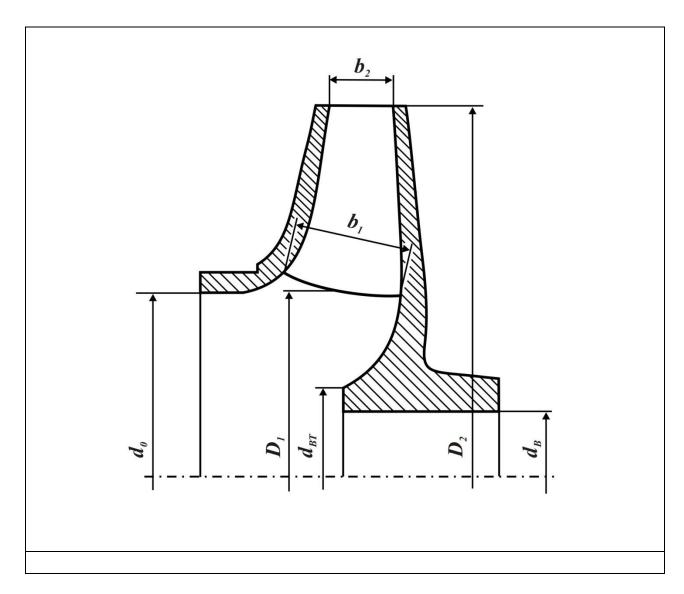
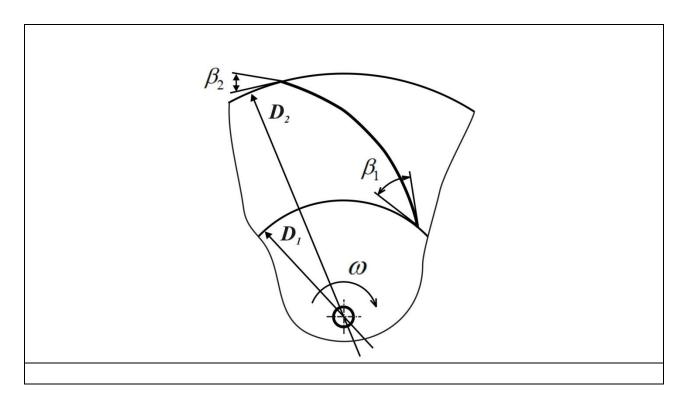
ЛАБОРАТОРНОЕ ЗАНЯТИЕ № 1,2

Расчет рабочего колеса насоса


Рассчитать рабочее колесо насоса для подачи воды плотностью ρ при избыточных давлениях на выходе p_{u} и на входе p_{ec} . Заданы: производительность насоса Q и скорость вращения вала n.


Вычислить мощность насоса N , объемный η_{ob} , гидравлический η_z , механический η_{mex} и общий КПД.

Определить основные геометрические характеристики рабочего колеса: диаметры вала $\boldsymbol{d}_{\mathfrak{e}}$, входа на рабочие лопасти $\boldsymbol{D}_{\!1}$, выхода из рабочих лопастей $\boldsymbol{D}_{\!2}$ и др.

Построить входной и выходной треугольники скоростей.

Изобразить продольный и поперечный разрез рабочего колеса в масштабе.

Примечания: указаны в описании алгоритма расчета.

Исходные данные к задаче 5

Таблица 1

вариант	1	2	3	4	5	6	7	8	9	10
\boldsymbol{Q} , M^3/H	370	390	360	310	350	260	280	300	250	280
<i>t</i> , °C	35	40	15	35	50	35	30	25	20	40
$p_{\rm BC}$, кПа	15	10	20	25	20	30	35	35	40	40
$p_{\scriptscriptstyle \mathrm{H}}$, кПа	190	180	290	210	200	190	220	210	200	230
п ,об/мин	745	1450	2950	1450	940	745	1450	1450	740	960

При решении этой задачи последовательно определяются следующие величины:

1. Напор насоса, м

$$H=\frac{p_{\scriptscriptstyle H}-p_{\scriptscriptstyle gc}}{\rho g},$$

где p_{sc} p_{u} соответственно давления на входе в насос и на выходе (нагнетание) из него, Па; ρ —плотность нефти, кг/м³.Определяется по среднему давлению $p_{cp} = 0.5 \cdot (p_{u} + p_{\kappa})$ и заданной температуре воды t.

2. Коэффициент быстроходности, об/мин

$$n_S = 3,65 \cdot \frac{n \sqrt{Q}}{H^{3/4}}$$

где Q - подача (производительность) насоса, м³/сек; H - в м; n - в об/мин.

3. Объемный КПД

$$\eta_{o\delta} = \frac{1}{1 + a \, n_S^{-0.66}}$$

где a = 0.68.

4. Приведенный диаметр входа в рабочее колесо, м

$$D_{1np} \approx 4,25 \cdot \sqrt[3]{\frac{Q}{n}}$$

где **Q** - в м³/сек.

При двухстороннем подводе жидкости под корень необходимо подставлять ${\it Q}/2$.

5. Гидравлический КПД вычисляется по любой из нижеприведенных формул

$$\eta_{z} = 1 - \frac{0.42}{\left(\lg D_{1np} - 0.172\right)^{2}}$$

где $m{D}_{1m{np}}$ - в мм.

6. Механический КПД определяется ориентировочно по эмпирической формуле

$$\eta_{\text{mex}} = \frac{1}{1 + \frac{820}{n_s^2}}.$$

- 7. Общий (полный) КПД насоса $\eta = \eta_z \cdot \eta_{oo} \cdot \eta_{mex}$.
- 8. Полезная мощность насоса, кВт $N_n = \frac{\rho QgH}{1000}$,

где Q - в м $^{3}/c$.

9. Мощность на валу насоса, кВт $N = \frac{N_n}{\eta}$.

10. Диаметр вала в месте посадки рабочего колеса определяется по условиям скручивания, м

$$d_e = 0.365 \cdot \sqrt[3]{\frac{N}{n \tau_{\partial qn}}}$$

где N -в кВт; n - в об/мин;

 au_{don} - допустимое напряжение кручения, МПа.

Вал насоса работает в основном на скручивание, но частично нагружен поперечными и центробежными силами, обусловленными небалансом ротора. Поэтому допустимое напряжение кручения принимается относительно небольшим $\tau_{\emph{don}}=12...15~\text{M}\Pi a.$

11. Диаметр ступицы (втулки) рабочего колеса, м

$$d_{cm} = (1, 2...1, 4) \cdot d_{e}$$
.

12. Диаметр входа в рабочее колесо, м

$$\boldsymbol{D}_0 = \sqrt{\boldsymbol{D}_{1np}^2 + \boldsymbol{d}_{cm}^2} .$$

- 13. Диаметр входа на рабочие лопасти, м $D_1 = D_0 + 0.02$.
- 14. Длина ступицы, м $l_{cm} = (1...1, 5) d_{cm}$.
- 15. Окружная скорость на входе в межлопастной канал (на диаметре D_1), м/с

$$u_1 = \frac{\pi D_1 n}{60}.$$

16. Скорость входа в рабочее колесо, м/с

$$\boldsymbol{c}_0 = \frac{4 \cdot \boldsymbol{Q}}{\eta_{O\boldsymbol{E}} \, \pi \left(\boldsymbol{D}_0^2 - \boldsymbol{d}_{cm}^2\right)},$$

где **Q** - в м³/сек.

17. Приняв $c_1 = c_{1r} = c_0$ можно построить входной треугольник (параллелограмм) скоростей и определить угол β_1

$$\beta_1 = arctg \frac{c_1}{u_1}$$
.

18. Приняв значение угла атаки $\not=0...6^\circ$ можно определить лопастной угол на входе в рабочее колесо, град

$$\beta_{1,n} = \beta_1 + i$$
.

19. Ширина лопасти на входе, м

$$\boldsymbol{b}_1 = \frac{\boldsymbol{Q}}{\pi \boldsymbol{D}_1 \boldsymbol{c}_1 \boldsymbol{\mu}_1 \boldsymbol{\eta}_{\alpha\beta}},$$

где ${\it Q}$ - в м³/сек; $\mu_{\rm l}$ = 0,9 – коэффициент стеснения входного сечения кромками лопаток.

20. Используя уравнение Эйлера при радиальном входе в межлопастные каналы рабочего колеса (c_{1u} =0) можно определить окружную скорость на выходе рабочего колеса

$$u_2 = \frac{1}{2} c_{2r} \operatorname{ctg} \beta_2 + \sqrt{\left(\frac{c_{2r} \operatorname{ctg} \beta_2}{2}\right)^2 + \frac{g \cdot H}{\eta_2}},$$

где ${m c}_{2r}$ - радиальная проекция абсолютной скорости на выходе из рабочего колеса, м/с. Принимается равной ${m c}_0$;

 eta_2 - угол потока на выходе рабочего колеса. Принимается равным 15...25° в зависимости от коэффициента быстроходности $m{n}_S$. Чем больше последний, тем меньшим выбирается угол $m{\beta}_2$

- 21. Диаметр выхода из рабочего колеса, м $D_2 = \frac{60 \cdot u_2}{\pi n}$.
- 22. Отношение диаметров выхода и входа $m = \frac{D_2}{D_1}$.

Полученное отношения диаметров должно находиться в диапазоне значений 1,25...3,3.

23. С учетом условия $c_{1r} = c_{2r}$ можно вычислить ширину лопасти на выходе из рабочего колеса, м

$$\boldsymbol{b}_2 = \boldsymbol{b}_1 \frac{\boldsymbol{D}_1}{\boldsymbol{D}_2}$$
.

24. Количество лопастей рабочего колеса определяется по формуле Пфлейдерера

$$z=6,5\cdot\frac{m+1}{m-1}\sin\frac{\beta_{1n}+\beta_{2n}}{2}$$

где $\beta_{2n} = \beta_2 + \sigma$ - угол установки лопаток на выходе из рабочего колеса, град. Здесь σ - угол отставания потока можно принять равным $5...10^{\circ}$.

- 25. Радиус гиба лопасти $r_{\scriptscriptstyle A} = \frac{r_{\scriptscriptstyle 2}^2 r_{\scriptscriptstyle 1}^2}{2 \cdot (r_{\scriptscriptstyle 2} \cdot \cos oldsymbol{eta}_{\scriptscriptstyle 2, n} r_{\scriptscriptstyle 1} \cdot \cos oldsymbol{eta}_{\scriptscriptstyle 1, n})}$.
- 26. Радиус центров гиба лопасти $R_o = \sqrt{r_2^2 + r_{_{\! /\! 2}}^2 2 \cdot r_{_{\! 2}} \cdot r_{_{\! 3}} \cdot \cos eta_{_{\! 2,n}}}$.
- 27. Хорда профиля лопасти $b_n = \frac{r_2 r_1}{\sin \frac{\beta_{2n} + \beta_{1n}}{2}}$.

- 28. Относительный шаг лопастей $\bar{t}_{cp} = \frac{\pi}{z} \cdot \frac{m+1}{m-1} \cdot \sin \frac{\beta_{1n} + \beta_{2n}}{2}$.
- 29. Абсолютный шаг лопастей $t_{\rm cp} = b_n \cdot \bar{t}_{cp}$.
- 30. Скорость $C_{2u} = gH/u_2$.
- 31. Скорость $C_2 = \sqrt{C_{2r}^2 + C_{2u}^2}$.
- 32. Находим угол α из $\sin \alpha = \frac{C_{2r}}{r}$ и угол α_1 из $\sin \alpha_1 = \frac{C_{1r}}{C_1}$.
- 33. Относительная скорость на входе в лопатки $\sqrt{\tilde{N}_r^2 + (u_1 C_{1u})^2}.$ $\sqrt{\frac{2r}{2r} + \frac{2}{2}}$

ПРОЕКТИРОВАНИЕ СПИРАЛЬНОЙ КАМЕРЫ.

Оптимальная аксиальная скорость в камере в м/с $C_a = C_2/1.3$.

Максимальная площадь сечения камеры в м² $f_{\max}^{\varphi=360} = \frac{K_{\nu} \cdot Q}{C_{a}}$, где $K_{\nu}=1,05$ для насосов.

Минимальная площадь сечения камеры в м 2 $f_{\min}^{\varphi=0} = \frac{(K_v - 1) \cdot Q}{C_a}$.

Закон изменения сечения спиральной камеры $f^{\varphi_i} = f_{\min} + \frac{(f_{\max} - f_{\min}) \cdot \varphi_i}{360}$, где φ_i – угол в градусах от 0 до 360.

Радиусы круглой спиральной камеры по сечениям в м $r_i = \sqrt{\frac{f_i}{\pi}}$. Радиусы определить для сечений с углами φ : 0, 45, 90, 135, 180, 225, 270, 315 и 360 градусов

Ширина входа в камеру за рабочим колесом в м $b_3 = b_2 + 0.05 \cdot b_2$.