
1. КРАТКАЯ ТЕОРИЯ МЕТОДА 

1.1. Предмет и задачи гравиметрии 

Гравиметрия – раздел геофизики – наука об измерении и изучении 
распределения силы тяжести и ее составляющих на земной 
поверхности [12, 33, 35]. 

В предмет «Гравиметрия» входят вопросы использования результатов 
измерения силы тяжести для определения фигуры Земли и ее внутреннего 
строения, а также для изучения геологического строения ее верхних слоев: 
земной коры и мантии [4, 7, 8, 11, 12, 25, 27, 31, 38]. 

Задачей гравиметрии является определение гравитационного поля Земли и 
других небесных тел как функции местоположения и времени по измерениям 
силы тяжести и гравитационных градиентов на поверхности тела или вблизи 
него. 

Начало экспериментальному изучению силы взаимодействия между 
Землей и физическими телами было положено итальянским ученым Галилео 
Галилеем (1564–1642), который в 1590 г. определил, на основе закона 
равноускоренного движения свободно падающего тела, численное значение 
силы притяжения, приблизительно равное 10 м/с². 

Теоретическое обоснование явления притяжения между телами сделал 
английский физик и математик Исаак Ньютон (1642–1717), который вывел 
закон всемирного тяготения: 
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где 1m  и 2m  – массы притягиваемых тел, кг; 
r  – расстояние между телами, м; 
f  – гравитационная постоянная, или коэффициент пропорциональности 

между левой и правой частями формулы, м³/(кг · с²). 
Закон всемирного тяготения Ньютона является теоретической 

основой гравиметрии. Численное значение f  первым определил в 1789 г. 
английский физик Г. Кавендиш (1731–1810) с помощью усовершенствованных 
им крутильных весов конструкции Дж. Мичела (1724–1793).  

Значение f  получилось равным (6,673 ± 0,003) · 10-11м³/(кг · с²). В настоящее 
время значение f  равно (6,67259 ± 0,00085) · 10-11м³/(кг · с²). 

Значение гравитационной постоянной не зависит ни от физических или 
химических свойств обеих масс, ни от величины и направления скорости их 
движения, ни от свойств среды, разделяющей эти тела. Она зависит только от 
выбранной системы измерения единиц массы, длины и времени. 

Сила тяжести – сила, с которой все тела притягиваются Землей. Для 
шарообразной Земли с массой M и радиусом R  однородной по плотности сила 
притяжения определяется по формуле: 
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Вектор силы притяжения F  направлен к центру Земли. 
На точечную массу находящуюся на поверхности реальной Земли, 

вращающейся вокруг своей оси со скоростью ω (рис. 1.1), кроме силы 
ньютоновского тяготения действует центробежная сила C  и сила притяжения 
небесных тел nF . Центробежная сила вычисляется по формуле: 

C ω 2=C ρ ,   (1.3) 
где ρ – расстояние точки N от оси вращения Земли;  
ω– угловая скорость вращения Земли; 
Равнодействующей этих сил является 

сила тяжести G . В каждой точке земной 
поверхности с единичной массой (m = 1) 
существует единственный вектор силы 
тяжести. Совокупность векторов G  
образует поле силы тяжести – 
гравитационное поле. Или, другими 
словами, гравитационным полем 
называется пространство, в котором 
проявляются силы тяготения. Направление 
отвесной линии в пространстве совпадает с 
вектором силы тяжести. 

Размерность силы тяжести 
2dim −⋅⋅= TMLG , где L – длина (м), М – 

масса (кг), Т – время (с). 
Единицей измерения силы тяжести в СИ является 1 Ньютон = 1кг · м/с². 
Сила притяжения, действующая на единичную массу, есть напряженность 

поля силы тяжести, численно равная ускорению g, сообщаемому этой массе. 
Размерность ускорения силы тяжести в СИ: 

2dim −⋅= TLg , 
где L – длина (м); Т – время (с). 
Единица измерения ускорения силы тяжести в СИ – м/c². 
Это очень большая величина. Для Земли ее среднее значение составляет 

g  = 9,81 м/c². 
В гравиметрии за единицу ускорения силы тяжести принят 1 Гал – в честь 

Г. Галилея: 
1 Гал = 1·10-2 м/c² – гал; 
1мГал = 1·10-5 м/c² – миллигал; 
1мкГал = 1·10-8 м/c² – микрогал. 
Для определения g  в любой точке пространства необходимо знать три ее 

составляющие по осям прямоугольных координат: ZYX g,g,g , и угол между 
направлением g  и осями координат, т. е. углы Xg,∠ ; Yg,∠ ; Zg,∠ . 

Рис. 1.1. Силы, действующие на 
точку физической поверхности 

Земли 



В 1773 г. Ж. Лагранж (1736–1813) предложил использовать скалярную 
функцию W(x,y,z), частные производные которой по осям координат равны 
проекциям g  на эти оси: 
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К. Гаусс (1777–1855), крупнейший немецкий математик, назвал эту 
функцию потенциалом: 
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Первое слагаемое этого выражения – потенциал тяготения V, а второе – 
потенциал центробежной силы Q: 

W = V + Q. 
Физический смысл потенциала – это работа в поле тяготения по 

перемещению единичной массы из бесконечности в данную точку: 
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При перемещении массы в направлении, перпендикулярном вектору силы 
тяжести имеем: 0,90cos =°⋅⋅= dWdSgdW s , т. е. в каждой точке пространства 
будем иметь поверхность одинакового потенциала W = const. В 1873 г. 
уровенную поверхность, близкую к поверхности невозмущенного океана, 
Иоганн Бенедикт Листинг (1808–1882) назвал геоидом. 

Если перемещение массы происходит в направлении, параллельном 
вектору силы тяжести, то 

dSgdWdSgdW ss =°⋅⋅= ,0cos ,  
откуда 

sg

dW
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В данном случае dS– расстояние между уровенными поверхностями. Оно 
обратно пропорционально величине sg : чем больше sg , тем меньше 

расстояние между уровенными поверхностями. Для эллипсоида γ=sg ,

dndS= , 
n
W

∂
∂=γ , т. е. сила тяжести (на эллипсоиде) – это первая производная 

потенциала силы тяжести по нормали. 
 

1.2. Распределение силы тяжести на поверхности эллипсоида вращения 

Формулу для вычисления силы тяжести на поверхности эллипсоида получил 
в 1743 г. французский математик Клеро Алекси Клод (1713–1765). При выводе 
формулы он представил Землю состоящей из ряда эллипсоидальных слоев 
постоянной плотности и применил при этом законы гидростатики: 

( )Bgg e
2sinβ1 ⋅+= ,   (1.6) 



где eg  – значение силы тяжести на экваторе; 
Β – геодезическая широта точки на поверхности эллипсоида; при  

В = 90° получим значение силы тяжести на полюсе – pg ; 

β  – коэффициент, определяющий избыток силы тяжести относительно 
экватора; 

β г
e

eP q
g

gg
α

2
5 −=

−
= , 

где гα  – сжатие эллипсоида по гравиметрическим данным: 
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где а – большая полуось эллипсоида; 
ω  – угловая скорость вращения Земли; 

ЗM  – масса Земли; 
А,В и С – главные моменты инерции Земли; 

eС  – центробежная сила на экваторе. 
Формула Клеро (1.6) справедлива до малых первого порядка. Более точную 

формулу распределения силы тяжести на поверхности эллипсоида, исходя из 
теории Стокса, вывели в 1929 г. итальянские геодезисты У. Сомильяна и П. 
Пицетти [14]: 
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Разложив знаменатель равенства (1.9) в степенной ряд и вводя обозначения 
для β  и гα  из группы формул под номером (1.8), получим первую формулу 
Клеро с членам второго порядка малости: 
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β ⋅−⋅= q .   (1.12) 

Формулы (1.10) и (1.11) составляют теорему Клеро с членами второго 
порядка малости. Коэффициент второго порядка малости 1β  характеризует 
сфероидальность Земли. 

Численные значения коэффициентов eg , β и 1β  определил в 1909 г. 
немецкий геодезист Гельмерт Фридрих Роберт (1843–1917). В период с 1901 по 
1909 г. он обработал по способу наименьших квадратов 1 603 значения силы 
тяжести и получил формулу для вычисления значений силы тяжести 0γ  на 
поверхности эллипсоида: 

( )BBГ 2sin0000071,0sin005302,01030978γ 22
0 ⋅−⋅+= . (1.13) 

Для нормальной Земли 2,5γγγ∆ 0 =−= eP  Гал, что составляет 0,53 % 

от 0γ = 981 Гал. 
При a = 6,387 · 106 м, ω  = 7,292 · 10-5рад/c = 15,04 ́́ /c, 

8,14,32,5γ∆ 0 =−=− eC Гал или 0,18 % от 0γ . 
Формула Гельмерта (1.13) принята в России в качестве основной при 

обработке гравиметрических измерений, так как сжатие эллипсоида, 
вычисленное по гравиметрическим данным, близко к таковому по 
геодезическим данным: 
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В 1930 г. в качестве международной была принята формула Кассиниса: 
K
0γ ( )BB 2sin0000059,0sin0052884,01049978 22 ⋅−⋅+= , (1.14) 

рассчитанная для эллипсоида Хейфорда. Она широко применяется за рубежом. 
Для перехода от K

0γ  к Г
0γ  существует зависимость: 

( )BKГ 2sin2,130,19γγ 2
00 ⋅−−= .   (1.15) 

Следует отметить, что в формулах (1.13) и (1.14) коэффициент 0γ  
вычислен в Потсдамской гравиметрической системе, в которой обнаружена 
ошибка в определении силы тяжести на исходном пункте Потсдам в +13,87 
мГал. Поэтому в рассчитанные по этим формулам значения вводят поправку, 
равную –14 мГал. 

В 1971 г. на XV Генеральной ассамблее международного геодезического и 
геофизического союза была принята новая формула для вычисления: 

( )BB 2sin1059sin10024,531031,85978γ 2724
0 ⋅⋅−⋅⋅+= −− ,  (1.16) 

соответствующая референцной системе 1967 г. Система задана 
независимыми величинами (фундаментальными геодезическими постоянными), 
полученными из наблюдений космических летательных аппаратов: 

23скм603398 −=⋅ Mf  – геоцентрическая гравитационная постоянная; 
а = 6 378 160 м – большая полуось эллипсоида; 



2J  = 10 827·10-7 – зональный гармонический коэффициент; 
М = 5,976·1024 кг – масса Земли; 
ω  = 7, 2921151467·10-5 рад/c – угловая скорость вращения Земли; 
Зная 2J , можно вычислить сжатие эллипсоида: 

.249,298/1
2
3

α
22

2 =
⋅
⋅+=
Mf
aW

J    (1.17) 

Для перехода от )1930(0γ к )1971(0γ существует зависимость: 

B2
)1930(0)1971(0 sin6,132,17γγ ⋅+−=−  мГал.   (1.18) 

Формула для вычисления 0γ , принятая в 1971 г., получена из наблюдений 
ИСЗ, движущихся вне атмосферы. Поэтому следует иметь ввиду, что масса 
Земли включает массу атмосферы равную 5,1·1018 кг. 

С 1980 г. используется уточненная формула для вычисления 0γ : 

( )BB 2sin1059sin10024,53168,978032γ 2724
0 ⋅⋅−⋅⋅+⋅= −− . (1.19) 

На поверхности Земли величина силы тяжести зависит от следующих 
факторов: 

− Широта места наблюдения; 
− Высота точки над поверхностью эллипсоида; 
− Плотностные и структурные неоднородности внутри земли; 
− Приливное влияние луны и солнца; 
− Притяжение атмосферы. 
 
Внутри Земли сила тяжести меняется по закону, проиллюстрированному на 

рис. 1.2. 



 

Рис. 1.2. Изменение плотности

 
Если бы плотность ρвещества

уменьшалась бы равномерно
с глубиной, о чем свидетельствуют

От поверхности Земли
практически неизменна и составляет
(2 900 км) сила тяжести возрастает
центру Земли до 0 Гал. 

 

1.3. Аномалии силы тяжести

Конечным продуктом
силы тяжести.  

Аномалия силы тяжести
(измеренной) g и нормальной

γ∆ −= gg .   

Величина γ вычисляется
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плотности ρ и ускорение силы тяжести 

вещества в Земле была постоянной, 
равномерно с глубиной (Н). В действительности

етельствуют данные сейсмологии. 
Земли и до глубины около 2 500 км

неизменна и составляет около 980 Гал. На границе
тяжести возрастает до 1 000 Гал, а затем плавно

тяжести 

продуктом гравиметрических работ является

тяжести – разность между величинами
нормальной силы тяжести γ0 в пункте наблюдений

 (1.20) 

вычисляется по формуле: 

 (1.21) 

нормальное значение силы тяжести, вычисляемое

мГал/м – вертикальный градиент нормальной

высота, м. 
обработки гравиметрических и геодезических

гравиметрические карты аномалий силы тяжести. 
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В практике геофизических работ используют, в основном, два типа 
аномалий силы тяжести. 

1. Аномалия в свободном воздухе ( ..BCg∆ ): 

Hgg BC ⋅+−= 3086,0γ∆ 0.. ,   (1.22) 
где 0,3086 · Н – поправка за геодезическую высоту точки наблюдения. 
2. Аномалия Буге ( Бg∆ ): 

))(δ0419,03086,0γ(∆ 0 ρgHρHgg рБ −⋅⋅+⋅−−= ,  (1.23) 

где 0,0419 · ρ  · Н – притяжение плоскопараллельного (промежуточного) 
слоя толщиной Н с плотностью ρ  = 2,67 г/см3, заключенного между уровнем 
точки наблюдения и поверхностью эллипсоида (поправка Буге).  

рgδ  – поправка за влияние рельефа местности. 

Для учета влияния окружающего рельефа используют различные способы, 
например: разбиение местности на участки, представляющие собой 
криволинейные призмы с наклонной верхней гранью, учет поправки по 
характерным формам рельефа и др. Наиболее широкое применение на практике 
нашли способы, разработанные П.И. Лукавченко, В.М. Березкиным, Е.А. 
Мудрецовой, а также методики, предложенные А.И. Каленицким, В.П. 
Смирновым и Г.Г. Ремпелем [11, 18, 19, 30]. 

Свойства аномалий силы тяжести и области их применения 
При решении вопроса о фигуре Земли необходимо строгое сохранение 

условия Стокса: «…уровенная поверхность потенциала силы тяжести целиком 
охватывает все массы» [12, 25, 35], т. е. общая масса Земли и форма уровенной 
поверхности не должны меняться или изменяться, по возможности, мало.  

При вычислении аномалии силы тяжести CBg∆  вводится поправка за 
высоту точки наблюдения. Эта редукция «переносит» значение γ0 с эллипсоида 
в точку измерений без участия масс промежуточного слоя – массы Земли 
остаются не тронутыми. 

Нормальное поле построено для эллипсоида, охватывающего все массы. 
Аномалии силы тяжести с редукцией в свободном воздухе CBg∆ являются 
отклонением реально наблюдающейся в данной точке силы тяжести от ее 
нормального значения. В этом смысле величина CBg∆  отражает истинное 
гравитационное поле [12], если высоты определены от поверхности 
эллипосида, иначе – смешанное. 

Редукция в свободном воздухе очень мало искажает геоид: 

γ

π

γ

2HρfdW
dS

⋅⋅⋅
−== .   (1.24) 

Для целого континента толщиной Н = 1 км и ρ  = 2,5 г/см3: 

6
980

105,21067,614,3 108
≈⋅⋅⋅⋅−=

−
dS см (5,7 см). 

При вычислении аномалий силы тяжести с редукцией Буге Бg∆  поправка 
за промежуточный слой исключает его влияние. Удаление масс между уровнем 



отнесения величины γ0 и уровнем точки наблюдения нарушает условие Стокса – 
неизменность общей массы. Кроме того, происходит значительная деформация 
уровенной поверхности. 

При введении поправки Буге 

γ

ρπ2

γ

2 aHfdW
dS

⋅⋅⋅⋅
−== .   (1.25) 

При исключении влияния острова толщиной Н = 1 км и радиусом R = 100 
км с плотностью пород ρ  = 2,5 г/см3 

10
980

10105,21067,614,32 758
≈⋅⋅⋅⋅⋅⋅=

−
dS м. 

Такова величина искажения геоида в случае регуляризации методом 
введения поправки Буге (операция устранения масс, выступающих над 
уровенной поверхностью). Поэтому Бg∆  не пригодны для изучения фигуры 
Земли. Но при этом, в аномальном поле рельефнее проявляются аномальные 
массы, что нужно для целей гравиразведки. 

При редукции Буге необходимо вводить поправки за окружающий рельеф. 
Аномалии силы тяжести в редукции Буге на большей части Земли 

составляют в среднем 42,4 мГал. Максимальное значение – +660 мГал (о. 
Гавайи), минимальное –380 мГал – желоб Пуэрто-Рико (Атлантический океан). 

 

1.4. Уклонение отвеса 

В любой точке М земной 
поверхности (рис. 1.3) отвес 
устанавливается по линии, 
совпадающей с направлением 
действия силы тяжести Ng . Это 
направление перпендикулярно к 
уровненной поверхности W = C, 
проходящей через данную точку М. 
Рассмотрим общий земной эллипсоид 
(ОЗЭ), наилучшим образом 
представляющий фигуру Земли 
[12, 28, 35]. В общем случае 
поверхность W = C не параллельна 
поверхности ОЗЭ. Проведем нормаль 
nn к ОЗЭ через точку М. Угол nNM  
– абсолютное, или гравиметрическое (

gν ) уклонение отвесной линии. 

Обработка всех геодезических 
измерений производится на референц-
эллипсоиде (РЭ) данного государства. 
Проведем нормаль 11nn  к референц-

N n1 n 

g 
n1 n 

M 

vg 

vАГ 
∆v 

W=C 

РЭ 

ОЗЭ 

Рис. 1.3. Отсчетные поверхности и 
нормали к ним 



эллипсоиду в точке М. Угол 1NMn  между направлением отвесной линии и 
нормалью к поверхности РЭ называется относительным или астрономо-
геодезическим уклонением отвесных линий ( АГν ): 

АГν vvg ∆−= , 

где v∆  – угол между нормалями к ОЗЭ и к РЭ 
Астрономические координаты (φ и λ ) контролируются направлением 

отвесной линии, а геодезические широты и долготы ( B  и L ) определяются 
положением нормали к референц-эллипсоиду. Следовательно, уклонения 
отвесных линий получаются как разность астрономических и геодезических 
координат. 

Для практических целей нужно знать проекции gν  на плоскость 

меридиана (ξ) и плоскость первого вертикала ( η ). Эти составляющие 
необходимы для перехода от астрономических к геодезическим координатам и 
обратно (рис. 1.4). На рис. 1.4: 

Р  – полюс мира; 
g – вектор силы тяжести на поверхности Земли в точке M; 
n– нормаль к ОЗЭ; 

1n  – нормаль к референц-эллипсоиду; 
γ  – вектор нормальной силы тяжести на поверхности ОЗЭ; 

Г
Z  – геодезический зенит; 

А
Z  – астрономический зенит; 

1Z  – нормальный зенит; 

Г
PZ – геодезический меридиан;  

А
PZ  – астрономический меридиан; 

2ZZA  – первый вертикал; 

BPZГ −°= 90  – дополнение геодезической широты до 90°; 
ϕ−°= 90АPZ φ – дополнение астрономической широты до 90°; 

nBPZ −°= 901  – дополнение нормальной широты до 90°; 
B, φ, Bn– широты: геодезическая, астрономическая и нормальная 

соответственно; 
L−= λλ∆ – разница астрономической и геодезической долготы; 

АZZ1 , AГ ZZ  – гравиметрическое ( gν ) и астрономо-геодезическое ( АГν ) 

уклонение отвесной линии, соответственно; 

21ZZ  – проекция gν  на плоскость меридиана Bξ ; 

2ZZГ  – проекция АГν  на плоскость меридиана АГξ , 

2ZZA  – проекции gν и АГν  на плоскость первого вертикала – gη  и АГη . 



По рис. 1.4 видно, что связь 
между астрономо-геодезическими АГν  
и гравиметрическими gν
уклонениями отвеса имеет вид: 

BgАГ ∆ξξ += , 

где BBB n −=∆ ;  

( )АГBPZ ξ902 +−°= . 
Из прямоугольного 

сферического треугольника PZZ A2  
по правилу Непера – Модюи 
запишем: 

 
 
 

( ) ( ) ( )[ ] ( )
( ) ( ) ( )




−⋅=−⋅−°=
+⋅=+−°⋅−°=−=

.λsinφcosλsinφ90sinηsin

;ξctgφtgξ90tgφ90ctgλcosλ∆cos

LL

BBL АГАГ

Разложим функции косинуса и синуса в ряд. Пренебрегая квадратичными 
членами, получим: 

;φξ

;ξφ

B

B АГ

−=
−=

 

или 

( ) .cosλη

;φsecηλ

BL

L

⋅−=
⋅−=

   (1.26) 

Существует 3 способа определения уклонения отвесной линии. 
Астрономо-геодезический. 
Гравиметрический. 
Астрономо-гравиметрический. 
Гравиметрическое уклонение gν получим из прямоугольного треугольника 

ONg, в котором угол NOg = gν  (рис. 1.5): 

γ
ν S

g

g
tg = .   (1.27) 
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Рис. 1.4. Связь астрономических 
игеодезических координат 



 
Рис. 1.5. Гравиметрическое уклонение отвеса 

 
По малости gν (около одной минуты), разложив функцию tg в ряд и 

ограничившись первым членом разложения, получим: 

γ
ν s

g
g

= ,   (1.28) 

где γ  и sg  – составляющие силы тяжести по направлениям: нормали γ  
и касательной S к ОЗЭ. Первая составляющая близка к среднему значению 
нормальной силы тяжести γ  на поверхности ОЗЭ, а вторая обусловлена 
действием потенциала силы тяжести W и равна: 

S

W
gs ∂

∂= .   (1.29) 

Потенциал силы тяжести на земной поверхности есть сумма нормального 
Uи возмущающего Т потенциалов: 

TUW += .   (1.30) 
С учетом (1.29) и (1.30) выражение (1.28) примет вид: 









∂
∂+

∂
∂−=

S
T

S
U

g γ
1

ν .   (1.31) 

Так как силовые линии нормального поля на поверхности геоида 
перпендикулярны к эллипсоиду, то: 

0=
∂
∂

S

U
;  

(1.32) 

S

T
g ∂

∂⋅−=
γ

1
ν ; 

ξγ ⋅=T , 
Найдем частную производную ST ∂∂ /  из формулы Брунса. Подставив ее в 

формулу (1.32), получим: 

SSg ∂
∂

−=








∂
∂

⋅−=
ζζ

γ
γ
1

ν .   (1.33) 



Гравиметрическое уклонение отвесной линии есть частная производная 
превышения геоида над эллипсоидом по направлению наибольшего изменения 
потенциала силы тяжести на эллипсоиде или то же самое – наибольшего 
изменения высот. 

Значение ζ  задается формулой Стокса: 

∫ ∫=
π

0

π2

0

∆
πγ4

ζ g
R

СВ ( ) ⋅⋅⋅⋅ ψψsinψ dAdS ,   (1.34) 

где ( )ψS  – функция Стокса; 

( )ψS  = 1 + cosec 






 +⋅−−−
2

ψ2sin
2

ψ
sinlnψcos3ψcos5

2

ψ
sin6

2

ψ
ec , (1.35) 

где ψ  – сферическое расстояние между определяемой М ( 00 λ,φ ) и 
текущей N ( λ,φ ) точками (рис. 1.6); 

 

 

Рис. 1.6. Сферический треугольник 

 
А – азимут линии МN; 

g∆ СВ – аномалия силы тяжести с редукцией в свободном воздухе. 
Для получения составляющих уклонения отвеса в меридиане ( ξ ) и в 

первом вертикале (η ) необходимо выражение (1.33) продифференцировать по 

широте φ0 и долготе 0λ . 

В первом случае =∂S R 0φ∂⋅ , а во втором  

=∂S R 00 λφcos ∂⋅⋅ , 

где φ0 и 0λ – координаты точки, в которой определяются уклонение 
отвесной линии; 

R  – средний радиус Земли. 
Тогда: 
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000 ∂

∂
⋅
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∂
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⋅−=

RR
  (1.36) 

Подставив выражение (1.35) в (1.36), получим: 
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Определив из решения сферического треугольника (рис. 1.6)
ψsin,ψ,ψ d , продифференцировав выражение (1.37) по φ0 и 0λ  и выполнив 

несложные математические преобразования, получим выражения для 
составляющих ξ  и η  в виде [12]: 

g−=






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ψ

ψ
.   (1.38) 

Чтобы получить ξ  и η  в секундах дуги, умножим выражение (1.38) на ρ ′′ и 
введем обозначение: 

( ) ( )ψψsin
ψ

ψ

γ2

ρ
Q

S
=

∂
∂

⋅
′′

−  – функция Веннинг-Мейнеса.  (1.39) 

Функция Веннинг-Мейнеса непрерывна во всей области, кроме точки 
0ψ = . Строгая формула для вычисления Qимеет вид: 
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 +−     (1.40) 

Исследование функции ( )ψQ  выполнил В.Ф. Еремеев [15]. Числовые 

значения функции ( )ψQ  приведены в табл. 1.1, а ее ход показан на рис. 1.7. 

Таблица 1.1. Значения функции Венинг-Мейнеса 

ψ  0° 1° 10° 20° 30° 72° 80° 180° 

( )ψQ  ∞  +12,370 +1,591 +1,02 +0,79 0 −0,15 0 

 

 
Рис. 1.7. График изменения хода функции Венинг-Мейнеса 



По табл. 1.1 и рис. 1.7 видно, что функция Венинг-Мейнеса быстро 
убывает в пределах от 0 до 20°, а от 20° до 180° – близка к нулю. 

Это указывает на возможность разделить область интегрирования на две: 
от 0 до 10° и по всей остальной площади. 

Если интегрирование вести в пределах от 0 до 10°, то функцию Q можно 
упростить, разложив ее по малости ψ  в ряд. Ограничившись первым порядком 
малости ψ , получим приближенное значение Q1 функции Веннинг-Мейнеса: 








 +°+
°

′′
= 3ψ

12
42

ψ
2

γ2

ρ
1Q .   (1.41) 

Заменим угловое расстояние °ψ  линейным r по дуге большого круга: 

360
π2

ψψ ⋅°== RRr . 

Получим: 

R

r

π2

360
ψ =° .   (1.42) 

Подставив (1.42) в (1.41), получим: 
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Полагая, что 626520ρ =′′ , 000981γ = мГал, 3716=R  км, и обозначая 
постоянные коэффициенты через А,В и С, получаем: 

CrB
r

A
Q +⋅+=1 ,   (1.43) 

где А = 1 339,6; В = 61066 −⋅ , С = 0,315. 
В выражении (1.43) первые слагаемые при малых значениях r являются 

определяющими. Поэтому принято выделять центральную зону от 0 до r0 , где 
величину Q1 можно найти по формуле: 

r
Q

1340
1 = . 

С учетом вышеизложенного, величины составляющих уклонения отвеса 
ξ ′′ и η ′′ и высоты квазигеоида вычисляются по формулам: 
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где .
2
B

r ln A F(r) 2 rcr ⋅++= , 

где g∆ = g∆ СВ– см. обозначения на стр. 23. 



По известным аномалиям силы тяжести в свободном воздухе по формулам 
(1.44) можно вычислить составляющие уклонения отвесной линии в меридиане 
ξ ′′  и в первом вертикале (η"). Влияние аномалий силы тяжести необходимо 
учитывать в области от 0° до 20° (от 0 до 2 000 км). 

 

1.5. Гравиметрические данные в задачах инженерной геодезии 

Монтаж оборудования в большинстве случаев ведут с относительной 
погрешностью 10-4–10-5 (1мм на 100 м), а съемочные работы – с еще меньшей 
точностью. При этом гравитационное поле в пределах стройплощадки 
считается однородным. 

При работах с относительными погрешностями порядка 10-5–10-6 гипотеза 
однородности поля силы тяжести перестает себя оправдывать и поэтому 
приходится переходить от материализованной прямоугольной координатной 
системы к координатной системе, в которой учитывается положение силовых 
линий – кривая, касательная к которой в каждой точке совпадает с вектором 
силы тяжести (рис 1.8). 

Силовые линии – плоские кривые, 
обращенные выпуклостью к экватору. 
Они имеют кривизну, не параллельны 
друг другу. 

Вместе с силовыми линиями 
искривляются и поверхности, 
ортогональные им. Эти поверхности 
называют уровенными, или 
эквипотенциальными поверхностями 
равного потенциала: W = C. В таких 
условиях работать геодезисту 
становится трудно.  

Но, если не принимать во 
внимание все сказанное, то точность 10-

6 останется недосягаемой. При 
неоднородном поле силы тяжести будет 
наблюдаться отклонение оси вращения 
теодолита от координатной линии Z 
(силовая линия). Поэтому при 
измерениях геодезических величин (линий, углов, превышений) необходимо 
учитывать уклонения отвесных линий. 

 

1.5.1. Поправка в измеренное горизонтальное направление 

Горизонтальное направление – линия пересечения вертикальной 
плоскости, проходящей через отвесную линию (вертикальную ось теодолита) и 
наблюдаемый пункт, с горизонтальной плоскостью (плоскостью лимба 
теодолита). 

Рис.1.8. Силовое поле геоида 

Рис. 1.8. Силовое поле геоида 
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Пусть М – пункт на поверхности Земли (рис. 1.9), S – сфера произвольного 
радиуса с центром в точке М, n – нормаль к эллипсоиду. Она пересекает S в 
геодезическом зените – точке Z. Направление отвесной линии, контролируемое 
вектором силы тяжести g , дает в пересечении со сферой астрономический 
зенит – точку gZ ; v – уклонение отвеса; MQ – измеренное направление на 

пункт Q. 
Требуется получить редуцированное (исправленное) направление QZg . 

Проведем через gZ  линию ЛЛ, параллельную ZгQ. Угол 1δ  между ЛЛ и 

направлением QZg  является поправкой в горизонтальное направление. 

Опустим перпендикуляр из gZ  на направление ZгQ. Тогда v можно 

разложить на составляющие v A = ZгQ в азимуте редуцированного направления 

и KZv gA =°+90  – в перпендикулярном направлении. 

 

 
Рис. 1.9. Поправка в измеренное горизонтальное направление 

 
Из прямоугольного треугольника nQZ g : 

( ) aZA ctgtgvδ90cos 901 ⋅=−° °+ ,   (1.45) 

где aZ  – астрономическое зенитное расстояние точки Q. 

По малости v, которое обычно не превышает нескольких секунд, можно 
записать: 

aZv A ctgδ 901 ⋅= °+ .   (1.46) 

Применив формулу составляющей отвеса в произвольном азимуте А 
AAv sinηcosξ агаг +⋅= ,   (1.47) 

найдём: 
AAv A sinξcosη агаг

90 ⋅−⋅=°+ .  (1.48) 
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Формулу (1.48) подставим в (1.46) и получим окончательное выражение 
поправки 1δ за уклонение отвеса: 

( )AA ⋅⋅+⋅−= cosηsinξδ агаг ctg aZ .   (1.49) 

Составляющие ξ,v  и η  отклонения отвеса в азимуте А считаются 
положительными, если луч отвесной линии, направленный вверх, отклоняется 
от оси Z на северо-восток [4]. 

Особенностью специальных геодезических сетей являются значительные 
углы наклона, достигающие 30–40º. При таких углах коэффициент ctgZаравен 
0,58–0,84, поэтому уклонения отвесной линии нужно знать не грубее точности 
измерения горизонтальных углов: 4020 ′′−′′ ,, . 

 

1.5.2. Поправка в зенитное расстояние 

Из прямоугольного сферического треугольника QKZg  (см. рис 1.9) по 

аналогии Непера – Мадюи запишем: 
( ) QKvZ Aa coscoscos 90 ⋅= °+ . 

По малости v  можно считать, что ( ) 1cos 90 =°+Av , а дуга QK равна 

разности геодезического зенитного расстояния точки Q: ( ГГ QZZ = ) и уклонения 
отвеса Av  в азимуте измеряемого направления: AvZQK −= г . Тогда:  

Aa vZZ +=г .   (1.50) 

Поправка в зенитное расстояние одинакова для всех направлений, лежащих 
в одной вертикальной плоскости по одну сторону от зенита, и она вводится в 
том случае, если точность измерений Z сравнима с величиной v , т. е. при 
погрешности Zm  более 1′′± . 

 

1.5.3. Влияние уклонения отвеса на измеряемое расстояние 

На рис. 1.10 проиллюстрирована методика учета влияния уклонения 
отвесной линии на измеряемое расстояние. 

 

 
Рис.1.10. К определению поправки в измеряемое расстояние 
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На рис. 1.10: S – измеренное расстояние между точками А и В; hBC ∆=  – 
превышение В над А относительно горизонтальной плоскости; g  – вектор силы 
тяжести; v  – уклонение отвесной линии, α  – угол наклона линии АВ 
относительно горизонта (ГП). 

Поправка за угол наклона α  дает величину горизонтального проложения 
АС = b. Однако, на практике редуцирование расстояний ведут не по отвесным 
линиям, а по координатным (на рис. 1.10 – AZ и BZ). Из-за этого возникает 
дополнительная поправка bδ , равная СД: 

vhb tg∆δ ⋅= .   (1.51) 
Разложив по малости vфункцию тангенса в ряд и ограничившись первым 

членом разложения, получим: 
vhb ⋅= ∆δ . 

Если измеряемая линия состоит из нескольких пролетов, и длина ее 
невелика, то величину v можно считать постоянной. Тогда:  

∑⋅= ihvb ∆δ ,   (1.52) 
где ih∆  – превышение по i-му пролету линии. 
 

1.5.4. Влияние уклонения отвеса на результаты тригонометрического и 
геометрического нивелирования 

Влияние уклонения отвеса на результаты нивелирования 
проиллюстрировано на рис. 1.11. 

 
Рис. 1.11. К определению влияния уклонению отвеса на результаты 

нивелирования 

 
На рис. 1.11: S – измеренное расстояние между точками M и N; g  – вектор 

силы тяжести (отвесная линия); MZ – направление нормали к 
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эквипотенциальной поверхности
точках M и N – превышение
тригонометрического нивелирования
полученное из геометрического
горизонта (ПГ); α  – угол наклона
LMN – полуплоскость, проходящая

По рис. 1.11 видно, что
( )vSH =−⋅= αsin∆

или 
vSH cosαsin∆ −⋅⋅=

По малости v (около секунды
Тогда: 

cosαsin∆ −⋅⋅= vSH
Второе слагаемое представляет

H∆  за уклонение отвеса. 
Так как bS =⋅ αcos  и

bvhH ⋅−∆=∆ .  
Следовательно, при средней

км влияние уклонения отвеса
 

1.5.5. Редуцирование азимута

Пусть на поверхности Земли
которыми MN = S. Азимут
Земли находится шахта, в которую
1.12). 

 

Рис. 1.12.

 

поверхности, W = C; H∆  – разность геодезических
превышение над уровенной поверхностью W =

нивелирования, h∆  – превышение между
геометрического нивелирования;b – проекция

угол наклона линии MN; v  – уклонение отвесной
проходящая через аппликату Z пункта М

видно что 
( )vtgb −⋅= αtg(α −v), 

vS sinαcos ⋅⋅− .   (1.53)
около секунды) примем vvv == sin,1cos . 

αcos⋅⋅− Sv . 
представляет собой поправку в измеренное

и hS ∆αsin =⋅ , получим 
 (1.54) 

при средней разности уклонения отвеса 0,
отвеса на разность высот составляет 5 мм.

уцирование азимута в шахту 

поверхности Земли находятся две точки M и N, расстояние
Азимут линии MN равен А. На глубине H

в которую необходимо средуцировать

. 1.12. Редуцирование азимута в шахту 

геодезических высот в 
= C, полученное из 

между точками M и N, 
проекция S на плоскость 

уклонение отвесной линии; 
М в пункт N. 

(1.53) 
.  

измеренное превышение 

5′′,  и расстоянии 2 
мм. 

, расстояние между 
H от поверхности 

средуцировать линию MN (рис. 

 



Спроецируем точки M и N на отсчетную плоскость по нормали – в точки 
M0 и N0, и по отвесам Mg  и Ng  – в точки M2 и N2 (соответственно). Линия 

22NM  получит приращение азимута A∆ , которое необходимо определить. 
Проведем через нормали Mn и Nn  плоскости, перпендикулярные 

направлению S ( 00NM ). Они пересекут линию 22NM  в точках M1 и N1 
соответственно. 

Расстояния 10MM  и 10NN  определим через составляющие уклонения 
отвеса 1v  и 2v  в азимуте А + 90°: 

( )
( ) ,

;

19010

1
9010

HvNN

HvMM

NA

MA

⋅=

⋅=

°+

°+
   (1.55) 

где 


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+−=
+−=
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cosηsinξ

222

111 ; 

tg
( )

0

12

11

1010∆
S

Hvv

NM

MMNN
Atg

⋅−
=

−
= .   (1.56) 

По малости v, разложив тангенс в ряд и ограничившись первым членом 
разложения, получим: 

( )
0

агаг cosη∆sinξ∆∆
S

H
AAA ⋅⋅−⋅−= .   (1.57) 

Если при редуцировании используются оптические центриры, то ξ∆  и η∆  
определяются в точках M и N на поверхности Земли, а если использованы 
отвесы, то в точках M2 и N2 шахты. 


