
3.2 Параметры шероховатости

ГОСТ 2789-73 устанавливает требования к шероховатости поверхности и содержит наминклатуру параметров и базовых длин, а также параметры шероховатости.

Стандартом предусматривается шесть параметров, которыми может пользоваться конструктор при установлении требований к шероховатости поверхности в зависимости от ее функционального назначения. Эти параметры возможность характеризовать практически дают все показатели качества изделий, зависящие от шероховатости поверхности и выбранных параметров обеспечить значения соответственно технологическим процессам.

Профиль шероховатости

Шероховатость поверхности оценивается по неровностям профиля. Шероховатость рассматривается в пределах ограниченного участка, длина которого l называется базовой длиной. Числовые значения базовой длины выбирают из ряда: $0,01;\ 0,03;\ 0,08;\ 0,25;\ 0,80;\ 2,5;\ 8;\ 25$ мм.

Отсчет отклонений профиля ведется от средней линии m.

Параметры шероховатости

1. Среднее арифметическое отклонение профиля Ra — это среднее значение расстояния точек выступов и в падин y_1 , y_2 , y_n от средней линии m в пределах базовой длины l.

$$R_a = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$$

где n - число выбранных точек профиля на базовой длине;

- y расстояние между любой точкой профиля и средней линией (отклонение профиля).
- 2. Высота неровностей профиля по десяти точкам Rz это среднее расстояние между пятью высшими точками выступов $H_{i\ max}$ и пятью низшими точками в падин $H_{i\ min}$ в пределах базовой длины l.

$$Rz = \frac{1}{5} \cdot \left(\sum_{i=1}^{5} |H_{i \max}| + \sum_{i=1}^{5} |H_{i \min}| \right)$$

где $H_{i max}$, $H_{i min}$ определяются относительно средней линии.

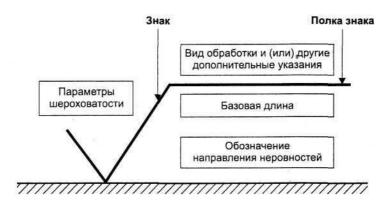
- 3. Наибольшая высота неровностей профиля R_{max} это расстояние между линией выступов и линией впадин профиля в пределах базовой длины l.
- 4. Средний шаг неровностей профиля S_m среднее арифметическое значение шага неровностей профиля в пределах базовой длины.

$$S_m = \frac{1}{n} \cdot \sum_{i=1}^n S_{mi}$$

- где S_{mi} шаг неровностей профиля, равный длине отрезка средней линии, заключенного между точками пересечения смежных выступов и впадин профиля со средней линией.
- 5. Средний шаг неровностей профиля по вершинам S среднее арифметическое значение шага неровностей профиля по вершинам в пределах базовой длины:

$$S = \frac{1}{n} \cdot \sum_{i=1}^{n} S_i$$

- где S_i шаг неровностей профиля, равный длине отрезка средней линии, заключенного между проекциями на нее наивысших точек двух соседних местных выступов профиля.
- 6. Относительная опорная длина профиля t_p отношение опорной длины профиля к базовой длине:

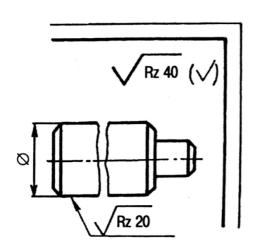

$$t_p = \frac{1}{l} \cdot \sum_{i=1}^{n} b_i$$

где р – заданный уровень сечения;

 b_i – значения отрезков, отсекаемых в пределах базовой длины на выступах профиля линией, эквидистантной средней линии и расположенной на заданном уровне сечения от линии выступов.

Эксплуатационные свойства поверхностей	Параметры шероховатости поверхности, определяющие данное эксплуатационное свойство
Износоустойчивость при всех видах трения	R _z , t _p
Виброустойчивость	$R_a(R_z)$, S, S_m
Контактная жесткость	$R_a(R_z), t_p$
Прочность соединений	R _a (R _z)
Прочность конструкций при циклических нагрузках	$R_a (R_z), R_{max}, t_p$
Герметичность соединений	$R_a(R_z)$, S, S_m

На рисунке приведена структура обозначения шероховатости. При обозначении шероховатости только по параметру применяют знак без полки.


В обозначении числового значения параметра Ra символ не указывается.

Обозначения:

 $\sqrt{-}$ обозначение шероховатости поверхности, когда вид обработки конструктором не устанавливается.

abla — обозначение шероховатости поверхности, когда конструктору необходимо указать конкретный вид обработки поверхности.

 \heartsuit – обозначение шероховатости поверхностей, получаемых по данному чертежу без удаления слоя материала (литьем, объемной штамповкой).

