end{aligned}$	$\begin{aligned} & 0,91 \\ & 0,99 \end{aligned}$
Сборные сверлильные головки диаметром 65125 мм с наружным подводом СОЖ	Нормальная   Повышенная	$\left\lvert\, \begin{aligned} & 0,006 \\ & 0,004 \end{aligned}\right.$	$\begin{aligned} & 0,78 \\ & 0,86 \end{aligned}$
Сверлильные трехрезқовые головки диаметром $90-125$ мм с наружным подводом СОЖ	Нормальная Повышенная	$\left\lvert\, \begin{aligned} & 0,013 \\ & 0,011 \end{aligned}\right.$	0,63 0,65
Головки диаметрмм 50-125 мм для растачивания с наружным подводом СОЖ	Нормальная   Повышенная	$\begin{aligned} & 0,06 \\ & 0,06 \end{aligned}$	$\begin{aligned} & 0,37 \\ & 0,35 \end{aligned}$


| Tип сверла | Комплексная точ- <br> ностная характери <br> стика операции | $c_{S}$ |
| :---: | :---: | :---: |$u_{S}$

## Обработка отверстий в чугунах

Сверла одностороннего резания диаметром 3-30 мм с внутренним подводом СОЖ	Нормальная Повышенная Высокая	$\left\lvert\, \begin{aligned} & 0,008 \\ & 0,006 \\ & 0,004 \end{aligned}\right.$	$\begin{aligned} & 0,83 \\ & 0,87 \\ & 0,94 \end{aligned}$
Трубчатые перовые сверла диаметром 330 мм, оснащенные твердым сплавом с внутренним подводом СОЖ	Нормальная	0,010	0,92
Сверлильные однорезцовые головки диаметром 16 - 65 мм с наружным подводом СОЖ	Нормальная Повышенная Высокая	$\left\lvert\, \begin{aligned} & 0,013 \\ & 0,008 \\ & 0,005 \end{aligned}\right.$	$\begin{aligned} & 0,76 \\ & 0,86 \\ & 0,95 \end{aligned}$
Сверлильные трехрезцовые головки одностороннего резания диаметром $20-65$ мм с"наружным подводом СОЖ	Нормальная Повышенная	$\begin{aligned} & 0,008 \\ & 0,005 \end{aligned}$	$\begin{aligned} & 0,89 \\ & 1,0 \end{aligned}$
Сверла диаметром $20-65$ мм с внутренним эжекторным отводом стружки	Нормальная   Повышенная	$\begin{aligned} & 0,006 \\ & 0,005 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 1,02 \end{aligned}$
Сверла одностороннего резания диаметром 30-55 мм с механическим креплением МНП и внутренним подводом СОЖ	Нормальная   Повышенная	$\begin{aligned} & 0,012 \\ & 0,010 \end{aligned}$	0,66 0,62
Сборные сверлилุьные головки диаметром 65-125 мм с наружным подводом СОЖ	Нормальная   Повышенная	$\begin{aligned} & 0,009 \\ & 0,006 \end{aligned}$	$\begin{aligned} & 0,73 \\ & 0,79 \end{aligned}$
Сверлильные трехрезцовые головки диаметром $90-125$ мм с наружным подводом СОЖ	Нормальная Повышенная	$\begin{aligned} & 0,015 \\ & 0,02 \end{aligned}$	$\begin{aligned} & 0,62 \\ & 0,56 \end{aligned}$
Головки для растачивания диаметром 50 125 мм с наружным подводом СОЖ	Нормальная   Повышенная	$\begin{aligned} & 0,08 \\ & 0,07 \end{aligned}$	$\begin{aligned} & 0,32 \\ & 0,33 \end{aligned}$

П6.2. Значения коэффициента $C_{Q}$ и показателя степени $\boldsymbol{u}_{Q}$ в яависимости от обрабатываемого материала

Тип сверла	Обрабатывае: мый материал	$C_{Q}$	${ }^{\prime}{ }_{Q}$
Сверла одностороннего резания диаметром 330 мм с внутренним подводом СОЖ	Сталь	1,16	1,15
	Чугун	0,77	1,23
Трубчатые перовые сверла диаметром 3-30 мм, оснащенные твердым сплавом с внутренним подводом СОЖ	Сталь	1,93	1,08
	Чугун	1,62	1,07
Сверлильные однорезцовые головки диаметром 16-65 мм с наружным подводом СОЖ	Сталь	14,03	0,55
	Чугун	8,06	0,66
Сверлильные головки одностороннего резания трехрезцовые диаметром $20-65$ мм с наружным подводом СОЖ	Сталь	9,85	0,64
	Чугун	5,32	0,77
Сверла с внутренним эжекторным отводом стружки диаметром $20-65$ мм	Сталь	4,2	0,82
	Чугун	3,77	0,83
Сверла одностороннего резания диаметром 30 55 мм с механическим креплением МНП и внутреи́ним подводом СОЖ	Сталь	1,54	0,94
	Чугун	2,15	0,81
Сверлильные головки диаметром 65-125 мм сборные с наружным подводом СОЖ	Сталь	2,78	0,96
	Чугун	1,57	1,07
Головки сверлильные трехрезцовые с наружным подводом СОЖ диаметром $90-125$ мм	Сталь	8,21	0,73
	Чугун	5,6	0,79
Головки для растачивания диаметром $50-125$ мм с наружным подводом СОЖ	Сталь	4,13	0,87
	Чугун	1,74	1,03

П18.3. Значения коэффніиента $C_{p}$ и показателя степени $u_{p}$ в зависимости ет обрабатываемото материала

Tип сверла	Обрабатывае. мый материал	$c_{p}$	$u_{p}$
Сверла односороннего резания диаметром З- 30 мм с внугренним подвсдом СОЖ	Сталь	9,25	-0,2
	Чугун	9,15	-0,25
Трубчатые перовые сверла диаметром 330 мм, оснащеннье твердым сплавом с внутренним подводом СОЖ	Сталь	7,29	- - 0,28.
	Чугун	7,5	-0,34
Сверпидные однорезцовые головки диаметром $16-65$ мм с наружным подводом СОЖ	Сталь	8,5	--0,33
	Чугун	8,75	--0,38
Сверлильные трехрезцовые головки одностороннего резания диаметром $20-65$ мм с наружным подводом СОЖ	Ctans	10,7	$-0,4$
	Чугун	11,37	$-0,45$
Сверла диаметром $20-65$ мм с внутренним эжекторннм отводом стружки	Сталь	6,45	-0,46
	Чугун	6,27	$-0,47$
Сверла одностороннего резания диаметром $30-55$ мм с механическим креплением МНП и внутренним подводом СОХ	Сталь	33,3	$-0,76$
	Чугун	24,8	-0,73
Сборные сверлильные головки диаметром 65-125 мм с наружным подводим СОЖ	Сталь	18,6	-0,52
	Чугун	222,38	-1,15.
Головки для растачивания диаметром 50 125 мм с наружным подводом СОЖ	Сталь	11,7	$-0,46$
	Чугун	. 84,39	-0,99
Головки сверлильные трехрезцовые диаметром $90-125$ мм с наружным подводом СОЖ	Сталь	42,0	-0,68
	Чугун	519,1	$-1,34$

П6.4. Значения коэффициента $C_{T}$ и показателя степени $\boldsymbol{u}_{\mathrm{T}}$ в зависимости от
обрабатываемых материалюв

Тип сверла	Обрабатываемый материал	$C_{\text {T }}$	$u_{T}$
Сверла одностороннего резания диаметром 330 мм с внутренним подводом СОЖ	Сталь	25,34	0,54
	Чугун	55,19	0,39
Сверла одностороннего резания, оснащенные твердосплавными пластинами диаметром 7,530 мм, с внутренним подводом СОЖ	Сталь	21,15	0,58
	Чугун	48,59	0,5
Трубчатые перовые сверла диаметром 3-30 мм, оснащенные твердым сплавом, с внутренним подводом СОЖ	Сталь	51,44	0,29
	Чугун	64,89	0,32
Сверлильные однорезцовые головки диаметром 16-65 мм с наружным подводом СОЖ	Сталь	28,25	0,41
	Чугун	30,39	0,42
Сверлильные трехрезцовые головки одностороннего резания диаметром $20-65$ мм с наружным подводом СОЖ	Сталь	13,6	0,6
	Чугун	14,47	0,8
Сверла с внутренним эжекторным отводом стружки диаметром $20-65$ мм	Сталь	13,6	0,6
	Чугун	14,47	0,61
Сверла одностороннего резания диаметром 30 55 мм с механическим креплением МНП и внутренним подводом СОЖ	Сталь	1,08	1,24
	Чугун	2,74	1,03
Сверлильные головки диаметром 65-125 мм сборные с наружным подводом СОЖ	Сталь	21,22	0,48
	Чугун	21,58	0,51
Сверлильные трехрезцовые головки с наружным подводом СОЖ диаметром $90-125$ мм	Сталь	46,9	0,32
	Чугун	64,75	0,28
Головки для растачивания диаметром 50-125 мм с паружным подводом СОЖ	Сталь	56,9	0,3
	Чугун	90,04	0,25

П6.5. Значения коэффициента $C_{h_{3}}$ и показателя степени $\boldsymbol{u}_{h_{3}}$ в зависимости от обрабатываемого материала

Тип сверла	Обрабатываемый материал	$C_{h_{3}}$	$u_{h_{3}}$
Сверла одностороннего резания диаметром 330 мм с внутренним подводом СОЖ	Сталь	0,127	0,45
	Чугун	0,2	0,28
Сверла одностороннего резания, оснащенные твердосплавными пластинами диаметром 7,5 $30 \mathrm{mм}$, с внугренним подводом СОЖ	Сталь	0,136	0,39
	Чугун	0,15	0,47
Трубчатые перовые сверла диаметром 3-30 мм, оснащенные твердым сплавом, с внутренним подводом СОЖ	Сталь	0,3	0,43
	Чугун	0,3	0,43
Сверлильные однорезцовые головки диаметром 16-65 мм с наружным подводом СОЖ	Сталь	0,08	0,55
	Чугун	0,15	.0,49
Сверлильные трехрезцовые головки одностороннего резания диаметром 20 - 65 мм с наружным подводом СОЖ	Сталь	0,03	0,8
	Чугун	0,06	0,73
Сверла с внутренним эжекторным отводом стружки диаметром $20-65$ мм	Сталь	0,03	0,8
	Чугун	0,06	0,73
Сверла одностороннего резания диаметром 3055 мм с механическим креплением МНП и внутренним подводом СОЖ	Сталь	0,004	1,24
	Чугун	0,028	0,93
Сверлильные головки диаметром 65-- 125 мм сборные с наружным подводом СОЖ	Сталь	0,016	0,9
	Чугун	0,035	0,78
Сверлильные трехрезцовые головки с наружным подводом СОЖ диаметром $90-125$ мм	Сталь	0,32	0,28
	Чугун	0,14	0,48
Головки для растачивания диаметром $50-125$ мм с наружным подводом СОЖ	Сталь	0,05	0,69
	Чугун	0,07	0,66

Пб.6. Значения коэффициента $C_{v}$ и показателей степеней $u_{v}$ и $\boldsymbol{y}_{v}$

Тип сверла.	Обрабатываемый материал	$c_{v}$	$u_{v}$	$y_{v}$
Сверла одностороннего резания диаметром 3-30 мм с внутренним подводом СОЖ	Сталь	40,2	0,05	0,15
	Чугун	36,0-	0,05	0,15
Трубчатые перовые сверла диаметром 330 мм, оснащенные твердым силавом, с внутренним подводом СОЖ	Сталь	58,8	0,10	0,15
	Чугун	48,0	0,10	0,15
Сверлильные однорезцовые головки диаметром $16-65$ мм с наружным подводом COK	Crajlb	44,1	0,05	0,15
	Чугун	40,5	0,05	0,15
Сверлильные трехрезцовые головки одностороннего резания диаметром $20-65$ мм с наружным подводом СОЖ	Сталь	44,1	0,05	0,15
	Чугун	40,5	0,05	0,15
Сверла диаметром $20-65$ мм с внутренним эжекторным отводом стружки	Сталь	44,1	0,05	0,15
	Чугун	40,5	0,05	0,15
Сверла одностороннего резания диаметром 30-55 мм с механическим креплением МНП и внутренним подводом СОЖ	Сталь	50,2	0,05	0,15
	Чугун	43,0	0,05	0,15
Сборные сверлильные головки диаметром $65-125$ мм с наружным подводом СОЖ	Сталь	46,8	0,05	0,15
	Чугун	27,3	0,1	0,25
Сверлильные трехрезцовые головки диаметром $90-125$ мм с наружным подводом COK	Сталь	46,8	0,05	0,15
	Чугун	27,3	0,1	0,25
Головки диаметром 50-125 мм для расстачивания с наружным подводом СОЖ	Сталь	53,1	0,05	0,2
	Чугуи	43,75	0,05	0,3

П6.7. Значения коэффициента $C_{P_{0}}$ и показателей степеней $\boldsymbol{u}_{P_{0}}$ и $\boldsymbol{y}_{P_{0}}$ в зависимости от обрабатываемого материала

Тип сверла	Обрабатываемый материал	$C_{P}$	${ }^{u} P_{0}$	${ }^{4} P_{\text {c }}$
Сверла одностороннего резания диаметром 3-30 мм с внутренним подводом СОЖ	Сталь	0,25	0,9	0,16
	Чугун	0,16	1,1	0,28
Трубчатые перовые сверла диаметрим 330 мм, оснаџенные твердым сплавом, с внутренним подводом СОЖ	Сталь	0,38	0,9	0,15
	Чугун	0,21	1,1	0,28
Сверлильные однорезцовые головки диаметром $16-65$ мм с наружным подводом COK	Сталь	0,48	1,1	0.6
	Чугун	0,20	1,1	0,45
Сверлильные трехрезцовые головки одностороннего резания диаметром $20-65$ мм с наружным подводом СОЖ	Сталь	0,48	1,1	0,6
	Чугун	0,20	1,1	0,45
Сверла с внутренним эжекторным отводом стружки диаметром $20-65$ мм	Сталь	0,48	1,1	0,6
	Чугун	0,20	1,1	0,45
Сверла одностороннего резания диаметром 30 - 55 мм с механическим креплением МНП и внугренним подводим СОЖ	Сталь	0,45	1,1	0,6
	Чугун	0,24	1,1	0,45
Сборные сверлильные головки диаметром 65-115 мм с наружным подводом СОЖ	Сталь	0,62	1,1	0,6
	Чугун	0,49	1.1	0,45
Сверлильные трехрезцовые головки диаметром $90-125$ мм с наружным подводом COK	Сталь	0,62	1,1	0,6
	Чугун	0,49	1,1	0.45
Расточные головки диаметром $50-125$ мм с наружным подводом СОЖ	Сталь	3,4	0,15	0,5
	Чугун	3,4	0,15	0,6

П18.8. Значения коэффициевта $C_{N}$ и показателей степени $\boldsymbol{u}_{N}$ к $y_{N}$ в зависимоств от обрабатываемого материала

тип сверла	Обраб́дтываемй материал	$C_{N}$	${ }^{u} N$	${ }^{4} N$
Сверла одностороннего резания диаметром 3-30 мм с внутренним подводом СОЖ	Сталь	0,12	1,1	0,15
	Чугун	0,22	1,1	0,45
Трубчатые перовые сверла диаметром 330 мм, оснащенные твердым сплавом, с внутренним подводом СОЖ	Сıаль	0,23	1,1	0,15
	Чугун	0,15	1,1	0,20
Сверлильные однорезцовые головки диаметром $16-65$ мм с наружным нодводом СОЖ	Сталь	0,20	1,2	0,35
	¢угун	0,31	1,1	0,6
Сверлильные тредрезцовые головки одностороннего резания диаметром 20-65 мм с наружным подводом СОЖ	Сталь	0,20	1,2	0,35
	Чyrya	0,31	1,1	0,6
Сверла диаметром 20-65 мм с внутренним эжекторным отводом стружки	Сталь	0,20	1,2	0,35
	Чугун	0,31	1,1	0,6
Сверла одностороннего резания диаметром 30-55 мм с механическим креплением МНП и внутренним подводом СОЖ	Cтajl	0,21	1,2	0,35
	Чугун	0,30	1,1	0,6
Сборные сверлильные головки диаметром 65-125 мм с наружным подводом СОЖ	Сталь	2,07	1,1	0,6
	Чугун	1,40	0,75	0,45
Сверлильные трехрезцовые головки диаметром $90-125$ мм с наружным подводом COK	Сталь	2,07	0,7	0,35
	Чугун	1,40	0,75	0,45
Головки для растачивания диаметром 50 125 мм с наружным подводом СОЖ	Сгаль	5,46	0,2	0,6
	Чугун	3,40	0,2	0,8

## ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ К РАЗДЕЛУ I

Глубина резания 10 - Последовательность выбора 7

- в зависимисти от виброустойчивости системы при черновой обработке (обтачивание, подрезание и рлсгачивание) конструкшионной стали ( 210 HB ) резцами из ТС и БРС на станках: крупных и тяжелых 30 ; мелких и средних 29
- в зависимости от точности детали (заготовки) при чистовой обработке резцами из ТС и БРС 28
Группы условий обработки - Группы обрабатываемых мдттериалов $154-160$ Группы операций 25 - Группы, подгруппы жесткости станков: крупных и тяжелых 24,25 , мелких и средних 23


## д

Детали - Қвалитеты 28-30 - Соотношение точности размеров и шероховатости поверхностей 118 - Стадии обработки 26-28
Длина подвода, врезания и перебега 168

## ж

Жидкости смазочно-охлаждаюцие - Рекомендуемые марки при обработке различных материалов 33
применяемые при точении 161 - Марки 161, 162

## 3

Заготовки - Квалитеты 26-28 - Способы получения 26-28-Схемы крепления на станке 164-167 - Частота вращения при обработке 10, 11

## и

Инструмент режущий - Выбор конструкции и материала 9, 10 - Выбор по нормативам. 7

## K

Коэффициенты поправочные детализованные и обобщенные 11

- на режимы резания в зависимости от требований производства 169
Коэффициенты поправочные на глубину резания 31, 32

Коэффициенты поправочные на мощность резания при. обтачивании и подрезании (черновая обработка): медных сплавов 110; конструкционных сталей 77,82 ; коррозионно-стойких сталей резцами 93; чугунов 107

- при отрезании и прорезании (черновая обработка): медных сплавов 144; конструкционных сталей 137; коррозионностойких сталей 139; чугуна 143
Коэффициенты поправочные на подачу при обтачивднии и подрезании (черновая обработка).

алюминиевых сплавов 110 ;
медных сплавов высокой твердости на станках: крупных и тяжелых 99, 104; мелких и средних 94, 103, 104;
медных сплавов низкой твердости 110 ; конструкционной стали резцами: из БРС (на мелких и средних станках) 77,78 ; для измененных условий работы 80; из TC на станках: крупных и тяжелых 65 , мелाких и средних 59 ; из ТСдля измененных условий работы $70-73$;
коррозионно-стойкой стали на станках: крупных и тяжелых 87; мелких и средних 83 ; для измененных условий работы 90, 91; чугунов на станках: крупных и тяжелых 99, 104; мелких и средних 94, 103, 104

- при обтачивании, подрезании и расгачивании (чистовая обработка): алюминиевых и медных сплавов 125 , 126 ; конструкционной стали в зависимости: от точности размеров детали 120 , от шероховатости поверхности 119 ; конструкционной стали 121: для измененных условий 123; коррозионно-стойкой стали 121: для измененных условий 123; чугуна резцами: из БРС и РК 119, 120; из ТС $119,120,125,126$
- при отрезании и прорезании: алюминиевых и медных сплавов 140 , 141 ; конструкционных и коррозионно-стойких сталей 133; чугуна 140,141
- при растачивании: алюминиевых и медных сплавов, чугуна 116,117 ; конструкционных и коррозионно-стойких сталей 112, 114
- при фасонном точении конструкционных и коррозионно-стойких сталей 131; для измененных условий работы 132
Коэффициенты поправочные на скорость резания при обтачивании и подрезании (черновдя обработка):

резцами из БРС конструкционной стали 79, 80 (для измененных условий работы 80);

резцами из ТС на крупных и тяжелых станках стали конструкционной углеродистой и легированной 66-69; легированной 66-68; повышенной обрабатываемости 66; для измененных условий обработки 74, 75;
резцами из ТС на мелких и средних станках стали: конструкционной и легированной $60-63$; легированной $60-$ 62; повышенной обрабатываемости 60; для измененных условий работы 7375;
резцами из ГС и БРС: алюминиевых сАлавов 111; бронзы и латуни высокой твердости $96,97,101,103$ (дляя измененных условий труда работы 105);

бронзы низкой твердости, меди 111: коррозионно-стойкой стали для измененных условий работы 91;
серого и ковксго чугунов 95-97, 102
(для измене்нных условий работы 105)

- при обтачивании, подрезании и растачивании чистовая обработка: закаленных и конструкционных сталей, чугунов 129 ; алюминиевых и медных сплавов, чугунов 126,127 (для измененных условий работы 127); конструкционных и коррозионно-стойких сталей 122,123 (для измененных условий рабо̀ты 124, 125)
- при отрезании и прорезании: алюминиевых и медных сплавов, чугуна 142 (для измененных условий работы 142); конструкционной и коррозионно-стойкой стали 134 (для измененных условии работы 135)
- при растачивании (черновая обработка): бронзы и латуни, серого и ковкого чугунов 116, 118; конструкционной и коррозионно-стойкой сталей 113, 115
- при фасонном точении резцами конструкционных и коррозионно-стойких сталей
Критерии затупления инструмента по задней поверхности 12


## J

Лезвия резцов 50,51 - Геометрические параметры при материале резца: БРС 52-55; TC 50-53

## M

Материал режущей пластины. Выбор марки 34-42
Мощность резания при обтачивании и подрезании (черновая обработка): резцами из БРС кон̆струкционной стали 81; резцами из ТС конструкционной стали 76; рездами из ТС и БРС: коррозионностойкой стали 92, 93; медных сплавов 108-110; чугуна 106,107

- при отрезании и прорезании (черновая обработкаł резцами из ТС и БРС: конструкционных сталей 137; коррозионностойкой стали 138,139 ; медных сплавов 144; чугуна 143


## H

Надежность инструмента 32, 33
Нормативы режимов резания - Алгоритм пользования 8 - Анализ условий при выборе 7, 9 - Особенности 6, 7

Период стойости инструмента: при обработке больших поверхностеи 8 , при черновок обработке резцами из БРС 153: при черновой обработке резцами из TC 145-147, 151, 152; при чистовой обработке 148, 149, 152, 153

- средний 7, 8

Подача - Выбор при чорновой и чистовой обработке 10 - . Корректирование с помощью поправочных коэффнциентов 10

- при обтачивании и подрезании (черновая обработка):

резцами из БРС конструкционной стали на станках крупных и тяжелых 79 , 80; мелких и средних 77, 78; резцами из ТС конструкционной стали на стажках: крулных и тяжелых 65; мелких и средних 58, 59;
резцами из ТС и БРС: алюминиевых сплавов 110 ; коррозионно-стойких сталей на станках: крупных и тяжелых 86, 87, мелких и средних 82,83 , медных сплавов высокой твердости на станках: крупных и тяжелых 98, мелких и средних 93,94 ; медных сплавов низкой твердости 110 ; чугуна на станках: крупных и тяжелых 98 , мелких и средних 93, 94

- при обтачивании, подрезании и растачивании (чистовая обрсботка):

резцами из PK закаленных и консгрукцилнных сталей, чугунов 128 ; резцами из TC: алюминиевых и медных сплавов, чугуна 125; конструкционных и коррозионно-стойких сталей 121;
резцами из ТС, БРС и РК• конструкционной и коррозионно-стойкой стали, чугуна 119, 120 ;
резцами из СТМ и АСПК: алюминия и алюминиевых сплавов, меди, чугуна 130; закаленной стали 129

- при отрезании и прорезании резцами из TC и БPC: конструкционной и корро-зионно-стойкой стали 133 (для измененных условий работы 135); медных сплавов и чугуна 140
- при растачивании (черновая обработка) резцами из ТС и БРС: алюминиевых и медных сплавов, чугуна 115, 117; конструкционных и коррозионно-стойких сталей 111, 113
- при фасонном точении резцами из ТС и БРС коррозионно-стойкой стали 130, 131


## P

Расход инструмента - Определение 1113 - Пример определения $13-22$

- при черновой обработке сталей, чугуна, цветных металлов и сплавов резцами: из БРС 153 ; из ТС с напайными пластинами 151 ; из ТС со сменными многогранными пластинами на станках: крупных и тяжелых 147, мелких и средних 145,146
- при чистовой обработке любых материалов резцами: из БРС 153; из ТС и PK 148, 149
Режимы резання: выбор 10, 11; выбор с использованием математических моделей 170-190; назначение с учетом требований производства 169
Резцы - Оценка в баллах типа конструк-

ции 45--47 - Положение пластины в державке 49 - Форма передней поверхности и ее обозначение 48,49

- для обтачивания и подрезания (из TC) 43
- для растачивания 44
- напайные -- Выбор геомегрических параметров 10
- сборные - Долговечность дегалей 150, 151
- с механическим креплением перетачи ваєиых пластин - Выбор геометричеऽних параметров 10
- с механическим креплениим иластин 9
- со сменными пластинами 163, 164


## C

Скорость резания -- Iорядок внбора 10

- при обтачивднии и подрезании (черновая обрабигка) везцами.

из БРС конструкционной сгали на станкдх: крупных н тяжелых 80 ; мелких и средних 78, 79; из ТС и БРС: алнминиевых сплавов и медных сплавов низкой твердости на мелких, крупных и тяжелых станкау 111: бронз и лачуней высокой твердости на стднках крупных и тяжелия 10!-103, мелких и средних 96, 97. коррозионно-стойких сталей нд станках: крупных и тяжелых 87 89; мелких и средних 83-85; ковкого и серого чугуна на станках: крупных и тяжелых 99-103; мелких и средчих 95--97;
из ТС сталей: конструкционных легированных и углеродистых на станках:

крупных и тяжелых 65-69; мелкия и средних 59-63; легированных на станках. крупных и $\boldsymbol{\text { мяжелых } 6 7 , 6 飞 \text { , }}$ мелиих и средних 60-62; повышеннор обрабатываемости на станках: крунных и тяжелых 66; мелких и сред них 60

- при обтачмьонии, нодрезании и растачивании (дисховяя обработка) резцами. из PK конструкционньх и закален. ных сталей, чугуна;
из стали СТМ н ACIIK на мелких, средних и крулных станках: алюминия и алюминневых сплавов 130 ; за каленний стали 129; меди и медны: сплавов, чугуна 130;
из ТС: алюминиевых и медных сплавов, чугуна 126, 127; конструкционных и коррознонно-стойвих сталей нг станках: круиных и тяжелых 122 ; на мелких и средних 121
- при отрезадни н ирорезании резцами из ТС и БРС: алюминиевых и медных сплавов, чугуна 141, 142: конструкционной и коррозиннно-егойкой стали 13ः
-- лии растачивонии (черновая ооработка) резцами ня ТС и ВРС: бронз, латуней, серого и ковкого чугуна на сганках крупных и яяжелыs 118 , на мелких и среіних 116; консарукционных и корюо зионно-стоиних сталей (210 НВ) на станках. крупных н гяжелыष 114,115, мелких и средних 112,113
- при фасонлом тооснии рсзщами из TC и БРС кпнсгрукциснныя и коррозионно стойих сталей 131
Стадии обра̇ботви 26--28


## ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ К РАЗДЕЛУ II

## $\Gamma$

Глубина резания кондевыми фрезами фактическая - Расиет 267, 268
-- минимальная при торцовом фрезеровании 212
-- предельная для торцовых фрез 210

## д

Длина подводов, врезаний и перебегов при обработке торцевлй и цилиндрический частями фрез 375
Длина рабочего хода, подвода, врезания и перебега фрез -- Расчет с использованием формул 374
Допуски для обработки концевыми фрезами 270, 271

## K

Компознаы - Марки 235
Коэффициенты поправочные на глубину резания концевыми фрезами 269
Коэффицнеиты поправочные на допуски при фрезеровднии концевыми фрезами заготовок: из тлюминиееых и медных сплавов 271 ; из стали 269,270 ; из чугуна 270
Коэффициен;ы поправочные на мощность резания пилами дисковыми сегментными нз БРС: алюминиевых сплавов 369 ; ковких и высокопрочных чугунов 367; конструкционных сталей 364 ; корро-знонно-стойких сталей 365; медных сплдвон 368,369 ; серого чугуна 366

- круглыми сегментными из БРС алюми-

нчевых сплизов 369 , $370^{\circ}$ из ТС алюми ниевых сн,
Коэффициеніы поправочные на мощность резания фрезами дискозыми трехсторонними из БРС. алюминиевых сплавое 310 , козкого и высокопричного чугунов 308; конструкционной стали 304; коррозиоч-ни-стойкой стали 305,306 ; медных спланов 309, 310; серого чугуна 306, 307

- дисковыми трехсторонними из ТС: ков ких и высокопрочных чугу:dэр 302, 303; констиукиионных стdлей 298. 299, кор-ризиснно-с гияннх сталей 299, 300; серого чугуна 301
- для фре ярования T-об́разньт пазов ‘матегиал фрез - SDC в в заготовках: из конструкцнонных сталей 34 ?, 343; мя серого чугуна 3 दз
… для фंрезеривания Т-ооразвых газов
 готовках แи серого чугуна 344
- концешыми из ¿ $\ddagger$ PC: алюмиииевьі сплавов 288, кивкид :s ввсокопрочнв чугу нов 286; конс грукционной сгали 283 , коррозиснно стойой стали 284, медных сплавов 287; серого чугун 285
- концевыми TC: кивкого іл вь'сок лпрочного чугуна 282; конь.рукционной стали 280; серого дугуна 281
- прорезними (илицевыми), отрезными и пазоными пз БРС: алюминиевых сила вов f $27^{\text {; ; конжиго и высокопрочного чугу- }}$ нов 325,326 , конструкционной етали 320,321 , коррявконно стойкой стали 322 , 323; медных сплавов 326,327 ; серого чугуна 323, 324
- фасонными ия EPC: двухугловыми несимметричными конструкционных сталей 333: полукруглыми выпуклыми и вогнутыми конструкционными сталями 334, 335
- угловыми из БРС для ибрабогки пазов типа «Ласточкин хвост» в заготовках: из конструкционных сталей 349 ; из серого чугуна 350,351
- угловыми из ТС для обработки пазов тнпа «Ласточкин хвост* в заготовках из серого чугуна 351,352
- цилиндрическими из БPC: ковкого и высокопрсчного чугунов 263,264
- 廿илнндрическими из TC: конструкиион* ных стален 256,257 ; серого чумуна 257 , 258
Коэффициенты поправочные на период стойкости фрез 196. 197
Коэффициенты поправочные на подачу при резании г ллами дисковыми сегментами из БРС для металла: алюминиевых н медных сплавов 362,363 конструк-廿ионных и коррозионнп-стоиких сталей 361, 362
- круглыми сегментными пилами для легких сплавов алюминиевых и медных сплавов, чугунов 362,353
Коэффициенты поправочные на подачу при фрезеровании фрезами дисковыми разовыми нз БРС 319,320
- дисковыми прорезными, щлицевыми и отрезными из БРС 318,319
- дисковыми трехсторонними нз БРС алюминиевых и медных сплавов, чугунов 296, 297
- дисковыми трехстороннимм из TC стали и чугуна 295, 296
- для пазпн сегментных шпонок материал фрез - БРС в заготовках: из констя укционных и коррозионно-стойких сталей, серых чугунов 354
- для Т-образннх пазов 341
-- концевыми: люминиевых и медных сплавов 278; коррозионно-стойкой стали 276; стали 275; чугунов 277
- торцовыми из GPC ; алюминиевых и медных сплавов 216,217 ; конструкционных сталей 213,214 ; коррозионно-стойких сталей 214, 215; чугуна 215
- цилиндрическими из БРС: конструкционной стали 253 ; коррозионно-стойки сталей 254: медных сплавов 255; чугу. нов 254
-. цилиндрическими из 1С: конструкциожной стали 252; серого чугуна 252, 253
- угловыми из БPC пазов типа «Ј кин хвост» в заготовках из конструк ционной стали и чугуна 347
- угловыми из TC пазов типа *Јасточкин хвостя в заготовках из серого чугуна 348
- фасонннми из БРС: двухугловыми нгсимметричными конструкционных сталей 331; пелукруглыми выпуклыми и вогнутыми 332
- !ппоночнымя из SPC паяов в заготов. ксх из конструкиненных сталеп $33^{7}$
Коэффициенты поправояные на ехорость резания в зависимости от вереятнос ги безотқазной работы 195
Коэффициенты поправочные кi сксростя резания пилами дисковыми сегмечтными из БPC: алюминиевых сплавев 369 ; ковкого и высокопродного дугунов 367: конструкцнонной стали 364: коррозгон-но-стойкой стали 365 ; метных сплавоз 368,359 ; серых чугунов 366
- круглыми сегментными пилами: из БPC алюминиевыд сплавов 369 , 370 ; нз ТС влюмияневых сплавов 370

Коэффициенты поправочные на схорость резания фрезами дисковыми грехсторонними из ЕРР: алюминиевых сплавов 310 ; ковкого и высокоирочного чуг унов 308; конструкционной стали 303,304 ; корро-зионно-стойкой стали 305, 306, медных сплавов 309,310 ; серого чугуна 306,307
-- дисковыми трехсторонними из TC: ксвкого и высокопрочного чугунов 302, 303, конструкционнсй стали 298, 299, корро-зионно-стойкой стали 299, 300; серого чугуна 301

- для пазов под сегментные шпонки материал фрез - ВРС заготовок из конструкционных сталей 355, из корро зионно-стойких сталең 356 ; из серого чугуна 357
- для Тпобазных пазсв материал фрез БРС заготовок: из конструкционных сталей 342, 343; из серого чу!уна 343
- для Т-образных пазов с напаяннымн пластиғами из TC заготовок из серого чугуна 344
- кониевыми нз БРС: алюминиевых сплавов 288; ковкого и высокопрочного чугуна 286; конструкционной сталн 283; коррозионно-стойкои стали
- концевьх из TC. ковкого и высокопрочного чугунов 282 ; конструкционной стали 280; серого чугуна 281
- прорезными (шлицевыми), огрезными и

пазовыми из БРС: алюминиевых сплавов 327; конких и высокопрочных чугунов 325, 326; конструкционной стали 320 , 321; коррозионно-стойкой сгали 322 , 323; медных сплавов 326 , 327 ; серого чугуна 323,324

- торцовыми из БРС: алюминиевых сплавов 229 ; конструкционной стали 226 , 227; коррозионно-стойкой стали 227, 228; медных сплавов 230
- торцовымн нз ТС: алюмнниевых сплавов 223,224 ; ковкого и высокопрочного чугунов 222; конструкционной стали 217, 218 , коррознонно-стойкой стали 21?. 220; медных сплавов 223,224 ; серого чугуна 220, 221
- торцовыми регулируемыми, оснацценцыми вставками из композигов 01 и 10: закяленных сталей 238,239 ; незакаленных сталей 23 ; серого чугуна 240
- торцовыми с механическим креплением пластин из композита 10 Д: закаленной стали 242, 243; незакаленной стали 241; герого пугуна 244
- торцовыми с механическим креплением пластин из композита 05 серого чугуна 245
-- торцорыми с пластинами из мияєпалокерамики 248, 249
- угловыми из БРС для пазов типа "ласточкин хвост» заготсвок: из конструкционных сталей 349 ; из серого чугуна 350,351
- у1ловыми из ТС для пазов типа «Ласточкин хвост» заготовок из серого чугуна 351, 352
- фасонными: двухугловєми несимметрит. дыми конструкцнонных сталей 333 џллукруглыми выпуклџми и вол нутыми конструкционных сталей 334, 335
- цилиндрическими из БPC: ковких и чыокопрочных чугунов 263,264 ; конструкцнонной стали 259; коррознонностоякой стали 260,261 ; медных сплавов 264, 265; серого чугуна 261, 262
-- цилиндрическими из ТС: конструкинснноп стали 256, 257 ; серого чугуна 257 , 258
- шпоночными из БPC пазов 3итотовок

нз конструкционной стали за один проход и на станках с маятниковой подачей 338, 339
Критерий затупления и число переточех пил дисковых сегментных при резании. алюминиевых сплавов 373 , 374 ; конструкционных сталей и чугуна 371, 372; коррозионно-стойкой отали 372,373
Критерий затупления и число переточев фрез дисковых двух- н трехсторонних нз ТС при фрезеровании: конструкционной стали и чугуна 311, 312; корро-зионно-стойкой стали 312,313

- дисковых: пазовых 330; прорезных (шлицевых) и отрезных 328; прорезных (шлицевых) и отрезных типа 2 со средним зубом 328 , 329 ; прорезных (шлицевых) и отрезных типа 3 с крупным зубом 329
- дисковых трехсторонних из БРС при фрезеровании. конструкционной стали и чугуна 313, 314; коррозионно-стойкой спали 314, 315
- дисковых трехсторонних цельных из БРС при фрезеровании. конструкционной стали и чугуна 315 ; коррозионностойкой сталн 316
- для фрезерования пазов под сегментные шпонки в заготовках из конструкционной и коррозионно-стонкой сталей, сеporo чугуна 357
- для фрезерования Т-образных пазов (магериал фрез - ТС и БРС) в заготовках из конструкционной стали и чугуна 345
- концевых из БРС при фрезеровании: алюминиевых и медных сплавов 292,293 ; конструкционных сталей 289, 290; кор-розионно-стойкой стали 292, 293; чугуна 290, 291
- концевых из ТС при фрезеровании конструкционных сталей и чугуна 289
- торцовых насадных: из БРС 232; оснащенных СМП 233, 234; со вставными ножами из БРС 232 ; со вставными ножами, оснащенными пластинами ТС 231
- торцовых регулируемых, оснащенных композитом 01 и 10 , при фрезеровании стали и чугуна 246
-- угловых для фрезерования пазов типа *Ласточкин хвост» (материал фрез ТС и БРС) в заготовках из конструкционной стали и серого чугуна 352,353
- фасонных при фрезерованин конструкционной стали 335
-- цилиндрических: из БРС при фрезеровании конструкционных сталей, медных сплавов и чугуна 266; из ТС при фрезеровании конструкционнои стали 265
- шпоночных из БPC 339

Критерий затупления пластин из минералокерамики при фрезеровании: получистовом 249, чистовом 250

## M

Материалы сверхтвердые для торцовых фрез 235
Мощность резания - Зависимости для расчета 384 - Значения постоянных, входящих в формулы 402-405-3начения постоянных в формулах для определения формализованных поправочных козффициентов 406 -- Поправочные коэффициенты на марку обрабатываемого магериала 406-408
Мощность резамия пилами дисковыми cerментными из БРС: алюминиевых сплавов 369; ковкого и высокопрочного пугу-

нов 367; конструкцноннои стали 363. коррозионно-стойкой стали 365 , медных сплавов 368 ; серого чугуна 366

- круглыми сегментными пилами: из БРС алюминиевых сплавов 369 ; из ТС алкминиевых сплавов 370
Мощность резания фрезами дисковыми из БРС: алюминиевых сплавов 310 ; ковкого и высокопрочного чугунов 307; конструкционных сгалей 303 , корро-зионно-стойких сталей 304,305 ; медных сплавов 308,309 , серого чугуна 306
- дисковыми из ТС. ковкого и высокопрочного чугунов 301,302 ; конструкционной стали 297,298 ; коррозионно стойкой стали 299,300 ; серого чугуна 300
- для фрезерования пазов типа «Ласгчкин хвост» (матернал фрез - БРС) в заготовках: из конструкционной стали 348 , 319 ; из серого чугуна 350
для фрезерования пазов типа «Ласточкин хвост», снабженных пластинами из ТС, в заготовках из серого чугуна 351, 352
- концевыми из БРС• алюминиевых сплавов 288; ковкого и высокопрочного чу гунов 286, конструкционной стали 283; коррозионно-стойкой стали 284 медных сплавов 287; серого чугуна 285
- концевыми из ТС: ковкого и высокопрочного чугунов 282 , конс грукционной стали 279; серого чугуна 281
- прорезными (шлицевыми), отрезными и пазовыми из БРС алюминиевых сплавов 327 ; ковкого и высокопрочного чугунов 324,325 ; конструкционной стали 320 ; коррозионно стойкой стали 322 , се poro чугуна 323
- торцовыми из БРС. алюминиевых спла вов 228; конструкционных сталей 225 , коррозионно-стойкой стали 227 ; медных сплавов 229, 230
- торцовыми из ТС. алюминиевых сплавов 223; ковкого и высокопрочного чугунов 221; конструкционной стали 217 , коррозионно-стойкой стали 218, 219; медных сплавов 224; серого чугуна 220
- торцовыми регулируемыми, оснащенными вставками из композитов 01 и 10 . злкаленной стали 238,239 ; конструкционной стали 236, 237; серого чугунд 240
- торцовыми с механическим креплением пластин из композига 10 Д злкаленной стали 242, 243; незакаленной стали 241; серого чугуна 244; из композита 05 серого чугуна 245
- торцовыми с пластинами из минералокерамики чугуна 248,249
- цилиндрическими из БРС: ковкого и высокопрочного чуг унов 262,263 ; кенатрукционных сталей 258 , коррозионностоикой стали 260 ; серого чутунд 261
.-. цилиндрическими из T $\mathrm{C}:$ : конструкционной стали 255,256 ; серого чугуна 257
- фасонными нз БРС: двухугловыми несиимегричными 332; полукруглыми выпуклыми и вогнутыми 334


## II

Іериод стойкости пил дисковых сегментных при резании: алюминиевых сплавов 373, 374, конструкционной стали и чугуна 371,372 ; коррозионно-с гойкой стали 37\%, 373
Период стойкости пластин из минералокерамики при фрезеровании стали и чугунд: получистовом 249; чистовом 250

Период стоикости фрез дисковых двух－и трехсторонних из ТС при фрезеровании： конструкционной стали и чугуна 311， 312；коррозионно－стойкой стали 312,313 дисковых пазовых 330 ，прорезных （шлицевых）и обрезных 328；прорезных （шлицрвых）и огрезных типа 2 со сред－ ним зубом 328 ，329；прорезных и огрез－ ных типа 3 с круиным зубом 329
－дисковых трехсторонних из БРС при фрезеронании конструкционнон стали и чугуна 313,314 ；коррозионно－стойкой стали 314,315
－дисковых трехсторонних цельных из ВРС при фрезеровании：конструкцион－ ной стали 315；коррлзионно－стойкой стали 316
－для фрезерования пазов для сегмент－ ньг шпонок в заготовках из конструк－ ционной и коррозионно－стойкой сталей， чугуна 357
－для фрезерования Т－образных пазов （материал фрез－IC и БРС）в заготов－ ках из консгрукцнонной стали и чу－ гуна 345
－концевых из БРС при фрезеровании： алюминиевых и медных сплавов，корро－ зионно－стойкой стали 292,293 ；конструк－ ционной стали 289，290；чугунов 290， 291
－－концевых из ТС при мрезғровании кон－ струкционной стали и чугуна 289
－торцовых регулируемых фрез，осна－ щенных композитом 01 и 10 при фрезе－ ровании стали и чугуна 246
－угловык из ТС и БРС для фрезерова－ ния пазов типа «Ласточкин хвост» в за－ готовках нз конструкционных сталей и серого чугуна 352,353
－цилиндрических：из БРС при фрезеро－ вании консгрукционных сталей，медных сплавов，чугуна 266；из ТС при фрезе－ ровании конструкционных сталей и чу－ гуна 265
－шпоночные из БРС при фрезеровании в один проход и с маятниковой подачей конструкционных сталей 339
Периоды стойкости фрез в зависимости от материала инструмента 400,401
－－нормативные 194
Пилы дисковые сегментные－Геометри－ ческие параметры 360 ， 361 －Диамегры 358 －Максимальные размеры рдзрезае－ мых заготовок 358 －Материалы пил 360 －Рекомендации по выбору 358， 360 －Форма заточки зубьев 360
Пластины минералокерамические－Марки материалов 246
Подача на зуб для пил дисковых сегмент－ ных из БРС для металла при резании： алюминиєвых и медных сплавов 362 ； конструкционных и коррозионно－стой－ ких сталей 361
－круглых сегментных для легких спла－ вов при резании алюминиевых и медных сплавов，чугуна 362
Подача на зуб для фрез дисковых．пазо－ вых из БРС 319；прорезных（шлицевых） и отрезных из БРС 318；трехсторонних из БРС при фрезеровании алюминиевых и медных сплавов，чугуна 296；трехсто－ ронних из ТС при фрезеровании стали и чугуна 295
－кьнцевых при фрезеровании：алюми． ниевых и мєдных сплавов 278；корро－ зионно－стойкои стали 276；стали 275； чугуна 277
－предназначенных для фрезерования T－образных пазов（материал фрез－ БРС）в заготовках：из конструкцнонных сталей 340 ；из серого пугуна 341
－предназначенных для фрезеровані ； Т－образных пазон（материал фгез if） в заготовках из сероіо иуууне 子zı

 216；конструкцчочной сталю $l^{*}$ ：к， зионно－стойкой стали 211：घу．уне－15
－торцовых из мннералокерымики B мк ， и ВЗ при фрезеровании лет｜влнн н

－торцовых с пластинами и，минецали керамики при фрезерпвднни незакай - － ной стали 247
－угловых из BPC для фразеревдлғन
 ках из конструкционной стлля $\varphi$－, чугуна 346， 347
－угловых из ТС для ф́резеривднит пл $<$ ．
 ＇из серого чугуна 347
－фасонных из БРС：двухухловых несн•я метричных при фрезеровании констр．． ционной стали 331；полукјулых + пуклых и вогнутых при фрезррпнаяии конструкционной стали 332
－цилиндрических нз SPC при фрезғри вании：конструкционной и коррогннни стойкой сталей 253；медных нляв в 255；чугуна 254
－цилиндрических из ТС при фгезє口ои ния конструкционной стали и сのрол？ чугуна 252
－шпоночных из БPC при фретер ванщи в заготовках из констрчкциониои сгед пазов：за однн проход 336 ，на ctahmax с маятниковой подачей 337
Подача на оборот для фрез，предча ：ндвен ных для фрезерования нахов नМд сет－ ментные шпонки（материал фю，з－－БРС） в заготовках из конструкционн ии и $ю-$ розионно－стойкой сталей，серого чут үна 354
－торцовых из СТМ 236
Подача．Расчет 376 －Влияние угла в тта не при черновом фрезеровании тори выми фрезами 382
－Значения постоянныл в формулах ди 9 определения формализованныя кллфғи циентов на подачу 381 ；длл черюони： фрезерования 377－380
－Поправочные козффициенты в ээвиси мости от：группы обрабатывдем tа м лт： риала 382 ；исполнения ин lгумедт， марки материала инструментл и сле ки Фрезерования 383 ；типов зуб + фргд к обрабатываемой поверхности 397
Припуски для фрезерования кондєвым фрезами：за два перехода 273 274，ьа один переход 272

## $P$

Расход пил дисвовых сегментных прл ре－ зании：алюминисвых сплवвов 373 ， 371 ， конструкционной стали и чугунс $刀$ т． 372；коррозионно－стойкои сталн 372， 373
Расход пластин из минердлокерлиии пр＊ фрезеровании стали и чугуна：пэлу $' \therefore$ стовом 249；чистовом 250
Расход фрез－Определение 155 －Этапи назначения норм 199， 200
－дискэвых：пазовых 330 ，пгопе щых （шлицевых）и отрезных при і езн：овз－ нии конструкционных и корроанони， стоиких сталеи，чугунов 328 ；дтроре • 丂х
 ним зубом 328,329 ，проре fosx＂flumin вых）и охрезных типа $\boldsymbol{i}_{1}$ и，крутним зубом 329

- для фрезерования пазов под сегментные шпонки в заготовках из конструкционной и коррозионно-стойкой сталей, серого чугуна 357
- для Фрезерования Т-образных пазов 345
- концевых из БРС при фрезеровании: алюминұевых и медных сплавоз 292, 293; конструкционных сталей 289, 290; коррозионно-стойкой стали 292, 293; чугуна 290, 291
- концевых из ТС при фрезеровании конструкционной стали и чугуна 289
- торцовых насадных из БРС и со вставными ножами из БРС 232 оснащенных СМП 233, 234; со вставными ножами, оснащенными пластинами из ТС 231
- угловых из ТС и БРС при фрезероват нии пазов типа * Ласточкин хвост* в заготовках из конструкционной стали и чугуна 352, 353
- фасонных из БРС при фрезеровании конструкционной стали 335
- шпоночных при фрезеровании конструкционной стали 339
Расход фрез. Расчет 408, 410 - Коэффй циент случайной убыли инструментов 409, 410
Режимы резания - Выбор при работе на станках с ЧПУ 195 - Методические указания по выбору 198 - Пример определения 198, 201-204
Режимы резания. Рекомендации по выбору при фрезеровании фрезами дисковыми: прорезными, шлицевыми, отрезными и пазовыми 317; трехсторонними 293, 316
- для пазов: под.сегментные щпонки 353; типа «Ласточкин хвост» 346 ; Т-образных 340
- концевыми 267, 268, 271
- торцовыми 209: из СМПL 209; оснащенными пластинами из минералокерамики 235
- цилиндрическими 246
- фасонными 330


## C

Скорость резания пилами дисковыми сегментными из БРС: алюминиевых сплавов 369 ; ковких и высокопрочных чугунов 367 ; конструкционной стали 363 ; коррозионно-стойкой стали 365 ; медных сплавов 368 ; серого чугуна 366

- круглыми сегментами алюминиевых сплавов 369,370
Скорость резания фрезами дисковыми прорезными, шлицевыми, отрезными и пазовыми ия БРС: алюминиевых сплавов 327; ковкого и высокопрочного чугунов 324,325 ; конструкционной стали 320; коррозионно-стойкой стали 322 ; медных сплавов 326 ; серого чугуна 323
- дисковыми трехсторонними из БРС: алюминиевых сплавов 310 ; ковких и высокопрочных чугунов 307; конструкционной стали 303; коррозионно-стойкой стали 304,305 ; медных сплавов 308,309 ; серого чугуна 306
- дисковыми трехсторонними из TC: ковкого и высокопрочного, чугунов 301, 302; конструкционной стали 297,298 ; корро-зионно-стойкой стали 299; серого чугуна 301, 302
- для пазов сегментных шпонок (материал фрез - БРС) в заготовках: из конструкционной стали 355 ; из коррозионностойкой стали и чугуна 356
- для Т-образных пазов (материал фрез -БРС)- конструкционной стали 342 ; серого чугуна 343
- для Т-образных пазов (фрезы с напаянными пластинами из TC) серого чугуна 344
- концевыми из БРС: алюминиевых сплавов 288; ковкого и высокопрочного чугуна 286; конструкционной стали 283; коррөзионно-стойкой стали 284; медных сплавов 287; серого чугуна 285
- концевыми из ТС: ковкого и высокопрочного чугуна 282; конструкцнонной стали 279; серого чугуна 281
- торцовыми из БРС: алюминиевых сплавов 228 ; конструкционной стали 225 ; коррозионно-стойкой стали 227 ; медных сплавов 229,230
- торцовыми из TC: алюминиевых сплавов 223; ковкого и высокопрочного чугунов 221 ; конструкционных сталей 217; коррозионно-стойкой стали 218, 219; медных сплавов 224 ; серого чугуна 220
- торцовыми регулируемыми, оснащенными вставками из композитов 01 и 10. заклленной сталй 238, 239; конструкционной стали 236,237 ; серого чугуна 240
- торцовыми с механическим креплением пластин из композита 10 Д: закаленной стали 242, 243; незакаленной стали 241; серого чугуна 244
- торцовыми из композита 05 серого чугуна 245
- торцовыми с пластинами из минералокерамики 248, 249
- угловыми ив БРС для пазов типа «Ласточкин хвост» в заготовках: из конструкционной стали 348,349 ; из серюго чугуна 350
- угловыми с пластинами из ТС длія пазов типа «Ласточкин хвост» в заготовках из серого чугуна 35.1
- фасонными из БРС: двухугловыми несимметричными 332 ; полукруглыми выпуклыми и вогнутыми 334
- цилиндрическими из 'БPC: ковкого и высокопрочного чугунов 262,263 ; конструкционной стали 258 ; коррозионностяйкой стали 260; серого чугуна 261
- цилиндрическими из TC: конструкционной стали 255,256 ; серого чугуна 257
- шпоночными из БРС конструкционной стали: за один проход 338; на станках с маятниковой подачей 338
Скорость резания фрезами. Расчет 376, 384 - Влияние угла в плане при фрезеровании торцовыми фрезами 399
- Значения постоянных в формулах 385394
- Поправочные коэффициенты в формулах: на закрепление инструмента 398 ; на исполнение инструмента 400 ; на марки ТС 399 ; на материал заготовки и
- инструмента 395 - 397 ; на механические свойства материала заготовки 397,398 ; на наличие охлаждения 400; на состояние обрабатываемой поверхности 399 ; на характер обработки 400
$\boldsymbol{\phi}$
Фрезы - Материалы 194 - Стойкость 193, 195 - Схемы обработки 193
- дисковые прорезные шлицевые, отрезные и пазовые - Геометрические параметры режущей части 317 - Днаметры 316 - Марки материалов фрез 317 Рекомендации по выбору инструмента 316, 317
- дисковые трехсторонние - Геометрические параметры режущеи части 294 -

Диаметры фрез из БРС 293 - Маркн материалов Фрез 294 - Рекомендации по выбору инструмента 293

- для обработки плзов сегментных шпонок - Геометрические параметры режу щей части 354 - Диаметр и истолнение фрез 353 - Рекомендации по выбору инструмента 353
- для обраоотки ндэов типа «Ласточкин хвост» - Передние, задние и вспомогательные в плане углы режуцей части 346
- для обработки Т-образных пазов Диаметры фрез и геометрическне параметры режущеи фасти 340
- концевые - Геометрические параметры режуцеи часsи 268-Диаметры 246, 250 - Длина вылета фрезы нз оправки 267 - Ддина режущей части 250, 267 Число зубьев 250
- торцовые из сверхтвердых материалов - Выбор инструмента 209
แ торцовые из ТС и БРС - Геометриче-

ские параметры режущеп части 204, 207 - Диаметры 204, 205 - Малериалы фрез 204, 206 - Рекомсндаиин по выбору фрез 204 - Рекомендации по определению маршрута обработки поверхно стей 210, 211 - Форма пластин 204, 205

- торцовые, оснащенные пластинами из минердлокерамики -- Выбор инструмента 209, 235
- торцовые перетачиваемые 204 - Геометрические параметры режущей части 207, 208
- фасонные - Геометрические параметры режущей части 330 - Рекомендации по выбору инструменга 330
- цилиндрические - Геометрические нараметры режушеи часии 251 - Диаметры 250 - Рекомендации по выбору ин струмента 235, 246
- шпоночные $\rightarrow$ Рекомендации по выбору инструмента 336


## ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ К РАЗДЕЛУ ІІІ

## B

Время основное, затрачиваемое на переш ход - Расчетная формула 415
-- затрачиваемое на сверлильных операциях 417, 418

## $\Gamma$

Глубина резания - Формула для расчета табличных значений 413,414

- в завлсимости от предшествуюиего перехода при зенксрованци и развертывании инструмента диаметром 4--100 мм 513, 514
- инструментом из БРС.

при зенкеровании без подрезки диа: получистовом 432-434; черновом 431, 432; чистовом 434, 435 ;
при зенкеровании с подрезкои дна: получистовом $437-439$; черновом 435-437; чистовом 439, 440;
при зеякеровании коническими зенковкдми 457-461;
при развертывании без подрезки дна: получистовом 443-445; черновом 441-443; чистовом 445-447; при развергывании с подрезкои дна: получнстовом 449-451; черновом 447-449; чистовом 452, 453; при рассверлидании спиральными сверлами 429, 430;
при сверлении сверлами: мелкоразмерными 427, 428; спиральшыми 428, 429;
прм цековании цилиндрическими зенковкамя 453-457;
при центровании комбннированными сверлами 462, 463

- инструментом из TC:

при зенкеровании без подрезки дна: получистовом 467-469; черновом 466, 467; чиктовом 469, 470;
пои зенкеровании с подрезкой дна: по тучистовом 472-474; черновом 471, 472; чистовом 474, 475;
при зенковании копическими зенковками 492-496;
при развертывании без подрезки дна: Нолуиистовом 478-480; черновом 476-478; чистовом 480-482;
при развертыванид о подрезкон дна:

получистовом 484-486, мерновом 482-484; чистором 487, 488, при рассверливанин спиральными сверлами 465,
при сверлении спиральтыми сверлами 463, 464;
при цековании цилиндрическлми ъенковками 488-492

## д

Диаметр инструмента - Расчет 414
Длины врезания, перебега, подвода 517

## ж

Жидкости смазочно-охлаждающие гри об работке инструментом диаметрсм 4100 мм 516

3
Зенкеры - Диаметры 534-537 - Длина рабочей части 534-537-Рэстояние от торца выточки 536
Зенвовки - Дидметры, догустммое стачивание 540,541

## И

Износ средний допустимыи режушей пастм инструмента 530

## K

Коәффициенты поправочные для пзмежея ных условий работы инструментом дидметром 4-100 мм на глубину рез ния в зависимости от последсвытельноити переходов марирута 505

- на механические свойства обрабатывл. мого материала: алюминиевыд сптавов
 чугуна 501
- на мощность резания в зависимости ол отношения $n_{\phi} / n_{T} 508$; оношения
$\boldsymbol{S}_{\mathrm{O}_{\Phi}} / \boldsymbol{S}_{\mathrm{O}_{\mathrm{T}}} 508 ;$ последовательности июре ходов маршрута 505, 506
- на осевую силу резания в зағж рмости
 тельности перехода мариоугя 506, 507
- на скорость резания в зависимости от: глубины обрабатываемого отверстия 503; длины рабочей части сверла 504; марки материала ннструмента 504 ; наличия охлаждения 502; отношения $T_{\Phi} / T_{\mathbf{H}} 503$; последовательностн переходов маршрута . 007 , 508 ; состава покрытия инструмента 504 , состояния обрабатываемой поверхности 503; формы заточки ннструмента 502
Коэффициенть поправочные при обработяе отверстий инструментом диаметром 0,43 мм на осевую силу и крутяций момент резания 498,499
- на подачу 497, 498

$$
\text { на скорость резания } 498
$$

Кри герий затупления зенхеров: насадных. осиащенных пластинками из ТС 534; рабогаюцих без охлаждения и с охлаждением 530 ; цельных насадных из БРС 536 ; цельных насадных из БРС с коническим хвостовиком 534

- машинных ралверток насадных с пласгинками из ТС 539; насадных цельных 538, работаюцих без охлаждения и с охлаждением 530; с пластинками из ТС н коническим хвостовиком 538; целыных с коническим хвостовиком 537
Критерий затупления и число переточек сверл ( $D_{\mathrm{T}}>3 \mathrm{mм}$ ) из БРС 532
- сяиральных: с пластннами нэ $T \subset 532$, っ33; цельных из ТС 533


## M

Маршруты обработки отверстий без подрезки дна 509
с подрезкой дна 510
Материал инструмента. Марки быстрорежущей стали 513
-- твердых сплавов 511, 512
Модели математические режимов резания при работе инструментом диаметром 0,4-3 мм 518

- при работе инструментом диаметром 4-100 мм: зенкерование 522,523 ; зенкование 526 , 527 ; развертывание 524 526 , рассверливание 520,521 ; сверление 518 - 520 ; цекование 527,528 ; центрование 529
Мощность резания инструментом из БРС: при зенкеровании без подрезки дна: получистовом 432-434; черновом 431, 432; чистовом 434, 435;
при зенкеровании с подрезкой дна: получисговом 437-439; черновом $435-437$; чистовом 439, 440;
при зенковании коническими зенковками 457-461;
при развертывании без подрезки дна: получистовом $443-445$; черновом 411-443; чистовом 445-447;
при развертывании с подрезкой дна: получнстовом 449-451; черновом 447-449; чистовом 452, 453;
при рассверливании спиральными сверлами 429, 430;
при сверлении сверлами: мелкоразмерными 427, 428; спиральными 428, 429; при цековании цилиндрическими зенновками 453-457;
при центровании комбинированными сверлами 462, 463
инструментом из TC:
при зенковании без подрезки дна: получисговом 467-469; черновом 466, 467. чнстовом 469, 470;

при зенкеровании с подрезкой дна: пилучисговом 472-474; черновом 471,

472; тистовом 474, 475;
при зенковании коническими зенков ками 492-496
при развертывании без подрезки дна. получистовом 478-480; черноном 476-478; чистовом 480-482;
при развергывании с пидрезкой дна получистовом $484-486$; черновом 482-484; чистовом 487, 488;
при рассверливании стиральными сверлами 465;
при сверлении спиральными сверлами 463, 464;
при цековании цилиндрическими зенковками 488-492

## H

Надежность инструмента - Влияние конструкции 414

## 0

Отверстия - Назначение последовательности этапов обработки и переходов, содержание этапов 113-415

## II

Подача на оборот для инструмента из БРС при зенкеровании без подрезки дня получистовим 432-434; черновом 431, 432; чистов'м 434, 435:
при зенкеровании с подрезкой дна получистовом 437-439; черновом $435-437$; чистовом 439, 440;
при зенковании коническими зенковками 457-461;
при развертывании без подрезки дна. получнстовом 443-445; черновом 441-443; чистовом 445-447,
при развертывании с подрезкой дна. получистовом 449-451; черновом 447-449; чистивом 452, 453;
при рассверливании спиральными сверлами 429, 430;
при сверлении сверлами: мелкоразмернымй 427, 428; спиральными 428, 429 при цековании цилиндрическими зенковками 453--457;
при центровании комбинированными сверлами 462, 463

- инструментом из TC:

при зенкеровании: без подрезки дна 466-470; с подрезкой дна 471-475. при зенковании 492-496;
при развертывании: без подрезки днд $476-482$; с подрезкой дна $482-488$, при рассверливании 465;
при сверлении 463, 464;
при цековании 488-492

## P

Развертви - Диаметры, длина калибрующей части 538, 539 - Допустимое стлчивание 538, 539
Расход инструмента. Нормы для сверл диаметром более 3 мм: из БРС 532; сииральных с пластинами из TC 532, 533; спиральных цельных из ТС 533

- мелкозернистых 531

Расход и число переточек зенкеров. из БРС с коническим хвостовиком $534-536$; из БРС цельных насадных 536 ; насадных с пластинками из TC 537; с пластиныти' из ТС и коническим хвостовиком 537

- зенковок конических 540 ; цилиндг'1ческих из БРС 540; цилиндрических с пластинами из TC 541
- машинных разверток насадных с пластинами из ТС 539; насадных дельных 538 ; с пластинами из ТС и коническим хвостовиком 539
- цельных развертпк с коническим хвостовиком 538
Режимы резания - Выбор 412-415- Iорядок расчета 417, 418 - Примеры определения $415,416,419$


## C

Сила осевая и скорость резания ииструментом из БРС:

при зенкеровании без подрезки дна 431-435; с подррезкой дна 435-440; при зенковании 457-461;
при развертывании. без подрезки дна 441-447; с подрезкой дна 447-453; при рассверливании 429, 430;
при сверлении 427-429;
при цековании 453-457;

при центровании 462-463

- инструментом из TC:

при зенкеровании: без подрезки дня
466-470; с подрезкой дна 47!-475; при зенковании 492 -496;
при развертьвднии: без подрезки дна
476-482; с подрезкой дна 482-488;
при рассверлинании 465 ;
при сверлении 463, 464;
при дековании 488-492
Стойхость инструмента: для многошпиндельных станков 515; при одноинструментальной обработке 514; 515

- мелкоразмерных сверл 515


## $\Phi$

Формулы для яорректирования режимов резания при обработке отверстий инструментом диаметром $0,4-3$ мм 497 . диаметром 4-100 мм 500

## ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ К РАЗДЕЛУ IV

## B

Время основное - Расчет 551
$r$
Головки расточные и сверлильные - Форма заточки инструмента $563-565,567$ Характеристики головок 610-613

## д

Длины подвода, врезания и перебега ннструмента 602

## ж

Жидкости смазочно-охлаждающие на масляной основе -- Марки 544
Жидкости смазочно-охлаждающие. Расход , и давление - Выбор табличного значения 546 - Корректирование табличного значения с помощью формул 552 - Поправочный коэффициент $K_{C} 575$ - Требования к системам подачи СОЖ 606

- нормативные -- Формулы для расчета 614
- при обработке стали и чугуна: головками 569, 570, 572, 573; сверлами 568571
- табличные - Формулы для расчета 614 - Коэффицяенты и показатели степени в формулах 617, 618


## 3

Заточка головок - Формы заточки 563565, 567

- сверл: винтовая 545, 557-563; плоскостная $545,556-563$; по одной н двум плоскостям 562 , 563; со стружколомающими порожками 565, 566


## H

Инструменіт твердосплавный - Выбор ти. па 54б. 555 - Используемые виды 544 - Основные параметры к характе-
) ристики 609-613

- одностороннего резания - Особенности
$r$ конструкции и пренмущества использования 543


## K

Критерий затупления - Коэффициент и показатели степени в формулах для рысчета 620 - Определение 546 - Формула для расчета 614

- головок (наружный подвод СОЖ) рас точных 577, 599, сборных 599; сберлильных 597, 598; сверлильных одностороннего резания: с внутренним эжекторным отводом стружки трехрезцовых 576 , сверлильных трехрезцивых 577
- сверл (внутренний подвод СОЖ) одностороннего резания 575,577 , 5ч3--595, трубчатых перовых 576,595 , 596
Коэффициент поправочный на мощность резания в зависимости. от групп обрабатываемых материалов 591, 59 ; от марии ТС материала инструмента 592 ; от разности $D$ - d 592
- нд осевую силу 591, 592
- на подачу 545
- на подачу в зависимости: or разногтн $D$ - $d$ и твердости обрабатываемого материала 575 ; от условнй обработки и отношения длины корпуса сверла к его диаметру 574
- на скорость резаңия в зависимоети. от группы обрабатываемых магериалив 531 , 592; от марок ТС материала инструменга 592; от разности $D-d 592$
Коэффициент случайной убыли при обрзботке: стали $593-595,597,600$; чугуча $593,595,596,598,599$


## M

Материалы обрабатываемые - Группы 553, 554
Мощность резания тве́рдосплавным инструментом при подводе СОЖ - Коэф. фициент и показатели степени в формуле 623 - Определение 546 - Формулы для расчета 614

- сверлами 578-581, 584-586
- головками: расточными 590, 591; сверлильнымн $581-584,587-589$

0

Оснаства - Требования к оснастке 606
Отверстия глубокие 543 - Способы обра-

ботк' инструмежтом из ТС при подводе ССЖ 6n3, 604 - Xवрактеристики схем обрабогки 694, ј05

## $\pi$

Период с гойксти - Oпределение 546

 c. мопдети резания 576 , трехрезцсвых $5 \%$
норитияный - Кээффициент пока-
 आуля дй "асчетa 614
 стороння. о разакия 575, 577 ; грубчагых ғеривыs 675
Moддча на оборот - Выбор 545 -- Kор роктирәвание с применением фсрмул 55 - Расчет но рормуғам 614

- Гормативная 345 - Ко"фすыциент и по и rатель сгепени в формуле для расцета 6:5- Picutr rn формуле 614
 (чаружидй таддсд (ОЖ) ресточными 573 , сверлильными $569,570,575.673$
- при обрабоике отвррсиий сиеолами (ьнутреннй погвия СОЖ). одностороннего резания $567,568,571$; с внуาренним отводом $\operatorname{crfy}$ कкл 570,571 трубчагњми перовыми 5ฝ8, $5 ь 9$
Порожки стру мко.ломающие -- IIирина. дтя головод $563-565,567$; для сверл 566


## P

Pacxoд majobof patraных 600; cборнюх 599. сверлитьных 507598
-- интрументя из ТС при подводе ССЖ ilucreдпнательность расчета 549-551

- ицструмента нз TC при подводе СОЖ at roo pammy 600,603
- пластин из TC 599
- сверл из ТС внутреннин подвод СОЖ. одностороннего गезання 593-595; трубчатых перовых 595, Г96
Рєжимы резания тве;докплавннм инструментом при пдяоде СОЖ - Последовательность расчета 549-551 - Примеры расчетие 546 549 ... См. также Мощноить резлния, Подача, Сила реэания осевая, Скорость реяания

Сверла твердоє плавные с знутренним подводом ССЖ -. Форма заточки сверл: олностороянего резлняя 556,566 ; одностиюоннея, рездяия с пластинами 559, однок тороннего резаяия с цельной рабочей часгюк $\div 57,5>8$, 5б0. с внутренним

 терытини сьғрл одностороннел п пезаняя 609, 610. 61', с эжектирным огвидом стружки 6.1; грубчатых перовых 610
Силд резаниг осєвяя - Корректирование с помодю формул табличнсго значения 552 - Dасчет значения коэффиниент А и покэздггпей степени 62?; формулы 614

- дия rоливск инаружный подвод СОЖ)
 584, 587-~89
 одиостопэннем ; кзания $578,579,585$
 саружкя 58; \&85 a рубчаты> перыны $579-581$

Скороств ретания Коррекгиривание с помощцю формул гавлиян мо зндченич 552 - Постех значения коэфынциентья и показателей слलпени 621, формуля б14
- для голавок (паружный подвод СОЖ) раслсчныу 590, 591 ; скерпильны! 581 $684,587 \quad 684$
- длл сверл (енутреннй лодвод СОЖ) однистороньего рездния $578,579,585$, 386. с внутрєнннм $\rightarrow$ нектоэным огводом стРужки 584, ち85; трубчатыд пеговьл 579--58!
Сплавы твердяе для инструмента - Выбод марки 556
Cratzи для полученин глубоких отвер. стий - Тресования $\%$ станкам 60 ", 606 Хараигеристнки 607, 608


## X

Характеристика оперяиии комплехсная точ. ностная 555 - Влияние на подачу 567 -575

## СПРАВОЧНОЕ ИЗДАНИЕ

## Локтев Абрам Давидович, Гущин Игорь Федорович, Клименко Галина Петровна и др.

## ОБЩЕМАШИНОСТРОИТЕЛЬНЫЕ НОРМАТИВЫ РЕЖИМОВ РЕЗАНИЯ

В двух томах
Tom 1
Редактор Н. Е. Кузнецова
Переплет художника С. Н. Орлова
Художественный редактор С. Н. Голубев
Технический редактор T. С. Старых
Корректоры: Л. Л. Георгиевская, Л. А. Ягупьева
ИБ № 6925
Сдано в набор 06.09.90. Подписано в печать 090891 Формат $60 \times 90^{1 / 1 е . ~ Б у м а г а ~ о ф с е т н а я ~}$ № 2. Гарнитура литературная. Печать офсетная. Усл печ л. 40,0. Усл. кр.-отт. 40,0 Уष.-изд. л. 40,97. Тираж 8900 экз. Заказ 156.

Ордена Трудового Красного Знамени издательство кМашиностроениеж, 107076, Москва, Стромынский пер., 4

## "PEKAAMA"

## ДИАЛОГОВАЯ СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ТЕІММООБРАБОТКИ (САПР-ТП-ТЕРМО)

Предназначена для автоматизации проектирования единичных и групповых технологических процессов термообработки деталей различных конфигураций из сталей и цветных сплавов:

Рекомендуется для применения на предприятиях машино- и приборостроения, в т. ч. для условий производства широкой, частомєняющейся номенклатуры деталей.

С помощью САПР-ТП-ТЕРМО проектируются технологичеснte」 ронесы на любые виды термообработки, в т. ч. открытой и в вакууме, в среде инертного газа и в расплавах солей, химикотермической и ТВЧ.

Спроектированные технологические процессы записываются в архив сисеемы. Они могут быть просмотрены на экране дисплея и рдп печатаны

С помощью САПР-ТП-ТЕРМО Вы можете осуществить:
ирогн иировагие единичных или групповых технологических продесов;

- проектирование ведомоะти деталей к групповому технологическому ароцессу;
- понкк групмового технологического процесса, по которому можно обработать деталь.

CAПP-TII-TEPMO автоматизирует выбор маршрута и режимов опработки. оборудования, КИП и технологической оснастки, а такжк расчет садки.

САПР-ТП-ТЕРМО повышает производительность труда инжене-ра-технолога в $3-5$ раз и обеспечивает высокое качество разрабаты-

васмых технологических процессов. Наличие, подсказок, меню, диагностических сообщений позволяет инженеру-технологу в короткий срок освоить проектирование технологических процессов термообработки с использованием системы.

Система формирует комплект документов с вертикальным полем подшивки для единичного и группового технологических процессов в соответствии с ЕСТД.

САПР-ТП-ТЕРМО разработана на базе интегрированного naкета «Мастер» и ориентирована для эксплуатации на ПЭВМ типа I BM PC с объемом оперативной памяти не менее 640 K . Onерационная система - MSDOS.

При адапгации возможна доработка базового варианта в соответствии с пожеланиями заказчика

> Организация «Сатурн», отдел САПР-ТПП

394055 , г. Воронеж, ул. Ворошилова, 22 тел. 57-14-52; 57-87-88; 57-86-49.


> ДИАЛОГОВАЯ СНСТЕМА АВТОМАТИЗНРОВАННОГО ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ГОРЯЧЕЙ ШТАМПОВКИ И КОВКИ (САПР-ТП-ГШК)

Предназначена для проектирования единичных технологических процессов изготовления поковок и штамповок различной конфигурации из сталей и сплавов.

Рекоиєндуется для применения на предприятиях машиностроения, в т.ч. для условий производства широкой, частоменяющейся номенклатуры "деталей низкого конструктивно-тех нологического подобия.

САПР-ТП-ГШК ппвышает производительность труда инже нера-технолога в $3-5$ и более раз и обеспечивает высокое каче ство разрабатываемых техпроцессов. Наличие подсказок, «менғ»», диагностических сообщений позволяет инженеру-технологу в короткий срок освоить проекгирование технологических процессов горячей штамповки и ковки с использованием системы.

## С помощью САПР-ТП-ГШК Вы можете осуществить:

- определение маршрута технологического процесса;
- выбор основного и вспомогательного оборудования измерительного инструмента;
- расчет размеров заготовки и элементов расхода металла;
- выбор температ урных и временных режимов нагрева заготовки
- расчет величины садки.

Спросктированные технологические процессы записываются в архив системы, могут быть просмотрены, иснользованы для

проектирпвания технологических процессов на детали--аналоги, распечатаны.

Система формирует комплект документов с вертикальным полем поднивки для единичного технологического процесса в соотвегствии с ЕСТД.

САПР-ТП-ГШК разработана на базе интегрированного паб" ${ }^{\omega}$ *Мастер» и ориннтирована для эксплуатации на ПЭВМ типа I BM PC, с объемом пператигной памяти не менее 640 K . ()птрационная систела - MSDOS

Разработчиьом может быть выполнена по договору адаптация системы $Y$ бсловиям предприятия-заказчика.

Организания «Сагурн», отдел САІІ ТПП
394055 , г Воронеж, ул Ворошнлова, 22 १ел 57 '4-52, 57 ع $7-88 ; 57$ 86-49.

# Іаучно-исследовательский отдел <br> НИИД предлагает <br> машиностроительным <br> организациям <br> и предприятиям: 

фрезы торцовые диаметром $40-250$ мм с механическим креплением многогранных режущих .пластинок; использование фрез позволяет увеличить производительность труда в 3 раза; расход материалов на изготовление фрез значительно сокращается;

фрезы отрезные диаметром $60-250$ и толщиной $3-8$ мм с новой формой режущих зубьев; стойкость фрез увеличивается в 2,5 раза при работе на повышенных в 3 раза подачах на зуб;

резцы о́трезные, канавочные и резьбовые с механическим креплением режущих элементов; при использова่нии резцов в 10 раз (и более) снижается расход материалов, а производительность процесса обработки повышается в 1,5 раза;

развертки двухзубые д́иаметром $10-80$ мм из быстрорежущих сталей; долговечность разверток в 5-7 раз превышает долговечность стандартизационных, а для их изготовления требуется в 2-4 раза меньше быстрорежущих сталей; достигаемая точность отверстий соответствует H6, шероховатость поверхности меннее 0,16 мкм;

инструмент концевой биметаллический диаметром до 8 мм (сверла, фрезы, развертки и др.); расход быстрорежущей стали на изготовление инструмента снижается до $70 \%$, трудоемкость изготовления - в 3 раза; стойкость биметаллического инструмента выше стойкости стандартизованного в $2,5-1,8$ раза;

инструмент клеесборный (метчики, протяжки, фрезы и др.); использование инструмента позволяет уменьшить расход быстрорежущей стали на $50-60 \%$; стойкость инструмента увеличивается в 2,2 раза.

Все работы выполняются на договөрных условиях.
НАШІ АДРЕС: 248633, г. Калуга, ул. Московская, д. 247, НИО НИИД.
ТЕЛЕФОН: 2-72-69 или 6-34-48.

# ОБЩЕМАШИНОCTPOИTEIBHЫE НОРМАТИВЫ РЕЖИМОВ РЕЗАНИЯ 

Справочник B मByX tomax.


[^0]:    При разнице между точностью детали в ваготовки в один квалитет $K_{t_{\min }}=1,2$; в два квалитета $-K_{t_{\min }}=1,0$; в трв

[^1]:    * Группы сталей см. в прил. 1.

[^2]:    * Групты материалов см в прил. 1.

[^3]:    ${ }^{* 1}$ При обработке коррозионно-стойких сталей используют пластины ия BK10-OM.
    *2 То же, из $\mathrm{BK} 15-\mathrm{XOM}$ или BK 8 .

[^4]:    ${ }^{* 1}$ Остальные $K_{0}$ см. в карте 15.
    *2 Группы материалов см. в прил. 1.

[^5]:    * Для коррозвонно-стойкой стали используют сплав ВК6-М.

[^6]:    явисиности оп твердости обрабатьвваємого материала

[^7]:    * Группв стали см. в прил. 1.

[^8]:    Iрммечнке KB - мвалитет.

[^9]:    ＊Рекомендации по применению более эффективных СОЖ см．в справочнике＊Сма－ зочно－охлаждающие технопогические сред－ ства для обработки металлов резанием»／ Под общ．ред．С．Г．Энтелиса，Э．М．Бер－ линера．М．：Машиносхроение，1986． 352 с

